Stem Cells International | Hindawi
Posted: November 10, 2022 at 1:55 am
Research Article
09 Nov 2022
Aucubin Impeded Preosteoclast Fusion and Enhanced CD31hi EMCNhi Vessel Angiogenesis in Ovariectomized Mice
Ziyi Li|Chang Liu|...|Peng Xue
Osteogenesis is tightly correlated with angiogenesis during the process of bone development, regeneration, and remodeling. In addition to providing nutrients and oxygen for bone tissue, blood vessels around bone tissue also secrete some factors to regulate bone formation. Type H vessels which were regulated by platelet-derived growth factor-BB (PDGF-BB) were confirmed to couple angiogenesis and osteogenesis. Recently, preosteoclasts have been identified as the most important source of PDGF-BB. Therefore, inhibiting osteoclast maturation, improving PDGF-BB secretion, stimulating type H angiogenesis, and subsequently accelerating bone regeneration may be potent treatments for bone loss disease. In the present study, aucubin, an iridoid glycoside extracted from Aucuba japonica and Eucommia ulmoides, was found to inhibit bone loss in ovariectomized mice. We further confirmed that aucubin could inhibit the fusion of tartrate-resistant acid phosphatase (TRAP)+ preosteoclasts into mature osteoclasts and indirectly increasing angiogenesis of type H vessel. The underlying mechanism is the aucubin-induced inhibition of MAPK/NF-B signaling, which increases the preosteoclast number and subsequently promotes angiogenesis via PDGF-BB. These results prompted that aucubin could be an antiosteoporosis drug candidate, which needs further research.
Review Article
07 Nov 2022
The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells
Jing Zhang|Wentao Zhang|...|Zhonghai Li
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Research Article
07 Nov 2022
CD44v6+ Hepatocellular Carcinoma Cells Maintain Stemness Properties through Met/cJun/Nanog Signaling
Wei Chen|Ronghua Wang|...|Bin Cheng
Cancer stem cells (CSCs) are characterized by their self-renewal and differentiation abilities. CD44v6 is a novel CSC marker that can activate various signaling pathways. Here, we hypothesized that the HGF/Met signaling pathway promotes stemness properties in CD44v6+ hepatocellular carcinoma (HCC) cells via overexpression of the transcription factor, cJun, thus representing a valuable target for HCC therapy. Magnetic activated cell sorting was used to separate the CD44v6+ from CD44v6- cells, and Met levels were regulated using lentiviral particles and the selective Met inhibitor, PHA665752. An orthotopic liver xenograft tumor model was used to assess the self-renewal ability of CD44v6+ cells in immunodeficient NOD/SCID mice. Luciferase reporter and chromatin immunoprecipitation assays were also conducted using cJun-overexpressing 293 T cells to identify the exact binding site of cJun in the Nanog promoter. Our data demonstrate that CD44v6 is an ideal surface marker of liver CSCs. CD44v6+ HCC cells express higher levels of Met and possess self-renewal and tumor growth abilities. Xenograft liver tumors were smaller in nude mice injected with shMet HCC cells. Immunohistochemical analysis of liver tissue specimens revealed that high Met levels in HCC cells were associated with poor patient prognosis. Further, a cJun binding site was identified 1700 bp upstream of the Nanog transcription start site and mutation of the cJun binding site reduced Nanog expression. In conclusion, the HGF/Met signaling pathway is important for maintenance of stemness in CD44v6+ HCC cells by enhancing expression of cJun, which binds 1700 bp upstream of the Nanog transcription start site.
Research Article
26 Oct 2022
Stage-Dependent Regulation of Dental Pulp Stem Cell Odontogenic Differentiation by Transforming Growth Factor-1
Yu Bai|Xin Liu|...|Wenxi He
Transforming growth factor-1 (TGF-1) is an important multifunctional cytokine with dual effects on stem cell differentiation. However, the role of TGF-1 on odontogenic differentiation of dental pulp stem cells (DPSCs) remains to be entirely elucidated. In the present study, we initially investigated the effect of TGF-1 at a range of concentrations (0.1-5ng/mL) on the proliferation, cell cycle, and apoptosis of DPSCs. Subsequently, to determine the effect of TGF-1 on odontogenic differentiation, alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining assays at different concentrations and time points were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were used to determine the levels of odonto-/osteo-genic differentiation-related gene and protein expression, respectively. For in vivo studies, newly formed tissue was assessed by Massons trichrome and von Kossa staining. Data indicated that TGF-1 inhibited DPSCs proliferation in a concentration-and time-dependent manner () and induced cell cycle arrest but did not affect apoptosis. ALP activity was enhanced, while ARS reduced gradually with increasing TGF-1 concentrations, accompanied by increased expression of early marker genes of odonto-/osteo-genic differentiation and decreased expression of late-stage mineralization marker genes (). ALP expression was elevated in the TGF-1-treatment group until 14 days, and the intensity of ARS staining was attenuated at days 14 and 21 (). Compared with the control group, abundant collagen but no mineralized tissues were observed in the TGF-1-treatment group in vivo. Overall, these findings indicate that TGF-1 promotes odontogenic differentiation of DPSCs at early-stage while inhibiting later-stage mineralization processes.
Research Article
20 Oct 2022
miR-31 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviates Intervertebral Disc Degeneration by Inhibiting NFAT5 and Upregulating the Wnt/-Catenin Pathway
Baodong Wang|Na Xu|...|Yang Cao
In this study, we explored the regulatory mechanism of intervertebral disc degeneration (IDD) that involves miR-31 shuttled by bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) and its downstream signaling molecules. Nucleus pulposus cells (NPCs) were isolated and treated with TNF- to simulate IDD in vitro. The TNF--exposed NPCs were then cocultured with hBMSCs or hBMSC-EVs in vitro to detect the effects of hBMSC-EVs on NPC viability, apoptosis, and ECM degradation. Binding between miR-31 and NFAT5 was determined. A mouse model of IDD was prepared by vertebral disc puncture and injected with EVs from hBMSCs with miR-31 knockdown to discern the function of miR-31 in vivo. The results demonstrated that hBMSC-EVs delivered miR-31 into NPCs. hBMSC-EVs enhanced NPC proliferation and suppressed cell apoptosis and ECM degradation, which was associated with the transfer of miR-31 into NPCs. In NPCs, miR-31 bound to the 3UTR of NFAT5 and inhibited NFAT5 expression, leading to activation of the Wnt/-catenin pathway and thus promoting NPC proliferation and reducing cell apoptosis and ECM degradation. In addition, miR-31 in hBMSC-EVs alleviated the IDD in mouse models. Taken together, miR-31 in hBMSC-EVs can alleviate IDD by targeting NFAT5 and activating the Wnt/-catenin pathway.
Review Article
20 Oct 2022
Variability in Platelet-Rich Plasma Preparations Used in Regenerative Medicine: A Comparative Analysis
Raghvendra Vikram Tey|Pallavi Haldankar|...|Ravindra Maradi
Background. Platelet-rich plasma (PRP) and its derivatives are used in several aesthetic, dental, and musculoskeletal procedures. Their efficacy is primarily due to the release of various growth factors (GF), interleukins, cytokines, and white blood cells. However, the PRP preparation methods are highly variable, and studies lack consistency in reporting complete procedures to prepare PRP and characterize PRP and its derivatives. Also, all the tissue-specific (in vivo and in vitro) interactions and functional properties of the various derivatives/factors of the PRP have not been taken into consideration by any study so far. This creates a potential space for further standardization of the PRP preparation methods and customization of PRP/PRP derivatives targeted at tissue-specific/pathology specific requirements that would enable efficacious and widely acceptable usage of PRP as main therapy, rather than being used as adjuvant therapy. The main objective of our study was to investigate the variability in PRP preparation methods and to analyze their efficacy and reliability. Method. This study considered articles published in the last 5 years, highlighting the variability in their PRP preparation methods and characterization of PRP. Following the PRISMA protocol, we selected 13 articles for the study. The selected articles were assessed using NHLBI quality assessment tool. Results. We noted differences in (1) approaches to producing PRP, (2) extent of characterization of PRP, (3) small scale and large-scale preparation methods, (4) in vitro and in vivo studies. Conclusion. We identified two studies describing the procedures which are simple, reproducible, economical, provide a good yield of platelets, and therefore can be considered methods for further tissue-specific and pathology-specific standardizations of PRP and its derivatives. We recommend further randomized studies to understand the full therapeutic potential of the constituents of PRP and its derivatives.
See the rest here:
Stem Cells International | Hindawi
- The Beating Heart (Cardiac) Cells [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- cellalign [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- Okamoto placenta-derived cardiomyocytes [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Cardiac Stem Cell Therapy [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Wow! UW Research labs [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Cardiac Stem Cell Therapy [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- cellalign [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Insidermedicine In 60 - August 4, 2011 [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 28th, 2011] [Originally Added On: August 28th, 2011]
- Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Davos Question: Stem Cell Answer [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Stem Cell Therapy in Cardiac Disease [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Stem Cells: Mending a broken heart? [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: September 8th, 2011] [Originally Added On: September 8th, 2011]
- Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Stem Cell Therapy in Cardiac Disease [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Stem Cells and Cardiac Regeneration [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- First US Patient In Stem Cell Transplant [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cell Heart Surgery must see [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Beating cardiac myocytes from differentiated mouse iPSC. [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 20100804_axiogenesis.wmv [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cardiac Tissue Can Regenerate [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Adult Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Beating cardiomyocyte monolayer [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 2010 - 2011 UConn Highlight Reel [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- William F. Testimonial of Treatment Stem Cell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- BeatingCM_on_MEA.wmv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- Beating cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Repairing Damaged Hearts with Stem Cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Heart cells grown from human embryonic stem cells [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- CytoTune iPSCs - Cardiomyocytes [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Becoming Bionic: The Little Book of Hope for Heart Patients Runblog ("Dress the Part") [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- H9 Cardiac EBs.mov [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Human 2.0: The Helix of Our Future [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 2nd, 2011] [Originally Added On: October 2nd, 2011]
- Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- Cardiac Stem Cell Therapy - How it works [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]