Seattle Genetics and Merck Announce Two Strategic Oncology Collaborations – BioSpace
Posted: September 14, 2020 at 7:55 pm
Sept. 14, 2020 10:45 UTC
BOTHELL, Wash. & KENILWORTH, N.J.--(BUSINESS WIRE)-- Seattle Genetics, Inc. (Nasdaq: SGEN) and Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced two new strategic oncology collaborations.
This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200914005237/en/
The companies will globally develop and commercialize Seattle Genetics ladiratuzumab vedotin, an investigational antibody-drug conjugate (ADC) targeting LIV-1, which is currently in phase 2 clinical trials for breast cancer and other solid tumors. The collaboration will pursue a broad joint development program evaluating ladiratuzumab vedotin as monotherapy and in combination with Mercks anti-PD-1 therapy KEYTRUDA (pembrolizumab) in triple-negative breast cancer, hormone receptor-positive breast cancer and other LIV-1-expressing solid tumors. Under the terms of the agreement, Seattle Genetics will receive a $600 million upfront payment and Merck will make a $1.0 billion equity investment in 5.0 million shares of Seattle Genetics common stock at a price of $200 per share. In addition, Seattle Genetics is eligible for progress-dependent milestone payments of up to $2.6 billion.
Separately, Seattle Genetics has granted Merck an exclusive license to commercialize TUKYSA (tucatinib), a small molecule tyrosine kinase inhibitor, for the treatment of HER2-positive cancers, in Asia, the Middle East and Latin America and other regions outside of the U.S., Canada and Europe. Seattle Genetics will receive $125 million from Merck as an upfront payment and is eligible for progress-dependent milestones of up to $65 million.
Collaborating with Merck on ladiratuzumab vedotin will allow us to accelerate and broaden its development program in breast cancer and other solid tumors, including in combination with Mercks KEYTRUDA, while also positioning us to leverage our U.S. and European commercial operations, said Clay Siegall, Ph.D., President and Chief Executive Officer of Seattle Genetics. The strategic collaboration for TUKYSA will help us reach more patients globally and benefit from the established commercial strength of one of the worlds premier pharmaceutical companies.
These two strategic collaborations will enable us to further diversify Mercks broad oncology portfolio and pipeline, and to continue our efforts to extend and improve the lives of as many patients with cancer as possible, said Dr. Roger M. Perlmutter, President, Merck Research Laboratories. We look forward to working with the team at Seattle Genetics to advance the clinical program for ladiratuzumab vedotin, which has shown compelling signals of efficacy in early studies, and to bring TUKYSA to even more patients with cancer around the world.
Ladiratuzumab Vedotin Collaboration Details
Under the terms of the agreement, Seattle Genetics and Merck will collaborate and equally share costs on the global development of ladiratuzumab vedotin and other LIV-1-targeting ADCs. The companies have agreed to jointly develop and share future costs and profits for ladiratuzumab vedotin on a 50:50 basis worldwide. Merck will pay Seattle Genetics $600 million upfront and make a $1.0 billion equity investment in 5.0 million shares of Seattle Genetics common stock at a price of $200 per share. In addition, Seattle Genetics will be eligible to receive up to $2.6 billion in milestone payments, including $850 million in development milestones and $1.75 billion in sales milestones.
The companies will jointly develop and commercialize ladiratuzumab vedotin and equally share profits worldwide. The companies will co-commercialize in the U.S. and Europe. Seattle Genetics will be responsible for marketing applications for approval in the U.S. and Canada, and will record sales in the U.S., Canada and Europe. Merck will be responsible for marketing applications for approval in Europe and in countries outside the U.S. and Canada, and will record sales in countries outside the U.S., Europe and Canada. Including the upfront payment, equity investment proceeds and potential milestone payments, Seattle Genetics is eligible to receive up to $4.2 billion.
The closing of the equity investment is contingent on completion of review under the Hart-Scott-Rodino Antitrust Improvements Act of 1976 (HSR Act).
TUKYSA Collaboration Details
Under the terms of the agreement, Merck has been granted exclusive rights to commercialize TUKYSA in Asia, the Middle East and Latin America and other regions outside of the U.S., Canada and Europe. Seattle Genetics retains commercial rights and will record sales in the U.S., Canada and Europe. Merck will be responsible for marketing applications for approval in its territory, supported by the positive results from the HER2CLIMB clinical trial.
Merck will also co-fund a portion of the TUKYSA global development plan, which encompasses several ongoing and planned trials across HER2-positive cancers, including breast, colorectal, gastric and other cancers set forth in a global product development plan. Seattle Genetics will continue to lead ongoing TUKYSA global development planning and operational execution. Merck will solely fund and conduct country-specific clinical trials necessary to support anticipated regulatory applications in its territory.
Seattle Genetics will receive from Merck $125 million as an upfront payment and is eligible to receive progress-dependent milestones of up to $65 million. Seattle Genetics will also receive $85 million in prepaid research and development payments to be applied to Mercks global development funding obligations. In addition, Seattle Genetics would receive tiered royalties on sales of TUKYSA in Mercks territory.
The financial impact of these collaborations is not included in Seattle Genetics 2020 guidance.
Seattle Genetics Conference Call Details
Seattle Genetics management will host a conference call to discuss these collaborations today at 6:00 a.m. Pacific Time (PT); 9:00 a.m. Eastern Time (ET). The event will be simultaneously webcast and available for replay from the Seattle Genetics website at http://www.seattlegenetics.com, under the Investors section. Investors may also participate in the conference call by calling 844-763-8274 (domestic) or +1 412-717-9224 (international). The conference ID is 10147850.
About Ladiratuzumab Vedotin
Ladiratuzumab vedotin is a novel investigational ADC targeted to LIV-1. Most metastatic breast cancers express LIV-1, which also has been detected in several other cancers, including lung, head and neck, esophageal and gastric. Ladiratuzumab vedotin utilizes Seattle Genetics proprietary ADC technology and consists of a LIV-1-targeted monoclonal antibody linked to a potent microtubule-disrupting agent, monomethyl auristatin E (MMAE) by a protease-cleavable linker. This novel ADC is designed to bind to LIV-1 on cancer cells and release the cell-killing agent into target cells upon internalization. Ladiratuzumab vedotin may also cause antitumor activity through other mechanisms, including activation of an immune response by induction of immunogenic cell death.
About TUKYSA (tucatinib)
TUKYSA is an oral, small molecule tyrosine kinase inhibitor (TKI) of HER2, a protein that contributes to cancer cell growth. TUKYSA in combination with trastuzumab and capecitabine was approved by the U.S. Food and Drug Administration (FDA) in April 2020 for adult patients with advanced unresectable or metastatic HER2-positive breast cancer, including patients with brain metastases, who have received one or more prior anti-HER2-based regimens in the metastatic setting. In addition, TUKYSA received approval in Canada, Singapore, Australia and Switzerland under the Project Orbis initiative of the FDA Oncology Center of Excellence that provides a framework for concurrent submission and review of oncology products among international partners. A marketing application is under review in the European Union.
TUKYSA is being evaluated in several ongoing clinical trials and additional studies are planned. Current trials include the following:
For additional information, visit http://www.clinicaltrials.gov.
TUKYSA Important Safety Information
Warnings and Precautions
If diarrhea occurs, administer antidiarrheal treatment as clinically indicated. Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea. Based on the severity of the diarrhea, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Monitor ALT, AST, and bilirubin prior to starting TUKYSA, every 3 weeks during treatment, and as clinically indicated. Based on the severity of hepatoxicity, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Adverse Reactions
Serious adverse reactions occurred in 26% of patients who received TUKYSA. Serious adverse reactions in 2% of patients who received TUKYSA were diarrhea (4%), vomiting (2.5%), nausea (2%), abdominal pain (2%), and seizure (2%). Fatal adverse reactions occurred in 2% of patients who received TUKYSA including sudden death, sepsis, dehydration, and cardiogenic shock.
Adverse reactions led to treatment discontinuation in 6% of patients who received TUKYSA; those occurring in 1% of patients were hepatotoxicity (1.5%) and diarrhea (1%). Adverse reactions led to dose reduction in 21% of patients who received TUKYSA; those occurring in 2% of patients were hepatotoxicity (8%) and diarrhea (6%).
The most common adverse reactions in patients who received TUKYSA (20%) were diarrhea, palmar-plantar erythrodysesthesia, nausea, fatigue, hepatotoxicity, vomiting, stomatitis, decreased appetite, abdominal pain, headache, anemia, and rash.
Lab Abnormalities
In HER2CLIMB, Grade 3 laboratory abnormalities reported in 5% of patients who received TUKYSA were: decreased phosphate, increased ALT, decreased potassium, and increased AST. The mean increase in serum creatinine was 32% within the first 21 days of treatment with TUKYSA. The serum creatinine increases persisted throughout treatment and were reversible upon treatment completion. Consider alternative markers of renal function if persistent elevations in serum creatinine are observed.
Drug Interactions
Use in Specific Populations
For more information, please see the full Prescribing Information for TUKYSA here.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High or Mismatch Repair Deficient Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Tumor Mutational Burden-High
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.
Cutaneous Squamous Cell Carcinoma
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
The rest is here:
Seattle Genetics and Merck Announce Two Strategic Oncology Collaborations - BioSpace
- The Beating Heart (Cardiac) Cells [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- cellalign [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Okamoto placenta-derived cardiomyocytes [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Cardiac Stem Cell Therapy [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Wow! UW Research labs [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Cardiac Stem Cell Therapy [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- cellalign [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Insidermedicine In 60 - August 4, 2011 [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 28th, 2011] [Originally Added On: August 28th, 2011]
- Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Davos Question: Stem Cell Answer [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Stem Cell Therapy in Cardiac Disease [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Stem Cells: Mending a broken heart? [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: September 8th, 2011] [Originally Added On: September 8th, 2011]
- Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cell Therapy in Cardiac Disease [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cells and Cardiac Regeneration [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- First US Patient In Stem Cell Transplant [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cell Heart Surgery must see [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Beating cardiac myocytes from differentiated mouse iPSC. [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 20100804_axiogenesis.wmv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cardiac Tissue Can Regenerate [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Adult Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Beating cardiomyocyte monolayer [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 2010 - 2011 UConn Highlight Reel [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- William F. Testimonial of Treatment Stem Cell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- BeatingCM_on_MEA.wmv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Beating cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Repairing Damaged Hearts with Stem Cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Heart cells grown from human embryonic stem cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- CytoTune iPSCs - Cardiomyocytes [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Becoming Bionic: The Little Book of Hope for Heart Patients Runblog ("Dress the Part") [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- H9 Cardiac EBs.mov [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Human 2.0: The Helix of Our Future [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 2nd, 2011] [Originally Added On: October 2nd, 2011]
- Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- Cardiac Stem Cell Therapy - How it works [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]