Page 9«..891011..»

Archive for May, 2014

Stem Cell Therapy Shows Promise for MS in Mouse Model

Contact Information

Available for logged-in reporters only

Newswise LA JOLLA, CAMay 15, 2014Mice crippled by an autoimmune disease similar to multiple sclerosis (MS) regained the ability to walk and run after a team of researchers led by scientists at The Scripps Research Institute (TSRI), University of Utah and University of California (UC), Irvine implanted human stem cells into their injured spinal cords.

Remarkably, the mice recovered even after their bodies rejected the human stem cells. When we implanted the human cells into mice that were paralyzed, they got up and started walking a couple of weeks later, and they completely recovered over the next several months, said study co-leader Jeanne Loring, a professor of developmental neurobiology at TSRI.

Thomas Lane, an immunologist at the University of Utah who co-led the study with Loring, said he had never seen anything like it. Weve been studying mouse stem cells for a long time, but we never saw the clinical improvement that occurred with the human cells that Dr. Loring's lab provided, said Lane, who began the study at UC Irvine.

The mices dramatic recovery, which is reported online ahead of print by the journal Stem Cell Reports, could lead to new ways to treat multiple sclerosis in humans.

"This is a great step forward in the development of new therapies for stopping disease progression and promoting repair for MS patients, said co-author Craig Walsh, a UC Irvine immunologist.

Stem Cell Therapy for MS

MS is an autoimmune disease of the brain and spinal cord that affects more than a half-million people in North America and Europe, and more than two million worldwide. In MS, immune cells known as T cells invade the upper spinal cord and brain, causing inflammation and ultimately the loss of an insulating coating on nerve fibers called myelin. Affected nerve fibers lose their ability to transmit electrical signals efficiently, and this can eventually lead to symptoms such as limb weakness, numbness and tingling, fatigue, vision problems, slurred speech, memory difficulties and depression.

Current therapies, such as interferon beta, aim to suppress the immune attack that strips the myelin from nerve fibers. But they are only partially effective and often have significant adverse side effects. Lorings group at TSRI has been searching for another way to treat MS using human pluripotent stem cells, which are cells that have the potential to transform into any of the cell types in the body.

See the original post:
Stem Cell Therapy Shows Promise for MS in Mouse Model

Mice With MS-Like Condition Walk Again After Human Stem Cell Treatment

Contact Information

Available for logged-in reporters only

Newswise (SALT LAKE CITY) - Mice severely disabled by a multiple sclerosis (MS) like condition could walk less than two weeks following treatment with human stem cells. The finding, which uncovers new avenues for treating MS, will be published online on May 15, 2014, in the journal Stem Cell Reports.

When scientists transplanted human stem cells into MS mice, they predicted the cells would be rejected, much like rejection of an organ transplant.

Expecting no benefit to the mice, they were surprised when the experiment yielded spectacular results.

My postdoctoral fellow Dr. Lu Chen came to me and said, The mice are walking. I didnt believe her, said co-senior author, Tom Lane, Ph.D., a professor of pathology at the University of Utah, who began the work at University of California, Irvine.

Within just 10 to 14 days, the mice regained motor skills. Six months later, they still showed no signs of slowing down.

This result opens up a whole new area of research for us, said co-senior author Jeanne Loring, Ph.D., co-senior author and professor at The Scripps Research Institute in La Jolla, Calif.

More than 2.3 million people worldwide have MS, a disease where the immune system attacks myelin, an insulation layer surrounding nerve fibers. The resulting damage inhibits nerve impulses, producing symptoms that include difficulty walking, impaired vision, fatigue and pain.

The MS mice treated with human stem cells experience a reversal of symptoms. Immune attacks are blunted, and damaged myelin is repaired, explaining their dramatic recovery. The discovery could help patients with latter, or progressive, stages of the disease, for whom there are no treatments.

Read this article:
Mice With MS-Like Condition Walk Again After Human Stem Cell Treatment

Dr. Broyles’ Cartilage Regeneration: Why Bone Marrow Stem Cells? – Video


Dr. Broyles #39; Cartilage Regeneration: Why Bone Marrow Stem Cells?
Dr. Broyles highlights the differences between Dr. Saw #39;s methods and his own, including FDA regulations in the US regarding autologous stem cells. For more i...

By: boneandjointclinicbr

Read the original here:
Dr. Broyles' Cartilage Regeneration: Why Bone Marrow Stem Cells? - Video

Scientists get closer to the stem cells that may drive cancers

THURSDAY, May 15, 2014 (HealthDay News) -- Although the very concept of cancer stem cells has been controversial, new research provides proof that these distinct types of cells exist in humans.

Using genetic tracking, researchers found that a gene mutation tied to cancer's development can be traced back to cancer stem cells. These cells are at the root of cancer and responsible for supporting the growth and progression of the disease, the scientists report.

Cancer stem cells are able to replenish themselves and produce other types of cancer cells, just as healthy cells produce other normal cells, the study's British and European authors explained.

"It's like having dandelions in your lawn. You can pull out as many as you want, but if you don't get the roots they'll come back," study first author Dr. Petter Woll, of the MRC Weatherall Institute for Molecular Medicine at the University of Oxford, said in a university news release.

The researchers, led by a team of scientists at Oxford and the Karolinska Institute in Sweden, said their findings could have significant implications for cancer treatment. They explained that by targeting cancer stem cells, doctors could not only get rid of a patient's cancer but also prevent any remaining cancer cells from sustaining the disease.

The study, published May 15 in Cancer Cell, involved 15 patients diagnosed with myelodysplastic syndromes (MDS), a type of cancer that often develops into acute myeloid leukemia, a form of blood cancer.

The researchers examined the cancer cells in the patients' bone marrow. Four of the patients were also monitored over time. One patient was followed for two years. Two patients were followed for 30 months and another patient was monitored for 10 years.

According to the researchers, in prior studies citing the existence of cancer stem cells, the lab tests that were used to identify these cells were considered by many to be unreliable.

However, "In our studies we avoided the problem of unreliable lab tests by tracking the origin and development of cancer-driving mutations in MDS patients," explained study leader Sten Eirik Jacobsen, of Oxford's MRC Molecular Haematology Unit and the Weatherall Institute for Molecular Medicine.

According to the research, a distinct group of MDS cells had all the characteristics of cancer stem cells, and only these particular cancer cells appeared able to cause tumor spread.

The rest is here:
Scientists get closer to the stem cells that may drive cancers

First 'heavy mouse' leads to first lab-grown tissue mapped from atomic life

May 15, 2014 This shows C57BL/6 mice, the common strain of laboratory mouse, in a Cambridge animal house. This breed of animal was used in the 'heavy mouse' study. Credit: University of Cambridge

Scientists have created a 'heavy' mouse, the world's first animal enriched with heavy but non-radioactive isotopes - enabling them to capture in unprecedented detail the molecular structure of natural tissue by reading the magnetism inherent in the isotopes.

This data has been used to grow biological tissue in the lab practically identical to native tissue, which can be manipulated and analysed in ways impossible for natural samples. Researchers say the approach has huge potential for scientific and medical breakthroughs: lab-grown tissue could be used to replace heart valves, for example.

In fact, with their earliest research on the new in vitro tissue, the team have discovered that poly(ADP ribose) (PAR) a molecule believed to only exist inside a cell for the purpose of repairing DNA not only travels outside cells but may trigger bone mineralisation.

"It was crazy to see PAR behaving in this way; it took six months of detailed analysis and many more experiments to convince ourselves," said Dr Melinda Duer from Cambridge's Department of Chemistry, who led the study, published today in the journal Science.

"I think this is just the first of many discoveries that will stem from the heavy mouse. Isotope-enriched proteins and cells are fairly commonplace now, but the leap to a whole animal is a big one.

"The heavier nuclei in the carbon isotopes changes the rate of chemical reactions, and many people myself initially included didn't believe you could enrich a whole animal with them. But it worked beautifully," she said.

The research, funded by the Biotechnology and Biological Sciences Research Council and British Heart Foundation, could lead to improved success rates for medical implants and reduce the need for animals in research, as well as opening up an entirely new approach for biochemical investigation.

The team used a technique called Nuclear Magnetic Resonance spectroscopy (NMR) that can read the magnetic nuclei found in certain isotopes, such as carbon-13 which has one neutron more than most carbon.

But carbon-13 makes up only 1% of the carbon in our bodies, nowhere near enough to do useful NMR. However, the researchers managed to get the carbon of a mouse up to 20% carbon-13.

See the original post here:
First 'heavy mouse' leads to first lab-grown tissue mapped from atomic life

New Stem Cell Finding Bodes Well for Future Medical Use in Humans

Concerns that stem cells could cause cancer in recipients are fading further with a new study

New bone formation (stained bright green under ultra-violet light) was seen in monkeys given their own reprogrammed stem cells. Courtesy of Nature magazine

A major concern over using stem cells is the risk of tumors: but now a new study shows that It takes a lot of effort to get induced pluripotent stem (iPS) cells to grow into tumors after they have been transplanted into a monkey. The findings will bolster the prospects of one day using such cells clinically in humans.

Making iPS cells from an animal's own skin cells and then transplanting them back into the creature also does not trigger an inflammatory response as long as the cells have first been coaxed to differentiate towards a more specialized cell type. Both observations, published inCell Reports today, bode well for potential cell therapies.

It's important because the field is very controversial right now, saysAshleigh Boyd,a stem-cell researcher at University College London, who was not involved in the work. It is showing that the weight of evidence is pointing towards the fact that the cells won't be rejected.

Pluripotent stem cells can be differentiated into many different specialized cell types in culture and so are touted for their potential as therapies to replace tissue lost in diseases such as Parkinsons and some forms of diabetes and blindness. iPS cells, which are made by reprogramming adult cells, have an extra advantage because transplants made from them could be genetically matched to the recipient.

Researchers all over the world are pursuing therapies based on iPS cells, and a group in Japan began enrolling patients for a human study last year. But work in mice has suggested controversially that even genetically matched iPS cellscan trigger an immune response, and pluripotent stem cells can also form slow-growing tumors, another safety concern.

Closer to human Cynthia Dunbar, a stem-cell biologist at the National Institutes of Health in Bethesda, Maryland, who led the new study, decided to evaluate both concerns in healthy rhesus macaques. Human stem cells are normally only studied for their ability to form tumors in mice as a test of pluripotency if the animals immune systems are compromised, she says.

We really wanted to set up a model that was closer to human. It was somewhat reassuring that in a normal monkey with a normal immune system you had to give a whole lot of immature cells to get any kind of tumour to grow, and they were very slow growing.

Dunbar and her team made iPS cells from skin and white blood cells from two rhesus macaques, and transplanted the iPS cells back into the monkeys that provided them. It took 20 times as many iPS cells to form a tumor in a monkey, compared with the numbers needed in an immunocompromised mouse. Such information will be valuable for assessing safety risks of potential therapies, Dunbar says. And although the iPS cells did trigger a mild immune response attracting white blood cells and causing local inflammation iPS cells that had first been differentiated to a more mature state did not.

View original post here:
New Stem Cell Finding Bodes Well for Future Medical Use in Humans

Do products used in cosmetics work for the hair?

A number of ingredients like ceramides, collagen, stem cells and antioxidants that are commonly associated with cosmetics are being featured in products for the hair. Do they work as well?

In the quest for a healthy and shining mane, a number of new products are being launched in the market on a regular basis. It has been observed that many of these are said to contain elements that are normally associated with skin care. Products with collagen, ceramides, hyaluronic acid, stem cells and so on have long been proven beneficial to plump up skin, reduce fine lines, lighten dark spots and keep skin healthy and radiant. However, recently a number of these have been seen in hair care products like shampoos and conditioners. The question remains though is of they work just as well on the mane. Copper peptides, for example is considered an effective skin regeneration ingredient and research shows it works well for the scalp too producing thicker, healthier hair. Ceramides can be effective in forming a protective coat around the hair shaft and strengthening it, while collagen helps hair hold onto moisture making it look thicker and fuller. Antioxidants are said to neutralise the free radicals preventing dullness of locks.

SCALP IS SIMILAR TO SKIN Tisha Kapur Khurana, beauty expert and executive director, Bottega di Lungavita explains similar ingredients can be used on the skin and hair sometimes because the scalp is covered with thicker skin similar to the rest of our body. It is a thick layer of skin with many sebaceous glands which produce oil or sebum to protect the hair. Collagen is a protein that is found in the body and is a necessity for good health. The collagen supplements let hair grow long and strong. It increases the body's natural hair-building proteins. Moreover, if applied to the scalp, it can reduce the look and dryness of grey hair. Even stem cells work as the hair follicles contain cells which may lead to successfully treating baldness. When buying a product you should always consider the hair type curly or straight as well as thick or fine and accordingly choose products, she says.

BE CAREFUL It is advisable not to use similar products for your hair and skin. Your skin is very tender and it needs really mild products to cleanse and clear the dirt and impurities. On the other hand, while you do need mild products for your hair as well, the shampoos and conditioners are mild but effective enough to cleanse the grime, dandruff and other impurities that get lodged in your scalp, explains Priti Mehta, founder and director, Omved. She adds, Standard cosmetics often include synthetic and sometimes even animal-derived ingredients. When you use natural options for your skin and hair, it is likely to help your skin feel and breathe better. Anything that has SLS, parabens, preservatives, fragrance, and colours to name a few listed on it should be avoided.

HAVE SOME BENEFITS Dr Apratim Goel, dermatologist, Cutis Skin Studio says some of these ingredients can work. Collagen or ceramides are larger molecules which are doubtful on skin as well. However these ingredients have been used regularly in hair care products. However, there is no controlled studies of efficacy of these ingredients in hair. Stem cells and antioxidants, though, do work for hair. Stem cell injections are a regular treatment for boosting hair growth. Further, plant stem cells are available as hair serums and give good results against hair loss. Regarding antioxidants, they are very important for hair care as hair especially coloured or treated locks are very prone to damage from sun as well as chemical exposure.

Read this article:
Do products used in cosmetics work for the hair?

Combination Therapy a Potential Strategy for Treating Niemann Pick Disease

Contact Information

Available for logged-in reporters only

Newswise CAMBRIDGE, Mass. (May 15, 2014) By studying nerve and liver cells grown from patient-derived induced pluripotent stem cells (iPSCs), Whitehead Institute researchers have identified a potential dual-pronged approach to treating Niemann-Pick type C (NPC) disease, a rare but devastating genetic disorder.

According to the National Institutes of Health (NIH), approximately 1 in 150,000 children born are afflicted with NPC, the most common variant of Niemann-Pick. Children with NPC experience abnormal accumulation of cholesterol in their liver and nerve cells, leading to liver failure, neurodegeneration, andultimatelydeath, often before age 10.

Although there is currently no effective treatment for NPC disease, a clinical trial examining potential cholesterol-lowering effects of the drug cyclodextrin in NPC patients is ongoing. However, research in Whitehead Founding Member Rudolf Jaenischs lab led by Dorothea Matezel along with Sovan Sarkar suggests that the high doses may actually be harmful. This and other findings are reported this week in the journal Stem Cell Reports.

At those levels of cyclodextrin (in the clinical trial), Maetzel and her coauthors show that cells encounter a further block in autophagy that could be detrimental, says Jaenisch, who is also a professor of biology at Massachusetts Institute of Technology. But when they use it at a lower dose in combination with another small molecule, carbamazepine, which stimulates autophagy, then it significantly improves the survival of the cells. Such an approach lowers cholesterol levels and restores the autophagy defects at the same time. This could be a new type of treatment for NPC disease.

To clarify what is amiss in NPC and identify potential therapeutics that could correct these problems, Maetzel generated iPSCs from patients with the most common genetic mutation that causes NPC. She created the iPSCs by pushing skin cells donated by the patients back to an embryonic stem cell-like state. These iPSCs were differentiated into liver and neuronal cells, the cell types most affected in NPC. Along with Haoyi Wang, a postdoctoral researcher in the Jaenisch lab, she then corrected one copy of the causal mutation, in the NPC1 gene, to create control cells whose genomes differ only at the single edited gene copy.

When Maetzel and Sarkar analyzed the cellular functions in the NPC1-mutant and control cell lines, they determined that although cholesterol does build up in the NPC1-mutant cells, a more significant problem is defective autophagya basic cellular function that degrades and recycles unneeded or faulty molecules, components, or organelles in a cell. The impaired autophagy prevents normal elimination of its cargo, such as damaged organelles or other substrates like p62, which then accumulates and damages the cells. The finding confirms previous work from the Jaenisch lab linking the NPC1 mutation to defective autophagy in mouse cells.

Autophagy dysfunction has major implications in several neurodegenerative and certain liver conditions, and therefore autophagy modulators have tremendous biomedical relevance, says Sarkar. We wanted to screen for compounds stimulating autophagy in human disease-relevant cells and show the beneficial effects of such an approach in the context of a lipid/lysosomal storage disorder.

Maetzel and Sarkar used the two types of human disease-affected cells to screen for compounds known to improve autophagy but not impacting on the mammalian target of rapamycin (mTOR) pathway, which has critical cellular functions and also controls autophagy. They found only one capable of jumpstarting autophagy independently of mTOR in both liver and nerve cells. When this drug, carbamazepine, which is a mood stabilizer prescribed for bipolar disorder, was added in combination with low doses of cyclodextrin, both cholesterol accumulation and autophagy defects were rescued in the NPC-mutated cells.

Continue reading here:
Combination Therapy a Potential Strategy for Treating Niemann Pick Disease

Enhancing anti cancer adoptive T cell therapy by triggering toll like receptors signaling pathways – Video


Enhancing anti cancer adoptive T cell therapy by triggering toll like receptors signaling pathways

By: osama ashmawy

Here is the original post:
Enhancing anti cancer adoptive T cell therapy by triggering toll like receptors signaling pathways - Video

First test of pluripotent stem cell therapy in monkeys is successful

Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.

"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."

Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.

The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.

Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.

The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.

"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."

The NIH team is now working with collaborators on differentiation of the macaque iPSCs into liver, heart, and white blood cells for eventual clinical trials in hepatitis C, heart failure, and chronic granulomatous disease, respectively.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Link:
First test of pluripotent stem cell therapy in monkeys is successful

UCLA plans $4.2-billion fundraising drive to mark 2019 centennial

UCLA has announced the public start of a $4.2-billion fundraising campaign the largest such effort of any state university in the country to increase student financial aid, bolster faculty hiring and research, and construct new campus buildings.

The campaign ties in with UCLA's centennial in 2019, marking 100 years since Angelenos battled the Berkeley-centric education establishment and finally got the Legislature to approve a southern branch of the University of California.

UCLA has already raised about $1.3 billion toward its target in a so-called quiet phase that began in 2011 and includes several large donations, according to campus officials. They said they are confident that the economic recovery and stock market's climb will help them reach their goal by 2019's end.

UCLA Chancellor Gene Block pointed to several recent rankings of research universities worldwide and noted that UCLA is often the only one in the top dozen that was founded in the 20th century; others go as far back as 1636 for Harvard and the 12th century for Oxford.

"This is an extremely young institution that has done extremely well. We want to do even better in the next century and we need resources to do that," said Block, who has been chancellor of the 42,190-student campus since 2007.

The Westwood school aims to surpass previous records for UC fundraising set last year by UC Berkeley, concluding a $3.13-billion drive, and by UCLA's last campaign, which ended in 2005 with $3.05 billion.

It would top the University of Michigan, which is seeking $4 billion in what had been the largest goal in public higher education. Experts say that public universities want to compensate for reductions in state support and to compete with private universities.

Private institutions are aiming even higher: Harvard announced last year that it would try to raise an unprecedented $6.5 billion by 2018 and beat the $6.2 billion that Stanford garnered in a campaign that ended in 2011. USC says it is halfway toward raising $6 billion by 2018.

National surveys show that donations to higher education are rising, particularly in large gifts, as donors shake off recession jitters that reduced giving in 2009.

Ann E. Kaplan, an official with the Council for Aid to Education, a group that studies such philanthropy, said UCLA has a good chance of success. "I don't believe they would embark on it if it wasn't a goal they can meet," she said.

View original post here:
UCLA plans $4.2-billion fundraising drive to mark 2019 centennial

B3 Selective Breeding and Genetic Engineering – Video


B3 Selective Breeding and Genetic Engineering
Revision video for OCR unit B3.

By: Lucy Owen

Original post:
B3 Selective Breeding and Genetic Engineering - Video

Genetic Engineering Research Project – Video


Genetic Engineering Research Project
Genetic Engineering Project (Cloning, DNA extractionn; Artificial selection/ Selective breeding) and squid cause hes a squid.

By: Keshaun Ram

Original post:
Genetic Engineering Research Project - Video

Gender Equations In FreeThought (Malayalam – FULL) By Rukshana Mahamood – Video


Gender Equations In FreeThought (Malayalam - FULL) By Rukshana Mahamood
A feminist student #39;s take on the gender roles and representation of genders across realms of thought. Rukshana Mahamood is an undergraduate student of Genetic Engineering in Chennai. Aspiring...

By: Kerala Freethinkers Forum Official

Continue reading here:
Gender Equations In FreeThought (Malayalam - FULL) By Rukshana Mahamood - Video

1. Introduction – Gender Equations In FreeThought (Malayalam) By Rukshana Mahamood – Video


1. Introduction - Gender Equations In FreeThought (Malayalam) By Rukshana Mahamood
A feminist student #39;s take on the gender roles and representation of genders across realms of thought. Rukshana Mahamood is an undergraduate student of Genetic Engineering in Chennai. Aspiring...

By: Kerala Freethinkers Forum Official

Read this article:
1. Introduction - Gender Equations In FreeThought (Malayalam) By Rukshana Mahamood - Video

2. Dissecting Genders- by Religion, Society and Science (Malayalam) By Rukshana Mahamood – Video


2. Dissecting Genders- by Religion, Society and Science (Malayalam) By Rukshana Mahamood
A feminist student #39;s take on the gender roles and representation of genders across realms of thought. Rukshana Mahamood is an undergraduate student of Genetic Engineering in Chennai. Aspiring...

By: Kerala Freethinkers Forum Official

Read more from the original source:
2. Dissecting Genders- by Religion, Society and Science (Malayalam) By Rukshana Mahamood - Video

Researchers model how migration of DNA molecules is affected by charge, salt species, and salt concentration

May 15, 2014 Credit: eugenesergeev / Fotolia.com

Only two mechanisms can move molecules in a fluid. They can follow a temperature gradient or an electrical potential. LMU physicists have modeled how migration of DNA molecules is affected by their charge, the salt species, and salt concentration present in the solution.

Thermophoresis is the migration of molecules in a temperature gradient, migration in an electrical field is termed electrophoresis. Each molecular species reacts to these forces in accordance with its physical characteristics, which determine the velocity and direction of its movement. Some congregate where it is warmer, others prefer the cold; some are drawn to the positive, others move toward the negative pole of a field gradient.

The research group led by Dieter Braun, Professor of Systems Biophysics at LMU and a member of the Nanosystems Initiative Munich (NIM), specializes in the investigation of the thermophoresis of biomolecules. Indeed, their work has given rise to a commercial spin-off, which has developed a rapid and economical analytical method for use in the pharmaceutical industry.

In their latest project, Braun and his colleagues have taken a closer look at how DNA molecules behave in temperature gradients set up within aqueous salt solutions, and constructed a theoretical model that allows them to account for this behavior from first principles. "We have combined several theories that have been proposed to describe why and how molecules move along a temperature gradient," explains Maren Reichl, who is first author on the new study. "Their electrical charge, the composition and concentrations of the salts in the solution, and the ambient temperature all play a role in how they move. We have measured the effects of these factors experimentally and compared them with our theoretical predictions."

Interplay of local and global fields

The experiments were carried out in a narrow glass capillary with a diameter of 50 micrometers, filled with a buffered salt solution containing specially designed DNA molecules. A temperature gradient is set up in the solution by heating it locally with a laser. Maren Reichl explains how the behavior of the DNA molecules is detected: "The DNA is labeled with a fluorescent dye, and we use a fluorescence microscope to follow how the DNA migrates away from the heated spot usually toward cooler regions. The level of fluorescence remaining in the heated spot tells us what fraction of the molecules migrates when we raise the temperature of the irradiated volume by 4 degrees, say. And we record the experiment on video, so we can also measure how fast the molecules move out."

The team found that two factors are primarily responsible for the movement of the molecules. The intrinsic negative charge on each DNA molecule is shielded locally by the positive ions (produced upon dissolution of the added salts) in its immediate vicinity. As a result, an electrical field is generated in the minuscule space between the charged DNA and the counterions surrounding it, which thus acts as a tiny capacitor. The second relevant factor is the global electric field that scales with the temperature gradient. This arises from the so-called Seebeck effect the tendency of ions in the solution to become concentrated in cooler or warmer regions of the liquid, with positive and negative ions moving in opposite directions. This charge separation generates a potential difference, which also influences the movement of the molecules by inducing electrophoresis.

Based on the interplay of local and global electric fields, one can precisely predict their overall effect on a given molecular species. For instance, DNA molecules tend migrate at slower rates in concentrated salt solutions, because the many free ions in the solution more effectively screen the charge on the DNA strands. DNA also moves more slowly in a sodium fluoride solution than in sodium chloride because the electric field associated with the former species more strongly retards the movement of the DNA molecules.

Professor Dieter Braun summarizes the wider significance of the work as follows: "We have, for the first time, convincingly demonstrated that the non-equilibrium phenomenon of thermophoresis can be predicted on the basis of local thermodynamic equilibria. In the next step, we plan to study how molecules compete for the coveted slots in the cold zone. And, of course, we will address the question of why uncharged molecules migrate at all."

Follow this link:
Researchers model how migration of DNA molecules is affected by charge, salt species, and salt concentration

Genetic tracking identifies cancer stem cells in human patients

The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer -- cancer stem cells.

The international research team, led by scientists at the University of Oxford and the Karolinska Institutet in Sweden, studied a group of patients with myelodysplastic syndromes -- a malignant blood condition which frequently develops into acute myeloid leukaemia.

The researchers say their findings, reported in the journal Cancer Cell, offer conclusive evidence for the existence of cancer stem cells.

The concept of cancer stem cells has been a compelling but controversial idea for many years. It suggests that at the root of any cancer there is a small subset of cancer cells that are solely responsible for driving the growth and evolution of a patient's cancer. These cancer stem cells replenish themselves and produce the other types of cancer cells, as normal stem cells produce other normal tissues.

The concept is important, because it suggests that only by developing treatments that get rid of the cancer stem cells will you be able to eradicate the cancer. Likewise, if you could selectively eliminate these cancer stem cells, the other remaining cancer cells would not be able to sustain the cancer.

'It's like having dandelions in your lawn. You can pull out as many as you want, but if you don't get the roots they'll come back,' explains first author Dr Petter Woll of the MRC Weatherall Institute for Molecular Medicine at the University of Oxford.

The researchers, led by Professor Sten Eirik W Jacobsen at the MRC Molecular Haematology Unit and the Weatherall Institute for Molecular Medicine at the University of Oxford, investigated malignant cells in the bone marrow of patients with myelodysplastic syndrome (MDS) and followed them over time.

Using genetic tools to establish in which cells cancer-driving mutations originated and then propagated into other cancer cells, they demonstrated that a distinct and rare subset of MDS cells showed all the hallmarks of cancer stem cells, and that no other malignant MDS cells were able to propagate the tumour.

The MDS stem cells were rare, sat at the top of a hierarchy of MDS cells, could sustain themselves, replenish the other MDS cells, and were the origin of all stable DNA changes and mutations that drove the progression of the disease.

'This is conclusive evidence for the existence of cancer stem cells in myelodysplastic syndromes,' says Dr Woll. 'We have identified a subset of cancer cells, shown that these rare cells are invariably the cells in which the cancer originates, and also are the only cancer-propagating cells in the patients. It is a vitally important step because it suggests that if you want to cure patients, you would need to target and remove these cells at the root of the cancer -- but that would be sufficient, that would do it.'

Read the rest here:
Genetic tracking identifies cancer stem cells in human patients

SizeGenetics FAQ – Is the Shipping Discreet? – Video


SizeGenetics FAQ - Is the Shipping Discreet?
Get $50 off the SizeGenetics! - http://www.topenhancementreviews.com/Size-Genetics That links to the OFFICIAL Size Genetics website. Careful of SizeGenetics knock offs!! There are tons of...

By: Male Enhancement FAQ #39;s

Original post:
SizeGenetics FAQ - Is the Shipping Discreet? - Video

*NEW* SizeGenetics 2014 Unboxing and $50 Discount! – Video


*NEW* SizeGenetics 2014 Unboxing and $50 Discount!
Get $50 off the SizeGenetics! - http://www.topenhancementreviews.com/Size-Genetics That links to the OFFICIAL Size Genetics website. Careful of SizeGenetics knock offs!! There are tons of...

By: Male Enhancement FAQ #39;s

More here:
*NEW* SizeGenetics 2014 Unboxing and $50 Discount! - Video

Pandemicraft S1E18 Advanced Genetics – Video


Pandemicraft S1E18 Advanced Genetics
https://twitter.com/Jarrenitis Helping spread the Gaming.

By: Jarrenitis Pandemic

Read more:
Pandemicraft S1E18 Advanced Genetics - Video

Healing the Mind. Secret Stress causes Disease – Not Genetics – Video


Healing the Mind. Secret Stress causes Disease - Not Genetics
Mind-Body Health Expert, Dante Sears, shares valuable tips for improving your life and health. Program your mind to heal yourself into optimal health. Live. Laugh. Love. Prosper. http://www.DanteSears.com.

By: Dante Sears Geyer

Read more from the original source:
Healing the Mind. Secret Stress causes Disease - Not Genetics - Video

The Genetics of Male Balding: Do Men Acquire Hair Loss from Mom’s Side or Dad’s Side? – Video


The Genetics of Male Balding: Do Men Acquire Hair Loss from Mom #39;s Side or Dad #39;s Side?
Dr. Donovan is a Canadian hair transplant specialist and medical director of Okavana Laboratories. This video addresses the widely held misconception that hair loss comes from only one side...

By: DonovanHairMedia

View post:
The Genetics of Male Balding: Do Men Acquire Hair Loss from Mom's Side or Dad's Side? - Video

LIVE – Genetics-Based Muscle Building with Mark Gilbert from Muscle Genes – Video


LIVE - Genetics-Based Muscle Building with Mark Gilbert from Muscle Genes
Muscle Genes offers DNA testing to give you key insight on genes that affect your training goals. Mark Gilbert tells us more (and gives us host Ron Partlow #39;s data!)

By: OFFICIAL MUTANT TV

The rest is here:
LIVE - Genetics-Based Muscle Building with Mark Gilbert from Muscle Genes - Video

Germline Gene Therapy – Video


Germline Gene Therapy

By: Farhana Zahari

The rest is here:
Germline Gene Therapy - Video

Archives