Page 11«..10111213..»

Archive for May, 2014

New Stem Cell Research Points to Early Indicators of Schizophrenia

Contact Information

Available for logged-in reporters only

Newswise LA JOLLAUsing new stem cell technology, scientists at the Salk Institute have shown that neurons generated from the skin cells of people with schizophrenia behave strangely in early developmental stages, providing a hint as to ways to detect and potentially treat the disease early.

The findings of the study, published online in April's Molecular Psychiatry, support the theory that the neurological dysfunction that eventually causes schizophrenia may begin in the brains of babies still in the womb.

"This study aims to investigate the earliest detectable changes in the brain that lead to schizophrenia," says Fred H. Gage, Salk professor of genetics. "We were surprised at how early in the developmental process that defects in neural function could be detected."

Currently, over 1.1 percent of the world's population has schizophrenia, with an estimated three million cases in the United States alone. The economic cost is high: in 2002, Americans spent nearly $63 billion on treatment and managing disability. The emotional cost is higher still: 10 percent of those with schizophrenia are driven to commit suicide by the burden of coping with the disease.

Although schizophrenia is a devastating disease, scientists still know very little about its underlying causes, and it is still unknown which cells in the brain are affected and how. Previously, scientists had only been able to study schizophrenia by examining the brains of patients after death, but age, stress, medication or drug abuse had often altered or damaged the brains of these patients, making it difficult to pinpoint the disease's origins.

The Salk scientists were able to avoid this hurdle by using stem cell technologies. They took skin cells from patients, coaxed the cells to revert back to an earlier stem cell form and then prompted them to grow into very early-stage neurons (dubbed neural progenitor cells or NPCs). These NPCs are similar to the cells in the brain of a developing fetus.

The researchers generated NPCs from the skin cells of four patients with schizophrenia and six people without the disease. They tested the cells in two types of assays: in one test, they looked at how far the cells moved and interacted with particular surfaces; in the other test, they looked at stress in the cells by imaging mitochondria, which are tiny organelles that generate energy for the cells.

On both tests, the Salk team found that NPCs from people with schizophrenia differed in significant ways from those taken from unaffected people.

Go here to read the rest:
New Stem Cell Research Points to Early Indicators of Schizophrenia

Stem cell research offers new hope

May 14, 2014, 4 a.m.

STEM cell therapy is the great frontier of todays medical research.

STEM cell therapy is the great frontier of todays medical research.

While still in its infancy, stem cell technology has already moved from being a promising idea to delivering life-saving treatment for conditions such as leukaemia.

Last week about 70 people gathered at the Mid City Motel, Warrnambool, to hear about the advances from one of Australias leading researchers.

Stem cell researcher, Professor Graham Jenkin.

Professor Graham Jenkin, of the department of obstetrics and gynaecology at Monash University, is researching the use of stem cells harvested from umbilical cord blood to treat babies at risk of developing cerebral palsy as the result of oxygen deprivation during birth.

The event was hosted by the Warrnambool branch of the Inner Wheel Club as part of a national fund-raising program by the organisation.

Professor Jenkin, deputy director of The Ritchie Centre, said treating infants deprived of oxygen with cord blood stem cells was showing promising results in preventing the brain damage that leads to cerebral palsy.

We are looking at treating infants within a 24-hour window after birth, Professor Jenkin said. We would be aiming for treatment after about six hours if possible, which is about as soon as the stem cells can be harvested.

Continue reading here:
Stem cell research offers new hope

Weeds Grow Bigger Among Corn

Contact Information

Available for logged-in reporters only

Newswise The axiom, growing like a weed, takes on new meaning in light of changes in gene expression that occur when weeds interact with the crops they infest, according to plant scientist Sharon Clay. Using sophisticated genetic-mapping techniques, the South Dakota State University professor and her research team are documenting how corn and weeds influence one another.

Weeds grow like weeds when they grow with corn, says Clay. They grow bigger and taller in corn than by themselves. And inversely, corn grows less among weeds.

Over the last 20 years, Clay has been studying weed management in range and cropping systems, weed physiology and interactions among herbicides, soil and crops. The weed scientist was the first woman to serve as president of the American Society of Agronomy.

She has received two awards from the Weed Science Society of America for outstanding papers published in Weed Science --one in 2007 and another in 2012. Both articles were written in collaboration with David Horvath, a research plant physiologist for the Agricultural Research Service at the U.S. Department of Agriculture in Fargo, N.D.

Growing better among corn To figure out how corn and weeds affect each others gene response, Clay and a team of two research associates and a soils expert, planted plots of velvetleaf alone, corn with velvetleaf and corn kept weed-free.

The researchers saw an entirely different response when velvetleaf was grown by itself versus among corn plants. The velvetleaf alone was shorter and stouter, Clay explains. In addition, specific genes that influenced photosynthesis and other important plant responses differed in expression.

Another study compared the corns growth and yield in response to weeds, lack of nitrogen, or shade. In all cases, Clay and Horvath found that genes were differentially expressed compared with nonstressed plants. However, each stress resulted in very different expression patterns.

Traditionally, weeds have been thought to reduce crop growth and yield due to competition for water, nutrients and light. This study, however, indicates that weed-crop interactions are much more complex than researchers have thought.

Continue reading here:
Weeds Grow Bigger Among Corn

Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of …

ALAMEDA, Calif.--(BUSINESS WIRE)--BioTime, Inc. (NYSE MKT: BTX) and its subsidiary Asterias Biotherapeutics, Inc. today announced that Jane S. Lebkowski, PhD, President, Research & Development of Asterias, will present at the 17th Annual Meeting of the American Society of Gene & Cell Therapy taking place May 20-24, 2014 in Washington, DC.

Dr. Lebkowskis presentation will take place in the session titled The Next Generation in Stem Cell Therapies on Thursday May 22, 2014 at 10:15 AM EDT at the Marriot Wardman Park, Washington, DC. Dr. Lebkowskis presentation is titled Phase I Clinical Trial of Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors in Patients with Neurologically Complete Thoracic Spinal Cord Injury: Results and Next Steps. In her presentation, Dr. Lebkowski will disclose for the first time certain Phase I clinical trial results of OPC1. The presentation will be made available on BioTimes and Asterias websites at http://www.biotimeinc.com and http://www.biotimeinc.com/asterias-biotherapeutics/.

About Asterias

Asterias is a biotechnology company focused on the emerging field of regenerative medicine. Our core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. We plan to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (OPC1) and antigen-presenting dendritic cells (VAC1 and VAC2) for the fields of neurology and oncology respectively. OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. We plan to reinitiate clinical testing of OPC1 in spinal cord injury this year, and are also evaluating its function in nonclinical models of multiple sclerosis and stroke. VAC1 and VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against the telomerase, a protein abnormally expressed in over 95% of human cancer types. VAC2 differs from VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.

In October of 2013, Asterias acquired the cell therapy assets of Geron Corporation. These assets included INDs for the clinical stage OPC1 and VAC1 programs, banks of cGMP-manufactured OPC1 drug product, cGMP master and working cell banks of human embryonic stem cells, over 400 patents and patent applications filed worldwide, research cell banks, customized reagents and equipment, and various assets relating to preclinical programs in cardiology, orthopedics, and diabetes.

Asterias is a member of the BioTime family of companies.

About BioTime

BioTime is a biotechnology company engaged in research and product development in the field of regenerative medicine. Regenerative medicine refers to therapies based on stem cell technology that are designed to rebuild cell and tissue function lost due to degenerative disease or injury. BioTimes focus is on pluripotent stem cell technology based on human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells. hES and iPS cells provide a means of manufacturing every cell type in the human body and therefore show considerable promise for the development of a number of new therapeutic products. BioTimes therapeutic and research products include a wide array of proprietary PureStem progenitors, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (a HyStem product) as a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. In addition, BioTime has developed Hextend, a blood plasma volume expander for use in surgery, emergency trauma treatment and other applications. Hextend is manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ HealthCare Corporation under exclusive licensing agreements.

BioTime is also developing stem cell and other products for research, therapeutic, and diagnostic use through its subsidiaries:

Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Read more:
Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of ...

Researchers identify genetic marker for OCD

Scientists have identified a genetic marker that may be associated with the development of obsessive compulsive disorder (OCD).

OCD affects an estimated 2 percent of the population and is one of the least understood mental illnesses. The condition is marked by thoughts and images that chronically intrude in the mind and by repetitive behaviors aimed at reducing the associated anxiety. The standard treatments such as selective serotonin reuptake inhibitor (SSRI) medications and behavioral psychotherapy are about 60 to 70 percent effective, but they dont help all patients and only treat disease symptoms.

Identifying a genetic marker for OCD could help scientists develop more effective therapies for the condition.

Like most other medical and psychological conditions, we need to understand what causes conditions, so we can develop real and rational treatments for these conditions and/or prevention, lead study author Dr. Gerald Nestadt, a professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine, told FoxNews.com. Thats why its important to study or identify genetic causes, if there are any.

In collaboration with seven universities, Nestadt and his colleagues conducted a genome-wide association study of 1,400 people with OCD. For their control group, researchers studied the genomes of 1,000 parents of OCD patients. Researchers looked for an association between the condition and a particular genetic marker. They were able to identify a genetic marker located near a gene that encodes the protein tyrosine phosphokinase.In the study, more people in the OCD group had the genetic marker, compared to those in the control group.

A genetic marker typically is not the specific abnormality, but tells researchers something very close to the marker is the variant of interest, Nestadt said. Researchers note that, while they have a found a genetic marker, they have yet to discover the exact variant associated with OCD and therefore do not know the exact genetic cause of the disease.

That is the goal. The idea is that if we know what chemical or protein is affected in the condition, then we can work out what problem is in the brain that causes the condition and the next step is to find a pharmaceutical that changes that or affects that so as to improve the condition, said Nestadt, who is also director of Johns Hopkins Obsessive-Compulsive Disorder program.

While there has been significant genetic research into other physical diseases, such as diabetes and heart disease, OCD has been less studied. Nestadt believes its because there are fewer researchers in the field of OCD genetics, as well as less availability of funds and a lack of understanding of the disease.

We all have friends who say, Well, Im a little OCD. I think that has actually hurt the individuals who truly suffer from the condition everybody thinks of it as a joke or not serious or not disabling. If you seriously meet someone who has OCD and see what life is like, youll absolutely change your mind, he said.

The only known risk factor for OCD is having a family member with the disease. In previous research, Nestadt had found that 40 percent of people with OCD had a first-degree relative with the disease.

Read the rest here:
Researchers identify genetic marker for OCD

Spark Therapeutics to open headquarters in West Philadelphia

Spark Therapeutics, a gene therapy medical company, this week signed an agreement for a headquarters in West Philadelphia. Spark Therapeutics, spun out of Children's Hospital of Philadelphia in October with $50 million in capital, will build out a 28,000-square-foot facility at 3737 Market St. to house its business operations, clinical research and development, and manufacturing.

Jeffrey D. Marrazzo, cofounder and chief executive, said the new facility "will support the continued expansion of our team and expand our manufacturing capacity to support our clinical development and commercial plans."

Spark anticipates moving into its new headquarters and expanding to 50 full-time employees by the end of 2014. Spark is preparing to complete clinical development of its lead, Phase 3 clinical program to address inherited retinal dystrophies caused by mutations in the RPE65 gene.

- Erin Arvedlund

Read more from the original source:
Spark Therapeutics to open headquarters in West Philadelphia

Stem cell and 'organ-on-a-chip' merger step forward for personalized meds

Home > News > technology-news

Washington, May 12 : Researchers have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease.

The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart.

The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue.

On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy.

However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

See original here:
Stem cell and 'organ-on-a-chip' merger step forward for personalized meds

STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and …

Vancouver, British Columbia (PRWEB) May 12, 2014

STEMCELL Technologies Inc. has just released NEW MesenCult Proliferation Kit with MesenPure (Mouse), a novel cell culture medium to advance research on mouse mesenchymal stem and progenitor cells (MSCs).

When added to MesenCult medium, MesenPure supplement enriches mouse bone marrow- or compact bone-derived MSC cultures by reducing the number of hematopoietic cells. Culturing with MesenPure eliminates the time-intensive serial passaging steps and frequent cell culture medium changes normally required to decrease the unwanted hematopoietic cell population typically present in MSC cultures. Cultures treated with MesenPure appear homogeneous and mostly devoid of hematopoietic cells as early as passage zero and also contain increased numbers of mesenchymal stem cells that display more robust differentiation.

This easy-to-use and versatile kit, may save researchers from having to wait several weeks for homogeneous MSC cultures, explains Dr. Arthur Sampaio, Senior Scientist at STEMCELL Technologies. But, I think the greatest advantage to using MesenPure may be the ability to use lower-passage cultures. It has been shown that over time, extended passaging can bring about detrimental changes to MSCs, such as a loss of phenotype, senescence, and a decrease in the homing ability and differentiation potential of the cells. By using the MesenCult Proliferation Kit with MesenPure, researchers will be able to study lower passage mouse MSCs, increasing their ability to evaluate the true potential of these cells.

For more information or to request a free sample, please visit http://www.stemcell.com/freemesenpure.

Read this article:
STEMCELL Technologies Inc. Launches Novel Cell Culture Medium to Advance Research on Mouse Mesenchymal Stem and ...

'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Image Caption: Researchers use modified RNA transfection to correct genetic dysfunction in heart stem cells derived from Barth syndrome patients. The series of images show how inserting modified RNA into diseased cells causes the cells to produce functioning versions of the TAZ protein (first image: in green) that correctly localize in the mitochondria (second image: in red). When the images are merged to demonstrate this localization, green overlaps with red, giving the third image a yellow color. Credit: Gang Wang and William Pu/Boston Children's Hospital

[ Watch The Video: Cardiac Tissue Contractile Strength Differences Shown Using Heart-On-A-Chip ]

Harvard University

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patients specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Childrens Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

You dont really understand the meaning of a single cells genetic mutation until you build a huge chunk of organ and see how it functions or doesnt function, said Parker, who has spent over a decade working on organs-on-chips technology. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think thats a big advance.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didnt seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cells ability to build itself in a way that allows it to contract.

Original post:
'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Cord Banking, Cell Therapy Helps Treat Deadly Diseases

SPRINGFIELD, Mo. -- A child with a life threatening disease is heart wrenching for parents. Suddenly they are faced with no easy way to get a match for stem cells that could save their child.

With cell therapy, there is a way to do that but it starts in the delivery room.

Delanie Rinne's fourth child, Ezekial, was born earlier this year and even though he'll get older; proof of that day is being stored at Core23 BioBank in Springfield.

"We decided to look into banking the cord blood because we know that this is probably our last biological child," says Rinne.

Core23 stores your child's blood, plasma or tissue from the umbilical cord to help treat 81 different diseases.

"If I had a child that has Leukemia and I was pregnant then that would be a treatment option."

Emily and Michael Perry opened the private cord bank as another option for parents.

"We see that cell therapy is surpassing bone marrow, we truly believe that it is the medicine of the future."

"Cell therapy is taking a healthy, viable cell and putting it into somebody's body to treat a disease or a condition."

The process starts in the delivery room and ends in a hydrogen tank in their lab.

Originally posted here:
Cord Banking, Cell Therapy Helps Treat Deadly Diseases

Variant Of Longevity Gene Could Enhance Cognitive Abilities

[ Watch the Video: Longevity Gene May Boost Brain Power ]

redOrbit Staff & Wire Reports Your Universe Online

People possessing a variant of the longevity gene KLOTHO have demonstrated enhanced brain skills, regardless of factors such as age, sex or risk of Alzheimers disease, according to research published in the journal Cell Reports.

The National Institutes of Health-funded study found that people with the variant had improved thinking, learning and memory. It also revealed that increasing levels of the KLOTHO gene in mice made the creatures smarter, possibly by increasing the strength of the brains nerve cell connections, the study authors explained.

This could be a major step toward helping millions around the world who are suffering from Alzheimers disease and other dementias, lead author Dr. Dena Dubal, the David A. Coulter Endowed Chair in Aging and Neurodegeneration at the University of California San Francisco School of Medicine, said in a statement. If we could boost the brains ability to function, we may be able to counter dementias.

According to the study authors, the effects that aging has on the brain will become a greater health issue as people live longer, especially when it comes to the set of brain disorders known as dementias. The symptoms of dementia include impaired language skills and memory issues, and the number of cases is expected to double every 20 years. By the year 2050, over 115 million people worldwide are expected to require treatment for one of these conditions.

People who have one copy of a variant of the KLOTHO gene known as KL-VS are more likely to live longer and are also less likely to suffer a stroke, the researchers said. On the other hand, people who have two copies of the gene are more likely to live shorter lives and have a higher risk of stroke.

As part of their new study, Dr. Dubal and her colleagues discovered that men and women who possessed one copy of the KL-VS variant performed better on a series of different cognitive examinations than those who lacked the gene regardless of how old they were, whether they were male or female, or whether or not they had the apolipoprotein 4 gene (the primary genetic risk factor for Alzheimers disease).

The investigative team recruited over 700 subjects between the ages of 52 and 85, none of whom demonstrated signs of dementia, and tested several different cognitive abilities during three studies. Between 20 and 25 percent of all subjects had one copy of the KL-VS variant, and those individuals outperformed those who had no copies on the various tests, according to the study authors.

This study shows the importance of genes that regulate the multiple aging processes involved in the maintenance of cognitive function, said Dr. Suzana Petanceska, of the National Institute on Aging (NIA) Division of Neuroscience. Understanding the factors that control the levels and activity of KLOTHO across multiple organ systems may open new therapeutic avenues for prevention of age-related cognitive decline and dementia.

Read more:
Variant Of Longevity Gene Could Enhance Cognitive Abilities

Researchers Find a New Gene Expression Mechanism of PRRS Virus

Contact Information

Available for logged-in reporters only

Newswise MANHATTAN, Kan. A collaborative study involving Kansas State University researchers has discovered a new gene expression mechanism in porcine reproductive and respiratory syndrome, or PRRS, virus an important swine pathogen that costs the U.S. pork industry more than $600 million a year. The discovery provides a new avenue for scientists to explore strategies to control and prevent the disease.

Ying Fang, Ph.D., associate professor of diagnostic medicine and pathobiology at Kansas State University, led a study that looked at the unique gene expression mechanism of the PRRS virus. She and colleagues found a new protein in the virus, nsp2TF, was generated through novel ribosomal frameshifting signals.

The research recently appeared in the Proceedings of the National Academy of Sciences, or PNAS, study, "Transactivation of programmed ribosomal frameshifting by a viral protein."

Fang conducted this study with her European collaborators, including Eric Snijder and his team members at Leiden University Medical Center in The Netherlands, and Andrew Firth, Ian Brierley and Brierley's lab members at the University of Cambridge. Yanhua Li, Fang's doctoral student in pathobiology, China, made important contributions to this study. Zhi Sun, Fang's former doctoral student, and Longchao Zhu, visiting scholars in diagnostic medicine and pathobiology in Fang's lab, also were involved in the study.

The study builds on a 2012 PNAS study Fang and her European collaborators conducted while she was at South Dakota State University. In it, researchers identified the nsp2TF protein in the PRRS virus. The protein is expressed through a new gene expression mechanism called -2 ribosomal frameshifting.

"Frameshifting occurs when a ribosome encounters a 'slippery' sequence and downstream signal in messenger RNA," Fang said. "This causes the ribosome to shift two nucleotides backward, which results in all the genetic codons downstream of the shifted site to be read differently and produce a new protein that has a different function."

With the most recent study, Fang and colleagues have shown that this -2 frameshifting requires a PRRS virus protein, nsp1beta. It is the first time a virus's genetic mechanism has been found to require the action of a transacting viral protein rather than a RNA structure to induce a ribosomal frameshifting, which is novel in the protein translation field.

The function of the nsp2TF protein is currently under investigation, Fang said. The protein contains a genetic element that may be responsible for suppressing the pig's immune system.

See the article here:
Researchers Find a New Gene Expression Mechanism of PRRS Virus

Research and Markets: RNAi – Technologies, Markets and Companies (Updated 2014 Report)

DUBLIN--(BUSINESS WIRE)--Research and Markets (http://www.researchandmarkets.com/research/rccld6/rnai) has announced the addition of Jain PharmaBiotech's new report "RNAi - Technologies, Markets and Companies" to their offering.

RNA interference (RNAi) or gene silencing involves the use of double stranded RNA (dsRNA). Once inside the cell, this material is processed into short 21-23 nucleotide RNAs termed siRNAs that are used in a sequence-specific manner to recognize and destroy complementary RNA. The report compares RNAi with other antisense approaches using oligonucleotides, aptamers, ribozymes, peptide nucleic acid and locked nucleic acid.

Delivery of therapeutics to the target tissues is an important consideration. siRNAs can be delivered to cells in culture by electroporation or by transfection using plasmid or viral vectors. In vivo delivery of siRNAs can be carried out by injection into tissues or blood vessels or use of synthetic and viral vectors.

Regulatory, safety and patent issues are discussed. Side effects can result from unintended interaction between an siRNA compound and an unrelated host gene. If RNAi compounds are designed poorly, there is an increased chance for non-specific interaction with host genes that may cause adverse effects in the host. However, there are no major safety concerns and regulations are in preliminary stages as the clinical trials are still ongoing and there are no marketed products. Many of the patents are still pending.

The markets for RNAi are difficult to define as no RNAi-based product is approved yet but several are in clinical trials. The major use of RNAi reagents is in research but it partially overlaps that of drug discovery and therapeutic development. Various markets relevant to RNAi are analyzed from 2013 to 2023. Markets are also analyzed according to technologies and use of siRNAs, miRNAs, etc.

Profiles of 161 companies involved in developing RNAi technologies are presented along with 233 collaborations. They are a mix of companies that supply reagents and technologies (nearly half of all) and companies that use the technologies for drug discovery. Out of these, 33 are developing RNAi-based therapeutics and 35 are involved in microRNAs. The bibliography contains selected 600 publications that are cited in the report. The text is supplemented with 35+ tables and 11 figures.

Key Topics Covered:

1. Technologies for suppressing gene function

2. RNAi Technologies

3. MicroRNA

Visit link:
Research and Markets: RNAi - Technologies, Markets and Companies (Updated 2014 Report)

Genetic Engineering By Anna from Germany – Video


Genetic Engineering By Anna from Germany
Genetic Engineering By Anna from Germany.

By: Genn Kla

Read the original post:
Genetic Engineering By Anna from Germany - Video

Changing the DNA alphabet

A scientific breakthrough has expanded the way genetic information can be stored.

STORY HIGHLIGHTS

(CNN) -- All of life as we know it on Earth -- pigs, pandas, fish, bacteria and everything else -- has genetic information encoded in the same way, with the same biological alphabet.

Now, for the first time, scientists have shown it is possible to alter that alphabet and still have a living organism that passes on the genetic information. They reported their findings in the journal Nature.

"This is the first experimental demonstration that life can exist with information that's not coded the way nature does (it)," said Floyd Romesberg, associate professor of chemistry at the Scripps Research Institute in La Jolla, California.

Medicine can greatly benefit from this discovery, Romesberg said. There's potential for better antibiotics and treatments for a slew of diseases for which drug development has been challenging, including cancers.

The findings also suggest that DNA as we know it on Earth may not be the only solution to coding for life, Romesberg said. There may be other organisms elsewhere in space that use genetic letters we have never seen -- or that don't use DNA at all.

"Is this alien life? No," he said. "Does it suggest that there could be other ways of storing information? Yes."

How they did it

For their genetic experiments, Romesberg and colleagues used molecules, called X and Y, that are completely different from the four building blocks of DNA.

See the article here:
Changing the DNA alphabet

Genetics, Teatro Caupolican, Santiago de Chile, 4 de Mayo 2014. – Video


Genetics, Teatro Caupolican, Santiago de Chile, 4 de Mayo 2014.
The Knife..., gracias Chile !!!!!

By: FriendshipmusicAR

Read this article:
Genetics, Teatro Caupolican, Santiago de Chile, 4 de Mayo 2014. - Video

Tomorrow’s Table: Organic Farming, Genetics, and the Future of Food – Video


Tomorrow #39;s Table: Organic Farming, Genetics, and the Future of Food
Pamela Ronald and Raoul Adamchak Husband and wife Raoul Adamchak and Pamela Ronald are co-authors of the book "Tomorrow #39;s Table: Organic Farming, Genetics, a...

By: University of NebraskaLincoln

Excerpt from:
Tomorrow's Table: Organic Farming, Genetics, and the Future of Food - Video

Advanced Genetics Tutorial – Monster Mash – Video


Advanced Genetics Tutorial - Monster Mash
Part three of my Minecraft tutorial series for Advanced Genetics. In this video you will find out how to make useful monsters in any mod pack that includes A...

By: IDEDonline

View original post here:
Advanced Genetics Tutorial - Monster Mash - Video

The Sims 3 | Perfect Genetics Challenge Part 2: Love Letters – Video


The Sims 3 | Perfect Genetics Challenge Part 2: Love Letters
In this part, we get romantic with Darren and find out we #39;re pregnant! Backstory: "Once upon a time, the Mighty Player sent a Sim to live in the world where all its creations were living...

By: simplyapril

Link:
The Sims 3 | Perfect Genetics Challenge Part 2: Love Letters - Video

Genetics Lectures – Video


Genetics Lectures

By: Motaher Hossain

See the article here:
Genetics Lectures - Video

Gene Therapy (Breast Cancer) – Video


Gene Therapy (Breast Cancer)
Assignments SQG 4143.

By: Nursyuhada Fatihah

View original post here:
Gene Therapy (Breast Cancer) - Video

Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …

Beverly Hills, California (PRWEB) May 12, 2014

The top Beverly Hills pain management doctors at BZ Pain are now offering stem cell procedures for those with joint arthritis and pain. The outpatient regenerative medicine procedures are typically able to relieve pain and help patients avoid the need for joint replacement surgery of the shoulder, hip, knee and ankle. Call (310) 626-1526 for more information and scheduling.

Over a million joint replacement procedures are performed each year in America. These procedures should be considered an absolute last resort, since the implants are not meant to last forever. There are potential complications with joint replacement.

Therefore, stem cell procedures are an excellent option. They often help repair and regenerate damaged tissue, which is very different than what occurs with steroid injections. The stem cell procedures include options derived from amniotic fluid, fat tissue, or one's bone marrow.

Initial studies are showing the benefits of stem cell procedures for degenerative arthritis. With exceptionally low risk, there is a significant upside with the stem cell pain management therapies.

Dr. Zarrini at BZ Pain is a Double Board Certified Los Angeles pain management doctor, and is able to provide both medical and interventional therapies. The procedures do not involve any fetal tissue or embryonic stem cells. The procedures may help degenerative disease symptoms in the shoulder, hip, knee and ankle to name a few joints.

For those interested in stem cell therapy Los Angeles and Beverly Hills trusts, call BZ Pain today at (310) 626-1526.

Excerpt from:
Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain ...

Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and …

This article was originally distributed via PRWeb. PRWeb, WorldNow and this Site make no warranties or representations in connection therewith.

SOURCE:

Xcelthera Inc and its joint research partner San Diego Regenerative Medicine Institute are granted U.S. Patent No. 8,716,017 entitled, Technologies, Methods, and Products of Small Molecule-Directed Tissue and Organ Regeneration from Human Pluripotent Stem Cells.

San Diego, CA (PRWEB) May 08, 2014

Xcelthera Inc, a major innovator in the stem cell research market and one of the first U.S. companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs, and its joint research partner San Diego Regenerative Medicine Institute announced today that the U.S. Patent and Trademark Office (USPTO) has granted Patent No. 8,716,017 entitled, Technologies, Methods, and Products of Small Molecule-Directed Tissue and Organ Regeneration from Human Pluripotent Stem Cells. This newly-issued patent is the first among a portfolio of intellectual property of Xcelthera Inc covering PluriXcel human stem cell technology platform for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products.

Neurodegenerative and heart diseases are major health problems and cost the worldwide healthcare system more than $500 billion annually. The limited capacity of these two cell systems -- neurons and cardiomyocytes -- for self-repair makes them suitable for stem cell-based neuronal and heart therapies. Nevertheless, to date, the existing markets lack a clinically-suitable human neuronal cell source or cardiomyocyte source with adequate regenerative potential, which has been the major setback in developing safe and effective cell-based therapies for neurodegenerative and heart diseases. Xcelthera proprietary PluriXcel technology allows efficient derivation of clinical-grade human ES cell lines and direct conversion of such pluripotent human ES cells by small molecule induction into a large commercial scale of high quality human neuronal or heart muscle cells, which constitutes clinically representative progress in both human neuronal and cardiac therapeutic products for treating neurodegenerative and heart diseases.

PluriXcel technology of Xcelthera Inc is milestone advancement in stem cell research, offering currently the only available human cell therapy products with the pharmacological capacity to regenerate human neurons and contractile heart muscles that allow restitution of function of the central nervous system (CNS) and heart in the clinic. Through technology license agreement with San Diego Regenerative Medicine Institute, Xcelthera Inc has become the first in the world to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart cell therapy products for commercial and therapeutic uses.

As neurodegenerative and heart diseases incur exorbitant costs on the healthcare system worldwide, there is a strong focus on providing newer and more efficient solutions for these therapeutic needs. Millions of people are pinning their hopes on stem cell research. PluriXcel technology platform of Xcelthera Inc is incomparable, providing life scientists and clinicians with novel and effective resources to address major health concerns. Such breakthrough stem cell technology has presented human ES cell therapy derivatives as a powerful pharmacologic agent of cellular entity for a wide range of incurable or hitherto untreatable neurodegenerative and heart diseases. Introduction of medical innovations and new business opportunities based on PluriXcel technology will shape the future of medicine by providing pluripotent human ES cell-based technology for human tissue and function restoration, and bringing new therapeutics into the market.

About Xcelthera Inc.

Xcelthera INC (http://www.xcelthera.com) is a new biopharmaceutical company moving towards clinical development stage of novel and most advanced stem cell therapy for a wide range of neurological and cardiovascular diseases with leading technology and ground-breaking medical innovation in cell-based regenerative medicine. The Company was recently incorporated in the state of California to commercialize the technologies and products developed, in part, with supports by government grants to the founder, by San Diego Regenerative Medicine Institute (SDRMI), an non-profit 501C3 tax-exempt status independent biomedical research institute that is interested in licensing its PATENT RIGHTS in a manner that will benefit the public by facilitating the distribution of useful products and the utilization of new processes, but is without capacity to commercially develop, manufacture, and distribute any such products or processes. Xcelthera is a major innovator in the stem cell research market and one of the first companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs. The Company is the first to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products for commercial and therapeutic uses. The Company owns or has exclusive rights in a portfolio of intellectual property or license rights related to its novel PluriXcel human stem cell technology platforms and Xcel prototypes of human stem cell therapy products. The inception of Xcelthera is driven by the urgent need for clinical translation of human ES cell research discoveries and innovations to address unmet medical challenges in major health problems. Xcelthera breakthrough developments in human ES cell research dramatically increase the overall turnover of investments in biomedical sciences to optimal treatment options for a wide range of human diseases. The overall strategy of the Company is to use cutting-edge human stem cell technology to develop clinical-grade functional human neural and cardiac cell therapy products from pluripotent human ES cells as cellular medicine or cellular drugs to provide the next generation of cell-based therapeutic solutions for unmet medical needs in world-wide major health problems. The Company is currently offering Series A Convertible Preferred Stock to accredited investors through equity crowdfunding to raise fund for its pre-IPO business operation and filing confidential IPO as an emerging growth company according to the JOBS Act to create a public market for its common stock and to facilitate its future access to the public equity market and growth of the Company.

Originally posted here:
Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and ...

Patient stem cells used to make 'heart disease-on-a-chip'

PUBLIC RELEASE DATE:

11-May-2014

Contact: Joseph Caputo joseph_caputo@harvard.edu 617-496-1491 Harvard University

Cambridge, MAHarvard scientists have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the 'organs-on-chips' expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

"You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function," said Parker, who has spent over a decade working on 'organs-on-chips' technology. "In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

Here is the original post:
Patient stem cells used to make 'heart disease-on-a-chip'

Stem cell treatments reaching patients

Neurosurgeon and stem cell researcher, Joseph Ciacci M.D. will soon start a clinical trial of stem cells to treat paralysis from spinal cord injury.

After many years of waiting, a flood of new regenerative-cell therapies is finally reaching patients. Hundreds of clinical trials for these experimental treatments are under way across the world.

In the United States, 774 trials with stem or other regenerative cells are open to patients or soon will be, according to clinicaltrials.gov, which lists government-approved clinical testing in this country and abroad. Of that total, 147 are taking place in California.

One of the most difficult tests involving stem cells repairing spinal-cord damage that has caused complete loss of movement and sensation below the injury site is set to begin soon at UC San Diego.

Patients in that study will get injections of fetal-derived neural stem cells in and around the injury site, along with physical therapy and immune-system drugs in case theres a reaction to the stem cells. The trial will use a device that delivers precisely targeted micro-injections of cells to the targeted areas.

The clinical trial will test safety and look for early signs of efficacy, said Dr. Joseph Ciacci, a UC San Diego neurosurgeon leading the testing.

A study published a year ago found that in rats with spinal-cord injuries, the neural stem cells significantly improved movement in the hind paws. Ciacci, who co-authored that study, saw the cells proliferate and fill in a spinal-cord cavity that had resulted from the injuries. Such results supported testing the therapy in people, he said, but he declined to say whether he expected to see any improvement in those patients.

I really dont know, because its not been done, Ciacci said.

The clinical trial is expected to start in June. Its intended for adults 18 to 65 years old who suffered their injury at least one year ago but no more than two years ago. For more information, visit utsandiego.com/ucsdspinal or call Amber Faulise at (858) 657-5175.

Another type of stem cells, mesenchymal stromal, might be described as the duct tape of regenerative cells. Generally derived from bone marrow, they are being tested for treatment of pulmonary fibrosis, multiple sclerosis, kidney transplants, liver cirrhosis, osteoarthritis of the knee, stroke and many other conditions. Worldwide, 226 trials are being conducted with these cells, including 45 in the U.S. and 12 in California, according to clinicaltrials.gov.

See the original post here:
Stem cell treatments reaching patients

Archives