New tool determines leukemia cells’ ‘readiness to die,’ may guide clinical care

Posted: October 11, 2012 at 5:26 pm

Public release date: 11-Oct-2012 [ | E-mail | Share ]

Contact: Teresa Herbert teresa_herbert@dfci.harvard.edu 617-632-4090 Dana-Farber Cancer Institute

Researchers at Dana-Farber Cancer Institute have developed a novel method for determining how ready acute myeloid leukemia (AML) cells are to die, a discovery that may help cancer specialists to choose treatments option more effectively for their patients who have AML. In a study published in the Oct. 12 issue of the journal Cell, the researchers report that their findings may lead to improved tests to predict which patients successfully treated for AML can continue in remission with standard chemotherapy alone, and which patients are likely to relapse despite additional treatment, but might benefit from a bone marrow transplant.

Anthony Letai, MD, PhD, senior author of the paper, said the study's results also help to explain the "therapeutic index" of AML chemo drugs: That is, how a patient's normal blood-forming stem cells can survive chemotherapy doses that kill the leukemia cells.

Unlike current predictive tools, the new method determines the degree to which an individual patient's AML cells are "primed to die" by apoptosis, or programmed cell death. Chemotherapy is more effective when the cancer cells are well along the path to self-destruction, while patients with less-primed leukemia cells are more likely to suffer fatal relapse without a bone marrow transplant, said the researchers.

"Our data suggest that applying our assay in addition to conventional indicators yields a much better predictive tool," said Letai. "We plan to confirm this in independent experiments, and then test its performance prospectively in clinical trials to see if we can use it to do a better job of assigning individualized therapy in AML."

According to the American Cancer Society, an estimated 13,780 cases of AML will be diagnosed in the United States this year, and more than 10,000 people are expected to die from AML, making it the most lethal form of leukemia in the U.S.

Currently, clinicians try to predict an AML patient's outcome by assessing the cancer cells' pathological features and whether the cells contain certain mutations that suggest a poorer response. But these indicators do not provide a biological explanation for patients' differing responses to treatment, noted Letai.

The method described in the new study takes a different approach, first described by Letai in 2011 paper. It employs a technique called "BH3 profiling" to measure the readiness of mitochondria tiny organelles within the cell to unleash chemical compounds that cause the cell to destroy itself. The self-destruction process, called apoptosis, is triggered by "death molecules," whose mission is to eliminate unneeded or dangerously damaged cells from the body. The study's authors called this readiness for apoptotic self-destruction "mitochondrial priming."

BH3 profiling involves exposing cancer cells to BH3 molecules, which mimic the protein death signals in the body. If the cancer cells' mitochondria membrane is rapidly and easily disrupted, then the cells are considered to be highly primed for death. If the mitochondria strongly resist the disruption, the leukemia cells are further from self-destruction and less likely to respond to chemotherapy.

Excerpt from:
New tool determines leukemia cells' 'readiness to die,' may guide clinical care

Related Posts

Comments are closed.

Archives