Exploring the Latest in CRISPR and Stem Cell Research – Technology Networks
Posted: October 4, 2019 at 1:47 am
Since the gene-editing potential of CRISPR systems was realized in 2013, they have been utilized in laboratories across the world for a wide variety of applications. When this gene-editing power is harnessed with the proliferative potential of stem cells, scientists level up their understanding of cell biology, human genetics and the future potential of medicine.
Thus far, the feasibility to edit stem cells using CRISPR technology has been demonstrated in two key areas: modeling and investigating human cell states and human diseases, and regenerative medicine.1 However, this has not been without challenges.
In this article, we explore some of the latest research in these spaces and the approaches that scientists are adopting to overcome these challenges. Deciphering cell-specific gene expression using CRISPRi in iPSC-derived neurons
Deploying CRISPR technology in iPSCs has been notoriously challenging, as Martin Kampmann, of the Kampmann lab at the University of California San Francisco, says: "CRISPR introduces DNA breaks, which can be toxic for iPSCs, since these cells have a highly active DNA damage response." To overcome the issue of toxicity, as a postdoc in the lab of Professor Jonathan Weissman, Kampmann co-invented a tool known as CRISPR interference (CRISPRi), where the DNA cutting ability of CRISPR/Cas9 is disabled.2 The "dead" Cas9 (or, dCas9) is still recruited to DNA as directed by a single guide RNA. It can therefore operate as a recruitment platform to target protein domains of interest to specific places in the genome.
CRISPRi permits gene repression at the transcription level, as opposed to RNAi which controls genes at the mRNA level. This allows researchers to repress certain genes within stem cells and decipher their function. Kampmann explains: "For CRISPRi, we target a transcriptional repressor domain (the KRAB domain) to the transcription start site of genes to repress their expression. This knockdown approach is highly effective and lacks the notorious off-target effects of RNAi-based gene knockdown."In a study published just last month, Kampmann's laboratory adopted a CRISPRi-based platform to conduct genetic screens in human neurons derived from iPSCs: "CRISPR-based genetic screens can reveal mechanisms by which these mutations cause cellular defects, and uncover cellular pathways we can target to correct those defects. Such pathways are potential therapeutic targets."3"We expressed the CRISPRi machinery (dCas9-KRAB) from a safe-harbor locus in the genome, where it is not silenced during neuronal differentiation. We also developed a CRISPRi construct with degrons, stability of which is controlled by small molecules. This way, we can induce CRISPRi knockdown of genes of interest at different times during neuronal differentiation."
Image: iPSC-derived neurons. Credit: Kampmann Lab, UCSF.Previous CRISPR-based screens have focused on cancer cell lines or stem cells rather than healthy human cells, thus limiting potential insights into the cell-type-specific roles of human genes. The researchers opted to screen in iPSC-derived neurons as genomic screens have revealed mechanisms of selective vulnerability in neurodegenerative diseases, and convergent mechanisms in neuropsychiatric disorders.
The large-scale CRISPRi screen uncovered genes that were essential for both neurons and iPSCs yet caused different transcriptomic phenotypes when knocked down. "For me, one of the most exciting findings was the broadly expressed genes that we think of as housekeeping genes had different functions in iPSCs versus neurons. This may explain why mutations in housekeeping genes can affect different cell types and tissues in the body in very different ways," says Kampmann. For example, knockdown of the E1 ubiquitin activating enzyme, UBA1, resulted in neuron-specific induction of a large number of genes, including endoplasmic reticulum chaperone HSPA5 and HSP90B1.
These results suggest that comprised UBA1 triggers a proteotoxic stress response in neurons but not iPSCs aligning with the suggested role of UBA1 in several neurodegenerative diseases. The authors note: "Parallel genetic screens across the full gamut of human cell types may systematically uncover context-specific roles of human genes, leading to a deeper mechanistic understanding of how they control human biology and disease."
Video credit: UCSF.
Developing and testing cell-based therapies for human disease using CRISPR
Several laboratories across the globe are in an apparent race to develop the first clinically relevant, efficacious and safe cell-based therapy utilizing CRISPR gene-editing technology.
Whilst a plethora of literature demonstrates the efficacy of CRISPR in editing the genome of mammalian cells in vitro, for in vivo application, particularly in humans, rigorous long-term testing of safety outcomes is required. This month, researchers from the laboratory of Hongkui Deng, a Professor at Peking University in Beijing, published a paper in The New England Journal of Medicine.4 The paper outlined their world-first study in which they transplanted allogenic CRISPR-edited stem cells into a human patient with HIV.
The rationale for the study stems back to the "Berlin patient", referring to Timothy Ray Brown who is one of very few individuals in the world that has been cured of HIV. Brown received a bone marrow transplant from an individual that carries a mutant form of the CCR5 gene. Under normal conditions, the CCR5 gene encodes a receptor on the surface of white blood cells. This receptor effectively provides a passageway for the HIV to enter cells. In individuals with two copies of the CCR5 mutation, the receptor is distorted and restricts strains of HIV from entering cells.
Deng and colleagues used CRISPR to genetically edit donor hematopoietic stem and progenitor cells (HSPCs) to carry either a CCR5 insertion or deletion. They were able to achieve this with an efficiency of 17.8%, indicated by genetic sequencing. The CRISPR-edited HSPCs were then transplanted into an HIV patient who also had leukaemia and required a bone-marrow transplant, with the goal being to eradicate HIV.
"The study was designed to assess the safety and feasibility of the transplantation of CRISPRCas9modified HSPCs into HIV-1positive patients with hematologic cancer," Deng says. He continues: "The success of genome editing in human hematopoietic stem and progenitor cells was evaluated in three aspects including editing persistence, specificity and efficiency in long-term engrafting HSPCs." Long-term monitoring of the HIV patient found that, 19 months after transplantation, the CRISPR-edited stem cells were alive however, they only comprised five to eight percent of total stem cells. Thus, the patient is still infected with HIV.
Despite the seemingly low efficiency in long-term survival, the researchers were encouraged by the results from the safety assessment aspect of the study: "Previously reported hematopoietic stem and progenitor cells-based gene therapies were less effective because of random integration of exogenous DNA into the genome, which sometimes induced acute immune responses or neoplasia," Deng says. "The apparent absence of clinical adverse events from gene editing and off-target effects in this study provides preliminary support for the safety of this gene-editing approach."
"To further clarify the anti-HIV effect of CCR5-ablated HSPCs, it will be essential to increase the gene-editing efficiency of our CRISPRCas9 system and improve the transplantation protocol," says Deng.
The marrying of CRISPR gene-editing and stem cell research isn't just bolstering therapeutic developments in HIV. An ongoing clinical trial is evaluating the safety and efficacy of autologous CRISPR-Cas9 modified CD34+ HSPCs for the treatment of transfusion-dependent -thalassemia, a genetic blood disorder that causes hemoglobin deficiency.
The therapeutic approach known as CTX001 involves extracting a patients HSPCs and using CRISPR-Cas9 to modify the cells at the erythroid lineage-specific enhancer of the BCL11A gene. The genetically modified cells are then infused back into the patient's body, where they produce large numbers of red blood cells that contain fetal hemoglobin. Currently no results are available, but reports confirm that participants have been recruited on to the trial.
A bright future
Our understanding of cell biology and diseased states has been majorly enhanced by the combined use of CRISPR technology and stem cells. Whilst this article has focused on current study examples, Zhang et al.'s recent review provides a comprehensive view of the field and insights provided by earlier studies.5
In such review, the authors comment "Undoubtedly, the CRISPR/Cas9 genome-editing system has revolutionarily changed the fundamental and translational stem cell research." Solutions are still required to resolve the notorious off-target effects of CRISPR technology, to improve the editing efficiency as outlined by Deng and to exploit novel delivery strategies that are safe for clinical stem cell studies. Nonetheless, the future looks bright for CRISPR and stemcell-based research. In their review published this month, Bukhari and Mller say, "We expect CRISPR technology to be increasingly used in iPSC-derived organoids: protein function(subcellular localization, cell type specific expression, cleavage, and degradation) can be studied in developing as well as adult organoids under their native conditions."
References:
1. Jehuda, Shemer and Binah. 2018. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9. Stem Cell Reviews and Reports. DOI: 10.1007/s12015-018-9811-3.
2. Qi et al. 2013. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell. DOI: 10.1016/j.cell.2013.02.022
3. Tian et al. 2019. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron. https://doi.org/10.1016/j.neuron.2019.07.014.
4. Xu et al. 2019. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. The New England Journal of Medicine. DOI: 10.1056/NEJMoa1817426.
5. Zhang et al. 2019. CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy Nucleic Acids. DOI: 10.1016/j.omtn.
Read more from the original source:
Exploring the Latest in CRISPR and Stem Cell Research - Technology Networks
- Bone Marrow Stem Cells [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Stem cells in bone marrow are being used to treat EB [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Stem cells in bone marrow are being used to treat EB [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Peripheral Artery Disease: Can Progenitor Cells Help? [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Bone Marrow Producing Insulin [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Stem Cells Reversing Endothelial Senescence [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Peripheral Artery Disease: Can Progenitor Cells Help? [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Science behind Enhancing Adult Stem Cells for wellbeing [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Bone Marrow Stem Cell Applications [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Immune Modulation by Bone Marrow Mesenchymal Stem Cells [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Expansion of Stem Cells by Valproic Acid [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- STEM CELLS FOR MACULAR DEGENERATION Sam Smith's story.wmv [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- StemLife's First Cord Blood Stem Cell Transplant Recipient [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- Bone Marrow Differentiation to Heart? YES [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- STEM CELLS FOR OTHER USES Interview with Sam Smith.wmv [Last Updated On: June 29th, 2011] [Originally Added On: June 29th, 2011]
- StemLife's First Cord Blood Stem Cell Transplant Recipient [Last Updated On: June 30th, 2011] [Originally Added On: June 30th, 2011]
- Bone marrow transplantation HD, ENG subtitles [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Cord Blood and Bone Marrow Stem Cells for Liver Failure [Last Updated On: July 4th, 2011] [Originally Added On: July 4th, 2011]
- Bone Marrow Stem Cell Applications [Last Updated On: July 4th, 2011] [Originally Added On: July 4th, 2011]
- Bone Marrow Producing Insulin [Last Updated On: July 5th, 2011] [Originally Added On: July 5th, 2011]
- Bone Marrow Stem Cell Donation [Last Updated On: July 6th, 2011] [Originally Added On: July 6th, 2011]
- Adult Stem Cells May Target and Repair Heart Attack Damage [Last Updated On: July 6th, 2011] [Originally Added On: July 6th, 2011]
- Stem cells used for medical treatment [Last Updated On: July 7th, 2011] [Originally Added On: July 7th, 2011]
- Bone marrow transplantation HD, ENG subtitles [Last Updated On: July 8th, 2011] [Originally Added On: July 8th, 2011]
- Adult Stem Cells May Target and Repair Heart Attack Damage [Last Updated On: July 8th, 2011] [Originally Added On: July 8th, 2011]
- From Surgical Repair to Stem Cell Repair: A Surgeon's Journey by Leonard Smith MD, FACS [Last Updated On: July 13th, 2011] [Originally Added On: July 13th, 2011]
- STEM CELLS - Bone Marrow Stem Cells (Balzitt).flv [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- Spirulina DLA Naturals [Last Updated On: July 15th, 2011] [Originally Added On: July 15th, 2011]
- Spirulina DLA Naturals [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- Insidermedicine In 60 - January 6, 2011 [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- Christian Drapeau Talk About - Adult Stem Cells and StemEnhance./StemTech [Last Updated On: July 18th, 2011] [Originally Added On: July 18th, 2011]
- The potential of stem cells [Last Updated On: July 18th, 2011] [Originally Added On: July 18th, 2011]
- Insidermedicine In 60 - March 11, 2011 [Last Updated On: July 20th, 2011] [Originally Added On: July 20th, 2011]
- Blind Girl get's cure you need to see to believe" [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- STEM CELLS - Bone Marrow Stem Cells (Balzitt).flv [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- Expansion of Stem Cells by Valproic Acid [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- Blind Girl get's cure you need to see to believe" [Last Updated On: July 24th, 2011] [Originally Added On: July 24th, 2011]
- LifeCell in Kalaignar Seithigal,Sun News [Last Updated On: July 26th, 2011] [Originally Added On: July 26th, 2011]
- Science behind Enhancing Adult Stem Cells for wellbeing [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- Why treatment results vary after stem cell treatment [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- From Surgical Repair to Stem Cell Repair: A Surgeon's Journey by Leonard Smith MD, FACS [Last Updated On: August 3rd, 2011] [Originally Added On: August 3rd, 2011]
- Insidermedicine In 60 - March 11, 2011 [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Why STEM-Enhance? [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Stem cells Transplatation in Completed Paralyze Dog. [Last Updated On: August 12th, 2011] [Originally Added On: August 12th, 2011]
- Stem cells Transplatation in Completed Paralyze Dog. [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Best natural skin care serum using stem cell technology [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- "Bone Marrow Stem Cells" Donald Kohn [Last Updated On: August 29th, 2011] [Originally Added On: August 29th, 2011]
- The potential of stem cells [Last Updated On: August 31st, 2011] [Originally Added On: August 31st, 2011]
- Manatee man is paralyzed, but still plenty hopeful [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- Stem Cells and Bone Marrow Transplants by Dipnarine Maharaj MD PhD [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- MS Cure - Introduction to stem cell bone marrow transplant in Australia [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Bone Marrow/Stem Cell Transplantation: An Introduction, With Sonali Smith, MD [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cancer Update: Autologus Stem Cell (Bone Marrow) Transplant [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Bone Marrow Stem Cell Transplant Live from Top US Hospital [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Adult Stem Cell Mobilization from Bone Marrow (Animation) [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Bone Marrow / Stem Cell Transplant Recovery Fund [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Bone Marrow Stem Cell Expansion by HOXB4 and p21 Knock Out [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Adult Stem Cell Mobilization from Bone Marrow (Animation) [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Bone Marrow/Stem Cell Transplant [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Bone Marrow/Stem Cell Transplant [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Macular Degeneration Improved With Stem Cells [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cell Transplant India,Bone Marrow Transplant India,Sickle Cell Anemia Treatment India [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Nurses Discuss Special Bonds With Bone Marrow and Stem Cell Transplant Patients [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Becoming a Blood Stem Cell Donor [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Bone Marrow and Stem Cell Transplant Patients Share Their Stories [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- LittleBigPlanet 2 - (WIP) Stem Cell Sackboy Bone Marrow Bugaloo [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- LittleBigPlanet 2 - Stem Cell Sackboy Quarter 4 Update (Bone Marrow Bugaloo) [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- Bone Marrow Transplant Program Continues to Grow, Make a Difference [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Can Stem Cell Prolotherapy or Bone Marrow Prolotherapy help articular cartilage defects? [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Multiple Sclerosis, Stem Cells, and Hope, Part 2 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Bone Marrow Transplant Program Continues to Grow, Make a Difference [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- How to be an Anthony Nolan blood stem cell donor [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cells extracted from bone marrow [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Calum's stem cell donation for Anthony Nolan [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cancer Update: Autologus Stem Cell (Bone Marrow) Transplant [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Bone Marrow - Stem Cell Prolotherapy [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Bone Marrow Stem Cell Aspiration and Re-Injection with PRP for Osteoarthritis by Dr Adelson [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Mesenchymal stem cells and marrow stromal cells---2nd--- [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Stem Cell Injections - Bone Marrow Prolotherapy - treatment for arthritis [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Chat w/ Dr. Maharaj, founder of S. FL. Bone Marrow/Stem Cell Transplant Institute [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]