Page 16«..10..15161718..»

Archive for March, 2015

Johns Hopkins researchers engineer custom blood cells

IMAGE:These are human blood cells grown in the lab from genetically edited stem cells. view more

Credit: Ying Wang/Johns Hopkins Medicine

Researchers at Johns Hopkins have successfully corrected a genetic error in stem cells from patients with sickle cell disease, and then used those cells to grow mature red blood cells, they report. The study represents an important step toward more effectively treating certain patients with sickle cell disease who need frequent blood transfusions and currently have few options.

The results appear in an upcoming issue of the journal Stem Cells.

In sickle cell disease, a genetic variant causes patients' blood cells to take on a crescent, or sickle, shape, rather than the typical round shape. The crescent-shaped cells are sticky and can block blood flow through vessels, often causing great pain and fatigue. Getting a transplant of blood-making bone marrow can potentially cure the disease. But for patients who either cannot tolerate the transplant procedure, or whose transplants fail, the best option may be to receive regular blood transfusions from healthy donors with matched blood types.

The problem, says Linzhao Cheng, Ph.D. , the Edythe Harris Lucas and Clara Lucas Lynn Professor of Hematology and a member of the Institute for Cell Engineering, is that over time, patients' bodies often begin to mount an immune response against the foreign blood. "Their bodies quickly kill off the blood cells, so they have to get transfusions more and more frequently," he says.

A solution, Cheng and his colleagues thought, could be to grow blood cells in the lab that were matched to each patient's own genetic material and thus could evade the immune system. His research group had already devised a way to use stem cells to make human blood cells. The problem for patients with sickle cell disease is that lab-grown stem cells with their genetic material would have the sickle cell defect.

To solve that problem, the researchers started with patients' blood cells and reprogrammed them into so-called induced pluripotent stem cells, which can make any other cell in the body and grow indefinitely in the laboratory. They then used a relatively new genetic editing technique called CRISPR to snip out the sickle cell gene variant and replace it with the healthy version of the gene. The final step was to coax the stem cells to grow into mature blood cells. The edited stem cells generated blood cells just as efficiently as stem cells that hadn't been subjected to CRISPR, the researchers found.

Cheng notes that to become medically useful, the technique of growing blood cells from stem cells will have to be made even more efficient and scaled up significantly. The lab-grown stem cells would also need to be tested for safety. But, he says, "This study shows it may be possible in the not-too-distant future to provide patients with sickle cell disease with an exciting new treatment option."

This method of generating custom blood cells may also be applicable for other blood disorders, but its potential does not end there, Cheng says. One possibility, which his group hopes to begin studying soon, is that the blood cells of healthy people could be edited to resist malaria and other infectious agents.

Originally posted here:
Johns Hopkins researchers engineer custom blood cells

Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the …

Orphan Designation Provides 7-Year Post Approval Marketing Exclusivity, Tax Credits and Elimination of FDA Prescription Drug User Fees

SAN DIEGO, CA--(Marketwired - February 10, 2015) - Targazyme Inc., a clinical-stage biopharmaceutical company developing enzyme technologies and products to improve efficacy outcomes for stem cell transplantation, immunotherapy, gene therapy and regenerative medicine, announced today that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug designation to TZ101 to prevent and reduce the severity and incidence of graft vs. host disease (GVHD) in patients eligible for hematologic stem cell transplant.

GVHD is a serious, life-threating complication of stem cell transplantation.Orphan drug status confirms the importance of Targazyme's novel treatment approach to prevent and reduce the incidence and severity of GVHD in patients with blood cancers where stem cell transplant is prescribed.TZ101 could potentially transform hematopoietic stem cell transplantation by reducing patient morbidity and mortality from GVHD, which occurs in a large percentage of these patients and is very difficult to manage clinically.

"Our work with TZ101 demonstrates impressive increases in the persistence and activity of regulatory T cells in preclinical models of GVHD," said Dr. Elizabeth J. Shpall, Deputy Chair of the Department of Stem Cell Transplantation and Cellular Therapy at The University of Texas MD Anderson Cancer Center."We are looking forward to beginning clinical trials on this promising modality for preventing GVHD in our patients undergoing stem cell transplantation."

Orphan Drug Designation by FDA confers financial benefits and incentives, such as potential Orphan Drug grant funding to defray the cost of clinical testing, tax credits for the cost of clinical research, a 7 year period of exclusive marketing after Approval and a Waiver of Prescription Drug User Fee Act (PDUFA) filing fees which are now greater than $2 million.

"The granting of Orphan Drug status for TZ101 for prevention of GVHD in stem cell transplant patients, as well as our previous Orphan Drug designation of TZ101 for cord blood transplantation, provides additional validation of our innovative platform technologies," said Lynnet Koh, Chairman & Chief Executive Officer of Targazyme."TZ101 and our second product, TZ102 are enabling technologies for improving efficacy outcomes for multiple cell-based therapeutic approaches used to prevent and treat a variety of different diseases for which there is a high unmet medical need.In addition to initiating our registration trial with TZ101 in hematopoietic stem cell transplantation, we plan to embark on our cancer immunotherapy trial later this year."

About Targazyme, Inc.

Targazyme Inc. is a San Diego-based, clinical-stage biopharmaceutical company developing novel enzyme-based platform technologies and products to improve clinical efficacy outcomes for stem cell medicine, auto-immunotherapy, gene therapy and regenerative medicine.

The company's clinical-grade fucosyltransferase enzymes and small molecule products (TZ101 and TZ102) are off-the-shelf products used at the point-of-care to treat therapeutic cells immediately before infusion into the patient using a simple procedure that is easily incorporated into existing medical practice.The company has received a number of world-wide patents, multiple FDA orphan drug designations and major medical/scientific awards and grants.

Targazyme has partnerships and collaborations with Kyowa Hakko Kirin and Florida Biologix, as well as various medical research institutions including The University of Texas MD Anderson Cancer Center, Oklahoma Medical Research Foundation, Texas Transplant Institute, Case Western/University Hospitals, Scripps Hospitals, Fred Hutchinson Cancer Research Center, UCLA Medical Center, Stanford University Medical Center, University of Minnesota Medical Center, University of California San Diego, Sanford-Burnham Medical Research Institute, Indiana University, Memorial Sloan Kettering Cancer Center, and New York Blood Center.For more information please go to http://www.targazyme.com.

View original post here:
Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the ...

Cardiac Stem Cells: Making a Difference in Duchenne – Video


Cardiac Stem Cells: Making a Difference in Duchenne
Dr Eduardo Marban, Director of the Cedars-Sinai Heart Institute, discusses a possible Cardiac Stem Cell breakthrough for Duchenne muscular dystrophy. Coaliti...

By: CoalitionDuchenne

Original post:
Cardiac Stem Cells: Making a Difference in Duchenne - Video

The tiny grow-bag that could mend a heart damaged by disease

Coronary heart disease is the countrys leading cause of death A new treatment was designed to treat damaged heart muscle The capsule contains stem cells derived from the patients bone marrow

By Roger Dobson for the Daily Mail

Published: 17:33 EST, 9 March 2015 | Updated: 05:45 EST, 10 March 2015

A new treatment using a tiny grow-bag has been designed to treat damaged heart muscle

A tiny grow-bag could be a new way to mend hearts damaged by disease or heart attack.

The capsule, which is pea-sized, contains stem cells that trigger the growth of new cells.

An estimated 2.3 million people in Britain have coronary heart disease the countrys leading cause of death.

It occurs when the arteries supplying the heart become blocked by fatty substances, reducing the flow of blood.

If a bit of this fatty substance breaks off, it can trigger a blood clot, which in turn cuts off the blood supply to heart muscle, causing it to die off. This is what triggers a heart attack.

Heart disease and heart attacks can also lead to heart failure, where the heart becomes too weak to pump blood around the body properly.

Here is the original post:
The tiny grow-bag that could mend a heart damaged by disease

Human heart on a chip could replace animal drug testing

Researchers have created a "heart on a chip" using actual cardiac muscles to help test the effects of heart medication.

Anurag Mathur/Healy Lab

A new device could help make drug testing safer, faster, cheaper -- and eliminate the need for animal testing. It's just an inch long, but inside its silicone body is housed a small piece of cardiac muscle that responds to cardiovascular medications in exactly the same way heart muscle does inside a living human body.

"Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy," explained Kevin Healy, UC Berkeley professor of engineering, who led the research team that designed the device.

The problems with using animals to test human heart medication aren't merely ethical -- such concerns about lab animals rarely enter scientific discussions. Rather, there are some serious physiological problems -- namely, that drugs designed for humans will not have the same effect on a species that is biologically different from a human.

"These differences often result in inefficient and costly experiments that do not provide accurate answers about the toxicity of a drug in humans," Healy explained.

"It takes about $5 billion on average to develop a drug, and 60 percent of that figure comes from upfront costs in the research and development phase. Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market."

The chips were created using heart muscle grown in a lab from adult human induced pluripotent stem cells -- stem cells that can be coaxed to grow into many other types of cell. The team then carefully designed the structure to be similar to the geometry and spacing of connective tissue fibre in a living human heart.

Microfluidic channels carved into the silicone on either side of the cell matrix act the same way as blood vessels, mimicking the exchange of nutrients and drugs with human tissue as it would happen in the body.

The cells start beating on their own within 24 hours of being loaded into the chamber at a healthy resting rate of 55 to 80 beats per minute. In order to test the system, the team then administered four well-known cardiovascular drugs -- isoproterenol, E-4031, verapamil and metoprolol. By monitoring the beat rate, the team was able to observe -- and accurately predict -- the chip's response to the drugs. Isoproterenol, for example -- a drug used to treat slow heart rate -- caused the muscle's beat rate to increase from 55 beats per minute to 124 beats per minute half an hour after being administered.

Follow this link:
Human heart on a chip could replace animal drug testing

Are current water treatment methods sufficient to remove harmful engineered nanoparticle?

IMAGE:Environmental Engineering Science, the official journal of the Association of Environmental Engineering and Science Professors (AEESP), is an authoritative peer-reviewed journal published monthly online with Open Access options. Publishing state-of-the-art... view more

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, March 10, 2015--The increased use of engineered nanoparticles (ENMs) in commercial and industrial applications is raising concern over the environmental and health effects of nanoparticles released into the water supply. A timely study that analyzes the ability of typical water pretreatment methods to remove titanium dioxide, the most commonly used ENM, is published in Environmental Engineering Science, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Environmental Engineering Science website until April 10, 2015.

Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon Walker, University of California, Riverside, suggest that current methods of water prefiltration treatment cannot adequately remove titanium dioxide ENMs. They describe the results of scaled-down tests to evaluate the effectiveness of three traditional methods--coagulation, flocculation, and sedimentation--in the article "Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry".

"As nanoscience and engineering allow us to develop new exciting products, we must be ever mindful of associated consequences of these advances," says Domenico Grasso, PhD, PE, DEE, Editor-in-Chief of Environmental Engineering Science and Provost, University of Delaware. "Professor Walker and her team have presented an excellent report raising concerns that some engineered nanomaterials may find their ways into our water supplies."

"While further optimization of such treatment processes may allow for improved removal efficiencies, this study illustrates the challenges that we must be prepared to face with the emergence of new engineered nanomaterials," says Sharon Walker, PhD, Professor of Chemical and Environmental Engineering, University of California, Riverside.

###

About the Journal

Environmental Engineering Science, the official journal of theThe Association of Environmental Engineering & Science Professors (AEESP) , is an authoritative peer-reviewed journal published monthly online with Open Access options. Publishing state-of-the-art studies of innovative solutions to problems in air, water, and land contamination and waste disposal, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development including climate change, complex and adaptive systems, contaminant fate and transport, environmental risk assessment and management, green technologies, industrial ecology, environmental policy, and energy and the environment. Complete tables of content and a sample issue may be viewed on the Environmental Engineering Science website.

About the Association

Continue reading here:
Are current water treatment methods sufficient to remove harmful engineered nanoparticle?

Let’s Play The Sims 3 – Perfect Genetics Challenge – Episode 60 – Video


Let #39;s Play The Sims 3 - Perfect Genetics Challenge - Episode 60
Make sure to leave baby names in the comments!. #VampireClan #VampireClan4Life.

By: vampiregirl101101101

Excerpt from:
Let's Play The Sims 3 - Perfect Genetics Challenge - Episode 60 - Video

Genetics breakthrough will boost diabetes research

The genes that increase the risk of Type 1 diabetes have lost their hiding place.

A research group that includes a University of Florida genetics expert has located and narrowed down the number of genes that play a role in the disease, according to a study published in the journal Nature Genetics. Knowing the identities and location of causative genes is a crucial development: Other researchers can use this information to better predict who might develop Type 1 diabetes and how to prevent it.

"It's a game-changer for Type 1 diabetes," said Patrick Concannon, director of the University of Florida Genetics Institute.

Researchers gathered information about the genetic makeup of 27,000 people, including those who had Type 1 diabetes and others who did not. They then began looking for individual differences in DNA that raise the risk of Type 1 diabetes. Starting with 200,000 possible locations in the genome, researchers used a technique known as fine mapping to pinpoint DNA sequence variations that can lead to diabetes. In some genomic regions, they narrowed the number of disease-causing DNA variations -- known as single nucleotide polymorphisms or SNPs -- from the thousands down to five or less.

That will make diabetes researchers' work more effective and efficient by giving them the most detailed directions yet about where to look for the genetic variations that cause Type 1 diabetes and perhaps other autoimmune diseases such as arthritis, Concannon said. Now that the group of geneticists has identified the important genes and SNPs, diabetes researchers will reap the benefits, according to Concannon.

"We've taken this genetic data which was interesting but hard to work with, and we've condensed it down into something that people can actually use to begin to explore the mechanism of the disease. It moves it out of the realm of genetics to being broadly applicable to Type 1 diabetes research," he said.

Type 1 diabetes occurs when the body's immune system kills off insulin-producing cells in the pancreas. Some 3 million people in the United States have the disease, according to the JDRF, a group that funds Type 1 diabetes research and education. Experts don't know exactly what causes the disease but suspect that genetics and environmental factors may play a role.

The researchers' findings are the most comprehensive yet in the effort to locate and identify the genetic risk variants for Type 1 diabetes and other autoimmune diseases, said Todd Brusko, a member of the UF Diabetes Institute and an assistant professor in the UF College of Medicine's department of pathology, immunology and laboratory medicine, part of UF Health.

Researchers can now shift away from trying to determine which genes heighten the risk for diseases like Type 1 diabetes, Brusko said. Instead, researchers can focus on how genetic changes alter immune cell activity. That, he said, could eventually lead to new treatments that prevent or stop Type 1 diabetes and other automimmune diseases.

"Ultimately, this information will allow researchers and clinicians to tailor treatments to correct underlying defects in the immune system that allow for autoimmune disease development," Brusko said.

Here is the original post:
Genetics breakthrough will boost diabetes research

Gene therapy: Hope for the blind?

FRESNO, Calif. (KFSN) --

Six-year-old Andy Moorhead is learning how to read. But instead of using his eyes, he's using his fingers. Andy told ABC30, "Well, I read the letters with my fingers."

Andy is blind. Andy's Mother, Heather Ingram-Moorhead explained, "He was around nine months, and we started to notice his eyes were twitching."

Andy has leber congenital amaurosis, or LCA. It's the most common type of childhood blindness and is caused by genetic mutations.

"It is just very hard. It's taken us a while to really understand the condition and do everything to help Andy," Heather told ABC30.

Andy's whole family is hands-on. Even his sister Valerie gives him guidance. But despite their efforts, his mom says gene therapy is their only hope.

University of Florida scientist Shannon E. Boye, PhD, is using a $900,000 grant to perfect a gene therapy that could restore vision.

"It's not an attempt just to slow the progression of the disease. It's actually an attempt to halt the progression and make the patient better by delivering them the gene they don't have," Boye told ABC30.

Boye says the therapy has worked in animals. "We're able to show, via what's called an electra retinal gram, that the retinal function has been restored to the mice," she explained.

Gene therapy is still an investigational treatment with risks and only available for those in a clinical trial. Right now there are hundreds of studies underway to treat conditions like LCA, cancer and HIV. It's hope that one day Andy could put down his cane and see his family for the first time.

Here is the original post:
Gene therapy: Hope for the blind?

Bioengineers put human hearts on a chip to aid drug screening

When University of California, Berkeley, bioengineers say they are holding their hearts in the palms of their hands, they are not talking about emotional vulnerability.

Instead, the research team led by bioengineering professor Kevin Healy is presenting a network of pulsating cardiac muscle cells housed in an inch-long silicone device that effectively models human heart tissue, and they have demonstrated the viability of this system as a drug-screening tool by testing it with cardiovascular medications.

This organ-on-a-chip, reported in a study to be published Monday, March 9, in the journal Scientific Reports, represents a major step forward in the development of accurate, faster methods of testing for drug toxicity. The project is funded through the Tissue Chip for Drug Screening Initiative, an interagency collaboration launched by the National Institutes of Health to develop 3-D human tissue chips that model the structure and function of human organs.

"Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy," said Healy.

The study authors noted a high failure rate associated with the use of nonhuman animal models to predict human reactions to new drugs. Much of this is due to fundamental differences in biology between species, the researchers explained. For instance, the ion channels through which heart cells conduct electrical currents can vary in both number and type between humans and other animals.

"Many cardiovascular drugs target those channels, so these differences often result in inefficient and costly experiments that do not provide accurate answers about the toxicity of a drug in humans," said Healy. "It takes about $5 billion on average to develop a drug, and 60 percent of that figure comes from upfront costs in the research and development phase. Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market."

The heart cells were derived from human-induced pluripotent stem cells, the adult stem cells that can be coaxed to become many different types of tissue.

The researchers designed their cardiac microphysiological system, or heart-on-a-chip, so that its 3-D structure would be comparable to the geometry and spacing of connective tissue fiber in a human heart. They added the differentiated human heart cells into the loading area, a process that Healy likened to passengers boarding a subway train at rush hour. The system's confined geometry helps align the cells in multiple layers and in a single direction.

Microfluidic channels on either side of the cell area serve as models for blood vessels, mimicking the exchange by diffusion of nutrients and drugs with human tissue. In the future, this setup could also allow researchers to monitor the removal of metabolic waste products from the cells.

"This system is not a simple cell culture where tissue is being bathed in a static bath of liquid," said study lead author Anurag Mathur, a postdoctoral scholar in Healy's lab and a California Institute for Regenerative Medicine fellow. "We designed this system so that it is dynamic; it replicates how tissue in our bodies actually gets exposed to nutrients and drugs."

Excerpt from:
Bioengineers put human hearts on a chip to aid drug screening

Scripps Research, Mayo Clinic Scientists Find New Class of Drugs that Dramatically Increases Healthy Lifespan

Contact Information

Available for logged-in reporters only

Newswise JUPITER, FL March 9, 2015 A research team from The Scripps Research Institute (TSRI), Mayo Clinic and other institutions has identified a new class of drugs that in animal models dramatically slows the aging processalleviating symptoms of frailty, improving cardiac function and extending a healthy lifespan.

The new research was published March 9 online ahead of print by the journal Aging Cell.

The scientists coined the term senolytics for the new class of drugs.

We view this study as a big, first step toward developing treatments that can be given safely to patients to extend healthspan or to treat age-related diseases and disorders, said TSRI Professor Paul Robbins, PhD, who with Associate Professor Laura Niedernhofer, MD, PhD, led the research efforts for the paper at Scripps Florida. When senolytic agents, like the combination we identified, are used clinically, the results could be transformative.

The prototypes of these senolytic agents have more than proven their ability to alleviate multiple characteristics associated with aging, said Mayo Clinic Professor James Kirkland, MD, PhD, senior author of the new study. It may eventually become feasible to delay, prevent, alleviate or even reverse multiple chronic diseases and disabilities as a group, instead of just one at a time.

Finding the Target

Senescent cellscells that have stopped dividingaccumulate with age and accelerate the aging process. Since the healthspan (time free of disease) in mice is enhanced by killing off these cells, the scientists reasoned that finding treatments that accomplish this in humans could have tremendous potential.

The scientists were faced with the question, though, of how to identify and target senescent cells without damaging other cells.

More:
Scripps Research, Mayo Clinic Scientists Find New Class of Drugs that Dramatically Increases Healthy Lifespan

Scripps Research, Mayo Clinic scientists find class of drugs that boosts healthy lifespan

IMAGE:Professor Paul Robbins and Associate Professor Laura Niedernhofer led research efforts for the new study at Scripps Florida. view more

Credit: Photo courtesy of The Scripps Research Institute.

JUPITER, FL - March 9, 2015 - A research team from The Scripps Research Institute (TSRI), Mayo Clinic and other institutions has identified a new class of drugs that in animal models dramatically slows the aging process--alleviating symptoms of frailty, improving cardiac function and extending a healthy lifespan.

The new research was published March 9 online ahead of print by the journal Aging Cell.

The scientists coined the term "senolytics" for the new class of drugs.

"We view this study as a big, first step toward developing treatments that can be given safely to patients to extend healthspan or to treat age-related diseases and disorders," said TSRI Professor Paul Robbins, PhD, who with Associate Professor Laura Niedernhofer, MD, PhD, led the research efforts for the paper at Scripps Florida. "When senolytic agents, like the combination we identified, are used clinically, the results could be transformative."

"The prototypes of these senolytic agents have more than proven their ability to alleviate multiple characteristics associated with aging," said Mayo Clinic Professor James Kirkland, MD, PhD, senior author of the new study. "It may eventually become feasible to delay, prevent, alleviate or even reverse multiple chronic diseases and disabilities as a group, instead of just one at a time."

Finding the Target

Senescent cells--cells that have stopped dividing--accumulate with age and accelerate the aging process. Since the "healthspan" (time free of disease) in mice is enhanced by killing off these cells, the scientists reasoned that finding treatments that accomplish this in humans could have tremendous potential.

The scientists were faced with the question, though, of how to identify and target senescent cells without damaging other cells.

See the original post here:
Scripps Research, Mayo Clinic scientists find class of drugs that boosts healthy lifespan

This Heart-on-a-Chip Beats Like the Real Thing

Though it may not look at all like the muscle in your chest, this heart-on-a-chip can beat like the real thing. A blend of microfluidics and biological cells, the device will be used as a more efficient means of testing for drug toxicity.

Developed by a team of bioengineers form University of California, Berkeley, the device is designed to mimic the geometry of fibers in a human heart. Pluripotent stem cellsthe cells that can be nudged to become one of the many different types of tissue present in our bodiesare introduced to a channel which is specially designed to encourage cells to grow in multiple layers in one direction, like real cardiac tissue. Here, they grow in to heart cells.

This section is then perfused with blood from microfluidic channels which act as blood vessels. Within 24 hours of lining the structure with heart cells, the structure began to beat at rate of between 55 to 80 beats per minutejust like a real human heart. Anurag Mathur, one of the researchers, explains to PhysOrg:

"This system is not a simple cell culture where tissue is being bathed in a static bath of liquid. We designed this system so that it is dynamic; it replicates how tissue in our bodies actually gets exposed to nutrients and drugs."

The system has already been used to test established cardiovascular drugs such as isoproterenol, E-4031, verapamil and metoprolol. The team observed effects upon the heart-on-a-chip consistent with those brought about in real humanso, drugs intended to speed up heart rate did exactly that to the cells in the device. The findings are published in Scientific Reports.

It's hoped that the device will be used to screen drugs, model human genetic diseasesand perhaps even link up with other organs-on-a-chip to predict whole-body reactions too. [Scientific Reports via PhysOrg]

Read the original here:
This Heart-on-a-Chip Beats Like the Real Thing

Could we soon have man-made blood?

Scientists at Tuft University in Massachusetts grew bone marrow on silk They were able to generate functioning platelet cells that form blood clots The cells could be used to stop bleeding in injured patients in ER rooms It has raised hopes that man-made blood can be created for transfusions However some say it could be up to 15 years before stem cells can be used to create blood that can be safely used for transfusions during surgery

By Richard Gray for MailOnline

Published: 11:46 EST, 19 February 2015 | Updated: 12:50 EST, 23 February 2015

253 shares

38

View comments

A major component of blood has been grown in the laboratory by scientists, bringing man-made blood transfusions a step closer.

Biomedical engineers have for the first time produced functional blood platelets - the cells that cause clots to form - from human bone marrow grown in the laboratory.

The achievement raises hopes that it will soon be possible to produce fully functional blood in a similar way.

Scientists have managed to grow fully functioning platelets like the one above surrounded by red blood cells

See the original post:
Could we soon have man-made blood?

Infants with rare bone disease improve bone formation after cell transplantation

Severe hypophosphatasia generally fatal during infancy, bone marrow transplant along with mensenchymal stem cell transplants offers hope

Putnam Valley, NY. (Feb 9, 2015) - Recent research carried out by a team of researchers in Japan has investigated the use of bone marrow transplants (BMTs) to treat hypophosphatasia (HPP). In this study, the researchers carried out BMT for two infants with HPP in combination with allogenic (other-donated) mesenchymal stem cell transplants (MSCTs). The allogenic MSC donors were a parent of the infant.

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://ingentaconnect.com/content/cog/ct/pre-prints/content-CT-1337_Taketani_et_al

"Hypophosphatasia" (HPP) is a rare and most often fatal genetic bone disease affecting infants that has no current treatment. The disease is caused by mutations in the ALPL gene, which encodes alkaline phosphatase (ALP). Patients with severe HPP develop bone impairment and have extremely low levels of ALP activity, an enzyme necessary for bone mineralization.

Although there are mild and more severe forms, severe hypophosphatasia prevents proper bone mineralization during perinatal development. When the disease develops perinatally, many infants are still-born, with little evidence of bone mineralization. HPP can also appear in later infancy, generally before an infant reaches the age of six months, with the result that most afflicted infants do not live past the age of six months. Milder forms of HPP can present in later youth or in adulthood.

"Mesenchymal stem cells (MSCs) reside in bone marrow and other tissues and have a self-renewal capacity so that after transplantation they can differentiate into various cell lineages, including bone and cartilage," said Dr. Takeshi Taketani of the Division of Blood Transfusion at Shimane University Hospital in Shimane, Japan. "We performed multiple infusions of MSCs for two infant patients with severe HPP who had already undergone BMT. The adverse events from the BMT were managed and there were no adverse events from the MSC infusions."

After each infant had undergone BMT, one infant received four MSCTs and a second infant received nine MSCTs. Previous research had revealed that MSCT without a prior BMT was ineffective.

The researchers reported that the two infants receiving both BMT and MSCTs improved not only in terms of bone mineralization, but also saw improvements in muscle mass, respiratory function and mental development. Both children continue to survive at age three.

"Our data suggest that allogenic MSCT combined with BMT might be one of the safer and more effective remedies for patients with severe HPP, although long-term effectiveness remains unknown and warrants further study," concluded the researchers. "We need to establish curative, MSC-based treatment strategies that can maintain the long-term survival and differentiation capabilities of transplanted allo-MSCs."

"This study highlights the promise of stem cells in presenting a new frontier for regenerative medicine, with an improvement of HPP-associated symptoms and survival following BMT and MSCT." said Dr. David Eve, Cell Transplantation associate editor, and Instructor of neurosurgery and brain repair at the University of South Florida School of Medicine. "In order to elucidate the mechanisms behind recovery and further extrapolate the study to all HPP patients, a larger cohort and more long term follow-up are needed."

Go here to read the rest:
Infants with rare bone disease improve bone formation after cell transplantation

Live assessment of blood formation

Since ancient times, humankind has been aware of how important blood is to life. Naturalists speculated for thousands of years on the source of the body's blood supply. For several centuries, the liver was believed to be the site where blood forms. In 1868, however, the German pathologist Ernst Neumann discovered immature precursor cells in bone marrow, which turned out to be the actual site of blood cell formation, also known as hematopoiesis. Blood formation was the first process for which scientists formulated and proved the theory that stem cells are the common origin that gives rise to various types of mature cells.

"However, a problem with almost all research on hematopoiesis in past decades is that it has been restricted to experiments in culture or using transplantation into mice," says Professor Hans-Reimer Rodewald from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ). "We have now developed the first model where we can observe the development of a stem cell into a mature blood cell in a living organism."

Dr. Katrin Busch from Rodewald's team developed genetically modified mice by introducing a protein into their blood stem cells that sends out a yellow fluorescent signal. This fluorescent marker can be turned on at any time by administering a specific reagent to the animal. Correspondingly, all daughter cells that arise from a cell containing the marker also send out a light signal.

When Busch turned on the marker in adult animals, it became visible that at least one third (approximately 5000 cells) of a mouse's hematopoietic stem cells produce differentiated progenitor cells. "This was the first surprise," says Busch. "Until now, scientists had believed that in the normal state, very few stem cells - only about ten - are actively involved in blood formation."

However, it takes a very long time for the fluorescent marker to spread evenly into peripheral blood cells, an amount of time that even exceeds the lifespan of a mouse. Systems biologist Prof. Thomas Hfer and colleagues (also of the DKFZ) performed mathematical analysis of these experimental data to provide additional insight into blood stem cell dynamics. Their analysis showed that, surprisingly, under normal conditions, the replenishment of blood cells is not accomplished by the stem cells themselves. Instead, they are actually supplied by first progenitor cells that develop during the following differentiation step. These cells are able to regenerate themselves for a long time - though not quite as long as stem cells do. To make sure that the population of this cell type never runs out, blood stem cells must occasionally produce a couple of new first progenitors.

During embryonic development of mice, however, the situation is different: To build up the system, all mature blood and immune cells develop much more rapidly and almost completely from stem cells.

The investigators were also able to accelerate this process in adult animals by artificially depleting their white blood cells. Under these conditions, blood stem cells increase the formation of first progenitor cells, which then immediately start supplying new, mature blood cells. In this process, several hundred times more cells of the so-called myeloid lineage (thrombocytes, erythrocytes, granulocytes, monocytes) form than long-lived lymphocytes (T cells, B cells, natural killer cells) do.

"When we transplanted our labeled blood stem cells from the bone marrow into other mice, only a few stem cells were active in the recipients, and many stem cells were lost," Rodewald explains. "Our new data therefore show that the findings obtained up until now using transplanted stem cells can surely not be reflective of normal hematopoiesis. On the contrary, transplantation is an exception [to the rule]. This shows how important it is that we actually follow hematopoiesis under normal conditions in a living organism."

The scientists in Rodewald's department, working together with Thomas Hfer, now also plan to use the new model to investigate the impact of pathogenic challenges to blood formation: for example, in cancer, cachexia or infection. This method would also enable them to follow potential aging processes that occur in blood stem cells in detail as they occur naturally in a living organism.

###

View original post here:
Live assessment of blood formation

Deadly shortage of black stem cell donors

Black South Africans make up about 47 percent of all cancer patients but only 5 percent of donors in the nations bone marrow registry. The gap between those who may need bone marrow or stem cell transplants, and those able to provide them has deadly consequences for cancer patients.

Black South Africans make up about 47 percent of all cancer patients but only 5 percent of donors in the nations bone marrow registry

Maphoko Nthane, 50, had experienced mysterious and severe backaches for months. Doctors ran test after test, but could find nothing wrong with Nthane.

I had a severe back ache for months, she told Health-e News. Whenever I would have that pain, I couldnt sit down I had to walk or stand up.

Doctors eventually diagnosed Nthane with Acute Lymphoblastic Leukaemia, a severe form of cancer affecting a patients blood and bone marrow.

After I was diagnosed I thought I was going to die I didnt know that people with leukaemia could live, Nthane said. My husband was just as traumatised and as a result he didnt know how to support me.

Nthanes cancer failed to respond to standard chemotherapy and ultimately a stem cell transplant saved her life.

As part of stem cell transplants, stem cells are removed from the tissue of donors or, where possible, patients. These cells are usually from human tissues including bone marrow or fat.

Once removed, the stem cells are given high doses of chemotherapy higher than what could be administered to patients before being transplanted into patients in the hope that they will kill other cancerous cells.

Nthane was lucky to find a stem cell donor.

Continued here:
Deadly shortage of black stem cell donors

The ins and outs of bone marrow transplantation

DEAR DOCTOR K: I have leukemia. Thankfully, a family member was a bone marrow match. Can you tell me what to expect during my bone marrow transplant procedure?

DEAR READER: A bone marrow transplant can be a life-saving treatment. To understand how it works, you need to understand how blood cells are created. And what leukemia is.

Your blood contains red and white blood cells. There are several types of white blood cells, which are a key part of your immune system. All your blood cells are made by blood stem cells, which live primarily in the spongy center of your big bones.

In the years before you got leukemia, each of your blood cells was programmed to live for a while, and then to die only to be replaced by new, young cells.

When you developed leukemia, genetic changes in some white blood cells suddenly kept them from dying. As a result, the number of that type of white blood cell kept growing. An ideal treatment would kill just the cancerous white blood cells, and allow noncancerous new cells to replace them. The ideal treatment has not been discovered. Bone marrow transplant, while less than ideal, is such an important advance that it was honored with the Nobel Prize.

In a bone marrow transplant, all of your white blood cells healthy and cancerous are killed by drugs, radiation or both. Then healthy blood stem cells are infused into your blood. Those cells find their way to your bone marrow, and start to make healthy new red and white blood cells. The new cells will multiply. Ive put an illustration of the transplant process on my website, AskDoctorK.com.

The healthy blood stem cells may be collected from your blood, before the main radiation or chemotherapy begins. The cells are treated to remove any cancer cells, and then stored until the transplant. In your case, the healthy blood stem cells will come from another person (a donor). The donors cells must be a good match for you this means certain markers on their cells and your cells are as similar as possible. This reduces the risk that the cells will be rejected by your body.

Bone marrow transplants are usually used to treat leukemia, lymphomas, Hodgkins disease and multiple myeloma, because these cancers affect the bone marrow directly. The procedure is also used for some noncancerous conditions, such as sickle cell anemia.

You will stay in the hospital for several weeks after the transplant. Until your bone marrow cells multiply to a certain level, you will be at increased risk of infection. Other serious risks include severe bleeding, liver problems and increased risk of developing another cancer.

Another possible problem is that cells from a donor might not match your cells well enough and the new donor cells will begin attacking the cells of your body. This is called graft-versus-host disease. You will take medications to reduce the risk of this happening. Despite the dangers, bone marrow transplantation is usually successful.

Go here to read the rest:
The ins and outs of bone marrow transplantation

Bone Marrow Transplants Scarce in Many Countries

Bone marrow transplants have become routine in the West for blood cancers, such as leukemia, and similar diseases.But experts say theres no reason why the therapy should not be available in the developing world.There is need, but a shortage of resources, donors and expertise.

More than one million bone marrow transplants have been performed in 75 countries since the first one was performed in the U.S. 50 years ago.

Thats not very many for a treatment that can be lifesaving, according to Dietger Niederwieser, a professor of hematology and oncology at the University of Leipzig in Germany.

We have situations where we have an identical [bone marrow] donor, and we have a disease which if treated early, the survival can go up to 90-95 percent even.So, its depending on the disease, its depending on the donor and its depending also on the age of the patients and so on," said Niederwieser.

Red blood cells, white blood cells and platelets are produced in the marrow, or spongy tissue inside bones, by stem or master cells.

Transplants either from a closely-matched donor or using cleansed marrow from the patients themselves are a way of replacing tissue thats diseased by leukemia, a blood cancer, and lymphoma, a cancer of the lymphatic system.

For some patients, it is a last ditch effort at a cure.

Analyzing data collected by the Worldwide Network for Blood and Marrow Transplantation, Niederwieser and colleagues looked at the distribution of these transplants around the world.

Predictably, their study found that the bulk of the complex transplants have been performed in Europe, followed by the United States.

The remaining 15 percent or so have been carried out in South East Asia, the Mediterranean, Western Pacific and Africa.

Originally posted here:
Bone Marrow Transplants Scarce in Many Countries

'Stem cell' test could identify most aggressive breast cancers

Testing breast cancer cells for how closely they resemble stem cells could identify women with the most aggressive disease, a new study suggests.

Researchers found that breast cancers with a similar pattern of gene activity to that of adult stem cells had a high chance of spreading to other parts of the body.

Assessing a breast cancer's pattern of activity in these stem cell genes has the potential to identify women who might need intensive treatment to prevent their disease recurring or spreading, the researchers said.

Adult stem cells are healthy cells within the body which have not specialised into any particular type, and so retain the ability to keep on dividing and replacing worn out cells in parts of the body such as the gut, skin or breast.

A research team from The Institute of Cancer Research, London, King's College London and Cardiff University's European Cancer Stem Cell Research Institute identified a set of 323 genes whose activity was turned up to high levels in normal breast stem cells in mice.

The study is published today (Wednesday) in the journal Breast Cancer Research, and was funded by a range of organisations including the Medical Research Council, The Institute of Cancer Research (ICR), Breakthrough Breast Cancer and Cancer Research UK.

The scientists cross-referenced their panel of normal stem cell genes against the genetic profiles of tumours from 579 women with triple-negative breast cancer - a form of the disease which is particularly difficult to treat.

They split the tumour samples into two categories based on their 'score' for the activity of the stem cell genes.

Women with triple-negative tumours in the highest-scoring category were much less likely to stay free of breast cancer than those with the lowest-scoring tumours. Women with tumours from the higher-scoring group had around a 10 per cent chance of avoiding relapse after 10 years, while women from the low-scoring group had a chance of around 60 per cent of avoiding relapse.

The results show that the cells of aggressive triple-negative breast cancers are particularly 'stem-cell-like', taking on properties of stem cells such as self-renewal to help them grow and spread. They also suggest that some of the 323 genes could be promising targets for potential cancer drugs.

View post:
'Stem cell' test could identify most aggressive breast cancers

IUPUI biologist receives NIH grant to study how glaucoma develops in stem cells

IMAGE:This is Assistant Professor of Biology Jason Meyer, Ph.D. of the School of Science at Indiana University-Purdue University Indianapolis with graduate students Sarah Ohlemacher (left) and Akshaya Sridhar. view more

Credit: School of Science at Indiana University-Purdue University Indianapolis

INDIANAPOLIS -- Jason Meyer, Ph.D., assistant professor of biology in the School of Science at Indiana University-Purdue University Indianapolis, has received a National Institutes of Health grant to study how glaucoma develops in stem cells created from skin cells genetically predisposed to the disease. The five-year, $1.8 million grant is funded by the NIH's National Eye Institute.

Glaucoma is a group of degenerative diseases that damage the eye's optic nerve and can result in vision loss and blindness. It is the most common disease that affects retinal ganglion cells. These cells serve as the connection between the eye and the brain. Once these cells are damaged or severed, the brain cannot receive critical information, leading to blindness.

Meyer's research uses human induced pluripotent stem cells, which can be generated from any cell in the body. In this case, they are created from skin cells of patients predisposed to glaucoma. These cells are genetically reprogrammed and then given instructions to develop into cells of the eye's retina.

"Our hope is that because these cells have the genetic information to develop the disease, they will do so in our lab," Meyer said. "Hopefully, we can figure out what goes wrong in those cells and then develop new ways to fix that."

Meyer and two School of Science graduate students are now creating the stem cells and observing their features to determine what isn't going the way it should. They will determine whether they can identify the cause of damage or death of the retinal ganglion cells.

"This is a five-year award, so our hope is that toward the end of the award we can use the information we gather to start developing customized strategies to fix what's going wrong," Meyer said.

He sees this as an exciting approach to stem cell research. Often, stem cells are transplanted to replace cells damaged by disease. While that's a possibility, Meyer's research instead could lead to repairing the existing cells in the eye and restoring vision for patients.

###

See the article here:
IUPUI biologist receives NIH grant to study how glaucoma develops in stem cells

Scientists say they can make human egg from skin of two men

Babies with two fathers or two mothers could soon become a reality Egg and sperm cells can be made using skin from two same sex adults Scientists say technique could be used to create baby two years from now Breakthrough could help infertile or gay couples to have children But concerns have been raised about prospect of 'designer babies'

By Ben Spencer for the Daily Mail

Published: 20:21 EST, 22 February 2015 | Updated: 20:22 EST, 22 February 2015

853 shares

2

View comments

Babies with two fathers or two mothers could become a reality after a breakthrough by researchers at Cambridge.

They have shown that it is possible to make human egg and sperm cells using skin from two adults of the same sex.

The development could help men and women who have become infertile through disease or gay couples to have children.

But critics voiced concern, arguing that the breakthrough brings closer the prospect of 'designer babies', in which the looks, character and health attributes of children would be selected by parents.

Go here to see the original:
Scientists say they can make human egg from skin of two men

The International Society for Stem Cell Research announces annual meeting details

CHICAGO -- The International Society for Stem Cell Research's 13th annual meeting will take place June 24-27, 2015 at the Stockholmsmssan Exhibition and Convention Center in Stockholm, Sweden. The meeting will bring together approximately 4,000 stem cell scientists, bioethicists, clinicians and industry professionals from over 50 countries to present and discuss the latest discoveries and technologies within the field.

"The ISSCR is excited to bring its annual meeting to Stockholm, a city that shares our passion and reputation for great scientific research and collaboration," said ISSCR President Rudolf Jaenisch, M.D., Whitehead Institute for Biomedical Research. "We look forward to learning more about the strong work being done in Sweden and across Europe."

The meeting will open with the Presidential Symposium on June 24 from 1:15-3:15 p.m. local time. The symposium sets the stage for the meeting with world renowned speakers, including Nobel Prize winner Shinya Yamanaka. It is also the platform for the formal recognition of the 2015 recipients of the McEwen Award for Innovation and the ISSCR Public Service Award. Another prestigious award, the ISSCR-BD Biosciences Outstanding Young Investigator Award, will be presented during Plenary VI on June 27 from 9-11:20 a.m. and followed by an award lecture.

"I look forward to the Presidential Symposium setting the tone for the entire program," Jaenisch said. "A thread throughout will be the use of stem cells to drive our understanding of development and disease, as we explore disease modeling, gene and tissue engineering technologies and other important advances that are bringing stem cells into the clinic."

Presidential Symposium speakers will include:

Fred H. Gage, Ph.D., Salk Institute for Biological Sciences, U.S.

Jrgen Knoblich, Ph.D., Institute of Molecular Biotechnology, Austria

Shinya Yamanaka, M.D., Ph.D., Center for iPS Cell Research & Application, Japan

Jeannie Lee, M.D., Ph.D., Massachusetts General Hospital, U.S.

The McEwen Award for Innovation award winners (Presidential Symposium):

See original here:
The International Society for Stem Cell Research announces annual meeting details

Hello Doctor – Information about Stem Cell Therapy – [Ep 76] – Video


Hello Doctor - Information about Stem Cell Therapy - [Ep 76]
Hello Doctor - Information about Stem Cell Therapy - [Ep 76] Today in Hello Doctor Cosmotologist Specialist Dr Ratnavel will share information about stem cell therapy. Subscribe to Vendhar...

By: Vendhar TV

Go here to read the rest:
Hello Doctor - Information about Stem Cell Therapy - [Ep 76] - Video

Okyanos Stem Cell Therapy Launches Orthopedic Lifestyle Survey

Freeport, Grand Bahama (PRWEB) March 09, 2015

Okyanos, the leader in cell therapy, launched its next in a series of studies today to determine the emotional impact and lifestyle influence orthopedic conditions such as osteoarthritis and sports-related injuries have had on those affected. The survey focuses on people between the ages of 55 and 75 living with orthopedic health issues and is designed to examine the toll on those afflicted as well as their relationships.

According to Okyanos VP Marketing Carol Montgomery, Millions of people suffer disorders of the joints, bones, muscles and connective ligaments, tendons and cartilage debilitating conditions on a daily basis, ranging from reduced function to crippling pain but have exhausted available methods of treatment. These restrictions affect them in a variety of ways and our ongoing lifestyle surveys measure the effects such chronic conditions have on todays aging population. Many are turning to solutions like adult stem cell therapy for treatment with excellent results.

The Okyanos Lifestyle and Relationship Survey for Heart Disease, of nearly 700 adults, uncovered a staggering 93% were open to alternatives to their existing heart disease treatment plan showing a growing discontent with their current options. A majority 68% were emotionally impacted and felt they were saddled with restrictions imposed by their heart conditions such as chronic fatigue and shortness of breath.

Adult stem cell therapy has emerged as a new treatment alternative for those who are restricted in activities they can no longer do but are determined to live a more normal life. Okyanos cell therapy uses a unique blend of adult stem and regenerative cells derived from a patients own fat tissue, thereby utilizing the bodys own natural biology to heal itself.

Just 50 miles from US shore, Okyanos cell therapy is available to patients suffering with the daily discomfort of orthopedic conditions including osteoarthritis, rheumatoid arthritis, sports-related injuries and spine disease.

Patients with a severe orthopedic condition, interested in participating in the study can go to: https://www.surveymonkey.com/s/ortho_Okyanos

For a copy of the Okyanos Heart Disease Lifestyle Report that reveals the emotional toll and lifestyle impact heart disease has on patients in the United States, visit: Heart Disease Lifestyle Report

Patients can contact Okyanos to learn more and request a free consultation at http://www.Okyanos.com or by calling 1-855-659-2667.

About Okyanos: (Oh key AH nos) Based in Freeport, Grand Bahama, Okyanos brings a new standard of care and a better quality of life to patients with coronary artery disease, tissue ischemia, autoimmune diseases, and other chronic neurological and orthopedic conditions. Okyanos Cell Therapy utilizes a unique blend of stem and regenerative cells derived from patients own adipose (fat) tissue which helps improve blood flow, moderate destructive immune response and prevent further cell death. Okyanos is fully licensed under the Bahamas Stem Cell Therapy and Research Act and adheres to U.S. surgical center standards. The literary name Okyanos, the Greek god of the river Okyanos, symbolizes restoration of blood flow.

See original here:
Okyanos Stem Cell Therapy Launches Orthopedic Lifestyle Survey

Archives