Bone marrow transplantation reduces FGF-23 levels and restores bone formation in myelodysplastic neoplasms … – Nature.com
Posted: June 25, 2024 at 2:40 am
Myelodysplastic neoplasms (MDS) are hematopoietic stem cell disorders characterized by ineffective hematopoiesis and dysplastic cells in the bone marrow (BM) [1]. In addition, patients with MDS display an increased susceptibility to osteoporosis [2]. Evidence points towards dysregulation in the BM niche that concurrently impairs bone turnover and hematopoiesis. We identified fibroblast growth factor (FGF)-23 as a critical regulator of bone mineralization and erythropoiesis. FGF-23 serum levels were higher in both patients and mice with MDS, and its neutralization resulted in improved erythropoiesis and bone mineralization in NUP98/HOXD13 (NHD13) mice [3]. FGF-23 is mainly produced by osteoblasts/osteocytes [4] and exerts phosphaturic effects leading to poor bone mineralization [5]. However, in NHD13 mice, intact FGF-23 (iFGF-23) and C-terminal FGF-23 (cFGF-23; produced by the cleavage of the intact form) protein levels were unchanged in the bone tissue, but erythroid progenitors secreted more FGF-23 compared to littermate wild-type (WT) controls (Fig.S1A, B).
Here, we tested the hypothesis that erythroid precursors contribute to increased FGF-23 production/cleavage in MDS as a cause for impaired erythropoiesis and bone mineralization. To that end, we used BM transplantation as a first approach to substitute myelodysplastic erythroblasts with healthy ones in NHD13 mice. Four months after the BM transplantation, all mice that received the NHD13 BM showed MDS-like symptoms. In WT recipients, a reduction in hemoglobin levels [32%; p<0.001], platelets [20%; p<0.05], and lymphocytes [71%; p<0.001], but not in neutrophils or monocytes was observed compared to WT controls (transplanted with WT BM), showing a similar MDS status as NHD13 controls. In turn, NHD13 mice transplanted with WT BM did not develop MDS during the observation period. Compared to NHD13 controls, blood count reached normal levels [hemoglobin: +22%; p<0.001; platelets: +26%; p<0.05; lymphocytes: +6.5-fold; p<0.001; neutrophils: +2-fold; p<0.001] (Fig.1AE). This confirms that the MDS blood phenotype is transferable via hematopoietic cells. In line with NHD13 mice only showing increased cFGF-23 levels, but normal serum levels of iFGF-23 [3], the transplantation of WT or NHD13 BM into either WT or NHD13 recipient mice did not alter iFGF-23 (Fig.1F). In contrast, cFGF-23 was increased in all recipients of NHD13 BM [WT: +3.5-fold; p<0.05; NHD13: +2.1-fold; p<0.01] compared to the corresponding mice with WT BM (Fig.1G). Because of the transferable FGF-23 status, we hypothesized that WT mice receiving NHD13 BM would exhibit a bone phenotype mimicking the NHD13 controls. That was the case regarding the increased bone formation parameters usually observed in NHD13 mice. Similar to NHD13 mice, WT mice receiving NHD13 BM showed an increased number of osteoblasts [+95%; p<0.001] concomitant with elevated levels of the bone formation marker procollagen type I N-propeptide [+45%; p<0.05] and an increased bone formation rate [+87%; p<0.01] (Fig.1HJ). Also, the osteoid surface per bone surface tended to be increased [+44%; p=0.056] (Fig.1K). Importantly, transplanting WT BM to NHD13 mice normalized their bone formation parameters (Fig.1HK), indicating that hematopoietic cell signals control bone formation in NHD13 mice.
Eigth-week-old male wild-type (WT) and NUP98/HOXD13 (NHD13) mice were lethally irradiated one day before 2106 total bone marrow cells of age-matched WT (WT BM) or NHD13 (NHD13 BM) donor mice were transplanted by intravenous injection. After 16 weeks all mice were sacrificed and analyzed. The blood count, (A) hemoglobin levels (WT BMWT: n=9; NHD13 BMWT: n=9; WT BMNHD13: n=14; NHD13 BMNHD13: n=8), (B) platelet number (WT BMWT: n=8; NHD13 BMWT: n=8; WT BMNHD13: n=14; NHD13 BMNHD13: n=7) as well as the number of (C) neutrophils, (D) lymphocytes (WT BMWT: n=8; NHD13 BMWT: n=8; WT BMNHD13: n=14; NHD13 BMNHD13: n=8), and (E) monocytes (WT BMWT: n=8; NHD13 BMWT: n=7; WT BMNHD13: n=15; NHD13 BMNHD13: n=7) were received using the Sysmex XN-100 (Sysmex, Norderstedt, Germany). After collecting the serum, (F) the intact (WT BMWT: n=9; NHD13 BMWT: n=8; WT BMNHD13: n=14; NHD13 BMNHD13: n=9) as well as (G) C-terminal fibroblast growth factor (FGF)-23 (WT BMWT: n=8; NHD13 BMWT: n=6; WT BMNHD13: n=13; NHD13 BMNHD13: n=8) were measured by ELISA. (H) The osteoblasts per bone perimeter were evaluated in TRAP-stained vertebral bone slices (WT BMWT: n=9; NHD13 BMWT: n=9; WT BMNHD13: n=14; NHD13 BMNHD13: n=9) and (I) the osteoblast activity was assessed by procollagen type I N-propeptide (P1NP) using ELISA (WT BMWT: n=8; NHD13 BMWT: n=9; WT BMNHD13: n=14; NHD13 BMNHD13: n=9). J To determine the bone formation rate in vertebrae, mice received intraperitoneal calcein injection 5 and 2 days before sacrifice for the double labeling analysis (WT BMWT: n=9; NHD13 BMWT: n=6; WT BMNHD13: n=13; NHD13 BMNHD13: n=6). K Embedded vertebrae were stained with von Kossa/van Gieson to determine the osteoid surface per bone surface (WT BMWT: n=6; NHD13 BMWT: n=8; WT BMNHD13: n=14; NHD13 BMNHD13: n=5). Data are shown as meanSD of five independent experiments. Statistical analysis was performed by two-sided Students t test. *p<0.05; **p<0.01; ***p<0.001.
To address whether stem cell transplantation (SCT) leads to similar changes in FGF-23 in patients with MDS, we employed samples from the BoHemE study, in which we previously confirmed the high plasma iFGF-23 and cFGF-23 levels in patients with MDS [3]. Within this cohort, we identified 10 patients with MDS (3 women, 7 men; median age: 64 years; without renal disease) who had undergone SCT. We analyzed their hematological and bone-specific parameters before (range: 16 months) and after SCT (range: 511 months). SCT led to a higher number of red blood cells in 9/10 patients, neutrophils in 9/10 patients, and lymphocytes in 6/10 patients with normal monocyte counts. Platelet counts were below the reference range in 8/10 patients and higher in 1/10 patients before SCT, but only 4 patients had persistent thrombocytopenia after SCT (Figs.2A, S2AD). Before SCT, 5 patients showed elevated cFGF-23 plasma levels, which were normalized after SCT (Fig.2B). Elevated iFGF-23 levels were observed in 2 patients before SCT, with levels decreasing post-SCT. However, after SCT, iFGF-23 levels slightly increased in all patients with normal baseline levels (Fig.2C). Additionally, 7/10 patients had reduced osteocalcin levels (bone formation) before SCT, though this did not result in abnormal bone mineral density (BMD) (Fig.2D, TableS1). Given that bone mineralization is impaired in MDS [3], we also analyzed albumin-adjusted calcium, phosphate, and bone-specific alkaline phosphatase (BSAP). Calcium levels were reduced in 2/5 patients with elevated cFGF-23 and normalized after SCT (Fig.2E). All patients with normal cFGF-23 had calcium levels within the reference range, with only one showing reduced levels of phosphate, which were corrected by the SCT. Whereas 3/5 patients with high cFGF-23 had mild to moderate hypophosphatemia before SCT, only one remained hypophosphatemic after SCT (Fig.2F). In line with the increase of serum phosphate, BSAP levels, the major regulator of bone mineralization, also increased after SCT with high cFGF-23 (determined in 3/5 patients only, Fig.S2E). In addition, we analyzed 10 BM plasma samples regarding cFGF-23 and iFGF-23 levels in a separate set of patients with MDS (4 women, 6 men; median age: 57 years; TableS2). Since the samples were collected relatively shortly after SCT (range: 28 months), it is not surprising that the number of red blood cells was equal or decreased after SCT in 4/9 patients (data from one patient are not evaluable) compared to the basal levels (Fig.2G). In line with our previous observations, before SCT 5/10 patients had elevated cFGF-23 levels, which normalized after SCT. In patients with normal baseline cFGF-23, levels were either slightly increased (1/5 patients) or decreased (2/5) after SCT (Fig.2H). Before SCT, all patients had normal iFGF-23 levels. The SCT led to an increase in 6/10 patients and a decrease in 4/10 patients independently of the basal iFGF-23 levels (Fig.2I). Overall, the regulation of cFGF-23 in blood and BM plasma samples from patients with MDS after SCT suggests that BM cells are a source for cFGF-23 in MDS. This is supported by the transplantation of NHD13 BM cells, which causes the increase of cFGF-23 levels leading to impaired erythropoiesis and bone mineralization. Only erythroid precursors of NHD13 mice show a high Fgf23 expression, but myeloid cells and megakaryocytes do not (Fig.S1C, D). The question remains why and how cFGF-23 levels are increased in MDS. The expression of Galnt3 and Fam20c, which stabilize or mark FGF-23 for cleavage [6, 7], was normal in NHD13 erythroid precursors (Fig.S1E, F), indicating that these cells do not directly contribute to the increased cleavage of erythroid-derived FGF-23. Therefore, other signals or cells within the bone microenvironment or beyond may participate in this regulation. In line with this, it has been shown that FGF-23 production/cleavage can be triggered by erythropoietin, iron deficiency, anemia, and inflammation [8,9,10], factors that also play a role in MDS [11, 12]. While iron serum levels are unchanged in NHD13 mice, erythropoietin is upregulated. Since erythropoietin can affect FGF-23 production/cleavage in WT erythroid cells [8], this may be a possible regulator also in NHD13 mice. The whole inflammatory status of NHD13 mice has not been described yet, suggesting that inflammation and/or anemia might be drivers of cFGF-23 in NHD13 mice as well. The production of cFGF-23 is increased by inflammation, inhibits hepcidin induction in the liver, and increases iron bioavailability independent of the functions of iFGF-23 [10]. This scenario may hold true for MDS as it is also characterized by inflammation (and anemia) and may require high levels of cFGF-23 to provide enough iron for erythropoiesis. In our human cohorts, not all patients with MDS showed elevated cFGF-23 levels, and not all patients with elevated cFGF-23 showed dysregulations of iron or inflammation (TableS1). All patients with elevated cFGF-23 however did have anemia. MDS is a heterogeneous group of disorders. As NHD13 mice mimic a severe form of MDS with a high percentage of blasts in the bone marrow and a high propensity to transformation towards acute leukemia [13], we included patients with intermediate to very high-risk MDS in our cohorts and indicated their mutations. Analyzing the mutational landscape in patients with MDS might further allow assumptions on the underlying mechanisms leading to increased cFGF-23 levels. Mutations like TET2, DNMT3A, ASXL1, RUNX1, SF3B1, and SRSF2 are linked to increased responses to inflammatory stimuli [12, 14], and Tet2 or Dnmt3a deficiency causes bone loss in mice due to increased osteoclastogenesis [15]. In our blood plasma cohort, 4/5 patients with elevated cFGF-23 carried a mutation in at least one of these genes. However, 2/5 patients with normal cFGF-23 also had these mutations, but they received the MDS diagnosis a month earlier only. It is conceivable that the cFGF-23 levels increase after some time. Future research is needed to determine whether any of these mutations contribute to high cFGF-23 levels. In summary, we show that the high serum cFGF-23 levels in MDS originate from the BM and that BM transplantation/SCT can reduce cFGF-23 levels and its associated negative effects on erythropoiesis and bone mineralization. Future studies need to validate these findings in humans and address why cFGF-23 levels are increased in MDS.
The hematological and plasma parameters of patients with MDS were analyzed before and after allogeneic stem cell transplantation (SCT) in blood (AF) and bone marrow samples (GI). A, G The number of red blood cells was determined by the Sysmex XN-100 (Sysmex, Norderstedt, Germany). B, H C-terminal fibroblast growth factor (FGF)-23, (C, I) intact FGF-23, as well as (D) osteocalcin, were determined in plasma samples and in serum (E) albumin-adjusted calcium levels, as well as (F) phosphate levels, were measured by ELISA. n=10 except (G) n=9. The grey boxes in the graphs mark the reference range of healthy individuals. In all graphs, each dot represents a patient with MDS, and the values from the same patient are connected by a line (normal C-terminal FGF-23 before SCT, n=5) or dotted line (high C-terminal FGF-23 before SCT, n=5).
Read more from the original source:
Bone marrow transplantation reduces FGF-23 levels and restores bone formation in myelodysplastic neoplasms ... - Nature.com
- Bone Marrow Stem Cells [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Stem cells in bone marrow are being used to treat EB [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Stem cells in bone marrow are being used to treat EB [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Peripheral Artery Disease: Can Progenitor Cells Help? [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Bone Marrow Producing Insulin [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Stem Cells Reversing Endothelial Senescence [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Peripheral Artery Disease: Can Progenitor Cells Help? [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Science behind Enhancing Adult Stem Cells for wellbeing [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Bone Marrow Stem Cell Applications [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Immune Modulation by Bone Marrow Mesenchymal Stem Cells [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Expansion of Stem Cells by Valproic Acid [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- STEM CELLS FOR MACULAR DEGENERATION Sam Smith's story.wmv [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- StemLife's First Cord Blood Stem Cell Transplant Recipient [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- Bone Marrow Differentiation to Heart? YES [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- STEM CELLS FOR OTHER USES Interview with Sam Smith.wmv [Last Updated On: June 29th, 2011] [Originally Added On: June 29th, 2011]
- StemLife's First Cord Blood Stem Cell Transplant Recipient [Last Updated On: June 30th, 2011] [Originally Added On: June 30th, 2011]
- Bone marrow transplantation HD, ENG subtitles [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Cord Blood and Bone Marrow Stem Cells for Liver Failure [Last Updated On: July 4th, 2011] [Originally Added On: July 4th, 2011]
- Bone Marrow Stem Cell Applications [Last Updated On: July 4th, 2011] [Originally Added On: July 4th, 2011]
- Bone Marrow Producing Insulin [Last Updated On: July 5th, 2011] [Originally Added On: July 5th, 2011]
- Bone Marrow Stem Cell Donation [Last Updated On: July 6th, 2011] [Originally Added On: July 6th, 2011]
- Adult Stem Cells May Target and Repair Heart Attack Damage [Last Updated On: July 6th, 2011] [Originally Added On: July 6th, 2011]
- Stem cells used for medical treatment [Last Updated On: July 7th, 2011] [Originally Added On: July 7th, 2011]
- Bone marrow transplantation HD, ENG subtitles [Last Updated On: July 8th, 2011] [Originally Added On: July 8th, 2011]
- Adult Stem Cells May Target and Repair Heart Attack Damage [Last Updated On: July 8th, 2011] [Originally Added On: July 8th, 2011]
- From Surgical Repair to Stem Cell Repair: A Surgeon's Journey by Leonard Smith MD, FACS [Last Updated On: July 13th, 2011] [Originally Added On: July 13th, 2011]
- STEM CELLS - Bone Marrow Stem Cells (Balzitt).flv [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- Spirulina DLA Naturals [Last Updated On: July 15th, 2011] [Originally Added On: July 15th, 2011]
- Spirulina DLA Naturals [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- Insidermedicine In 60 - January 6, 2011 [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- Christian Drapeau Talk About - Adult Stem Cells and StemEnhance./StemTech [Last Updated On: July 18th, 2011] [Originally Added On: July 18th, 2011]
- The potential of stem cells [Last Updated On: July 18th, 2011] [Originally Added On: July 18th, 2011]
- Insidermedicine In 60 - March 11, 2011 [Last Updated On: July 20th, 2011] [Originally Added On: July 20th, 2011]
- Blind Girl get's cure you need to see to believe" [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- STEM CELLS - Bone Marrow Stem Cells (Balzitt).flv [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- Expansion of Stem Cells by Valproic Acid [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- Blind Girl get's cure you need to see to believe" [Last Updated On: July 24th, 2011] [Originally Added On: July 24th, 2011]
- LifeCell in Kalaignar Seithigal,Sun News [Last Updated On: July 26th, 2011] [Originally Added On: July 26th, 2011]
- Science behind Enhancing Adult Stem Cells for wellbeing [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- Why treatment results vary after stem cell treatment [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- From Surgical Repair to Stem Cell Repair: A Surgeon's Journey by Leonard Smith MD, FACS [Last Updated On: August 3rd, 2011] [Originally Added On: August 3rd, 2011]
- Insidermedicine In 60 - March 11, 2011 [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Why STEM-Enhance? [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Stem cells Transplatation in Completed Paralyze Dog. [Last Updated On: August 12th, 2011] [Originally Added On: August 12th, 2011]
- Stem cells Transplatation in Completed Paralyze Dog. [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Best natural skin care serum using stem cell technology [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- "Bone Marrow Stem Cells" Donald Kohn [Last Updated On: August 29th, 2011] [Originally Added On: August 29th, 2011]
- The potential of stem cells [Last Updated On: August 31st, 2011] [Originally Added On: August 31st, 2011]
- Manatee man is paralyzed, but still plenty hopeful [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- Stem Cells and Bone Marrow Transplants by Dipnarine Maharaj MD PhD [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- MS Cure - Introduction to stem cell bone marrow transplant in Australia [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Bone Marrow/Stem Cell Transplantation: An Introduction, With Sonali Smith, MD [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cancer Update: Autologus Stem Cell (Bone Marrow) Transplant [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Bone Marrow Stem Cell Transplant Live from Top US Hospital [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Adult Stem Cell Mobilization from Bone Marrow (Animation) [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Bone Marrow / Stem Cell Transplant Recovery Fund [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Bone Marrow Stem Cell Expansion by HOXB4 and p21 Knock Out [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Adult Stem Cell Mobilization from Bone Marrow (Animation) [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Bone Marrow/Stem Cell Transplant [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Bone Marrow/Stem Cell Transplant [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Macular Degeneration Improved With Stem Cells [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cell Transplant India,Bone Marrow Transplant India,Sickle Cell Anemia Treatment India [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Nurses Discuss Special Bonds With Bone Marrow and Stem Cell Transplant Patients [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Becoming a Blood Stem Cell Donor [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Bone Marrow and Stem Cell Transplant Patients Share Their Stories [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- LittleBigPlanet 2 - (WIP) Stem Cell Sackboy Bone Marrow Bugaloo [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- LittleBigPlanet 2 - Stem Cell Sackboy Quarter 4 Update (Bone Marrow Bugaloo) [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- Bone Marrow Transplant Program Continues to Grow, Make a Difference [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Can Stem Cell Prolotherapy or Bone Marrow Prolotherapy help articular cartilage defects? [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Multiple Sclerosis, Stem Cells, and Hope, Part 2 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Bone Marrow Transplant Program Continues to Grow, Make a Difference [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- How to be an Anthony Nolan blood stem cell donor [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cells extracted from bone marrow [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Calum's stem cell donation for Anthony Nolan [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cancer Update: Autologus Stem Cell (Bone Marrow) Transplant [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Bone Marrow - Stem Cell Prolotherapy [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Bone Marrow Stem Cell Aspiration and Re-Injection with PRP for Osteoarthritis by Dr Adelson [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Mesenchymal stem cells and marrow stromal cells---2nd--- [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Stem Cell Injections - Bone Marrow Prolotherapy - treatment for arthritis [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Chat w/ Dr. Maharaj, founder of S. FL. Bone Marrow/Stem Cell Transplant Institute [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]