Page 15«..10..14151617..20..»

Archive for February, 2012

Dog Receives First-Ever Stem Cell Therapy in Kansas City

KANSAS CITY, Mo. — An 11-year-old yellow Labrador suffering from severe arthritis underwent stem cell therapy on Valentine’s Day. It’s the first time a dog has received in-clinic adult stem cell therapy in Kansas City.

According to Stanley Veterinary Clinic where Jake the dog is being treated, adult animal stem cell technology uses the body`s own regenerative healing power to help cure dogs, cats and horses suffering from arthritis, hip dysplasia and tendon, ligament and cartilage injuries and other ailments.

Fat tissue is removed from the animal, the stem cells are separated from the fat and activated, and then injected into the affected areas.

Within two months of the procedure, Jake should be moving well, with little or no pain.

Severe arthritis affects up to 40 percent of the 164 million dogs and cats in the United States.

As for Jake, FOX 4’s Kim Byrnes will have an update on his condition tonight on FOX 4 News at 5 and 6.

Read more here:
Dog Receives First-Ever Stem Cell Therapy in Kansas City

Bioheart Acquires Exclusive Rights to Ageless Regenerative Institute’s Adipose Cell Technology

SUNRISE, Fla., Feb. 14, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that it has acquired the worldwide exclusive rights to Ageless Regenerative Institute's adipose (fat) derived therapeutic cell technology for use in the cardiac field.

"The Ageless adipose stem cell technology will allow us to broaden our portfolio of product candidates for cardiac patients," said Mike Tomas, President and CEO of Bioheart. "We have successfully treated patients in Mexico and now we are ready to expand into the US."

Adipose tissue is readily available and has been shown to be rich in microvascular, myogenic and angiogenic cells. Bioheart has recently applied to the FDA to begin trials using adipose derived stem cells or LipiCell(TM) in patients with chronic ischemic cardiomyopathy. Transplantation of LipiCell(TM) will be accomplished through endocardial implantations with the MyoStar(TM) Injection Catheter under the guidance of the NOGA(R) cardiac navigation system by Biosense Webster, Inc. -- A Johnson & Johnson Company.

Under the terms of the agreement, Bioheart will have a worldwide exclusive license to all of Ageless technology for use in the heart attack and heart failure markets. The agreement provides for upfront and milestone equity payments to Ageless.

Ageless' President and Chief Executive Officer, Dr. Sharon McQuillan, MD added, "We are excited about this collaboration with Bioheart, a leader in developing cell therapies for cardiovascular disease. Together with Bioheart, we can help to revolutionize cardiovascular medicine and improve the current standard of care for these patients."

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients.

For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2010, and its Quarterly Report on Form 10-Q for the quarter ended September 30, 2011.

See original here:
Bioheart Acquires Exclusive Rights to Ageless Regenerative Institute's Adipose Cell Technology

Stem Cells May Help Regenerate Heart Muscle

A promising stem cell therapy approach could soon provide a way to regenerate heart muscle damaged by heart attacks.

Researchers at Cedars-Sinai Heart Institute and The Johns Hopkins University harvested stem cells from the hearts of 17 heart attack patients and after prepping the cells, infused them back into the patients' hearts. Their study is published in the current issue of The Lancet.

The patients received the stem cell infusions about three months after their heart attacks.

Researchers found that six months after treatment, patients had significantly less scarring of the heart muscle and also showed a considerable increase the amount of healthy heart muscle, compared to eight post-heart attack patients studied who did not receive the stem cell infusions. One year after, scar size was reduced by about 50 percent.

"The damaged tissue of the heart was replaced by what looks like healthy myocardium," said Dr. Peter Johnston, a study co-author and an assistant professor of medicine at The Johns Hopkins University School of Medicine. "It's functioning better than the damaged myocardium in the control subjects, and there's evidence it's starting to contract and generate electrical signals the way healthy heart tissue does."

While this research is an early study designed to demonstrate that this stem cell therapy is safe, cardiologists say it's an approach that could potentially benefit millions of people who have suffered heart attacks. Damage to the heart muscle is permanent and irreparable, and little can be done to compensate for loss of heart function.

"In the U.S., six million patients have heart failure, and the vast majority have it because of a prior heart attack," said Johnston.

The damaged scar tissue that results from a heart attack diminishes heart function, which can ultimately lead to enlargement of the heart.

At best, Johnston said, there are measures doctors can try to reduce or compensate for the damage, but in many cases, heart failure ultimately sets in, often requiring mechanical support or a transplant.

"This type of therapy can save people's lives and reduce the chances of developing heart failure," he said.

Cardiac Regeneration A Promising Field

Other researchers have also had positive early results in experiments with stem cell therapy using different types of cells, including bone marrow cells and a combination of bone marrow and heart cells.

"It's exciting that studies using a number of different cell types are yielding similar results," said Dr. Joshua Hare, professor of cardiology and director of the University of Miami Interdisciplinary Stem Cell Institute.

The next steps, he said, include determining what the optimal cell types are and how much of the cells are needed to regenerate damaged tissue.

"We also need to move to larger clinical trials and measure whether patients are improving clinically and exhibiting a better quality of life after the therapy."

In an accompanying comment, Drs. Chung-Wah Siu amd Hung-Fat Tse of the University of Hong Kong wrote that given the promising results of these studies, health care providers will hopefully recognize the benefits that cardiac regeneration can offer.

And Hare added that someday, this type of regeneration can possibly offer hope to others who suffered other types of organ damage.

"This stategy might work in other organs," he said. "Maybe this can work in the brain, perhaps for people who had strokes."

Here is the original post:
Stem Cells May Help Regenerate Heart Muscle

VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

SOUTH SAN FRANCISCO, CA--(Marketwire -02/14/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has identified its initial Top 10 drug rescue candidates and plans to launch two formal drug rescue programs by the end of next quarter.

VistaGen's goal for each of its stem cell technology-based drug rescue programs is to generate and license a new, safer variant of a once-promising large market drug candidate previously discontinued by a pharmaceutical company no earlier than late-preclinical development.

"We are now at an advanced stage in our business model," said Shawn Singh, VistaGen's Chief Executive Officer. "After more than a decade of focused investment in pluripotent stem cell research and development, we are now at the threshold where game-changing science becomes therapeutically relevant to patients and commercially relevant to our shareholders. We have positioned our company and our stem cell technology platform to pursue multiple large market opportunities. We plan to launch two drug rescue programs by the end of the next quarter."

Over the past year, VistaGen, working with its network of strategic partners, identified over 525 once-promising new drug candidates that meet the Company's preliminary screening criteria for heart toxicity-focused drug rescue using CardioSafe 3D™, its human heart cell-based bioassay system. After internally narrowing the field to 35 compounds, VistaGen, working together with its external drug rescue advisors, including former senior pharmaceutical industry executives with drug safety and medicinal chemistry expertise, analyzed and carefully narrowed the group of 35 to the current Top 10.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's oral small molecule prodrug candidate, AV-101 (4-Cl-KYN), is in Phase 1b development for treatment of neuropathic pain. Unlike other NMDA receptor antagonists developed previously, AV-101 readily crosses the blood-brain barrier and is then efficiently converted into 7-chlorokynurenic acid (7-Cl-KYNA), one of the most potent and specific glycineB site antagonists currently known, and has been shown to reduce seizures and excitotoxic neuronal death. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. The Company anticipates pursuing Phase 2 development for neuropathic pain and other neurological indications, including depression, epilepsy, and/or Parkinson's disease in the event it receives additional non-dilutive development grant funding from the NIH or private foundations.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Cautionary Statement Regarding Forward Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the success of VistaGen's stem cell technology-based drug rescue activities, ongoing AV-101 clinical studies, its ability to enter into drug rescue collaborations and/or licensing arrangements with respect to one or more drug rescue variants, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, drug rescue, development and commercialization activities, and the success of its research and development plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variant identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

Originally posted here:
VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

Stem Cells Could Help Heal Broken Hearts [Medicine]

Even after recovery, heart attacks can leave a lasting mark on your ticker—scar tissue weakens the muscle and prevents it from functioning as well as it did before seizing up. A pioneering stem-cell procedure, however, could cut the damage in half.

According to the results of a small safety trial by the Cedars-Sinai Heart Institute and published in the Lancet medical journal, introducing stem cells derived from the patient's own heart have shown an "unprecedented" ability to reduce scarring as well as regenerate healthy cardiac tissue.

During a heart attack, the organ is deprived of oxygen and its tissue begins to die off. As the heart heals from the attack, any damaged muscle is replaced by scar tissue, which prevents the heart from beating properly and pumping the requisite blood flow the body needs.

The CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to Reverse ventricUlar dySfunction) study involved 25 patients—eight serving as the control group, the other 17 actually receiving the treatment. Researchers first performed extensive imaging scans to identify location and severity of scarring, then biopsied a half-raisin-sized piece the patient's heart tissue. Doctors then isolated and cultured stem cells from it and injected the lab-grown stem cells—roughly 12-25 million of them—back into the heart.

After a year, scarring in patients that received the treatment decreased by an astounding fifty percent while the control group showed no decrease in scarring. "These results signal an approaching paradigm shift in the care of heart attack patients," said Shlomo Melmed, dean of the Cedars-Sinai medical faculty. The scars were once believed to be permanent but this technique shows promise as a means to regenerate the damaged muscle. It should be noted however, that the heart's ability to pump did not increase as the scar tissue disappeared.

"While the primary goal of our study was to verify safety, we also looked for evidence that the treatment might dissolve scar and regrow lost heart muscle," Eduardo Marbán, director of the Cedars-Sinai Heart Institute, told PhysOrg. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it. The effects are substantial, and surprisingly larger in humans than they were in animal tests."

Researchers hope to soon begin an expanded clinical trial and, if the results are as promising as these, eventually use the procedure to assist the US's annual 770,000 coronary disease sufferers. [The Lancet via Physorg - BBC News]

Image: Shortkut / Shutterstock

Read the original here:
Stem Cells Could Help Heal Broken Hearts [Medicine]

Myocardial Infarction Could Be Treated With Stem Cells

Myocardial infarction patients may soon have a new treatment option. According to HealthDay News, scientists at the Cedars-Sinai Heart Institute in Los Angeles have successfully repaired heart damage by treating patients with their own cardiac stem cells.

These cardiosphere-derived stem cells have been known to heal damaged tissue, but this is the first study in which heart-attack patients have been treated with stem cells from their own body. Researchers said the cells worked to regrow damaged heart muscle and eventually reversed scarring sustained during the trauma.

Previously, heart attack victims’ only option was to have physicians surgically clear their blocked arteries.

“In our treatment, we dissolved scar and replaced it with living heart muscle,” explained study author Eduardo Marban. “Such ‘therapeutic regeneration’ has long been the holy grail of cell therapy, but had never been accomplished before; we now seem to have done it.”

For the study, researchers followed 25 middle-aged patients with an average age of 53 who had suffered a heart attack. Of this group, 17 underwent stem cell infusions; eight received standard post-heart attack care.

To retrieve the stem cells, doctors inserted a catheter through a neck vein and down to the heart, retrieving a small portion of cells. They were then transplanted back into the patient through a second procedure described as “minimally invasive.”

One year later, stem cell patients showed a 12 percent decrease in scar size and a recovery in muscle strength. Patients who received standard treatment showed no such scar shrinkage.

This research is just the first step, however, and HealthDay notes that findings from the study are preliminary, and were based on just a small group of patients.

The study is published in The Lancet.

View post:
Myocardial Infarction Could Be Treated With Stem Cells

Scarred Hearts Can Be Mended With Novel Stem Cell Therapy, Study Finds

Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.

“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University (43935MF) in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.

“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”

Minimally Invasive

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.

A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.

While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.

Heart Regeneration

“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”

While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.

“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.

The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Lisa Marban, is also a founder and chief executive officer.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Please enable JavaScript to view the comments powered by Disqus.

Go here to read the rest:
Scarred Hearts Can Be Mended With Novel Stem Cell Therapy, Study Finds

Study: Cardiac stem cells can reverse heart attack damage

Dr. Eduardo Marbán, in his laboratory at the Cedars-Sinai Heart Institute. (Cedars-Sinai Heart Institute)

By Eryn Brown, Los Angeles Times / for the Booster Shots blog

February 13, 2012, 5:45 p.m.

Researchers have used cardiac stem cells to regenerate heart muscle in patients who have suffered heart attacks, also known as myocardial infarction.

The small preliminary study, which was conducted by the Cedars-Sinai Heart Institute in Los Angeles, involved 25 patients who had suffered heart attacks in the previous one and a half to three months. 

Seventeen of the study subjects received infusions of stem cells cultured from a raisin-sized chunk of their own heart tissue, which had been removed via catheter. The eight others received standard care. 

During a heart attack, heart tissue is damaged, leaving a scar.  On average, scars in patients who had the stem cell infusions dropped in size from 24% to 12% of the heart, said Dr. Eduardo Marbán, director of the Cedars-Sinai Heart Institute and lead researcher on the study, which was published online Monday in the journal The Lancet.  (The journal has provided an abstract of the study; subscription is required for the full text.)

In an email, Marbán said he believed that the stem cells repaired the damaged heart muscle "indirectly, by stimulating the heart's endogenous capacity to regrow [which normally lies dormant]." He said that the most surprising aspect of the research team's finding was that the heart was able to regrow healthy tissue. Conventional wisdom holds that cardiac scarring is permanent.

A follow-up study involving about 200 patients is planned for later this year, Marbán added.

See the original post:
Study: Cardiac stem cells can reverse heart attack damage

Cardiac stem cells can restore heart muscles, says study

They also help to reduce scar size

Infusion of cardiac stem cells into persons who suffered heart attack recently can help to regenerate their heart muscles, says a study published on February 14, in The Lancet.

Phase I of the study was conducted on 17 patients, who received stems cells, and eight, who received standard care (control group), at the Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins Hospital, Baltimore. All of them had had heart attacks about a month before the study began in May 2009. The stem cells were created from the patients' heart tissues.

Visible improvements were seen in those who received infusion of stem cells, compared with the control group at the end of six months and a year. While no change in the scar size was seen in the control group, there was more than 12 per cent reduction in the size at the end of six months in the treatment group.

As scar size is directly related to scar mass, a reduction of 8.4 gram (28 per cent) and almost 13 gram (42 per cent) in scar mass was seen in the treatment group at the end of six months and 12 months.

Surprisingly, scar mass reduction was accompanied by an increase in viable myocardial mass. In fact, on an average, the increase in viable myocardial mass was “about 60 per cent more than scar reduction.” This is significant as it had led to a “partial restoration of lost left ventricular mass in patients with CDCs [cardiosphere-derived cells],” the authors of the study noted.

The study thus “challenges the conventional wisdom that once established, cardiac scarring is permanent, and that, once lost, healthy heart muscle cannot be restored.”

However, a change in scar size was accompanied by only 2 per cent increase in ejection factor (the amount of blood pumped by the heart), which is not considered significant.

While “the reasons for the discrepancy are unclear,” the study noted that “ejection factor at baseline was only moderately impaired, leaving little room for improvement.”

Of the six patients in the treatment group who had serious adverse events, only one was found to be related to the study.

See the rest here:
Cardiac stem cells can restore heart muscles, says study

Stem Cells Help Regrow Damaged Heart Tissue

February 14, 2012

(USA TODAY) -- Stem cells harvested from a patient's own heart can be used to help repair muscle damaged during a heart attack, according to a preliminary study published online Monday in The Lancet. Though it's too soon to know whether the technique will help patients live longer, the study is the second small, promising study of cardiac stem cells in three months.

The latest study involved 25 patients who had suffered serious heart attacks; 24% of their heart's major pumping chamber had been replaced by scar tissue. One year later, doctors saw no improvement in those randomly assigned to get standard care. Among the 17 given stem cells, however, "we reversed about half the injury to the heart," said study author Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, in an e-mail. "We dissolved scar and replaced it with living heart muscle."

Warren Sherman, director of stem cell research and regenerative medicine at Columbia University Medical Center in New York, says the study was an important proof of the potential of stem cells -- harvested from patients, grown in the lab, then injected back into patients' hearts.

Doctors don't yet know exactly how the stem cells reduce the size of the dead zone of scar tissue, says Kenneth Margulies, director of heart failure and transplant research at the University of Pennsylvania.

The new study's encouraging results seem to confirm the findings of another small study of heart stem cells, published in The Lancet in November, which also showed an improvement in heart attack survivors who received the treatment, Margulies says. On the other hand, a third study found no benefit from stem cells created from patients' own bone marrow.

Copyright 2012 USA TODAY, a division of Gannett Co. Inc.

See the original post:
Stem Cells Help Regrow Damaged Heart Tissue

Researchers Develop Cerebral Cortex Cells From Skin

February 13, 2012

Researchers at the University of Cambridge report that they created cerebral cortex cells from a small sample of human skin.

The new development could pave the way for techniques to explore a wide range of diseases such as autism and Alzheimer’s.

The findings could also enable scientists to study how the human cerebral cortex develops — and how it “wires up” and how that can go wrong.

“This approach gives us the ability to study human brain development and disease in ways that were unimaginable even five years ago,” Dr Rick Livesey of the Gurdon Institute and Department of Biochemistry at the University of Cambridge said in a statement.

During the research, the scientists biopsied skin from patients and then reprogrammed the cells from the skin samples back into stem cells.

These stem cells, along with human embryonic stem cells, were used to generate cerebral cortex cells.

Livesey said they are using this system to help recreate Alzheimer’s disease in the lab, which primarily affects the type of nerve cell the researchers made.

“Dementia is the greatest medical challenge of our time – we urgently need to understand more about the condition and how to stop it,” Dr Simon Ridley, Head of Research at Alzheimer’s Research UK, said in a press release. “We hope these findings can move us closer towards this goal.”

Brain cells developed this way could help researchers gain a better understanding of how the brain develops and what goes wrong when it is affected by disease.

Scientists hope the cells could be used to provide healthy tissues, which can be implanted into patients to treat neurodegenerative diseases and brain damage.

The findings were published in the journal Nature Neuroscience.

On the Net:

Source: RedOrbit Staff & Wire Reports

View original post here:
Researchers Develop Cerebral Cortex Cells From Skin

Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests

ScienceDaily (Feb. 13, 2012) — Breast cancer stem cells are thought to be the sole source of tumor recurrence and are known to be resistant to radiation therapy and don't respond well to chemotherapy.

Now, researchers with the UCLA Department of Radiation Oncology at UCLA's Jonsson Comprehensive Cancer Center report for the first time that radiation treatment -- despite killing half of all tumor cells during every treatment -- transforms other cancer cells into treatment-resistant breast cancer stem cells.

The generation of these breast cancer stem cells counteracts the otherwise highly efficient radiation treatment. If scientists can uncover the mechanisms and prevent this transformation from occurring, radiation treatment for breast cancer could become even more effective, said study senior author Dr. Frank Pajonk, an associate professor of radiation oncology and Jonsson Cancer Center researcher.

"We found that these induced breast cancer stem cells (iBCSC) were generated by radiation-induced activation of the same cellular pathways used to reprogram normal cells into induced pluripotent stem cells (iPS) in regenerative medicine," said Pajonk, who also is a scientist with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA. "It was remarkable that these breast cancers used the same reprogramming pathways to fight back against the radiation treatment."

The study recently appeared in the early online edition of the peer-reviewed journal Stem Cells.

"Controlling the radiation resistance of breast cancer stem cells and the generation of new iBCSC during radiation treatment may ultimately improve curability and may allow for de-escalation of the total radiation doses currently given to breast cancer patients, thereby reducing acute and long-term adverse effects," the study states.

There are very few breast cancer stem cells in a larger pool of breast cancer cells. In this study, Pajonk and his team eliminated the smaller pool of breast cancer stem cells and then irradiated the remaining breast cancer cells and placed them into mice.

Using a unique imaging system Pajonk and his team developed to visualize cancer stem cells, the researchers were able to observe their initial generation into iBCSC in response to the radiation treatment. The newly generated iBCSC were remarkably similar to breast cancer stem cells found in tumors that had not been irradiated, Pajonk said.

The team also found that the iBCSC had a more than 30-fold increased ability to form tumors compared to the non-irradiated breast cancer cells from which they originated.

Pajonk said that the study unites the competing models of clonal evolution and the hierarchical organization of breast cancers, as it suggests that undisturbed, growing tumors maintain a small number of cancer stem cells. However, if challenged by various stressors that threaten their numbers, including ionizing radiation, the breast cancer cells generate iBCSC that may, together with the surviving cancer stem cells, repopulate the tumor.

"What is really exciting about this study is that it gives us a much more complex understanding of the interaction of radiation with cancer cells that goes far beyond DNA damage and cell killing," Pajonk said. "The study may carry enormous potential to make radiation even better."

Pajonk stressed that breast cancer patients should not be alarmed by the study findings and should continue to undergo radiation if recommended by their oncologists.

"Radiation is an extremely powerful tool in the fight against breast cancer," he said. "If we can uncover the mechanism driving this transformation, we may be able to stop it and make the therapy even more powerful."

This study was funded by the National Cancer Institute, the California Breast Cancer Research Program and the Department of Defense.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of California, Los Angeles (UCLA), Health Sciences, via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Chann Lagadec, Erina Vlashi, Lorenza Della Donna, Carmen Dekmezian and Frank Pajonk. Radiation-induced Reprograming of Breast Cancer Cells. Stem Cells, 10 FEB 2012 DOI: 10.1002/stem.1058

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

More:
Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests

Radiation treatment transforms breast cancer cells into cancer stem cells

Now, researchers with the UCLA Department of Radiation Oncology at UCLA's Jonsson Comprehensive Cancer Center report for the first time that radiation treatment –despite killing half of all tumor cells during every treatment - transforms other cancer cells into treatment-resistant breast cancer stem cells.

The generation of these breast cancer stem cells counteracts the otherwise highly efficient radiation treatment. If scientists can uncover the mechanisms and prevent this transformation from occurring, radiation treatment for breast cancer could become even more effective, said study senior author Dr. Frank Pajonk, an associate professor of radiation oncology and Jonsson Cancer Center researcher.

"We found that these induced breast cancer stem cells (iBCSC) were generated by radiation-induced activation of the same cellular pathways used to reprogram normal cells into induced pluripotent stem cells (iPS) in regenerative medicine," said Pajonk, who also is a scientist with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA. "It was remarkable that these breast cancers used the same reprogramming pathways to fight back against the radiation treatment."

The study appears Feb. 13, 2012 in the early online edition of the peer-reviewed journal Stem Cells.

"Controlling the radiation resistance of breast cancer stem cells and the generation of new iBCSC during radiation treatment may ultimately improve curability and may allow for de-escalation of the total radiation doses currently given to breast cancer patients, thereby reducing acute and long-term adverse effects," the study states.

There are very few breast cancer stem cells in a larger pool of breast cancer cells. In this study, Pajonk and his team eliminated the smaller pool of breast cancer stem cells and then irradiated the remaining breast cancer cells and placed them into mice.

Using a unique imaging system Pajonk and his team developed to visualize cancer stem cells, the researchers were able to observe their initial generation into iBCSC in response to the radiation treatment. The newly generated iBCSC were remarkably similar to breast cancer stem cells found in tumors that had not been irradiated, Pajonk said.

The team also found that the iBCSC had a more than 30-fold increased ability to form tumors compared to the non-irradiated breast cancer cells from which they originated.

Pajonk said that the study unites the competing models of clonal evolution and the hierarchical organization of breast cancers, as it suggests that undisturbed, growing tumors maintain a small number of cancer stem cells. However, if challenged by various stressors that threaten their numbers, including ionizing radiation, the breast cancer cells generate iBCSC that may, together with the surviving cancer stem cells, repopulate the tumor.

"What is really exciting about this study is that it gives us a much more complex understanding of the interaction of radiation with cancer cells that goes far beyond DNA damage and cell killing," Pajonk said. "The study may carry enormous potential to make radiation even better."

Pajonk stressed that breast cancer patients should not be alarmed by the study findings and should continue to undergo radiation if recommended by their oncologists.

"Radiation is an extremely powerful tool in the fight against breast cancer," he said. "If we can uncover the mechanism driving this transformation, we may be able to stop it and make the therapy even more powerful."

Provided by University of California - Los Angeles

Go here to read the rest:
Radiation treatment transforms breast cancer cells into cancer stem cells

Radiation therapy transforms breast cancer cells into cancer stem cells

Washington, Feb 14 (ANI): Researchers have shown for the first time that radiation treatment -despite killing half of all tumour cells during every cycle - transforms other cancer cells into treatment-resistant breast cancer stem cells.

According to researchers with the UCLA Department of Radiation Oncology at UCLA's Jonsson Comprehensive Cancer Center, the generation of these breast cancer stem cells counteracts the otherwise highly efficient radiation treatment.

If scientists can uncover the mechanisms and prevent this transformation from occurring, radiation treatment for breast cancer could become even more effective, said study senior author Dr. Frank Pajonk, an associate professor of radiation oncology and Jonsson Cancer Center researcher.

"We found that these induced breast cancer stem cells (iBCSC) were generated by radiation-induced activation of the same cellular pathways used to reprogram normal cells into induced pluripotent stem cells (iPS) in regenerative medicine," said Pajonk, who also is a scientist with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"It was remarkable that these breast cancers used the same reprogramming pathways to fight back against the radiation treatment."

"Controlling the radiation resistance of breast cancer stem cells and the generation of new iBCSC during radiation treatment may ultimately improve curability and may allow for de-escalation of the total radiation doses currently given to breast cancer patients, thereby reducing acute and long-term adverse effects," the study stated.

There are very few breast cancer stem cells in a larger pool of breast cancer cells. In this study, Pajonk and his team eliminated the smaller pool of breast cancer stem cells and then irradiated the remaining breast cancer cells and placed them into mice.

Using a unique imaging system Pajonk and his team developed to visualize cancer stem cells, the researchers were able to observe their initial generation into iBCSC in response to the radiation treatment.

The newly generated iBCSC were remarkably similar to breast cancer stem cells found in tumors that had not been irradiated, Pajonk said.

The team also found that the iBCSC had a more than 30-fold increased ability to form tumors compared to the non-irradiated breast cancer cells from which they originated.

Pajonk said that the study unites the competing models of clonal evolution and the hierarchical organization of breast cancers, as it suggests that undisturbed, growing tumors maintain a small number of cancer stem cells.

However, if challenged by various stressors that threaten their numbers, including ionizing radiation, the breast cancer cells generate iBCSC that may, together with the surviving cancer stem cells, repopulate the tumour.

"What is really exciting about this study is that it gives us a much more complex understanding of the interaction of radiation with cancer cells that goes far beyond DNA damage and cell killing," Pajonk said.

"The study may carry enormous potential to make radiation even better."

Pajonk stressed that breast cancer patients should not be alarmed by the study findings and should continue to undergo radiation if recommended by their oncologists.

"Radiation is an extremely powerful tool in the fight against breast cancer," he said.

"If we can uncover the mechanism driving this transformation, we may be able to stop it and make the therapy even more powerful," Pajonk added.

The study has been published in the online edition of peer-reviewed journal Stem Cells. (ANI)

Go here to see the original:
Radiation therapy transforms breast cancer cells into cancer stem cells

Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent …

Dr. Uma Lakshmipathy speaks at various conferences about work on the creation of integration-free induced pluripotent stem cells at high efficiency with Sendai Virus using the CytoTune™ -iPS Reprogramming Kit. Uma Lakshmipathy's next speaking engagement will be in Mid February at the Stem Cell Banking Conference in London.

Carlsbad, California (PRWEB) February 14, 2012

Uma's last presentation about the Generation of Induced Pluripotent Stem Cells summarized here was also recorded for viewing and placed on the Life Technologies website. (http://find.lifetechnologies.com/stemcells/umavideo/article)

The CytoTune™ - iPS Reprogramming Kit is a high efficiency, integration- free, easy-to-use somatic cell reprogramming kit used in the generation of induced pluripotent stem cells. This kit utilizes Sendai Virus particles of the four Yamanaka factors, which have been shown to be critical in the successful generation of induced pluripotent stem cells.

In her presentations, Uma Lakshmipathy discusses two current challenges faced when generating iPSC including low efficiency and expertise of users.

Low Efficiency

The most common method for generation of induced pluripotent stem cells is the transfection of the four Yamanaka factors using lentivirus or retrovirus. One of the biggest challenges for scientists right now is the low efficiency of iPSC generation. With difficult to transfect cell types or cells from older patients, efficiencies can be 0.001% or lower when using lentiviral or retroviral methods.

Expertise of Users

The second challenge is for users with little expertise that have a difficult time detecting these emerging iPSC colonies. When looking for pluripotent stem cells, people can either pick them up really easily or have trouble deciding what clones to place their bet on.

Efficiency & Safety of IPSC Generation

There are several methods which improve reprogramming efficiency including viral non-integrating and small molecule methods such as mRNA, microRNA and small molecules. The developers of the CytoTune™ -iPS Reprogramming Kit concentrated on a non-integrating viral method utilizing Sendai Virus, a negative sense RNA virus. Sendai Virus is able to infect a wide variety of cell types and generates induced pluripotent stem cells at efficiencies 100-fold higher than lentiviral or retroviral methods.

When comparing efficiency vs. safety of reprogramming methods, small molecules like microRNA, RNA and protein which don’t leave a footprint are safer for cell therapy research; however, the efficiency of generating induced pluripotent stem cells with these methods is pretty low at this point in time.

The highest efficiency so far has been achieved with viral methods such as Retrovirus and Lentivirus. More recently the CytoTune™ -iPS Reprogramming Kit actually exceeds the efficiency that can be obtained with these traditional viral systems and at the same time it is much safer because it is a non-integrating RNA virus. Therefore it will not leave a footprint in the iPSCs that are created.

The CytoTune™ -iPS Reprogramming Kit will:

    Reduce hands on time - enables successful iPS reprogramming in one simple transduction     Generate more cells - high efficiency reprogramming offers more iPS cells from a single experiment     Use in a broad range of experiments - lack of genomic integration and viral remnants allows use from basic to clinical research

Ease of Use

The CytoTune™ -iPS Reprogramming Kit provides a simple system for somatic cell reprogramming. For most cell types, the CytoTune™ -iPS Reprogramming Kit requires only one application of the virus for successful cell reprogramming, unlike other methods such as Lentivirus and mRNA which can require multiple rounds of transduction to produce iPS cells. Selection of colonies is also easier with the CytoTune™ –iPS Reprogramming Kit due to the lower number of non-induced pluripotent stem cells that are generated.

To view this presentation visit http://find.lifetechnologies.com/stemcells/umavideo/article

Uma Lakshmipathy's protocol, "Transfection of Human Embryonic Stem Cells" can be seen here http://bit.ly/y91Gpd

###

Jennifer Hornstein
Life Technologies
(760) 602-4577
Email Information

Visit link:
Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ...

Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows

February 14, 2012, 8:37 AM EST

By Ryan Flinn

Feb. 14 (Bloomberg) -- Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.

“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.

“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”

Minimally Invasive

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.

A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.

While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.

Heart Regeneration

“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”

While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.

“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.

The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Lisa Marban, is also a founder and chief executive officer.

--Editors: Angela Zimm, Andrew Pollack

-0- Feb/13/2012 22:32 GMT

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Here is the original post:
Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows

Vet offers stem cell therapy for dogs

COLUMBIA, SC (WIS) - Cutting-edge arthritis treatment for our four-legged family members is now available in Columbia.

Banks Animal Hospital is the first in the area to offer in-house Stem Cell therapy. It uses your pets own body to heal itself.

Take 13-year-old Maggie, for example. The energetic pup has a limp that usually keeps her from jumping or going up stairs.

"Today when everybody's out there filming her little limp it's not as pronounced because she wants to please," said Maggie's owner, Beth Phibbs. "She's just a great dog."

But a great attitude wasn't enough to repair a bad case of cervical spine arthritis.

So Monday, Beth brought Maggie to Banks Animal Hospital for the Stem Cell therapy. Like many, Beth had never heard of Stem Cell work in animals. "Until Dr. Banks mentioned it to me I was like, beg your pardon?"

"There's no down side, no side effects because you're using your own cells," said Dr Ken Banks.

Banks and his staff first gather some of Maggie's blood and fat. Both are good places to find the repair cells they're after. Adult stem cells, not the controversial embryonic kind, are then separated and spun down.

"The repair system in Maggie's body has failed," said Jason Richardson of MediVet-America. "It's fallen asleep at the wheel, we're taking these repair cells, activating them so a chronic condition like osteo arthritis to Maggie will now be an acute illness."

This kind of treatment used to take days with material being shipped across the country, but now it can be done in hours.

"The ability to do it same day, convenience, the ability to do it in clinic saves a lot of money to the doctor which he can then pass on to the patient," said Richardson.

The treatment will still run you around $2,000, but Richardson says that's half of what the similar treatment use to cost.

When it's over, Maggie should be able to live out her life pain and drug free -- something Phibbs is looking forward to.

"I'm hoping in a couple of weeks she's gonna have a new lease on life," said Phibbs.

Copyright 2012 WIS. All rights reserved.

See the rest here:
Vet offers stem cell therapy for dogs

Teva-Gamida Cell complete enrollment for blood cancer trial

Teva Pharmaceutical Industries Ltd. (Nasdaq: TEVA; TASE: TEVA) and Gamida Cell Ltd. have completed enrollment of 100 patients for their Phase III clinical trial of StemEx, a cell therapy for the treatment of blood cancers, such as leukemia and lymphoma. StemEx is intended for adolescents and adults who cannot find a family related, matched bone marrow donor.

Teva and Gamida Cell are conducting the multi-center international clinical trial through their joint venture, which they own in equal shares. StemEx is a graft of an expanded population of stem/progenitor cells, derived from part of a single unit of umbilical cord blood and transplanted together with the remaining, non-manipulated cells from the same unit.

Gamida Cell president and CEO Dr. Yael Margolin said, "The joint venture is planning to announce the safety and efficacy results of the Phase III StemEx trial in 2012 and to launch the product into the market in 2013. It is our hope that StemEx will provide the answer for the thousands of leukemia and lymphoma patients unable to find a matched, related bone marrow donor."

Margolin added, ?StemEx may be the first allogeneic cell therapy to be brought to market. This is a source of pride for Gamida Cell, as it further confirms the company?s leadership as a pioneer in cell therapy. In addition to StemEx, Gamida Cell is developing a diverse pipeline of products for the treatment of cancer, hematological diseases such as sickle cell disease and thalassemia, as well as autoimmune and metabolic diseases and conditions helped by regenerative medicine."

Nochi Dankner's life sciences investment arm Clal Biotechnology Industries Ltd. (TASE: CBI) owns 20% of Gamida Cell and Mordechai Zisser-controlled Elbit Medical Technologies Ltd. (TASE:EMTC) owns 31.6%.

Published by Globes [online], Israel business news - http://www.globes-online.com - on February 14, 2012

? Copyright of Globes Publisher Itonut (1983) Ltd. 2012

See more here:
Teva-Gamida Cell complete enrollment for blood cancer trial

Dogs who got stem cell therapy are well

WALKER, Mich. (WOOD) - Dogs who received the first in-clinic stem cell therapy in West Michigan returned to the vets who treated them Monday morning.

Boris and Natasha returned to Kelley's Animal Clinic for their 60-day checkup after receiving stem cell treatment in December 2011.

Dr. James Kelley and his staff of vets removed fat tissue from the dogs and activated it with an enzyme before injecting it into their back legs.

This adult animal stem cell technology is different from the controversial embryonic stem cell therapy.

Kelley said both dogs are doing amazingly well and that the procedure has done more than just help their arthritis.

"We're finding that not only the joints are affected, the rest of the animal is affected as well," said Kelley. "The skin is better. The attitude in these dogs is much improved."

Kelley and his staff have done 16 stem cell treatments since the first on Boris and Natasha, and he said all the dogs are showing signs of improvement after a short period of time.

See the article here:
Dogs who got stem cell therapy are well

Stem Cells May Help Regenerate Heart Muscle

A promising stem cell therapy approach could soon provide a way to regenerate heart muscle damaged by heart attacks.

Researchers at Cedars-Sinai Heart Institute and The Johns Hopkins University harvested stem cells from the hearts of 17 heart attack patients and after prepping the cells, infused them back into the patients' hearts. Their study is published in the current issue of The Lancet.

The patients received the stem cell infusions about three months after their heart attacks.

Researchers found that six months after treatment, patients had significantly less scarring of the heart muscle and also showed a considerable increase the amount of healthy heart muscle, compared to eight post-heart attack patients studied who did not receive the stem cell infusions. One year after, scar size was reduced by about 50 percent.

"The damaged tissue of the heart was replaced by what looks like healthy myocardium," said Dr. Peter Johnston, a study co-author and an assistant professor of medicine at The Johns Hopkins University School of Medicine. "It's functioning better than the damaged myocardium in the control subjects, and there's evidence it's starting to contract and generate electrical signals the way healthy heart tissue does."

While this research is an early study designed to demonstrate that this stem cell therapy is safe, cardiologists say it's an approach that could potentially benefit millions of people who have suffered heart attacks. Damage to the heart muscle is permanent and irreparable, and little can be done to compensate for loss of heart function.

"In the U.S., six million patients have heart failure, and the vast majority have it because of a prior heart attack," said Johnston.

The damaged scar tissue that results from a heart attack diminishes heart function, which can ultimately lead to enlargement of the heart.

At best, Johnston said, there are measures doctors can try to reduce or compensate for the damage, but in many cases, heart failure ultimately sets in, often requiring mechanical support or a transplant.

"This type of therapy can save people's lives and reduce the chances of developing heart failure," he said.

Cardiac Regeneration A Promising Field

Other researchers have also had positive early results in experiments with stem cell therapy using different types of cells, including bone marrow cells and a combination of bone marrow and heart cells.

"It's exciting that studies using a number of different cell types are yielding similar results," said Dr. Joshua Hare, professor of cardiology and director of the University of Miami Interdisciplinary Stem Cell Institute.

The next steps, he said, include determining what the optimal cell types are and how much of the cells are needed to regenerate damaged tissue.

"We also need to move to larger clinical trials and measure whether patients are improving clinically and exhibiting a better quality of life after the therapy."

In an accompanying comment, Drs. Chung-Wah Siu amd Hung-Fat Tse of the University of Hong Kong wrote that given the promising results of these studies, health care providers will hopefully recognize the benefits that cardiac regeneration can offer.

And Hare added that someday, this type of regeneration can possibly offer hope to others who suffered other types of organ damage.

"This stategy might work in other organs," he said. "Maybe this can work in the brain, perhaps for people who had strokes."

Read the original post:
Stem Cells May Help Regenerate Heart Muscle

VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

SOUTH SAN FRANCISCO, CA--(Marketwire -02/14/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has identified its initial Top 10 drug rescue candidates and plans to launch two formal drug rescue programs by the end of next quarter.

VistaGen's goal for each of its stem cell technology-based drug rescue programs is to generate and license a new, safer variant of a once-promising large market drug candidate previously discontinued by a pharmaceutical company no earlier than late-preclinical development.

"We are now at an advanced stage in our business model," said Shawn Singh, VistaGen's Chief Executive Officer. "After more than a decade of focused investment in pluripotent stem cell research and development, we are now at the threshold where game-changing science becomes therapeutically relevant to patients and commercially relevant to our shareholders. We have positioned our company and our stem cell technology platform to pursue multiple large market opportunities. We plan to launch two drug rescue programs by the end of the next quarter."

Over the past year, VistaGen, working with its network of strategic partners, identified over 525 once-promising new drug candidates that meet the Company's preliminary screening criteria for heart toxicity-focused drug rescue using CardioSafe 3D™, its human heart cell-based bioassay system. After internally narrowing the field to 35 compounds, VistaGen, working together with its external drug rescue advisors, including former senior pharmaceutical industry executives with drug safety and medicinal chemistry expertise, analyzed and carefully narrowed the group of 35 to the current Top 10.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's oral small molecule prodrug candidate, AV-101 (4-Cl-KYN), is in Phase 1b development for treatment of neuropathic pain. Unlike other NMDA receptor antagonists developed previously, AV-101 readily crosses the blood-brain barrier and is then efficiently converted into 7-chlorokynurenic acid (7-Cl-KYNA), one of the most potent and specific glycineB site antagonists currently known, and has been shown to reduce seizures and excitotoxic neuronal death. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101. The Company anticipates pursuing Phase 2 development for neuropathic pain and other neurological indications, including depression, epilepsy, and/or Parkinson's disease in the event it receives additional non-dilutive development grant funding from the NIH or private foundations.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Cautionary Statement Regarding Forward Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the success of VistaGen's stem cell technology-based drug rescue activities, ongoing AV-101 clinical studies, its ability to enter into drug rescue collaborations and/or licensing arrangements with respect to one or more drug rescue variants, risks and uncertainties relating to the availability of substantial additional capital to support VistaGen's research, drug rescue, development and commercialization activities, and the success of its research and development plans and strategies, including those plans and strategies related to AV-101 and any drug rescue variant identified and developed by VistaGen. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

See more here:
VistaGen Updates Pipeline of Stem Cell Technology-Based Drug Rescue Candidates

Stem Cell Treatment Might Reverse Heart Attack Damage

MONDAY, Feb. 13 (HealthDay News) -- Stem cell therapy's promise for healing damaged tissues may have gotten a bit closer to reality. In a small, early study, heart damage was reversed in heart-attack patients treated with their own cardiac stem cells, researchers report.

The cells, called cardiosphere-derived stem cells, regrew damaged heart muscle and reversed scarring one year later, the authors say.

Up until now, heart specialists' best tool to help minimize damage following a heart attack has been to surgically clear blocked arteries.

"In our treatment, we dissolved scar and replaced it with living heart muscle. Such 'therapeutic regeneration' has long been the holy grail of cell therapy, but had never been accomplished before; we now seem to have done it," said study author Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles.

However, outside experts cautioned that the findings are preliminary and the treatment is far from ready for widespread use among heart-attack survivors.

The study, published online Feb. 14 in The Lancet, involved 25 middle-aged patients (average age 53) who had suffered a heart attack. Seventeen underwent stem cell infusions while eight received standard post-heart attack care, including medication and exercise therapy.

The stem cells were obtained using a minimally invasive procedure, according to the researchers from Cedars-Sinai and the Johns Hopkins Hospital in Baltimore.

Patients received a local anesthetic and then a catheter was threaded through a neck vein down to the heart, where a tiny portion of muscle was taken. The sample provided all the researchers needed to generate a supply of new stem cells -- 12 million to 25 million -- that were then transplanted back into the heart-attack patient during a second minimally invasive procedure.

One year after the procedure, the infusion patients' cardiac scar sizes had shrunk by about half. Scar size was reduced from 24 percent to 12 percent of the heart, the team said. In contrast, the patients receiving standard care experienced no scar shrinkage.

Initial muscle damage and healed tissue were measured using MRI scans.

After six months, four patients in the stem-cell group experienced serious adverse events compared with only one patient in the control group. At one year, two more stem-cell patients had a serious complication. However, only one such event -- a heart attack -- might have been related to the treatment, according to the study.

In a news release, Marban said that "the effects are substantial and surprisingly larger in humans than they were in animal tests."

Other experts were cautiously optimistic. Cardiac expert Dr. Bernard Gersh, a professor of medicine at Mayo Clinic, is not affiliated with the research but is familiar with the findings.

"This study demonstrates that it is safe and feasible to administer these cardiac-derived stem cells and the results are interesting and encouraging," he said.

Another specialist said that while provocative and promising, the findings remain early, phase-one research. "It's a proof-of-concept study," said interventional cardiologist Dr. Thomas Povsic, an assistant professor of medicine at the Duke Clinical Research Institute, in Durham, N.C.

And Dr. Chip Lavie, medical director of Cardiac Rehabilitation and Prevention at the John Ochsner Heart and Vascular Institute, in New Orleans, also discussed the results. He said that while the study showed that the cardiac stem cells reduced scar tissue and increased the area of live heart tissue in heart attack patients with moderately damaged overall heart tissue, it did not demonstrate a reduction in heart size or any improvement in the heart's pumping ability.

"It did not improve the ejection fraction, which is a very important measurement used to define the overall heart's pumping ability," Lavie noted. "Certainly, much larger studies of various types of heart attack patients will be needed before this even comes close to being a viable potential therapy for the large number of heart attack initial survivors."

Povsic concurred that much larger studies are needed. "The next step is showing it really helps patients in some kind of meaningful way, by either preventing death, healing them or making them feel better."

It's unclear what the cost will be, Povsic added. "What society is going to be willing to pay for this is going to be based on how much good it ends up doing. If they truly regenerate a heart and prevent a heart transplant, that would save a lot money."

Marban, who invented the stem cell treatment, said the while it would not replace bypass surgery or angioplasty, "it might be useful in treating 'irreversible' injury that may persist after those procedures."

As a rough estimate, he said that if larger, phase 2 trials were successful, the treatment might be available to the general public by about 2016.

More information

The U.S. National Heart, Lung, and Blood Institute describes current heart attack treatment.

Original post:
Stem Cell Treatment Might Reverse Heart Attack Damage

IBM’s Blue Gene/Q Boosts Human Health Research in Victoria – Video

13-02-2012 18:16 Dr. John Wagner, Manager, IBM Research Collaboratory for Life Science Victoria will be home to one of Australia's fastest supercomputers and the world's greenest supercomputer, the IBM [NYSE: IBM] Blue Gene/Q, which will be housed at the Victorian Life Sciences Computation Initiative (VLSCI) hosted by the University of Melbourne, and is aimed at advancing the study of human disease.

See original here:
IBM's Blue Gene/Q Boosts Human Health Research in Victoria - Video

Role of known cancer gene in ovarian cancer investigated

Public release date: 14-Feb-2012
[ | E-mail | Share ]

Contact: Liz Williams
williams@wehi.edu.au
61-405-279-095
Walter and Eliza Hall Institute

The role of a known cancer-causing gene in the development of the most lethal type of ovarian cancer is being investigated by researchers from the Walter and Eliza Hall Institute after they were awarded a Cure Cancer Australia Foundation (CCAF) grant.

Dr Rachael Rutkowski, from the institute's Stem Cells and Cancer division, was awarded $180,000 to study the role of the known cancer-causing gene in the development of high-grade serous ovarian cancers. This gene belongs to the MYC family of cancer-causing genes that are overproduced in more than 50 per cent of human cancers.

Dr Rutkowski said that the MYC gene family had recently gained attention as a potential cause of some high-grade serous ovarian cancers that are associated with poor clinical outcomes.

"The Cure Cancer Australia funding will allow us to develop better disease models that we can use to discover whether the MYC gene family has a significant role in ovarian cancer development," Dr Rutkowski said. "It could also help us identify new therapeutic targets and biomarkers for diagnosis of this devastating disease."

Ovarian cancer is the sixth most common cause of cancer death in Australian women. Each year, more than 1200 Australian women are diagnosed with ovarian cancer, and around 800 will die from the disease.

Epithelial ovarian cancer accounts for 90 per cent of all ovarian cancers; epithelial referring to the tissue from which the cancer develops. Despite efforts to develop better screening tools, 80 per cent of epithelial ovarian cancers have spread beyond the ovary before they are diagnosed and 70 per cent are generally incurable. High-grade serous ovarian cancers are the most lethal type of epithelial ovarian cancer, and account for approximately 40 per cent of all epithelial ovarian cancers.

Associate Professor Clare Scott, who heads the ovarian cancer research program at the Walter and Eliza Hall Institute and is a medical oncologist at The Royal Melbourne Hospital, said new treatments for ovarian cancer were urgently needed.

"High-grade serous ovarian cancers are aggressive, difficult-to-treat cancers that often have a poor prognosis," Associate Professor Scott said. "The cancers are typically not diagnosed until after they have spread, and are often resistant to chemotherapy drugs. It is imperative that we improve our understanding of how ovarian cancers develop so we can identify molecular or cellular targets for new therapeutic agents."

Changes in the levels of MYC-family proteins have been identified as a potential cause of at least 15-20 per cent of high-grade serous ovarian cancers, and are associated with poor clinical outcomes.

Dr Rutkowski said that the research team would develop pre-clinical models of ovarian cancer with high levels of MYC-family proteins, and abnormal p53 signaling, to determine whether the MYC gene family is involved in the development and chemotherapy-resistance of these cancers.

"We are hoping that we will identify molecular targets for the development of new therapeutic agents to treat ovarian cancer," Dr Rutkowski said. "Similar studies have yielded new therapeutic targets for breast cancer; for example, the treatment of HER2-positive breast cancers, which typically had a poor prognosis, has been revolutionised by the development of Her2-targeted therapeutic approaches. We are looking to accelerate the development of similar targeted therapies for ovarian cancer."

###


[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Original post:
Role of known cancer gene in ovarian cancer investigated

Gene Signal and Collaborators Demonstrate Successful Activity of Topical Aganirsen in Models of Retinal Neovascular …

LAUSANNE, Switzerland--(BUSINESS WIRE)--

Gene Signal, a company focused on developing innovative drugs to manage angiogenesis based conditions, today announced the publication of data demonstrating the significant activity of aganirsen (GS-101, eye drops) in two important models of retinal neovascular disease, wet age-related macular degeneration (AMD) and ischemic retinopathy. Gene Signal’s aganirsen is an antisense oligonucleotide that is expected to complete a phase III trial for the treatment of progressive neovascularisation in the cornea in 2012. These data, published online in Investigative Ophthalmology & Visual Science (doi:10.1167/iovs.11-9064), demonstrate the ability of aganirsen to reach and exert activity on the retina.

“Age-related macular degeneration and ischemic retinopathies are major causes of blindness that are associated with neovascularisation. This can lead to sub-retinal and intravitreal hemorrhage, and tragically retinal detachment, which causes blindness,” explained lead author Dr. Sylvain Chemtob, Université de Montréal, Montreal, Canada.

“For the first time in this study, we have demonstrated that IRS-1, an angiogenic protein, is expressed in the retina and that aganirsen is able to effectively attenuate neovascularization by inhibiting IRS-1 expression, without affecting normal vascularisation, ” noted co-lead author Dr. Matthew Lawrence from RxGen Inc., Hamden, CT, USA.

Aganirsen blocks pathological neovascularization by inhibiting IRS-1. Clinical studies to date have shown that aganirsen is able to safely and effectively inhibit the development of progressive corneal neovascularization secondary to infectious keratitis or chemical burns both of which could lead to corneal graft replacement.

“The only effective drugs approved to target neovascularization in AMD and ischemic retinopathies are intraocular injections of anti-VEGF compounds, such as Lucentis. The studies reported in Investigative Ophthalmology & Visual Science, if confirmed in clinical trials, show unprecedented evidence that topical aganirsen is an innovative compound that may offer advantages over currently available drugs due to its topical delivery and different mode of action as well as an excellent efficacy and safety profile. A topical agent for retinal neovascular disease would revolutionize treatment,” noted Eric Viaud, CEO of Gene Signal.

Study Details

Aganirsen (topical emulsion) was applied daily in non-human primates following laser induced choroidal neovascularisation (CNV), a model of wet age-related macular degeneration [AMD]), and in newborn rats following oxygen-induced retinopathy (OIR), a model of ischemic retinopathy. Retinal aganirsen concentrations were assessed in monkeys following topical delivery (21.5, 43 or 86 ?g). Clinical significance was further evaluated by determination of IRS-1 expression in monkey and human retinal biopsies.

Topical application of aganirsen inhibited neovascular lesion development dose-dependently in African green monkeys, with incidence of high-grade CNV lesions (grade IV) decreasing from 20.5% in vehicle-treated animals to 1.7% (p<0.05) at the 86 ?g dose. Topical aganirsen inhibited retinal neovascularization following OIR in rats (p<0.05); furthermore, a single intravitreal injection of aganirsen reduced OIR as effectively as ranibizumab (Lucentis), and the effects of both compounds were additive. Topical applications of aganirsen did not interfere with physiological retinal vessel development in newborn animals.

About Gene Signal

Gene Signal (www.genesignal.com) is developing a robust pipeline of novel antisense oligonucleotides, proteins and monoclonal antibodies to treat a range of conditions based on its innovative angiogenesis modulating technology. The company’s most advanced therapeutic product is aganirsen (GS-101), an antisense oligonucleotide that has nearly completed phase III for the prevention of corneal graft rejection. Aganirsen is also entering phase II clinical trials for additional angiogenesis based diseases, such as wet age-related macular degeneration (AMD), neovascular glaucoma, and dermal indications. Antisense oligonucleotides confer distinctive advantages versus other biologics: they can be readily transported across cell membranes, are associated with low immunogenicity, and can be produced by simple chemical synthesis, unlike larger proteins and monoclonal antibodies that require cell culture and complex purification steps.

Through world leading expertise in discovering genes involved in the regulation of angiogenesis, Gene Signal has built a significant intellectual property portfolio that has relevance in multiple disease areas. Gene Signal plans to seek partnership with the pharmaceutical industry for the next steps of development and marketing. The company was founded in 2000 and has assembled an outstanding leadership team that includes scientific, medical, regulatory and business professionals with successful track records in developing and commercialising state of the art drugs. Gene Signal’s headquarters are in Lausanne (PSE, EPFL), Switzerland, with its research programs based in France (Bioparc Genopole, Evry) and product development in Canada (Montréal).

Read more from the original source:
Gene Signal and Collaborators Demonstrate Successful Activity of Topical Aganirsen in Models of Retinal Neovascular ...

Archives