Page 18«..10..16171819

Archive for May, 2014

No to Genetic Engineering | People and Politics – Video


No to Genetic Engineering | People and Politics
Genetic engineering is banned in berlingen by Lake Constance. The town in Baden-Wrttemberg, a state ruled by a coalition of the Green party and the Social ...

By: DW (English)

Here is the original post:
No to Genetic Engineering | People and Politics - Video

Stem Cells Of Infertile Men Used To Create Preliminary Sperm Cells

April Flowers for redOrbit.com Your Universe Online

A new study, from the Stanford University School of Medicine and Montana State University, demonstrates that, when implanted into the reproductive system of a mouse model, stem cells created from adult, infertile men will yield primordial germ cells. Primordial germ cells normally become sperm cells.

The findings, published in Cell Reports, help to further our understanding of a genetic cause of male infertility and basic sperm biology. The research team says that their approach holds considerable potential for clinical applications.

All of the infertile male participants suffer from a genetic mutation that prevents their bodies from producing mature sperm. The study suggests that the men with this condition called azoospermia might have produced germ cells at some point in their early lives, but these cells were lost as the men matured to adulthood.

Our results are the first to offer an experimental model to study sperm development, said Renee Reijo Pera of the Institute for Stem Cell Biology & Regenerative Medicine and Montana State University. Therefore, there is potential for applications to cell-based therapies in the clinic, for example, for the generation of higher quality and numbers of sperm in a dish.

It might even be possible to transplant stem-cell-derived germ cells directly into the testes of men with problems producing sperm, she added. Considerable study to ensure safety and practicality is needed, however, before reaching that point.

Infertility is a fairly common problem, affecting between 10 and 15 percent of couples in the US. The researchers say that many men are affected by genetic causes of infertility, most commonly due to the spontaneous loss of key genes on the Y sex chromosome. Until now, the causes of infertility at the molecular level have not been clear.

The fact that the research team was able to create primordial germ cells from the infertile men is very promising, but they note that these stem cells created far fewer of these sperm progenitors than the stem cells of men without the genetic mutations. They are sure, however, that this research provides a much needed model to study the earliest steps of human reproduction.

We saw better germ-cell differentiation in this transplantation model than weve ever seen, said Reijo Pera, former director of Stanfords Center for Human Embryonic Stem Cell Research and Education. We were amazed by the efficiency. Our dream is to use this model to make a genetic map of human germ-cell differentiation, including some of the very earliest stages.

Humans share many cellular and physiological processes with common laboratory animals such as mice or fruit flies. In reproduction, however, there are significant variances, making it challenging to recreate the human reproductive processes in a laboratory setting. In addition, many crucial steps, such as the development and migration of primordial germ cells to the gonads,occur in the relatively short first days or weeks after conception.

See the rest here:
Stem Cells Of Infertile Men Used To Create Preliminary Sperm Cells

Let’s Play The Sims 3 – Perfect Genetics Challenge – Episode 18 – Video


Let #39;s Play The Sims 3 - Perfect Genetics Challenge - Episode 18
VampireClan #VampireClan4Life.

By: vampiregirl101101101

See more here:
Let's Play The Sims 3 - Perfect Genetics Challenge - Episode 18 - Video

Savior – a Gripping Genetics Thriller – Video


Savior - a Gripping Genetics Thriller
Buy the e-book ($4): http://bookstore.xlibris.com/Products/SKU-0119138003/Savior.aspx or Amazon Kindle ($4): http://www.amazon.com/Savior-Frank-Camelio-ebook/dp/B009GDHTUQ/ref=sr_1_1?ie=UTF8 qid=13...

By: Frank Camelio

Read the original post:
Savior - a Gripping Genetics Thriller - Video

My Genetics – Video


My Genetics
We all have a gift I challenge you to find yours and make the best of it. For more info go to: http://www.levronereport.com Peace Kevin.

By: levrone2000

Read the original here:
My Genetics - Video

The Sims 3 Perfect Genetics Challenge (Part 2) HELLO LOVELY! – Video


The Sims 3 Perfect Genetics Challenge (Part 2) HELLO LOVELY!
OPEN FOR IMPORTANT LINKS AND INFO Like/Follow me on: ONLINE STORE: http://jessamica92.spreadshirt.com/ SECOND CHANNEL: http://www.youtube.com/user/JessaGames WEBSITE: http://www.jessamica...

By: jessamica92

Continued here:
The Sims 3 Perfect Genetics Challenge (Part 2) HELLO LOVELY! - Video

Retrovirus in Gene Therapy – Video


Retrovirus in Gene Therapy
A video created for gene therapy (SQG 4143-01). Lecturer: Dr. Salehhuddin Hamdan Students: (1) Tang Jiaa Earn (AQ100082) (2) Phang Shi YI (AQ100073)

By: Phang n Tang

See the rest here:
Retrovirus in Gene Therapy - Video

Gene therapy for haemophilia – Professor Amit Nathwani – Video


Gene therapy for haemophilia - Professor Amit Nathwani
A Medicine for Members talk given on 22 April 2014 at the Royal Free Hospital by Professor Amit Nathwani.

By: Royal Free London NHS Foundation Trust

Here is the original post:
Gene therapy for haemophilia - Professor Amit Nathwani - Video

Cochlear Implant Gets an Upgrade with Gene Therapy – Video


Cochlear Implant Gets an Upgrade with Gene Therapy
Cochlear Implant Gets an Upgrade with Gene Therapy This is a video of 3-D confocal imaging showing the cells secreting the neurotrophin (cyan) and the regene...

By: Stefano Di Criscio

The rest is here:
Cochlear Implant Gets an Upgrade with Gene Therapy - Video

How Age Affects Treatment Options – Video


How Age Affects Treatment Options
CLL experts, Dr. Michael Keating and Dr. Januario Castro, help listeners to understand why some CLL treatments have different effects depending on the age of the patient. Dr. Keating explains...

By: Patient Power

Read the original here:
How Age Affects Treatment Options - Video

Enhancing Recovery for Acute SCI – Video


Enhancing Recovery for Acute SCI
Spinal cord injury present day treatment Spinal cord injury, cord, cervical spine, cervical spine dislocation, cranio-cervical dislocation, internal decapita...

By: UWTV

See the original post here:
Enhancing Recovery for Acute SCI - Video

CNI Cindy Acree Hope Awards 2014 – Ernie Hempel – Video


CNI Cindy Acree Hope Awards 2014 - Ernie Hempel
Ernie Hempel, Spinal Cord Injury: Since experiencing a C5-6 spinal cord injury in 2002, Ernie has worked extremely hard to improve his independence and mobility. He has undergone difficult...

By: ColoradoNeurological

Go here to see the original:
CNI Cindy Acree Hope Awards 2014 - Ernie Hempel - Video

Leg Muscles Restored in Regenerative Medicine Study – Video


Leg Muscles Restored in Regenerative Medicine Study
Damaged leg muscles grew stronger and showed signs of regeneration in three out of five men whose old injuries were surgically implanted with extracellular m...

By: University of Pittsburgh Medical Center

See the original post here:
Leg Muscles Restored in Regenerative Medicine Study - Video

Legislature could boost U stem cell research

The future of the University of Minnesotas regenerative medicine research program is looking brighter than ever.

State and federal leaders in the past have denied funding for the Universitys Office of Regenerative Medicine, which includes the Stem Cell Institute, because some had ethical disagreements with stem cell research.

But this legislative session, with a DFL majority and an overall shift in public opinion, researchers and legislators are confident funding will come through this year.

The current House bill sets aside $450,000 for the Office of Regenerative Medicine, while the Senate version outlines a $5 million increase each year from 2015-17. The bills texts dont specify how funds should be used and how they would be divided between the University and the Mayo Clinic, its research partner.

The Senates bill mandates that anadvisory task force comprised of members from the University, the Mayo Clinic and private industry, as well as two other regenerative medicine experts, recommend how to spend the state funding.

Dayton didnt include funds for the research in his original budget proposal this year, but Sen. Terri Bonoff, DFL-Minnetonka, said there seems to be a general consensus among legislators to work together and decide on a funding amount.

I have not heard many naysayers, she said.

Changing perceptions

The state plays a major role in moving the institutes research forward.

These days, legislators are more open to it than they were in the past, said Dr. Andre Terzic, director of the Mayo Clinic Center for Regenerative Medicine.

See the original post here:
Legislature could boost U stem cell research

Stem Cell Therapy Market (Autologous & Allogeneic) Worth $330 Million in 2020 – New Report by MarketsandMarkets

(PRWEB) May 02, 2014

The report Stem Cell Therapy Market by Treatment Mode (Autologous & Allogeneic), Therapeutic Applications (CNS, CVS, GIT, Wound Healing, Musculoskeletal, Eye, & Immune System) - Regulatory Landscape, Pipeline Analysis & Global Forecasts to 2020 analyzes and studies the major market drivers, restraints, opportunities, and challenges in North America, Asia-Pacific, Europe, and the Rest of the World (RoW).

Browse 57 market data tables 32 figures spread through 196 Slides and in-depth TOC on Stem Cell Therapy Market http://www.marketsandmarkets.com/Market-Reports/stem-cell-technologies-and-global-market-48.html

Early buyers will receive 10% customization on report.

This report studies the global stem cell therapy market over the forecast period of 2015 to 2020.The market is poised to grow at a CAGR of 39.5% from 2015 to 2020, to reach $330million by 2020.

Download Free PDF Download @ http://www.marketsandmarkets.com/pdfdownload.asp?id=48

The global stem cell therapy market on the basis of the mode of treatment is segmented into allogeneic and autologous stem cell therapy. In addition, based on the therapeutic applications, the global stem cell therapy market is segmented into eye diseases, metabolic diseases, GIT diseases, musculoskeletal disorders, immune system diseases, CNS diseases, CVS diseases, wounds and injuries, and others.

Inquire Before Buying @ http://www.marketsandmarkets.com/Enquiry_Before_Buying.asp?id=48

A number of factors such as the increasing funding from various government and private organizations, growing industry focus on stem cell research, and increasing global awareness about stem cell therapies through various organizations are stimulating the research activities for stem cell therapies. Developing markets, emergence of induced pluripotent stem (iPS) cells as an alternative to embryonic stem cells (ESCs), and evolution of new stem cell therapies represent high growth opportunities for market players.

In 2015, North America will hold the largest share of the global stem cell therapy market. This large share is primarily attributed to the extensive government funding and increasing fast-track approval for stem cell therapeutics by the FDA. Moreover, development of advanced genomic methods for stem cell analysis and high number of ongoing research activities are further fueling the growth of the stem cell therapy market in North America. However, the Asia-Pacific stem cell therapy market is expected to grow at the highest CAGR in the forecast period, owing to factors such as increasing regulatory support through favorable government policies, strong product pipelines, and increasing licensing activities in this region.

Follow this link:
Stem Cell Therapy Market (Autologous & Allogeneic) Worth $330 Million in 2020 - New Report by MarketsandMarkets

Heart Muscles Repaired After Heart Attack Using Human Embryonic Stem Cells

Image Caption: This image shows an implanted graft of cardiac cells derived from human stem cells (green) meshed and beat with primates' heart cells (red). Credit: Murry Lab/University of Washington

April Flowers for redOrbit.com Your Universe Online

When a heart attack occurs, the oxygen-rich blood that normally flows through is interrupted by the blockage in an artery. The longer that blood flow is restricted or cut off, the more tissue and muscle in the area dies or is scarred. The eventual result can be heart failure, especially if one heart attack is followed by another.

In 2013, Harvard Health Publications released a report taking a look at the state of stem cell research into the problem of regenerating heart tissue, and the results were mixed.

A new study from the University of Washington, however, reveals improvement in those results. The findings, published online in Nature, demonstrate that damaged heart muscles in monkeys have been restored by the use of heart cells created from human embryonic stem cells. The exciting implication, according to the research team, is that their approach should also be feasible in humans.

Before this study, it was not known if it is possible to produce sufficient numbers of these cells and successfully use them to remuscularize damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart, said Dr. Charles Murry, UW professor of pathology and bioengineering and director of the UW Center for Cardiovascular Biology, in a recent statement.

Murray, who collaborated with Dr. Michael Laflamme and other colleagues at the UW Institute for Stem Cell & Regenerative Medicine, predicts clinical trials with humans within the next four years.

[ Watch the Video: Regenerating Heart Muscle Damage With Stem Cell Therapy ]

For the study, the researchers induced controlled myocardial infarctions, a type of heart attack, in anesthetized pigtail macaques, by blocking the coronary artery for 90 minutes. This is the accepted practice for studying myocardial infarction in primates.

Coronary artery disease is the primary culprit in myocardial infarctions in humans. The infarcted heart muscle, damaged by a lack of oxygen, does not grow back, leaving the heart less able to pump blood. This often leads to heart failure, the leading cause of cardiovascular death. Researchers hope to use new heart cells created from stem cells in order to restore normal function to the failing heart.

Read more from the original source:
Heart Muscles Repaired After Heart Attack Using Human Embryonic Stem Cells

Stem cell injections may take place of heart swaps

It shows for the first time that we can do regeneration at a scale that the world has never seen before, said Dr Charles Murry, professor of pathology and bioengineering, at the University of Washington.

"Before this study, it was not known if it is possible to produce sufficient numbers of these cells and use them to re-muscularise damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart."

Weve shown that (stem cells) will survive and they will organise to form new heart muscle and they will connect with the surrounding cardiac muscle cells and beat in synchrony.

The green area shows the regenerated heart muscle

Currently heart muscle cannot be repaired and people with severe heart failure must wait for a heart transplant.

In the study the team induced heart attacks, in anesthetised macaque monkeys.

Over the course of two weeks they injected one billion heart muscle cells derived from human embryonic stem cells.

The researchers found that the stem cells infiltrated into the damaged heart tissue, matured, and knitted into muscle fibers, before beginning to beat in rhythm with the macaque heart cells.

After three months, the cells had fully integrated into the heart. On average the transplanted stem cells regenerated 40 percent of the damaged heart tissue and improve the ability of the heart to pump blood.

Although the study has been carried out on macaque monkeys, the researchers at the University of Washington said "the approach should be feasible in humans".

See the original post here:
Stem cell injections may take place of heart swaps

Stem cell breakthrough in treating heart attacks

An implanted graft of cardiac cells derived from human stem cells (green) meshed with a monkey's own heart cells (red). Picture: Murry Lab/University of Washington/PA

Stem cell heart repair treatments could be tested on human patients within four years following a ground-breaking study of monkeys.

Scientists successfully restored damaged cardiac muscle in macaque monkeys suffering the after-effects of experimentally induced heart attacks, paving the way to clinical trials.

Researchers injected 1bn immature heart muscle cells derived from human embryonic stem cells into each animals heart.

Over several weeks, the new cells developed, assembled into muscle fibres, and began to beat in correct time. On average, 40% of the damaged heart tissue was regenerated.

It is the first time stem cell therapy for damage caused by heart attacks has been shown to work in a primate.

Lead scientist Prof Charles Murry, director of the Centre for Cardiovascular Biology at the University of Washington in Seattle, said: Before this study, it was not known if it is possible to produce sufficient numbers of these cells and successfully use them to remuscularise damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart.

He expects the treatment to be ready for clinical trials in human patients within four years.

Heart attack symptoms were triggered in the monkeys by blocking the coronary artery the main artery supplying the heart with blood for 90 minutes.

In humans, the reduced blood flow caused by narrowing of the arteries has a similar effect. Lack of blood flow to the heart damages the heart muscle by depriving it of oxygen.

Read the original post:
Stem cell breakthrough in treating heart attacks

Stem cells could be used to treat heart disease

Stem cells could be used to treat heart disease

6:30am Friday 2nd May 2014 in News

STEM cells taken from bone marrow could be used to treat heart disease by injecting them into damaged tissue, early results show.

Stem cells are cells in the body which have not yet specialised and can become any type.

Oxford University scientists hailed the encouraging evidence in results of 26 small clinical trails involving 1,255 people.

A year or more after treatment, just three per cent of people had died, compared with 15 per cent of people who had not had the procedure.

Hospital readmissions stood at only two in 100 for those testing out the new treatment.

Dr Enca Martin-Rendon, who carried out the study with the Cochrane Heart Review Group, said larger studies would be carried out to get more conclusive evidence.

Go here to read the rest:
Stem cells could be used to treat heart disease

Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments

May 1, 2014

Image Caption: The continuous, necessary production of blood cells, including these red blood cells captured in a scanning micrograph by Thomas Deerinck, is the responsibility of hematopoietic stem cells found in bone marrow. Credit: Thomas Deerinck, UC San Diego

University of California San Diego

Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem cells after radiation exposure.

The findings, published in the May 1 issue of Genes and Development, provide a new understanding of how radiation impacts cellular and molecular processes, but perhaps more importantly, they suggest new possibilities for improving hematopoietic stem cell regeneration in the bone marrow following cancer radiation treatment.

Ionizing radiation exposure accidental or deliberate can be fatal due to widespread destruction of hematopoietic stem cells, the cells in the bone marrow that give rise to all blood cells. A number of cancer treatments involve irradiating malignancies, essentially destroying all exposed blood cells, followed by transplantation of replacement stem cells to rebuild blood stores. The effectiveness of these treatments depends upon how well the replacement hematopoietic stem cells do their job.

In their new paper, principal investigator Tannishtha Reya, PhD, professor in the department of pharmacology, and colleagues used mouse models to show that radiation exposure triggers activation of a fundamental cellular signaling pathway called Wnt in hematopoietic stem and progenitor cells.

The Wnt pathway and its key mediator, beta catenin, are critical for embryonic development and establishment of the body plan, said Reya. In addition, the Wnt pathway is activated in stem cells from many tissues and is needed for their continued maintenance.

The researchers found that mice deficient in beta-catenin lacked the ability to activate canonical Wnt signaling and suffered from impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. Specifically, mouse hematopoietic stem cells without beta-catenin could not suppress the production of oxidative stress molecules that damage cell structures. As a result, they could not recover effectively after radiation or chemotherapy.

Our work shows that Wnt signaling is important in the mammalian hematopoietic system, and is critical for recovery from chemotherapy and radiation, Reya said. While these therapies can be life-saving, they take a heavy toll on the hematopoietic system from which the patient may not always recover.

Go here to read the rest:
Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments

Damage Control: Recovering From Radiation and Chemotherapy

Contact Information

Available for logged-in reporters only

Newswise Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem cells after radiation exposure.

The findings, published in the May 1 issue of Genes and Development, provide a new understanding of how radiation impacts cellular and molecular processes, but perhaps more importantly, they suggest new possibilities for improving hematopoietic stem cell regeneration in the bone marrow following cancer radiation treatment.

Ionizing radiation exposure accidental or deliberate can be fatal due to widespread destruction of hematopoietic stem cells, the cells in the bone marrow that give rise to all blood cells. A number of cancer treatments involve irradiating malignancies, essentially destroying all exposed blood cells, followed by transplantation of replacement stem cells to rebuild blood stores. The effectiveness of these treatments depends upon how well the replacement hematopoietic stem cells do their job.

In their new paper, principal investigator Tannishtha Reya, PhD, professor in the department of pharmacology, and colleagues used mouse models to show that radiation exposure triggers activation of a fundamental cellular signaling pathway called Wnt in hematopoietic stem and progenitor cells.

The Wnt pathway and its key mediator, beta catenin, are critical for embryonic development and establishment of the body plan, said Reya. In addition, the Wnt pathway is activated in stem cells from many tissues and is needed for their continued maintenance.

The researchers found that mice deficient in beta-catenin lacked the ability to activate canonical Wnt signaling and suffered from impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. Specifically, mouse hematopoietic stem cells without beta-catenin could not suppress the production of oxidative stress molecules that damage cell structures. As a result, they could not recover effectively after radiation or chemotherapy.

Our work shows that Wnt signaling is important in the mammalian hematopoietic system, and is critical for recovery from chemotherapy and radiation, Reya said. While these therapies can be life-saving, they take a heavy toll on the hematopoietic system from which the patient may not always recover.

The findings have significant clinical implications.

Read the rest here:
Damage Control: Recovering From Radiation and Chemotherapy

Engineers grow functional human cartilage in lab

Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways to better mimic the enormous complexity of tissue development, regeneration, and disease, is published in the April 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).

"We've been able -- for the first time -- to generate fully functional human cartilage from mesenchymal stem cells by mimicking in vitro the developmental process of mesenchymal condensation," says Gordana Vunjak-Novakovic, who led the study and is the Mikati Foundation Professor of Biomedical Engineering at Columbia Engineering and professor of medical sciences. "This could have clinical impact, as this cartilage can be used to repair a cartilage defect, or in combination with bone in a composite graft grown in lab for more complex tissue reconstruction."

For more than 20 years, researchers have unofficially called cartilage the "official tissue of tissue engineering," Vunjak-Novakovic observes. Many groups studied cartilage as an apparently simple tissue: one single cell type, no blood vessels or nerves, a tissue built for bearing loads while protecting bone ends in the joints. While there has been great success in engineering pieces of cartilage using young animal cells, no one has, until now, been able to reproduce these results using adult human stem cells from bone marrow or fat, the most practical stem cell source. Vunjak-Novakovic's team succeeded in growing cartilage with physiologic architecture and strength by radically changing the tissue-engineering approach.

The general approach to cartilage tissue engineering has been to place cells into a hydrogel and culture them in the presence of nutrients and growth factors and sometimes also mechanical loading. But using this technique with adult human stem cells has invariably produced mechanically weak cartilage. So Vunjak-Novakovic and her team, who have had a longstanding interest in skeletal tissue engineering, wondered if a method resembling the normal development of the skeleton could lead to a higher quality of cartilage.

Sarindr Bhumiratana, postdoctoral fellow in Vunjak-Novakovic's Laboratory for Stem Cells and Tissue Engineering, came up with a new approach: inducing the mesenchymal stem cells to undergo a condensation stage as they do in the body before starting to make cartilage. He discovered that this simple but major departure from how things were usually? being done resulted in a quality of human cartilage not seen before.

Gerard Ateshian, Andrew Walz Professor of Mechanical Engineering, professor of biomedical engineering, and chair of the Department of Mechanical Engineering, and his PhD student, Sevan Oungoulian, helped perform measurements showing that the lubricative property and compressive strength -- the two important functional properties -- of the tissue-engineered cartilage approached those of native cartilage. The researchers then used their method to regenerate large pieces of anatomically shaped and mechanically strong cartilage over the bone, and to repair defects in cartilage.

"Our whole approach to tissue engineering is biomimetic in nature, which means that our engineering designs are defined by biological principles," Vunjak-Novakovic notes. "This approach has been effective in improving the quality of many engineered tissues -- from bone to heart. Still, we were really surprised to see that our cartilage, grown by mimicking some aspects of biological development, was as strong as 'normal' human cartilage."

The team plans next to test whether the engineered cartilage tissue maintains its structure and long-term function when implanted into a defect.

"This is a very exciting time for tissue engineers," says Vunjak-Novakovic. "Stem cells are transforming the future of medicine, offering ways to overcome some of the human body's fundamental limitations. We bioengineers are now working with stem cell scientists and clinicians to develop technologies that will make this dream possible. This project is a wonderful example that we need to 'think as a cell' to find out how exactly to coax the cells into making a functional human tissue of a specific kind. It's emblematic of the progress being driven by the exceptional young talent we have among our postdocs and students at Columbia Engineering."

The study was funded by the National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering, National Institute for Dental and Craniofacial Research, and National Institute for arthritis and musculoskeletal diseases).

Read more:
Engineers grow functional human cartilage in lab

Stem cells from some infertile men form germ cells when transplanted into mice, study finds

PUBLIC RELEASE DATE:

1-May-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center

STANFORD, Calif. Stem cells made from the skin of adult, infertile men yield primordial germ cells cells that normally become sperm when transplanted into the reproductive system of mice, according to researchers at the Stanford University School of Medicine and Montana State University.

The infertile men in the study each had a type of genetic mutation that prevented them from making mature sperm a condition called azoospermia. The research suggests that the men with azoospermia may have had germ cells at some point in their early lives, but lost them as they matured to adulthood.

Although the researchers were able to create primordial germ cells from the infertile men, their stem cells made far fewer of these sperm progenitors than did stem cells from men without the mutations. The research provides a useful, much-needed model to study the earliest steps of human reproduction.

"We saw better germ-cell differentiation in this transplantation model than we've ever seen," said Renee Reijo Pera, PhD, former director of Stanford's Center for Human Embryonic Stem Cell Research and Education. "We were amazed by the efficiency. Our dream is to use this model to make a genetic map of human germ-cell differentiation, including some of the very earliest stages."

Unlike many other cellular and physiological processes, human reproduction varies in significant ways from that of common laboratory animals like mice or fruit flies. Furthermore, many key steps, like the development and migration of primordial germ cells to the gonads, happen within days or weeks of conception. These challenges have made the process difficult to study.

Reijo Pera, who is now a professor of cell biology and neurosciences at Montana State University, is the senior author of a paper describing the research, which will be published May 1 in Cell Reports. The experiments in the study were conducted at Stanford, and Stanford postdoctoral scholar Cyril Ramathal, PhD, is the lead author of the paper.

The research used skin samples from five men to create what are known as induced pluripotent stem cells, which closely resemble embryonic stem cells in their ability to become nearly any tissue in the body. Three of the men carried a type of mutation on their Y chromosome known to prevent the production of sperm; the other two were fertile.

Excerpt from:
Stem cells from some infertile men form germ cells when transplanted into mice, study finds

'Provocative' Research Turns Skin Cells Into Sperm

hide captionNew research could be promising for infertile men. Scientists were able to make immature sperm cells from skin cells. Their next challenge is to make that sperm viable.

New research could be promising for infertile men. Scientists were able to make immature sperm cells from skin cells. Their next challenge is to make that sperm viable.

Scientists reported Thursday they had figured out a way to make primitive human sperm out of skin cells, an advance that could someday help infertile men have children.

"I probably get 200 emails a year from people who are infertile, and very often the heading on the emails is: Can you help me?" says Renee Reijo Pera of Montana State University, who led the research when she was at Stanford University.

In a paper published in the journal Cell Reports, Pera and her colleagues describe what they did. They took skin cells from infertile men and manipulated them in the laboratory to become induced pluripotent stem cells, which are very similar to human embryonic stem cells. That means they have the ability to become virtually any cell in the body.

They then inserted the cells into the testes of mice, where they became very immature human sperm cells, the researchers report.

"It's much easier than we actually expected," Pera told Shots.

Other researchers caution that there's still much more research that is needed to prove these cells would actually become healthy sperm that could make a baby. But they said the report was intriguing.

"It's one step closer to being able to make sperm in a petri dish," says George Daley, a stem-cell researcher at Harvard. "So I think that's very provocative."

But others worry the techniques could be misused.

Visit link:
'Provocative' Research Turns Skin Cells Into Sperm

Stem cells from some infertile men form germ cells when transplanted into mice

Stem cells made from the skin of adult, infertile men yield primordial germ cells -- cells that normally become sperm -- when transplanted into the reproductive system of mice, according to researchers at the Stanford University School of Medicine and Montana State University.

The infertile men in the study each had a type of genetic mutation that prevented them from making mature sperm -- a condition called azoospermia. The research suggests that the men with azoospermia may have had germ cells at some point in their early lives, but lost them as they matured to adulthood.

Although the researchers were able to create primordial germ cells from the infertile men, their stem cells made far fewer of these sperm progenitors than did stem cells from men without the mutations. The research provides a useful, much-needed model to study the earliest steps of human reproduction.

"We saw better germ-cell differentiation in this transplantation model than we've ever seen," said Renee Reijo Pera, PhD, former director of Stanford's Center for Human Embryonic Stem Cell Research and Education. "We were amazed by the efficiency. Our dream is to use this model to make a genetic map of human germ-cell differentiation, including some of the very earliest stages."

A difficult process to study

Unlike many other cellular and physiological processes, human reproduction varies in significant ways from that of common laboratory animals like mice or fruit flies. Furthermore, many key steps, like the development and migration of primordial germ cells to the gonads, happen within days or weeks of conception. These challenges have made the process difficult to study.

Reijo Pera, who is now a professor of cell biology and neurosciences at Montana State University, is the senior author of a paper describing the research, published May 1 in Cell Reports. The experiments in the study were conducted at Stanford, and Stanford postdoctoral scholar Cyril Ramathal, PhD, is the lead author of the paper.

The research used skin samples from five men to create what are known as induced pluripotent stem cells, which closely resemble embryonic stem cells in their ability to become nearly any tissue in the body. Three of the men carried a type of mutation on their Y chromosome known to prevent the production of sperm; the other two were fertile.

The germ cells made from stem cells stopped differentiating in the mice before they produced mature sperm (likely because of the significant differences between the reproductive processes of humans and mice) regardless of the fertility status of the men from whom they were derived. However, the fact that the infertile men's cells could give rise to germ cells at all was a surprise.

Previous research in mice with a similar type of infertility found that although they had germ cells as newborns, these germ cells were quickly depleted. The Stanford findings suggests that the infertile men may have had at least a few functioning germ cells as newborns or infants. Although more research needs to be done, collecting and freezing some of this tissue from young boys known to have this type of infertility mutation may give them the option to have their own children later in life, the researchers said.

The rest is here:
Stem cells from some infertile men form germ cells when transplanted into mice

Archives