Page 11«..10111213..2030..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Cancer requires more tutoring, with Meyer continuing to Teaching Cancer a lesson – News – vintontoday.com

Photos (3) View All

Click to view a previous story about Carly's battle.

October 30th brought a second challenge to Vinton-Shellsburg Kindergarten teacher, Carly Meyer. After battling her first round of leukemia, she suffered another relapse with a second diagnosis of leukemia.

"I thought I was done with these updates... but should have known 2020 wasnt done messing stuff up yet!" Carly shared. "For those of you who don't know, I was diagnosed with Acute Myeloid Leukemia in August 2019 and completed chemo treatments in December 2019, but unfortunately my lab results on October 30, showed some "blasts", which are the cancerous cells in my blood." She explained back in November that her lab results also showed that my WBC's the infection fighting cells, were very low.

At the beginning of November, she had another bone marrow biopsy which Wes, her husband believes is her 6th. She was then admitted to the University of Iowa Hospital for a month long stay.

Carly finished up her 5 days of chemotherapy on November 11th with only a couple of side effects (fatigue and loss of appetite) which are a couple of the more common side effects with chemotherapy treatments. Unfortunately, she suffered from dehydration as well and this caused her to pass out a couple of times, and one of the falls caused her to hit her head. This of course triggered a trip for a CT Scan just to make sure she was alright, fortunately, she didn't have any side effects from the fall.

"It is fairly common for leukemia patients to spike fevers and to get random bugs because we are neutropenic and our body cant fight off simple things they normally would," Carly explained. She did come down with an infection during this time but it was able to be pinpointed and treated right away. On Thanksgiving, she was able to return home 10 days earlier from her hospital stay than had been anticipated,

Her journey continues to beat cancer with a trip back to the hospital at the end of December, to begin preparation for her bone marrow transplant. "My hero of a brother started getting shots December 30 to prep and will be donating his Stem Cells on Monday, January 4th." Carly explained how the process works. Her brother Kyle was hooked up to a machine she said it is similar to donating blood/plasma and that the procedure lasts for about 5 hours. Fortunately, her brother Kyle was a 100% perfect match to be her donor.

The stem cells were then put into her IV Powerline over about 30 minutes while they closely monitored Carly for any side effects. "Then its just a waiting game after that," she said.

After the transplant, Carly's immune system was down to zero. Unfortunately, it is common for SCT patients to spike fevers and even get an infection after transplant.

New Year, New Me has never rang more true than this year Carly said.

She is hoping to be home at the end of the week. She said that this last stay has been "extremely exhausting mentally and physically." Developing mucositis, extreme sores and pain in her mouth, it has made it very hard to eat or drink anything. Mucositis is very common after receiving the strong chemo that she received just before her bone marrow transplant. She is slowly recovering from this.

She said that she is excited to be coming home with her husband and fur-baby Maverick if all goes well, by the end of the week.

"I am so lucky to have an amazing support system (especially my husband) to get me through this tough time," she said.

Please keep the couple in your prayers as Carly continues to heal.

See the original post:
Cancer requires more tutoring, with Meyer continuing to Teaching Cancer a lesson - News - vintontoday.com

BrainStorm’s Covid-19 ARDS treatment improves lung function in study – Clinical Trials Arena

BrainStorm Cell Therapeutics has announced that its NurOwn (MSC-NTF cell) derived exosomes provided significant improvement in lung function and histology in an acute respiratory distress syndrome (ARDS) mouse model, in a preclinical study.

Mesenchymal stem cell (MSC)-derived exosomes can penetrate deep into tissues and deliver immunomodulatory molecules effectively.

A type of respiratory failure, ARDS is linked to Covid-19 and is mediated by dysregulated cytokine production.

Intratracheal administration of NurOwn derived exosomes provided a statistically significant reduction in lung disease severity score, the study data showed.

Furthermore, improvements in lipopolysaccharide (LPS)-induced ARDS markers like lung function, fibrin presence, neutrophil accumulation, cytokine expression and oxygenation levels in the blood, were observed.

These improvements were significantly superior to those noticed following nave MSC-derived exosome administration.

BrainStorm Research and Development vice-president Dr Revital Aricha said: These exciting preclinical data suggest that NurOwn derived exosomes have the potential to treat Covid-19-induced ARDS or other severe respiratory complications and that they are more effective than exosomes isolated from nave MSCs at combatting the various symptoms of the syndrome.

This publication in a highly regarded journal provides important validation for the scientific advances and significance of BrainStorms preclinical research programs, including on our exosome-based technology platform.

The NurOwn technology platform (autologous MSC-NTF cells) represents a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders.

GlobalData's TMT Themes 2021 Report tells you everything you need to know about disruptive tech themes and which companies are best placed to help you digitally transform your business.

MSC-NTF cells are made from autologous, bone marrow-derived MSCs expanded and separated ex vivo.

Brainstorm CEO Chaim Lebovits said: While our primary focus is on advancing NurOwn towards regulatory approval in ALS, we continue to evaluate the potential of our exosome-based platform to address unmet medical needs.

In December 2019, the company received a recommendation from the independent Data Safety Monitoring Board (DSMB) to continue the Phase II clinical trial of NurOwn in progressive multiple sclerosis patients.

Global Real Time Tracking and Monitoring Solutions for Clinical trials

28 Aug 2020

Software, Consulting and Workshops for Data Analysis and Model-Based Decision Support

28 Aug 2020

See the original post here:
BrainStorm's Covid-19 ARDS treatment improves lung function in study - Clinical Trials Arena

Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy – DocWire News

This article was originally published here

Stem Cell Res Ther. 2021 Jan 13;12(1):58. doi: 10.1186/s13287-020-02110-x.

ABSTRACT

INTRODUCTION: Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment.

METHODS: For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis.

RESULTS: Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups.

CONCLUSIONS: Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.

PMID:33436054 | DOI:10.1186/s13287-020-02110-x

Visit link:
Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy - DocWire News

Brave Evie Hodgson from Sleights finally has bone marrow transplant after one last ‘twist in the tale’ – Yorkshire Live

Brave youngster Evie Hodgson has finally undergone a life-saving bone marrow transplant after one last "twist in the tale" saw the delivery of the stem cells delayed.

Evie, eight, from Sleights near Whitby, began preparations for the transplant earlier this year and has now finally been given the "magic stem cells".

It's not been an easy journey for Evie and her family, who were devastated in August 2020 when a potential donor pulled out at the last minute, and they faced another sudden bump in the road prior to her receiving her first round of treatment today (Friday).

The operation for the eight-year-old was scheduled for 2pm yesterday (Thursday) at The Great Northern Children's Hospital in Newcastle but the cells got stuck in London after coronavirus "caused major issues to the flight schedule".

It meant that Evie and her family had to wait another day for the operation to go ahead, but her mother Tina gave an update today to say that they were "up and running" after what had been an "emotional experience".

She said earlier today: "We have fought so hard to get to this point and Evie is so happy. It really is wonderful.

"Evie's hero donated a phenomenal amount of stem cells so she gets two sittings. The second one will be around dinner time so she gets to do it all again."

The courageous pupil at Fyling Hall School, in Robin Hood's Bay, was diagnosed with aplastic anaemia, also known as bone marrow failure, last year during the start of the covid-19 pandemic.

The youngster captured the attention of the nation when her perfect donor pulled out at the last minute and her transplant hopes were dashed.

But Evie revealed it was " the best Christmas present ever" to find another donor in December.

The family have thanked everybody who has supported them, shared Evie's story and signed up to the stem cell register following their inspirational campaign.

You can join on the DKMS register, here, or through Anthony Nolan register, here.

A dedicated Facebook page has been set up to follow Evie's journey with aplastic anaemia, which you can follow here.

Here is the original post:
Brave Evie Hodgson from Sleights finally has bone marrow transplant after one last 'twist in the tale' - Yorkshire Live

Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine – Science Advances

Abstract

Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factorAB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissuederived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocytederived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.

The goal of regenerative medicine is to restore function by reconstituting dysfunctional tissues. Most tissues have a reservoir of tissue-resident stem cells with restricted cell fates suited to the regeneration of the tissue in which they reside (14). The innate regenerative capacity of a tissue is broadly related to the basal rate of tissue turnover, the health of resident stem cells, and the hostility of the local environment. Bone marrow transplants and tissue grafts are frequently used in clinical practice but for most tissues, harvesting and expanding stem and progenitor cells are currently not a viable option (5, 6). Given these constraints, research efforts have been focused on converting terminally differentiated cells into pluripotent or lineage-restricted stem cells (7, 8). However, tissues are often a complex mix of diverse cell types that are derived from distinct stem cells. Therefore, multipotent stem cells may have advantages over tissue-specific stem cells. To be of use in regenerative medicine, these cells would need to respond appropriately to regional cues and participate in context-dependent tissue regeneration without forming ectopic tissues or teratomas. Mesenchymal stem cells (MSCs) were thought to have some of these characteristics (911), but despite numerous ongoing clinical trials, evidence for their direct contribution to new tissue formation in humans is sparse, either due to the lack of sufficient means to trace cell fate in hosts in vivo or failure of these cells to regenerate tissues (12, 13).

We previously reported a method by which primary terminally differentiated somatic cells could be converted into multipotent stem cells, which we termed as induced multipotent stem (iMS) cells (14). These cells were generated by transiently culturing primary mouse osteocytes in medium supplemented with azacitidine (AZA; 2 days) and platelet-derived growth factorAB (PDGF-AB; 8 days). Although the precise mechanisms by which these agents promoted cell conversion was unclear, the net effect was reduced DNA methylation at the OCT4 promoter and reexpression of pluripotency factors (OCT4, KLF4, SOX2, c-MYC, SSEA-1, and NANOG) in 2 to 4% of treated osteocytes. iMS cells resembled MSCs with comparable morphology, cell surface phenotype, colony-forming unit fibroblast (CFU-F), long-term growth, clonogenicity, and multilineage in vitro differentiation potential. iMS cells also contributed directly to in vivo tissue regeneration and did so in a context-dependent manner without forming teratomas. In proof-of-principle experiments, we also showed that primary mouse and human adipocytes could be converted into long-term repopulating CFU-Fs by this method using a suitably modified protocol (14).

AZA, one of the agents used in this protocol, is a cytidine nucleoside analog and a DNA hypomethylating agent that is routinely used in clinical practice for patients with higher-risk myelodysplastic syndrome (MDS) and for elderly patients with acute myeloid leukemia (AML) who are intolerant to intensive chemotherapy (15, 16). AZA is incorporated primarily into RNA, disrupting transcription and protein synthesis. However, 10 to 35% of drug is incorporated into DNA resulting in the entrapment and depletion of DNA methyltransferases and suppression of DNA methylation (17). Although the relationship between DNA hypomethylation and therapeutic efficacy in MDS/AML is unclear, AZA is known to induce an interferon response and apoptosis in proliferating cells (1820). PDGF-AB, the other critical reprogramming agent, is one of five PDGF isoforms (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD), which bind to one of two PDGF receptors (PDGFR and PDGFR) (21). PDGF isoforms are potent mitogens for mesenchymal cells, and recombinant human (rh)PDGF-BB is used as an osteoinductive agent in the clinic (22). PDGF-AB binds preferentially to PDGFR and induces PDGFR- homodimers or PDGFR- heterodimers. These are activated by autophosphorylation to create docking sites for a variety of downstream signaling molecules (23). Although we have previously demonstrated induction of CFU-Fs from human adipocytes using PDGF-AB/AZA (14), the molecular changes, which underlie conversion, and the multilineage differentiation potential and in vivo regenerative capacity of the converted cells have not been determined.

Here, we report an optimized PDGF-AB/AZA treatment protocol that was used to convert primary human adipocytes, a tissue source that is easily accessible and requires minimal manipulation, from adult donors aged 27 to 66 years into iMS cells with long-term repopulating capacity and multilineage differentiation potential. We also report the molecular landscape of these human iMS cells along with that of MSCs derived from matched adipose tissues and the comparative in vivo regenerative and teratogenic potential of these cells in mouse xenograft models.

Primary mature human adipocytes were harvested from subcutaneous fat (Fig. 1A and table S1) and their purity confirmed by flow cytometry with specific attention to the absence of contaminating adipose-derived MSCs (AdMSCs) (fig. S1, A and B). As previously described (14), plastic adherent adipocytes were cultured in Alpha Minimum Essential Medium (MEM) containing rhPDGF-AB (200 ng/ml) and 20% autologous serum (AS) with and without 10 M AZA for 2 and 23 days, respectively (Fig. 1A). During daily observations, unilocular lipid globules were observed to fragment within adipocytes ~day 10 with progressive extrusion of fat into culture medium, coincident with changes in cell morphology (movie S1). Consistent with these observations, when fixed and stained with Oil Red O, adipocytes that were globular in shape at the start of culture resembled lipid laden stromal cells at day 12 and lipid-free stromal cells at day 25 (Fig. 1B).

(A) Generation and reprogramming of adipocytes. (B) Oil Red Ostained adipocytes (days 0, 12, and 25) during treatment with recombinant human platelet-derived growth factorAB (rhPDGF-AB) and AZA. (C) Flow cytometry plots of LipidTOX and PDGFR in adipocytes cultured as in (A). (D) CFU-F counts from treated and untreated adipocytes during conversion. (E) CFU-F counts from adipocytes treated (Rx) with indicated combinations of rhPDGF-AB, AZA, fetal calf serum (FCS), autologous serum (AS), or serum-free media (SFM). (F) CFU-F counts from adipocytes reprogrammed in the presence of 0, 1, or 10 M PDGFR/ inhibitor AG1296. (G) CFU-F counts per 400 reprogrammed adipocytes from three donor age groups (n = 3 for each) generated using indicated combinations of rhPDGF-AB and AZA. (H) Long-term growth of reprogrammed adipocytes from three donor age groups (n = 3 for each) generated using indicated combinations of rhPDGF-AB and AZA. (I) Long-term growth of iMS cells cultured in SFM or media supplemented with FCS, autologous, or allogeneic serum. Error bars indicate SD, n = 3; *P < 0.05, **P < 0.01, and ***P < 0.0001 calculated using either a Students t test (E and F) or a linear mixed model (H). Photo credit: Avani Yeola, UNSW Sydney.

To evaluate these changes in individual cells, we performed flow cytometry at multiple time points during treatment and probed for adipocyte (LipidTOX) (24) and stromal cell characteristics [PDGFR expression (25); Fig. 1C]. A subpopulation of adipocytes, when cultured in media supplemented with PDGF-AB/AZA and AS (Fig. 1C, top; treated), showed reduced LipidTOX staining intensity at day 10, with progressive reduction and complete absence in all cells by day 19. Adipocytes cultured in the absence of PDGF-AB/AZA retained LipidTOX staining, albeit with reduced intensity (Fig. 1C, bottom; untreated). Adipocytes expressed PDGFR [fig. S1C, (i) and (ii)] but not PDGFR (Fig. 1C) at day 0 but both the frequency and intensity of PDGFR staining increased from day 21. To record these changes in real time, we also continuously live-imaged treated adipocytes from days 15 to 25 and recorded the extrusion of fat globules, change in cell morphology from globular to stromal, and acquisition of cell motility and cell mitosis (movie S1 and fig. S1D). Intracellular fragmentation of fat globules was observed over time in untreated adipocytes (fig. S1E), consistent with variable LipidTOX staining intensity. CFU-F capacity was absent at day 10, present in day 15 cultures, and tripled by day 19 with no substantial increase at days 21, 23, and 25 (Fig. 1D). It is noteworthy that CFU-F potential was acquired before PDGFRA surface expression when adipocytes had started to display stromal cell morphology and had diminished fat content. There was also no CFU-F capacity in adipocytes cultured in MEM with fetal calf serum (FCS) or AS, unless supplemented with both PDGF-AB and AZA. CFU-F capacity was significantly higher with AS than with FCS and absent in serum-free media (SFM) (Fig. 1E and fig. S1F). As previously shown with reprogramming of murine osteocytes, there was dose-dependent inhibition of CFU-F capacity when AG1296, a potent nonselective PDGF receptor tyrosine kinase inhibitor (26), was added to the reprogramming media (Fig. 1F).

To evaluate the impact of patient age and concentrations of PDGF-AB and AZA on the efficiency of human adipocyte conversion, we harvested subcutaneous fat from donors aged 40 (n = 3), 41 to 60 (n = 3), and 61 (n = 3) years and subjected each to three different concentrations of PDGF-AB (100, 200, and 400 ng/ml) and three different concentrations of AZA (5, 10, and 20 M) (Fig. 1G). Although all combinations supported cell conversion in all donors across the three age groups, rhPDGF-AB (400 ng/ml) and 5 M AZA yielded the highest number of CFU-Fs (Fig. 1G). When these cultures were serially passaged in SFM (with no PDGF-AB/AZA supplementation, which was used for cell conversion only), adipocytes converted with reprogramming media containing rhPDGF-AB (400 ng/ml) and 5 M AZA were sustained the longest (Fig. 1H, fig. S2A, and table S2). The growth plateau that was observed even with these cultures [i.e., adipocytes converted with rhPDGF-AB (400 ng/ml) and 5 M AZA when expanded in SFM or FCS] was overcome when cells were expanded in either autologous or allogeneic human serum (Fig. 1I). The genetic stability of human iMS cells (RM0072 and RM0073) was also assessed using single-nucleotide polymorphism arrays and shown to have a normal copy number profile at a resolution of 250 kb (fig. S2B). Together, these data identify an optimized protocol for converting human primary adipocytes from donors across different age groups and show that these can be maintained long term in culture.

Given the stromal characteristics observed in human adipocytes treated with PDGF-AB/AZA (Fig. 1), we performed flow cytometry to evaluate their expression of MSC markers CD73, CD90, CD105, and STRO1 (13) and noted expression levels comparable to AdMSCs extracted from the same subcutaneous fat harvest (Fig. 2A). Primary untreated adipocytes (day 25 in culture) did not express any of these MSC markers (fig. S3A). The global transcriptomes of iMS cells and matched AdMSCs were distinct from untreated control adipocytes but were broadly related to each other [Fig. 2B, (i) and (ii)]. Ingenuity pathway analysis (IPA) using genes that were differentially expressed between AdMSCs versus adipocytes [3307 UP/4351 DOWN in AdMSCs versus adipocytes; false discovery rate (FDR) 0.05] and iMS versus adipocytes (3311 UP/4400 DOWN in iMS versus adipocytes; FDR 0.05) showed changes associated with gene expression, posttranslational modification, and cell survival pathways and organismal survival and systems development [Fig. 2B(iii)]. The number of differentially expressed genes between iMS cells and AdMSCs was limited (2 UP/26 DOWN in iMS versus AdMSCs; FDR 0.05) and too few for confident IPA annotation. All differentially expressed genes and IPA annotations are shown in table S3 (A to E, respectively).

(A) Flow cytometry for stromal markers on AdMSCs (green) and iMS cells (purple) from matched donors. Gray, unstained controls. (B) (i) Principal components analysis (PCA) plot of adipocyte, AdMSC, and iMS transcriptomes. (ii) Hierarchical clustering of differentially expressed genes (DEGs, FDR 0.05). (iii) Ingenuity pathway analysis (IPA) of DEG between AdMSCs/adipocytes (top) or iMS cells/adipocytes (bottom). The most enriched annotated biological functions are shown. (C) (i) Chromatin immunoprecipitation sequencing (ChIP-seq) profiles in AdMSCs and iMS cells from matched donors at a representative locus. Gray bar indicates differential enrichment. (ii) Volcano plots of H3K4me3, H3K27Ac, and H3K27me3 enrichment peaks significantly UP (red) or DOWN (blue) in iMS cells versus AdMSCs. (iii) IPA of corresponding genes. log2FC, log2 fold change. (D) (i) DNA methylation at a representative locus in AdMSCs and iMS cells from matched donors. (ii) Volcano plot of regions with significantly higher (red) or lower (blue) DNA methylation in iMS cells versus AdMSCs. (iii) IPA using genes corresponding to differentially methylated regions (DMRs). (E) OCT4, NANOG, and SOX2 expression in iPS, AdMSCs, and iMS cells. Percentage of cells expressing each protein is indicated. DAPI, 4,6-diamidino-2-phenylindole. (F) AdMSCs and iMS cells differentiated in vitro. Bar graphs quantify staining frequencies, error bars show SD, n = 3. ***P < 0.001 (Students t test). Photo credit: Avani Yeola, UNSW Sydney.

In the absence of significant basal differences in the transcriptomes of AdMSCs and iMS cells, and the use of a hypomethylating agent to induce adipocyte conversion into iMS cells, we examined global enrichment profiles of histone marks associated with transcriptionally active (H3K4me3 and H3K27Ac) and inactive (H3K27me3) chromatin. There were differences in enrichment of specific histone marks in matched AdMSCs versus iMS cells at gene promoters and distal regulatory regions [Fig. 2C(i) and fig. S3, B to D]. H3K4me3, H3K27ac, and H3K27me3 enrichments were significantly higher at 255, 107, and 549 regions and significantly lower at 222, 78, and 98 regions in iMS cells versus AdMSCs [Fig. 2C(ii) and table S4, A to C] and were assigned to 237, 84, and 350 and 191, 58, and 67 genes, respectively. IPA was performed using these gene lists to identify biological functions that may be primed in iMS cells relative to AdMSCs [Fig. 2C(iii) and table S4, D to F]. Among these biological functions, annotations for molecular and cellular function (cellular movement, development, growth, and proliferation) and systems development (general; embryonic and tissue development and specific; cardiovascular, skeletal and muscular, and hematological) featured strongly and overlapped across the different epigenetic marks.

We extended these analyses to also assess global CpG methylation in matched AdMSCs and iMS cells using reduced representation bisulfite sequencing [RRBS; (27)]. Again, there were loci with differentially methylated regions (DMRs) in iMS cells versus AdMSCs [Fig. 2D(i)] with increased methylation at 158 and reduced methylation at 397 regions among all regions assessed [Fig. 2D(ii) and table S4G]. IPA of genes associated with these DMRs showed a notable overlap in annotated biological functions [Fig. 2D(iii) and table S4H] with those associated with differential H3K4me3, H3K27Ac, and H3K27me3 enrichment [Fig. 2C(iii) and table S4, E to G]. Together, these data imply that although basal transcriptomic differences between iMS cells and AdMSCs were limited, there were notable differences in epigenetic profiles at cis-regulatory regions of genes that were associated with cellular growth and systems development.

We next compared iMS cells to adipocytes from which they were derived. Expression of genes associated with adipogenesis was depleted in iMS cells (fig. S4A and table S4I). The promoter regions of these genes in iMS cells had broadly retained an active histone mark (H3K4me3), but, in contrast with adipocytes, many had acquired an inactive mark (H3K27me3) (fig. S4B and table S4J). However, there were examples where iMS cells had lost active histone marks (H3K4me3 and H3K27ac) at gene promoters and potential regulatory regions and gained repressive H3K27me3 [e.g., ADIPOQ; fig. S4C(i)]. In contrast, stromal genes had acquired active histone marks and lost repressive H3K27me3 [e.g. EPH2A; fig. S4C(ii)]. It is noteworthy that promoter regions of genes associated with muscle and pericytes (table S4K) were enriched for active histone marks in iMS cells compared with adipocytes [fig. S4D, (i) and (ii)]. We also compared demethylated CpGs in iMS cells and adipocytes (fig. S4E). There were 7366 sites in 2971 genes that were hypomethylated in iMS cells, of which 236 showed increased expression and were enriched for genes associated with tissue development and cellular growth and proliferation (fig. S4E).

PDGF-AB/AZAtreated murine osteocytes (murine iMS cells), but not bone-derived MSCs, expressed pluripotency associated genes, which were detectable by immunohistochemistry in 1 to 4% of cells (14). To evaluate expression in reprogrammed human cells, PDGF-AB/AZAtreated human adipocytes and matched AdMSCs were stained for OCT4, NANOG, and SOX2 with expression noted in 2, 0.5, and 3.5% of iMS cells respectively, but no expression was detected in AdMSCs (Fig. 2E). In addition to these transcription factors, we also evaluated surface expression of TRA-1-60 and SSEA4. Both proteins were uniformly expressed on iPSCs and absent in AdMSCs [fig. S4F(i)] and adipocytes [fig. S4F(ii)]. Although TRA-1-60 was absent in iMS cells, most (78%) expressed SSEA4 but rarely (<1%) coexpressed OCT4 and NANOG [fig. S4F(i)].

MSCs can be induced to differentiate in vitro into various cell lineages in response to specific cytokines and culture conditions. To evaluate the in vitro plasticity of human iMS cells, we induced their differentiation along with matched AdMSCs and primary adipocytes, into bone, fat, and cartilage, as well as into other mesodermal Matrigel tube-forming assays for endothelial cells (CD31) and pericytes (PDGFR) and muscle (MYH, myosin heavy chain; SMA, smooth muscle actin), endodermal (hepatocyte; HNF4, hepatocyte nuclear factor ), and neuroectodermal (TUJ1; neuron specific class III beta tubulin) lineages (Fig. 2F and fig. S4G). Whereas primary adipocytes remained as such and were resistant to transdifferentiation, iMS cells and AdMSCs showed comparable differentiation potential with the notable exception that only iMS cells generated pericyte-lined endothelial tubes in Matrigel. In keeping with these findings, relative to AdMSCs, iMS cells showed permissive epigenetic marks at pericyte genes [increased H3K4me3 and H3K27Ac; EPHA2 and MCAM; fig. S4H(i); and reduced CpG methylation; NOTCH1, SMAD7, TIMP2, AKT1, and VWF; fig. S4H(ii)]. Together with the notable differences in epigenetic profiles, these functional differences and low-level expression of pluripotency genes in iMS cell subsets suggested that these cells could be more amenable than matched AdMSCs to respond to developmental cues in vivo.

To evaluate spontaneous teratoma formation and in vivo plasticity of iMS cells, we tagged these cells and their matched AdMSCs with a dual lentiviral reporter, LeGO-iG2-Luc2 (28), that expresses both green fluorescent protein (GFP) and luciferase under the control of the cytomegalovirus promoter (Fig. 3A). To test teratoma-initiating capacity, we implanted tagged cells under the right kidney capsules of NOD Scid Gamma (NSG) mice (n = 3 per treatment group) after confirming luciferase/GFP expression in cells in culture (fig. S5, A and B). Weekly bioluminescence imaging (BLI) confirmed retention of cells in situ [Fig. 3B(i)] with progressive reduction in signal over time [Fig. 3B(ii)] and the absence of teratomas in kidneys injected with either AdMSCs or iMS cells [Fig. 3B(iii)]. Injection of equivalent numbers of iPS cells and iPS + iMS cell mixtures (1:49) to approximate iMS fraction expressing pluripotency markers led to spontaneous tumor formation in the same timeframe [Fig. 3B(iii)].

(A) Generation of luciferase/GFP-reporter AdMSCs and iMS cells, and assessment of their in vivo function. (B) Assessment of teratoma initiating capacity; (i) bioluminescence images at 0, 2, 6, and 8 weeks after implantation of 1 106 matched AdMSCs and iMS cells (P2; RM0057; n = 2 per group) under the right kidney capsules. (ii) Quantification of bioluminescence. (iii) Gross kidney morphology 8 weeks following subcapsular implantation of cells (R) or vehicle control (L). (C) Assessment of in vivo plasticity in a posterior-lateral intertransverse lumbar fusion model; (i) bioluminescence images following lumbar implantation of 1 106 matched AdMSCs or iMS cells (P2; RM0038; n = 3 per group) at 1 and 365 days after transplant. (ii) Quantification of bioluminescence. (iii) Tissues (bone, cartilage, muscle, and blood vessels) harvested at 6 months after implantation stained with (left) hematoxylin and eosin or (right) lineage-specific anti-human antibodies circles/arrows indicate regions covering GFP and lineage markerpositive cells. Corresponding graphs show donor cell (GFP+) contributions to bone, cartilage, muscle, and blood vessels as a fraction of total (DAPI+) cells in four to five serial tissue sections. Bars indicate confidence interval, n = 3. Photo Credit: Avani Yeola, UNSW Sydney.

To evaluate whether iMS cells survived and integrated with damaged tissues in vivo, we implanted transduced human iMS cells and matched AdMSCs controls into a posterior-lateral intertransverse lumbar fusion mouse model (Fig. 3A) (29). Cells were loaded into Helistat collagen sponges 24 hours before implantation into the posterior-lateral gutters adjacent to decorticated lumbar vertebrae of NSG mice (n = 9 iMS and n = 9 AdMSC). Cell retention in situ was confirmed by intraperitoneal injection of d-luciferin (150 mg/ml) followed by BLI 24 hours after cell implantation, then weekly for the first 6 weeks and monthly up to 12 months from implantation [Fig. 3C(i)]. The BLI signal gradually decreased with time but persisted at the site of implantation at 12 months, the final assessment time point [Fig. 3C(ii)]. Groups of mice (n = 3 iMS and n = 3 AdMSC) were euthanized at 3, 6, and 12 months and tissues harvested from sites of cell implantation for histology and immunohistochemistry [Fig. 3C(iii)]. Although implanted iMS cells and AdMSCs were present and viable at sites of implantation at 3 months, there was no evidence of lineage-specific gene expression in donor human cells (fig. S5C). By contrast, at 6 months after implantation, GFP+ donor iMS cells and AdMSCs were shown to contribute to new bone (BMP2), cartilage (SOX9), muscle (MYH), and endothelium (CD31) at these sites of tissue injury [Fig. 3C(iii)]. The proportion of donor cells expressing lineage-specific markers in a corresponding tissue section was significantly higher in iMS cells compared with matched AdMSCs at 6 months [Fig. 3C(iii) and table S2] as well as 12 months (fig. S5, E and D, and table S2). There was no evidence of malignant growth in any of the tissue sections or evidence of circulating implanted GFP+ iMS cells or AdMSCs (fig. S5E). Together, these data show that implanted iMS cells were not teratogenic, were retained long term at sites of implantation, and contributed to regenerating tissues in a context-dependent manner with greater efficiency than matched AdMSCs.

Although appropriate to assess in vivo plasticity and teratogenicity of implanted cells, the posterior-lateral intertransverse lumber fusion mouse model is not suited to address the question of tissue-specific differentiation and repair in vivo. To this end, we used a muscle injury model (30) where necrosis was induced by injecting 10 M cardiotoxin (CTX) into the left tibialis anterior (TA) muscle of 3-month-old female severe combined immunodeficient (SCID)/Beige mice. CTX is a myonecrotic agent that spares muscle satellite cells and is amenable to the study of skeletal muscle regeneration. At 24 hours after injury, Matrigel mixed with either 1 106 iMS cells or matched AdMSCs (or no cells as a control) was injected into the damaged TA muscle. The left (injured) and right (uninjured control) TA muscles were harvested at 1, 2, or 4 weeks after injury to assess the ability of donor cells to survive and contribute to muscle regeneration without ectopic tissue formation (Fig. 4A; cohort A). Donor human iMS cells or AdMSCs compete with resident murine muscle satellite cells to regenerate muscle, and their regenerative capacity is expected to be handicapped not only by the species barrier but also by having to undergo muscle satellite cell commitment before productive myogenesis. Recognizing this, a cohort of mice was subject to a second CTX injection, 4 weeks from the first injury/cell implantation followed by TA muscle harvest 4 weeks later (Fig. 4A; cohort B).

(A) Generation of iMS and AdMSCs and their assessment in TA muscle injury model. (B) (i) Confocal images of TA muscle stained for human CD56+ satellite cells (red) and laminin basement membrane protein (green; mouse/human). Graph shows donor hCD56+ satellite cell fraction for each treatment group. (ii) Confocal images of TA muscle harvested at 4 weeks and stained for human spectrin (red) and laminin (green; mouse/human). For each treatment, the left panel shows a tile scan of the TA muscle and the right panel a high magnification confocal image. Graph shows contribution of mouse (M), human (H), or chimeric (C) myofibers in three to five serial TA muscle sections per mouse (n = 3 mice per treatment group). (C) Confocal images of TA muscle 4 weeks following re-injury with CTX, stained for human spectrin (red) and laminin (green; mouse/human). For each treatment, left panel shows a tile scan of the TA muscle, upper right panel a low-magnification image, and lower right panel a high magnification image of the area boxed above. Graph shows contribution of mouse (M), human (H), or chimeric (C) myofibers in three to five serial TA muscle sections per mouse (n = 3 mice per treatment group). Graph bars indicate confidence interval. *P < 0.05, **P < 0.01, and ***P < 0.001 (linear mixed model). Photo credit: Avani Yeola, UNSW Sydney.

In tissue sections harvested from cohort A, donor-derived muscle satellite cells (31) [hCD56 (Thermo Fisher Scientific, MA5-11563)+; red] were evident in muscles implanted with both iMS cells and AdMSCs at each time point but were most numerous at 2 weeks after implantation [Fig. 4B(i) and fig. S6A]. The frequency of hCD56+ cells relative to total satellite cells [sublaminar 4,6-diamidino-2-phenylindolepositive (DAPI+) cells] was quantified in three to five serial sections of TA muscles per mouse in each of three mice per treatment group and was noted to be higher following the implantation of iMS cells compared with AdMSCs at all time points [week 1, 5.6% versus 2.4%; week 2, 43.3% versus 18.2%; and week 4, 30.7% versus 14.6%; Fig. 4B(i), table S2, and fig. S6A]. Donor cell contribution to regenerating muscle fibers was also assessed by measuring human spectrin (32) costaining with mouse/human laminin [(33) at 4 weeks (Fig. 4B(ii)]. At least 1000 myofibers from three to five serial sections of TA muscles for each of three mice in each treatment group were scored for human [H; hSpectrin+ (full circumference); laminin+], murine (M; mouse; hSpectrin; laminin+), or mouse/human chimeric [C; hSpectrin+ (partial circumference); laminin+] myofibers. Although none of the myofibers seen in cross section appeared to be completely human (i.e., donor-derived), both iMS cells and AdMSCs contributed to chimeric myofibers [Fig. 4B(ii)]. iMS cell implants contributed to a substantially higher proportion of chimeric fibers than AdMSC implants (57.7% versus 30.7%; table S2). In cohort B, TA muscles were allowed to regenerate following the initial CTX injection/cell implantation, and re-injured 4 weeks later with a repeat CTX injection. In these mice, although total donor cell contributions to myofibers in TA muscles harvested 4 weeks after re-injury were comparable to that observed in cohort A, there were no myofibers that appeared to be completely human (Fig. 4C). There were substantially more human myofibers following iMS cell implants than with AdMSCs (9.7% versus 5.4%; table S2). There was no evidence of ectopic tissue formation in TA muscles following implantation of either iMS cells or AdMSCs in either cohort.

To assess the physiological properties of muscles regenerated with human myofibers, we performed tetanic force contractions in extensor digitorum longus (EDL) muscles following the schema shown in Fig. 4A. Tetanic forces evoked by electrical pulses of various stimulus frequencies were not significantly different between the experimental cohorts or between the experimental cohorts and control animals [fig. S6B, (i) to (iii)]. However, when challenged with a sustained train of electrical pulses [fig. S6C(i)], the iMS group demonstrated significantly greater absolute [fig. S6C(ii)] and specific [fig. S6C(iii)] forces over a 3- to 6-s period. Together, these data showed that iMS cells had the capacity to respond appropriately to the injured environment and contribute to tissue-specific regeneration without impeding function.

We have optimized a protocol, originally designed for mouse osteocytes, to convert human primary adipocytes into iMS cells. We show that these long-term repopulating cells regenerate tissues in vivo in a context-dependent manner without generating ectopic tissues or teratomas.

PDGF-AB, AZA, and serum are indispensable ingredients in reprograming media, but the underlying reasons for their cooperativity and the observed dose-response variability between patients are not known. PDGF-AB is reported to bind and signal via PDGFR- and PDGFR- but not PDGFR- subunits (21). Mouse osteocytes and human adipocytes lack PDGFR, although surface expression was detectable as cells transition during reprogramming [mouse; day 2 of 8 (14) and human day 21 of 25]. However, these cells express PDGFR (14). Given that PDGFR inhibition attenuates iMS cell production in both mice (14) and humans, a degree of facilitated binding of PDGF-AB to PDGF- subunits or signaling through a noncanonical receptor is likely to occur, at least at the start of reprogramming. PDGF-Bcontaining homo- and heterodimers are potent mitogens that increase the pool of undifferentiated fibroblasts and preosteoblasts with rhPDGF-BB used in the clinic to promote healing of chronic ulcers and bone regeneration (34). However, the unique characteristics of PDGF-AB but not PDGF-BB or PDGF-AA that facilitate reversal and plasticity of cell identity in combination with AZA and serum (14) remain unknown.

PDGF-AB was replenished in culture throughout the reprogramming period, but AZA treatment was limited to the first 2 days for both mouse osteocyte and human adipocyte cultures. DNA replication is required for incorporation of AZA into DNA (35) and hence DNA demethylation is unlikely to be an initiating event in the conversion of terminally differentiated nonproliferating cells such as osteocytes and mature adipocytes. However, the majority of intracellular AZA is incorporated into RNA, which could directly affect the cellular transcriptome and proteome as an early event (36, 37). It is feasible that subsequent redistribution of AZA from RNA to DNA occurs when cells replicate resulting in DNA hypomethylation as a later event (38).

In the absence of serum, we could neither convert primary human adipocytes into iMS cells nor perpetuate these cells long term in culture. The efficiency of conversion and expansion was significantly higher with human versus FCS and highest with AS. The precise serum factor(s) that are required for cell conversion in conjunction with PDGF-AB and AZA are not known. The volumes of blood (~50 ml 2) and subcutaneous fat (5 g) that we harvested from donors were not limiting to generate sufficient numbers of P2 iMS cells (~10 106) for in vivo implantation and are in the range of cell numbers used in prospective clinical trials using mesenchymal precursor cells for chronic discogenic lumbar back pain (NCT02412735; 6 106) and hypoplastic left heart syndrome (NCT03079401; 20 106).

Our motivation was to optimize a protocol that could be applied to primary uncultured and easily accessible cells for downstream therapeutic applications, and adipose tissue satisfied these criteria. We have not surveyed other human cell types for their suitability for cell conversion using this protocol. It would be particularly interesting to establish whether tissue-regenerative properties of allogeneic mesenchymal precursor populations that are currently in clinical trials could be boosted by exposure to PDGF-AB/AZA. However, given that iMS cells and MSCs share stromal cell characteristics, identifying a unique set of cell surface markers that can distinguish the former is a priority that would assist in future protocol development and functional assessment of iMS cells.

Producing clinical-grade autologous cells for cell therapy is expensive and challenging requiring suitable quality control measures and certification. However, the advent of chimeric antigen receptor T cell therapy into clinical practice (39) has shown that production of a commercially viable, engineered autologous cellular product is feasible where a need exists. Although there were no apparent genotoxic events in iMS cells at P2, ex vivo expansion of cells could risk accumulation of such events and long-term follow-up of ongoing and recently concluded clinical trials using allogeneic expanded mesenchymal progenitor cells will be instructive with regard to their teratogenic potential. The biological significance of the observed expression of pluripotency-associated transcription factors in 2 to 3% of murine and human iMS cells is unknown and requires further investigation. However, their presence did not confer teratogenic potential in teratoma assays or at 12-month follow-up despite persistence of cells at the site of implantation. However, this risk cannot be completely discounted, and the clinical indications for iMS or any cell therapy require careful evaluation of need.

In regenerating muscle fibers, it was noteworthy that iMS cells appeared to follow canonical developmental pathways in generating muscle satellite cells that were retained and primed to regenerate muscle following a second muscle-specific injury. Although iMS cells were generated from adipocytes, there was no evidence of any adipose tissue generation. This supports the notion that these cells have lost their native differentiation trajectory and adopted an epigenetic state that favored response to local differentiation cues. The superior in vivo differentiation potential of iMS cells vis--vis matched AdMSCs was consistent with our data showing that despite the relatively minor transcriptomic differences between these cell types, the epigenetic state of iMS cells was better primed for systems development. Another clear distinction between iMS cells and AdMSCs was the ability of the former to produce CD31+ endothelial tube-like structures that were enveloped by PDGFR+ pericytes. An obvious therapeutic application for iMS cells in this context is vascular regeneration in the setting of critical limb ischemia to restore tissue perfusion, an area of clear unmet need (40).

An alternative to ex vivo iMS cell production and expansion is the prospect of in situ reprogramming by local subcutaneous administration of the relevant factors to directly convert subcutaneous adipocytes into iMS cells, thereby eliminating the need for ex vivo cell production. AZA is used in clinical practice and administered as a daily subcutaneous injection for up to 7 days in a 28-day cycle, with responders occasionally remaining on treatment for decades (41). Having determined the optimal dose of AZA required to convert human adipocytes into iMS cells in vitro (2 days, 5 M), the bridge to ascertaining the comparable in vivo dose would be to first measure levels of AZA incorporation in RNA/DNA following in vitro administration and match the dose of AZA to achieve comparable tissue levels in vivo. A mass spectrometrybased assay was developed to measure in vivo incorporation of AZA metabolites (AZA-MS) in RNA/DNA and is ideally suited to this application (38). The duration of AZA administration for adipocyte conversion was relatively short (i.e., 2 days), but PDGF-AB levels were maintained for 25 days. One mechanism of potentially maintaining local tissue concentrations would be to engineer growth factors to bind extra cellular matrices and be retained at the site of injection. Vascular endothelial growth factor A (VEGF-A) and PDGF-BB have recently been engineered with enhanced syndecan binding and shown to promote tissue healing (42). A comparable approach could help retain PDGF-AB at the site of injection and maintain local concentrations at the required dose. While our current data show that human adipocytederived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth, these approaches are worth considering as an alternative to an ex vivo expanded cell source in the future.

Extended methods for cell growth and differentiation assays and animal models are available in the Supplementary Materials, and antibodies used are detailed in the relevant sections.

The primary objective of this study was to optimize conditions that were free of animal products for the generation of human iMS cells from primary adipocytes and to characterize their molecular landscape and function. To this end, we harvested subcutaneous fat from donors across a broad age spectrum and used multiple dose combinations of a recombinant human growth factors and a hypomethylating agent used in the clinic and various serum types. We were particularly keen to demonstrate cell conversion and did so by live imaging and periodic flow cytometry for single-cell quantification of lipid loss and gain of stromal markers. Using our previous report generating mouse iMS cells from osteocytes and adipocytes as a reference, we first characterized the in vitro properties of human iMS cells including (i) long-term growth, (ii) colony-forming potential, (iii) in vitro differentiation, and (iv) molecular landscape. Consistent with their comparative morphology, cell surface markers, and behavioral properties, the transcriptomes (RNA sequencing) were broadly comparable between iMS cells and matched AdMSCs, leading to investigation of epigenetic differences [Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) histone chromatin immunoprecipitation sequencing (ChIP-seq), and RRBS for DNA methylation differences] that might explain properties that were unique to iMS cells (expression of pluripotency factors, generation of endothelial tubes in vitro with pericyte envelopes, and in vivo regenerative potential). Context-dependent in vivo plasticity was assessed using a tissue injury model that was designed to promote bone/cartilage/muscle/blood vessel contributions from donor cells and simultaneously assess the absence of ectopic/malignant tissue formation by these cells (labeled and tracked in vivo using a bioluminescence/fluorescence marker). Tissue-specific regeneration and the deployment of canonical developmental pathways were assessed using a specific muscle injury model, and donor cell contributions in all injury models were performed on multiple serial tissue sections in multiple mice with robust statistical analyses (see below). Power calculations were not used, samples were not excluded, and investigators were not blinded. Experiments were repeated multiple times or assessments were performed at multiple time points. Cytogenetic and Copy Number Variation (CNV) analyses were performed on iMS and AdMSCs pretransplant, and their teratogenic potential was assessed both by specific teratoma assays and long-term implantation studies.

Subcutaneous fat and blood were harvested from patients undergoing surgery at the Prince of Wales Hospital, Sydney. Patient tissue was collected in accordance with National Health and Medical Research Council (NHMRC) National Statement on Ethical Conduct in Human Research (2007) and with approval from the South Eastern Sydney Local Health District Human Research Ethics Committee (HREC 14/119). Adipocytes were harvested as described (43). Briefly, adipose tissue was minced and digested with 0.2% collagenase type 1 (Sigma-Aldrich) at 37C for 40 min and the homogenized suspension passed through a 70-m filter, inactivated with AS, and centrifuged. Primary adipocytes from the uppermost fatty layer were cultured using the ceiling culture method (44) for 8 to 10 days. AdMSCs from the stromal vascular pellet were cultured in MEM + 20% AS + penicillin (100 g/ml) and streptomycin (250 ng/ml), and 200 mM l-glutamine (complete medium).

Adherent mature adipocytes were cultured in complete medium supplemented with AZA (R&D systems; 5, 10, and 20 M; 2 days) and rhPDGF-AB (Miltenyi Biotec; 100, 200, and 400 ng/ml; 25 days) with medium changes every 3 to 4 days. For inhibitor experiments, AG1296 was added for the duration of the culture. Live imaging was performed using an IncuCyte S3 [10 0.25numerical aperture (NA) objective] or a Nikon Eclipse Ti-E (20 0.45-NA objective). Images were captured every 30min for a period of 8 days starting from day 15. Twelve-bit images were acquired with a 1280 1024 pixel array and analyzed using ImageJ software. In vitro plasticity was determined by inducing the cells to undergo differentiation into various cell types using differentiation protocols adapted from a previous report (45).

Animals were housed and bred with approval from the Animal Care and Ethics Committee, University of New South Wales (UNSW; 17/30B, 18/122B, and 18/134B). NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) and SCID/Beige (C.B-Igh-1b/GbmsTac-Prkdcscid-Lystbg N, sourced from Charles River) strains were used as indicated. The IVIS Spectrum CT (Perkin Elmer) was used to capture bioluminescence. Briefly, 15 min after intraperitoneal injection of d-luciferin (150 mg/kg), images were acquired for 5 min and radiance (photon s1 cm2 sr1) was used for subsequent data analysis. The scanned images were analyzed using the Living Image 5.0 software (Perkin Elmer).

Teratoma assays (46) were performed on 3- to 4-month-old female NSG mice. Lentiviral-tagged cells (5 105) in 20 l of phosphate-buffered saline containing 80% Matrigel were injected under the right kidney capsule using a fine needle (26 gauges) and followed weekly by BLI until sacrifice at week 8. Both kidneys were collected, fixed in 4% paraformaldehyde (PFA) for 48 hours, embedded in optimal cutting temperature compound (OCT), cryosectioned, and imaged for GFP.

Posterior-lateral intervertebral disc injury model (29). Lentiviral-tagged (28) AdMSCs (1 106) or iMS cells were loaded onto Helistat collagen sponges and implanted into the postero-lateral gutters in the L4/5 lumbar spine region of anesthetized NSG mice following decortication of the transverse processes. Animals were imaged periodically for bioluminescence to track the presence of transplanted cells. At 3, 6, or 12 months, mice were euthanized, and spines from the thoracic to caudal vertebral region, including the pelvis, were removed whole. The specimens were fixed in 4% PFA for 48 hours, decalcified in 14% (w/v) EDTA, and embedded in OCT.

Muscle injury model (47). The left TA and EDL muscles of 3- to 4-month-old female SCID/Beige mice were injured by injection with 15 l of 10 M CTX (Latoxan). Confocal images of three to four serial sections (TA) per mouse were captured by Zen core/AxioVision (Carl Zeiss) and visualized by ImageJ with the colocalization and cell counter plugins [National Institutes of Health; (48)]. Tetanic force contractions were performed on EDL muscles (49).

Total RNA was extracted using the miRNeasy Mini Kit (Qiagen) according to manufacturers instructions, and 200 ng of total RNA was used for Illumina TruSeq library construction. Library construction and sequencing was performed by Novogene (HK) Co. Ltd. Raw paired-end reads were aligned to the reference genome (hg19) using STAR (https://github.com/alexdobin/STAR), and HTSeq (50) was used to quantify the transcriptomes using the reference refFlat database from the UCSC Table Browser (51). The resulting gene expression matrix was normalized and subjected to differential gene expression using DeSeq2 (52). Normalized gene expression was used to compute and plot two-dimensional principal components analysis, using the Python modules sklearn (v0.19.1; https://scikit-learn.org/stable/) and Matplotlib (v2.2.2; https://matplotlib.org/), respectively. Differentially expressed genes (log2 fold change |1|, adjusted P < 0.05) were the input to produce an unsupervised hierarchical clustering heat map in Partek Genomics Suite software (version 7.0) (Partek Inc., St. Louis, MO, USA). Raw data are available using accession GSE150720.

ChIP was performed as previously described (53) using antibodies against H3K27Ac (5 g per IP; Abcam, ab4729), H3K4Me3 (5 g per IP; Abcam ab8580), and H3K27Me3 (5 g per IP; Diagenode, C15410195). Library construction and sequencing were performed by Novogene (HK) Co. Ltd. Paired-end reads were aligned to the hg38 genome build using Burrows Wheeler Aligner (BWA) (54) duplicate reads removed using Picard (http://broadinstitute.github.io/picard/), and tracks were generated using DeepTools bamCoverage (https://deeptools.readthedocs.io/en/develop/). Peaks were called using MACS2 (55) with the parameter (P = 1 109). Differentially bound regions between the AdMSC and iMS were calculated using DiffBind (http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf) and regions annotated using ChIPseeker (56). Raw data are available using accession GSE151527. Adipocyte ChIP data were downloaded from Gene Expression Omnibus (GEO); accession numbers are as follows for the three histone marks: GSM916066, GSM670041, and GSM772771.

Total genomic DNA was extracted using the DNA MiniPrep Kit (Qiagen), and RRBS library construction and sequencing were performed by Novogene (HK) Co. Ltd. Raw RRBS data in fastq format were quality and adapter trimmed using trim_galore (0.6.4) with rrbs parameter (www.bioinformatics.babraham.ac.uk/projects/trim_galore). The trimmed fastq files were then aligned to a bisulfite-converted genome (Ensembl GRCh38) using Bismark (2.3.5), and methylation status at each CpG loci was extracted (57). The cytosine coverage files were converted to BigWig format for visualization. Differentially methylated cytosines (DMCs) and DMRs were identified using methylKit (1.10) and edmr (0.6.4.1) packages in R (3.6.1) (58, 59). DMCs and DMRs were annotated using ChIPseeker (56), and pathway enrichment was performed as detailed below. Raw data are available using accession number GSE151527. Adipocyte RRBS data were downloaded from GEO: GSM2342293 and GSM2342392.

IPA (Qiagen) was used to investigate enrichment in molecular and cellular functions, systems development and function, and canonical pathways.

Statistical analysis was performed in SAS. For the dose-optimization experiments (Fig. 1), a linear mixed model with participant-level random effects was used to estimate maximum time by dose level and age group. A linear mixed model with participant-level random effects was used to analyze statistical differences in lineage contribution outcomes between treatment groups (Fig. 3) and at different time points posttransplant, to estimate the percentage of cells by treatment and lineage. For the in vivo regeneration experiment (Fig. 4), a linear model was used to model the percent of cells over time for each group. Quadratic time terms were added to account for the observed increase from 1 to 2 weeks and decrease from 2 to 4 weeks. In the muscle regeneration experiment, a linear model was applied to cohort A and cohort B, to estimate and compare percent cells by treatment and source. Statistical modeling data are included in table S2.

Acknowledgments: We are indebted to the patients who donated tissue to this project. We thank E. Cook (Prince of Wales Private Hospital), B. Lee (Mark Wainwright Analytical Centre, UNSW Sydney), and technicians at the UNSW BRC Facility for assistance with sample and data collection and animal care; Y. Huang for technical assistance; and A. Unnikrishnan and C. Jolly for helpful discussions and critical reading of the manuscript. We acknowledge the facilities and scientific and technical assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the BRIL (UNSW). The STRO-1 antibody was a gift from S. Gronthos, University of Adelaide, Australia. Funding: We acknowledge the following funding support: A.Y. was supported by an Endeavour International Postgraduate Research scholarship from the Australian Government. S.S. is supported by an International Postgraduate Student scholarship from UNSW and the Prince of Wales Clinical School. P.S. is supported by an International Postgraduate Student scholarship from UNSW. M.L.T. and D.D.M. acknowledge funding from St. Vincents Clinic Foundation and Arrow BMT Foundation. K.A.K. acknowledges funding from Australian Research Council (FT180100417). J.M. is supported, in part, by the Olivia Lambert Foundation. M.K. is supported by a NHMRC Program Grant (APP1091261) and NHMRC Principal Research Fellowship (APP1119152). L.B.H. acknowledges funding from MTPConnect MedTech and Pharma Growth Centre (PRJ2017-55 and BMTH06) as part of the Australian Governmentfunded Industry Growth Centres Initiative Programme and The Kinghorn Foundation. D.B. is supported by a Peter Doherty Fellowship from the National Health and Medical Research Council of Australia, a Cancer Institute NSW Early Career Fellowship, the Anthony Rothe Memorial Trust, and Gilead Sciences. R.M. acknowledges funding from Jasper Medical Innovations (Sydney, Australia). J.E.P., V.C., and E.C.H. acknowledge funding from the National Health and Medical Research Council of Australia (APP1139811). Author contributions: The project was conceived by V.C. and J.E.P., and the study design and experiments were planned by A.Y., V.C., and J.E.P. Most of the experiments and data analyses were performed by A.Y., guided and supervised by V.C. and J.E.P. S.S., R.A.O., C.A.L., D.C., F.Y., M.L.T., P.S., T.H., J.R.P., P.H., W.R.W., and V.C. performed additional experiments and data analyses, with further supervision from R.M., C.P., J.A.I.T., D.C., J.W.H.W., L.B.H., D.B., and E.C.H. Statistical analyses were performed by J.O. R.M., D.D.M., J.M., K.A.K., and M.K. provided critical reagents. The manuscript was written by A.Y., J.A.I.T., V.C., and J.E.P., and reviewed and agreed to by all coauthors. Competing interests: V.C. and J.E.P. are named inventors on a patent A method of generating cells with multi-lineage potential (US 9982232, AUS 2013362880). All other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Continue reading here:
Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances

[Full text] Clinical Analysis of Bloodstream Infections During Agranulocytosis Aft | IDR – Dove Medical Press

Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a treatment process for restoring normal hematopoietic and immune functions. In this method, patients undergo high-dose radiotherapy and chemotherapy, and immunosuppressive pre-treatment is done to eliminate abnormal hematopoietic and immune systems. The patient is then transfused with allogeneic hematopoietic stem cells. This strategy is an effective cure for blood diseases, bone marrow failure syndrome, and immune deficiency.1,2 However, neutrophil deficiency, impaired mucosal barrier, and weakened immune function typically occur after transplantation, which increases the risk of infection after HSCT.3

Bloodstream infections (BSI) are a severe type of systemic infectious disease caused by the invasion of the circulatory system by pathogenic microorganisms. Notably, BSI is a common complication in the early stages of allo-HSCT and has an incidence rate of 13.6%38.9%.47 According to literature, the occurrence of bloodstream infections is a huge risk factor to early deaths after HSCT.810 The occurrence of BSI after HSCT is exacerbated by the widespread use of antibiotics and the resultant antibacterial resistance, especially multi-drug-resistant bacteria (MDR) that seriously affects the survival of transplant patients.1113 Thus, evaluation of the distribution and prevalence of drug-resistant pathogens of the bloodstream in allo-HSCT patients and the study of the BSI risk factors could guide the course of clinical treatment for BSI prevention and control. This study retrospectively analyzed the BSI risk factors in patients with allo-HSCT in the First Affiliated Hospital of Zhengzhou University from 2013 to 2017. The detection rate, distribution, and drug sensitivity of pathogenic bacteria after allo-HSCT was also evaluated.

From January 2013 to December 2017, 397 patients who received allogeneic HSCT for the treatment of hematological diseases in the First Affiliated Hospital of Zhengzhou University were selected. The patients included 242 males and 155 females, with a median age of 21 (162) years. Of these, 115 cases had acute myeloid leukemia (AML), 110 with severe aplastic anemia (SAA), 102 with acute lymphocytic leukemia (ALL), and 70 patients with other conditions.

According to the difference in the histocompatible typing and relationship, allo-HSCT is divided into matched sibling transplantation, partially matched related transplantation and matched unrelated transplantation. Among the 397 cases of allo-HSCT, 177 were matched sibling transplantation, 165 were partially matched related transplantation, and 55 were matched unrelated transplantation. According to the stem cell source, there were 333 cases of peripheral hematopoietic origin, 55 from peripheral blood combined with bone marrow transplantation, and nine involved cord blood transplantation.

Central vein catheterization was performed for all patients before transplantation conditioning. Modified busulfan/cyclophosphamide (Bu/Cy) and total body irradiation/cyclophosphamide (TBI/Cy) conditioning regimens were used for patients with acute leukemia, myelodysplastic syndrome, and lymphoma. Meanwhile, cyclophosphamide + anti-thymocyte globulin (Cy-ATG) and FluCy-ATG pre-treatment regimens were used for severe aplastic anemia. The GVHD prevention program used cyclosporine combined with mycophenolate mofetil and methotrexate, of which 272 cases were also treated with ATG to prevent GVHD.

All HSCT patients were admitted to the laminar flow purification ward after a medicated bath, and were given a sterile diet, and received oral, eye, nose, and perianal care. Take a 1:2000 chlorhexidine liquid medicinal bath for 20 minutes; routinely gargle with saline and cermetium chloride before and after three meals a day, add metronidazole solution if necessary; use 1% chloramphenicol, 0.5% Rifampicin eye drops alternate eye drops, 4 times/d; alternate nose drops with houttuynia cordata and streptomycin nasal drops, 4 times/d; rinse the perineum with warm water after each bowel movement, 3% boric acid solution for a bath for 20 Minutes, mupirocin is applied to the perianal area. Itraconazole, berberine, and compound sulfamethoxazole were administered orally for intestinal disinfection two weeks before transplantation. If the body temperature of patients got to 38.00C during transplantation or shivering occurred, 10 mL of blood from the peripheral vein was collected using standard. The blood was drawn twice in a row for separate cultivation of aerobic and anaerobic bacteria. For positive cases, broad-spectrum antibiotics were administered intravenously, and the treatment efficacy was evaluated 48 hours after the initial treatment. Treatment efficacy was empirically assessed based on blood culture results, WBC, C-reactive protein, and procalcitonin levels, after which ineffective treatment strategies were adjusted.

Agranulocytosis refers to the absolute value of neutrophils <0.5 109/L,14 while granulocyte reconstitution refers to neutrophils 0.5 109/L for three consecutive days after transplantation.

Fever is a single measurement of oral temperature 38.3C (axillary temperature 38.0C) or 38.0C (axillary temperature 37.7C) for more than 1 hour.

The pathogenic diagnosis of BSI was made after the isolation of pathogenic microorganisms from blood culture. If the same patient isolates the same bacteria, if the drug sensitivity is the same, it is 1 BSI. BSI-related mortality was defined as death occurring within 30 days after the diagnosis of BSI. Pre-engraftment BSI is defined as the infection that arises from the onset of the pre-treatment regimen to the time before granulocyte implantation.

VersaTREK automatic blood culture instrument (Thermo Fisher, USA), VITEK MS IVD 3.0 mass spectrometer identification instrument and VITEK2 Compact automatic microbial identification, and drug sensitivity analysis system for bacterial culture, identification, and drug sensitivity detection, spread through paper (K-B) method and E-Test were used in in vitro susceptibility tests and review of abnormal susceptibility results. The results were interpreted according to the standards issued by the United States Committee for Clinical and Laboratory Standardization (CLSI).15

The SPSS21.0 software was used for statistical analysis, and descriptive statistics were used to summarize clinical features. The univariate analysis used a chi-square test, while logistic regression was applied for multivariate analysis. A P-value of 0.05 was used as the level of significance; thus, P<0.05 indicated statistically significant differences.

Among the 397 HSCT patients, 294 had agranulocytosis fever, out of which 52 were microbiologically confirmed as BSIs. Therefore, the incidence of BSI was 17.7% (52/294), accounting for 13.1% (52/397) of all transplant patients. The implantation time of neutrophils is 13 days (11,15), and the time from agranulocytosis to BSI is 12 days (7,30). For 294 patients, we did 607 blood cultures, among which 60 were positive (9.9% positive blood culture rate). Out of the 294 patients, six had two or more pathogenic bacteria.

Sixty pathogens were detected in 52 patients, including 43 Gram-negative bacteria (71.67%), 10 Gram-positive bacteria (16.67%), and 7 fungi (11.67%). We found that Gram-negative bacteria accounted for most BSIs, followed by Gram-positive bacteria, and fungal infections were the least. The numbers and proportions of different strains of pathogenic bacteria are shown in Figure 1. In terms of drug resistance, the extended-spectrum -lactamase (ESBL) detection rates of E. coli and K. pneumoniae were 46.7% (7/15) and 30% (3/10), respectively. Carbapenem-resistant Enterobacteriaceae (CRE) accounted for 17.9% (5/28). The recorded patterns for Gram-negative bacteria drug susceptibility are shown in Table 1. The two staphylococci detected in Gram-positive bacteria were all methicillin-resistant, and all the three enterococci were sensitive to vancomycin, teicoplanin, and linezolid. The detected fungi belong to the genus Candida, and the resistance rates to itraconazole and voriconazole were 57.1% and 28.6%, respectively.

Table 1 Resistance Rate of Major Gram-Negative Bacteria to Common Antibacterial Drugs

Figure 1 Distribution of 60 isolated pathogenic bacteria pathogen.

Out of the 52 BSI patients, 33 improved after treatment, while 19 died after treatment failed (36.5%). Among the 19, 13 had Gram-negative bacteria infection, three were Candida infections, while another three were mixed Gram-negative and Gram-positive bacterial infection. Six of the seven patients who were resistant to carbapenems died.

We divided the 294 patients with agranular fever into two groups: BSI-free (242) and BSI (52). Univariate and multivariate analyses were applied for the study of BSI risk factors, including patients age, gender, disease type, stem cell source, pre-treatment application of ATG, combined diarrhea, oral ulcers, and presence of granules. Univariate analysis results demonstrated that the occurrence of BSI was correlated to the transplantation method, pre-treatment application of ATG, agranulocytosis time (21 days), and stem cell source (Table 2). Meanwhile, multivariate analysis showed that pre-treatment application of ATG, agranulocytosis time (21 days), and stem cell source were risk factors for BSI (Table 3).

Table 2 Univariate Analysis of Risk Factors for BSI

Table 3 Multivariate Analysis of Risk Factors for BSI

Allo-HSCT patients undergo prolonged agranulocytosis and develop an impaired mucosal barrier. Besides, the long-term use of immunosuppressive agents increases the incidence of bloodstream infections.47 In the present study, the incidence of bloodstream infections was 13.1% in all patients, and 17.7% in patients with febrile neutropenia. A previous study conducted in China reported that the incidence of bloodstream infections in patients with febrile neutropenia was 17.0%.16 Thus, our findings are consistent with earlier results of other studies. The mortality rate of allo-HSCT bloodstream infections in our center was 36.5%, which is higher than the 26.9% reported by Mikulska et al17 and the 31.1% reported by Stoma et al.18 In addition, studies by Stoma et al also found that the application of fluoroquinolones can reduce the incidence of bloodstream infections by affecting the colonization of intestinal bacteria, while insufficient empirical antibacterial treatment is associated with increased mortality.18,19 This disparity suggests that we should pay attention to the prevention and treatment of bloodstream infections in transplant patients and formulate anti-infection strategies based on the distribution of pathogens and drug resistance patterns to improve transplantation and survival rates.

This study detected 60 pathogens in BSIs, of which gram-negative bacteria (71.67%) were the main ones, followed by gram-positive bacteria (16.67%), and fungi were the least (11.67%) (Figure 1). Gram-negative bacteria were mainly of the Enterobacteriaceae family, particularly E. coli and K. pneumoniae. The non-fermenting bacteria P. aeruginosa was also detected. A 25-year study in Spain showed that BSIs after HSCT were mainly caused by gram-positive bacteria, with a downward trend in positive bacteria and an increasing trend in gram-negative bacteria.20 Blennow et al also reported similar conclusions.21 However, many transplant centers in China have reported that BSIs after HSCT are mainly caused by gram-negative bacteria, followed by gram-positive bacteria, while fungi make up the least proportion. Thus, the epidemiology of BSIs in our center conforms to the distribution pattern reported in other centers in China.22,23

In this study, the common Enterobacteriaceae (E. coli and K. pneumoniae) had ESBL detection rates of 46.7% and 30%, respectively, and carbapenem resistance rates of the two bacteria were 6.7% and 30%, respectively (Table 1). Thus, we found that E. coli is highly sensitive to carbapenem drugs, suggesting that these drugs can be used for empiric antibacterial treatment. The ESBL positivity rate and carbapenem resistance rate of K. pneumoniae were both 30% (Table 1), indicating that its clinical treatment can be a combination of tigecycline, polymyxin, and other drugs. Notably, research shows that combination therapy with antibacterial medications such as cyclin and polymyxin can reduce the mortality of patients.24,25 In the present study, the resistance rate of P. aeruginosa to carbapenems was 28.6%, while its resistance rate to both aminoglycosides and quinolones was 14.3% (Table 1). Thus, a combination of carbapenems, aminoglycosides, and quinolones can be used for clinical treatment. Multi-center research in China reported carbapenem resistance rates of 3.6% and 18.9% for E. coli and K. pneumoniae, respectively.26 Similarly, this study revealed high resistance of E. coli and K. pneumoniae to carbapenem. The high rate of mycene resistance could be attributed to the repeated use of broad-spectrum antibiotics in transplant patients and the continuous increase in multi-drug-resistant bacteria in recent years.27 In response to the rise in multi-drug-resistant bacteria, our center uses perianal swabs to regularly screen intestine colonizing bacteria in transplant patients. As such, pathogenic bacteria are identified early, and treatment strategies are adjusted based on drug sensitivity results. The sensitivity of Gram-positive bacteria to the glycopeptides vancomycin, linezolid, and teicoplanin was 100.0%, suggesting that Gram-positive bacteria BSIs can be completely treated in clinical practice. Thus, glycopeptide or azole drugs can be the first choice for the treatment of Gram-positive bacteria BSIs.

All the seven fungi in this study were Candida, and Candida tropicalis was the predominant species. The resistance rates to itraconazole and voriconazole were 57.1% and 28.6%, respectively. The mortality rate of candidiasis was high, which significantly threatened the survival of transplant patients. According to previous studies, caspofungin should form the first choice fungal treatment after allo-HSCT in clinical practice, combined with antifungal treatment if necessary.28,29

The single-factor and multi-factor analysis results showed that pre-treatment application of ATG, agranulocytosis time (21 days), and stem cell source were risk factors for BSI. The removal of T-lymphocytes from the body of ATG-pretreated patients significantly delays immune reconstitution,30 and the continued lack of granulocytes causes immunodeficiency in transplant patients, thus increasing the risk to BSIs. Peripheral blood combined with bone marrow transplantation, hematopoietic implantation is relatively fast, which may be the reason for the lower incidence of BSIs in this group of patients, relative to peripheral blood and cord blood transplantation.3133

The results of this study show that BSI is a common complication of allo-HSCT patients with agranulocytosis. Gram-negative bacteria were the most prevalent pathogen in BSIs, and drug resistance to carbapenem drugs was relatively high. The use of ATG in pre-treatment, agranulocytosis time (21 days), and stem cell source are risk factors for BSI. The high mortality rate of BSI substantially affects the prognosis of transplant patients, and attention should be paid on the distribution of pathogenic bacteria and drug resistance in the bloodstream of transplant patients. Besides, the treatment plan should be adjusted based on the specific bacteria and drug resistance patterns.

The patient consent was waived, since the research involves no more than minimal risk to the subjects because the review of subjects medical records is for limited information. The information is not sensitive in nature, and the data are derived from clinically indicated procedures. The precautions taken to limit the record review to specified data and the coding of the data further minimize the primary risk, which is a breach of confidentiality. This study has been approved by the ethics review committee of the research project of the First Affiliated Hospital of Zhengzhou University, and has obtained relevant certificates.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work. This study complies with the Declaration of Helsinki.

This project was supported by the Key Scientific Research Project Plan of Higher Education Institutions in Henan Province (18A320040).

The authors report no conflicts of interest in this work.

1. Barriga F, Ramirez P, Wietstruck A, Rojas N. Hematopoietic stem cell transplantation: clinical use and perspectives. Biol Res. 2012;45(3):307316. doi:10.4067/S0716-97602012000300012

2. Passweg JR, Baldomero H, Bader P, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52(6):811817. doi:10.1038/bmt.2017.34

3. Gudiol C, Garcia-Vidal C, Arnan M, et al. Etiology, clinical features and outcomes of pre-engraftment and post-engraftment bloodstream infection in hematopoietic SCT recipients. Bone Marrow Transplant. 2014;49(6):824830.

4. Kikuchi M, Akahoshi Y, Nakano H, et al. Risk factors for pre- and post-engraftment bloodstream infections after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis. 2015;17(1):5665.

5. Mori Y, Yoshimoto G, Nishida R, et al. Gastrointestinal Graft-versus-Host Disease Is a Risk Factor for Postengraftment Bloodstream Infection in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Biol Blood Marrow Transplant. 2018;24(11):23022309.

6. Mikulska M, Raiola AM, Galaverna F, et al. Pre-Engraftment Bloodstream Infections after Allogeneic Hematopoietic Cell Transplantation: impact of T Cell-Replete Transplantation from a Haploidentical Donor. Biol Blood Marrow Transplant. 2018;24(1):109118.

7. Weisser M, Theilacker C, Tschudin Sutter S, et al. Secular trends of bloodstream infections during neutropenia in 15 181 haematopoietic stem cell transplants: 13-year results from a European multicentre surveillance study (ONKO-KISS). Clin Microbiol Infect. 2017;23(11):854859.

8. Poutsiaka DD, Munson D, Price LL, Chan GW, Snydman DR. Blood stream infection (BSI) and acute GVHD after hematopoietic SCT (HSCT) are associated. Bone Marrow Transplant. 2011;46(2):300307.

9. Youssef A, Hafez H, Madney Y, et al. Incidence, risk factors, and outcome of blood stream infections during the first 100 days post-pediatric allogeneic and autologous hematopoietic stem cell transplantations. Pediatr Transplant. 2020;24(1):e13610.

10. Wang CH, Chang FY, Chao TY, et al. Characteristics comparisons of bacteremia in allogeneic and autologous hematopoietic stem cell-transplant recipients with levofloxacin prophylaxis and influence on resistant bacteria emergence. J Microbiol Immunol Infect. 2018;51(1):123131. doi:10.1016/j.jmii.2016.02.003

11. Forcina A, Lorentino F, Marasco V, et al. Clinical Impact of Pretransplant Multidrug-Resistant Gram-Negative Colonization in Autologous and Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24(7):14761482. doi:10.1016/j.bbmt.2018.02.021

12. Averbuch D, Tridello G, Hoek J, et al. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients: intercontinental Prospective Study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin Infect Dis. 2017;65(11):18191828. doi:10.1093/cid/cix646

13. Girmenia C, Rossolini GM, Piciocchi A, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50(2):282288. doi:10.1038/bmt.2014.231

14. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e5693.

15. Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A. Comparison of EUCAST and CLSI Reference Microdilution MICs of Eight Antifungal Compounds for Candida auris and Associated Tentative Epidemiological Cutoff Values. Antimicrob Agents Chemother. 2017;61(6):6. doi:10.1128/AAC.00485-17

16. Han TT, Huang XJ, Liu KY, et al. [Blood stream infections during agranulocytosis period after hematopoietic stem cell transplantation in one single center]. Zhonghua Nei Ke Za Zhi. 2011;50(8):654658.

17. Mikulska M, Del Bono V, Bruzzi P, et al. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012;40(3):271278. doi:10.1007/s15010-011-0229-y

18. Stoma I, Karpov I, Milanovich N, Uss A, Iskrov I. Risk factors for mortality in patients with bloodstream infections during the pre-engraftment period after hematopoietic stem cell transplantation. Blood Res. 2016;51(2):102106. doi:10.5045/br.2016.51.2.102

19. Stoma I, Littmann ER, Peled JU, et al. Compositional flux within the intestinal microbiota and risk for bloodstream infection with gram-negative bacteria. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa068

20. Puerta-Alcalde P, Cardozo C, Marco F, et al. Changing epidemiology of bloodstream infection in a 25-years hematopoietic stem cell transplant program: current challenges and pitfalls on empiric antibiotic treatment impacting outcomes. Bone Marrow Transplant. 2020;55(3):603612. doi:10.1038/s41409-019-0701-3

21. Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis. 2014;16(1):106114. doi:10.1111/tid.12175

22. Liu C-Y, Lai Y-C, Huang L-J, et al. Impact of bloodstream infections on outcome and the influence of prophylactic oral antibiotic regimens in allogeneic hematopoietic SCT recipients. Bone Marrow Transplantation. 2020;55(3):12311239. doi:10.1038/bmt.2010.286

23. Wang L, Wang Y, Fan X, Tang W, Hu J. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study. Medicine. 2014;16(1):e1931. doi:10.1097/MD.0000000000001931

24. Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943950. doi:10.1093/cid/cis588

25. Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56(4):21082113.

26. Zhang R, Liu L, Zhou H, et al. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine. 2017;19:98106.

27. Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905914.

28. Mousset S, Buchheidt D, Heinz W, et al. Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2014;93(1):1332.

29. de Naurois J, Novitzky-Basso I, Gill MJ, et al. Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2010;21(Suppl 5):v252256.

30. Mackall C, Fry T, Gress R, et al. Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant. 2009;44(8):457462.

31. Ge J, Yang T, Zhang L, et al. The incidence, risk factors and outcomes of early bloodstream infection in patients with malignant hematologic disease after unrelated cord blood transplantation: a retrospective study. BMC Infect Dis. 2018;18(1):654.

32. Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):22652275.

33. Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):22762285.

Read the original:
[Full text] Clinical Analysis of Bloodstream Infections During Agranulocytosis Aft | IDR - Dove Medical Press

[Full text] Osteonecrosis of the Jaw Beyond Bisphosphonates: Are There Any Unknown | CCIDE – Dove Medical Press

Introduction

Recent literature reviews suggest that bisphosphonates (BPs) may contribute to the growing number of cases of osteonecrosis involving the maxilla and mandible that are associated with the pathogenesis of BP-related osteonecrosis of the jaw (BRONJ).1 In the discussion concerning BRONJ, a distinction must be made between diseases featuring reduced osseous mineral content, which may be counteracted by BPs (such as those occurring during menopause or in cases of osteoporosis), and cases that present with indications for BPs (such as tumors). BPs have been used in the treatment of multiple myeloma, breast cancer, prostate cancer, and other tumors. In patients with metastatic breast cancer, the bones are affected in around two-thirds of cases. To protect patients from bone fractures and to reduce pain, patients are often prescribed BPs or a special antibody that prevents the breakdown of, and subsequently stabilizes, affected bone. BRONJ is a newly emerging problem that is recognized as a serious complication of BP therapy, primarily following intravenous (IV) administration.2

The concern is that BPs affect the natural remodeling of bone tissues and delay the breakdown of older bone structures. BPs are potent inhibitors of bone resorption and have a chronic effect over a half-life of at least 5 years, possibly exerting their effects for more than 10 years. BRONJ is a seemingly growing epidemic associated with osteonecrosis of the jawbone (ONJ).35 The long-term effects of oncological-related BP treatment on alveolar bone quality include the impact on BP-induced overexpression of alveolar bone remodeling. There are increased osteosclerotic properties in the alveolar bone that are associated with significantly greater bone volume and higher bone density.6,7 The risk of BP therapy is divided into two categories: local and systemic risk factors; thus, a distinction must be made between oral and IV administration. Local oral risk factors for BRONJ in cancer patients include dentoalveolar surgery, dental extraction, and dental implant insertion.8 Periodontal infections also significantly increase the risk of BRONJ in cancer patients.9 In addition, there is a significant correlation between the use of removable prostheses, the administration of high-dose IV BPs, and an increased risk of BRONJ.10 In patients receiving oral BP therapy for the treatment of osteoporosis, the prevalence of BRONJ only increased 0.21% from close to 0%. Systemically, however, there is a much higher risk associated with the IV injection of BPs. This is closely related to the frequent use of BPs in cancer patients who receive a significantly higher total dose over a longer duration.11 The mean and minimum time for the development of ONJ is 1.8 years and 10 months, respectively.12 The risk of BRONJ in cancer patients exposed to BP therapy is from 50100 times higher than in cancer patients treated with a placebo. The BRONJ risk for the RANKL inhibitor denosumab was between 0.7% and 1.9%.13,14 The risk of ONJ in cancer patients treated with high doses of IV BPs appears to be significantly higher: in the range of 110 per 100 patients (depending on therapy duration).15 A recent review reported a wide-ranging BRONJ incidence of 027.5% that was associated with the IV administration of BPs, with an average incidence of 7%.16 The cumulative frequency varied from 0.812.0% and was estimated to be up to 30.0% in some reports.17,18 Despite numerous publications on the subject, the overall pathogenesis of BRONJ does not yet appear to be fully understood. In particular, the reasons why only a subset of patients (<30%) receiving IV BPs develop BRONJ remain unclear. Although most patients that develop BRONJ have a history of tooth extraction or injury, these factors do not fully explain the occurrence of BRONJ.8 The development of BRONJ in edentulous areas in patients with no apparent history of injury suggests that pre-existing conditions, such as subclinical infections or potentially necrotic areas of the jawbone, may contribute to the conditions that lead to the development of BRONJ.

Why does BRONJ develop in up to 30% of individuals following IV BP therapy and not the remaining 70%? This review raises the question of whether little-known or difficult-to-identify, pre-existing, impaired bone remodeling, such as that occurring in aseptic-ischemic osteonecrosis of the jaw (AIOJ), bone marrow defects (BMD), or fatty-degenerative osteonecrosis of the jawbone (FDOJ), represents a local risk factor in the development of BRONJ.

There is still a limited scientific understanding of the relationship between ONJ and BPs.19 In order to clarify the research question and present the background and specific common characteristics of AIOJ/BMD/FDOJ and BRONJ, an extensive literature search was carried out in PubMed Central. In the literature, the terms aseptic-ischemic osteonecrosis of the jaw (AIOJ), bone marrow defects (BMD), and fatty-degenerative osteonecrosis of the jawbone (FDOJ) are used to describe an intramedullary phenomenon with the same pathogenesis, morphology, and pathohistology.

The American Association of Oral and Maxillofacial Surgeons published four staging criteria (at risk, Stage 03).20 Stage 0 is of particular interest in our research as it refers to patients with no clinical evidence of exposed bone, but presence of non-specific symptoms or clinical and/or radiographic abnormalities. The discussion concerning BRONJ is complicated by the fact that there are two clinical forms of BRONJ. The first presents as exposed bone in the maxillofacial region with clinically recognizable necrotic bone that is visibly exposed through the oral mucosa or facial skin, and present for more than 8 weeks, which is referred to as so-called exposed BRONJ.15 The second form of BRONJ is particularly interesting for our investigation; it was recently emphasized that BRONJ does not always appear with necrotic bone visible through a breech in the oral mucosa.21 This form is referred to as non-exposed BRONJ (NE-BRONJ). In the absence of exposed bone, it is characterized by clinical features associated with the jaw, such as unexplained jawbone pain, fistulas/sinus tracts, loose teeth, and swelling.22,23 Diagnosing NE-BRONJ is difficult, as other common jawbone diseases, such as odontogenic infections, may cause similar symptoms and must be excluded. The non-exposed variant may comprise up to one third of all BRONJ cases and is thus not uncommon;24 however, this previously underestimated NE-BRONJ is difficult to accurately diagnose. Recently published papers emphasize that NE-BRONJ has received little attention so far and does not fulfill the current definition of BRONJ.25 Nevertheless, NE-BRONJ belongs to the same disease as exposed BRONJ and should be identified as part of the full spectrum of BRONJ (see the section titled, Case descriptions of AIOJ/BMD/FDOJ, non-exposed BRONJ, and Actinomyces colonization).26

Our investigation requires the identification of the basic immune mechanisms associated with BP administration. Specifically, which mechanism is behind the anti-tumor activity of BPs in cancer patients?

Various studies postulate that BPs change the bone microenvironment around cancer cells, which may prevent cancer cell survival and disease recurrence.27 BPs may also reduce the appearance of disseminated tumor cells. The formation of metastases is complex; mesenchymal stem cells (MSCs) are predominantly found in the bone marrow.28 MSCs may contribute to the formation of metastases through various mechanisms: (1) MSCs are recruited to develop breast tumors where they can enhance the metastatic potential of weakly tumorigenic breast cancer cells;29 (2) MSCs and other bone marrow cells may form a pre-metastatic niche within the specific tissues to which tumor cells metastasize;30 and (3) MSCs are able to maintain the growth and survival of cancer cells in the bone microenvironment where they may contribute to the formation of niches for dormant micrometastases that can later form distant metastases. BPs significantly reduce the ability of MSCs to migrate, thereby reducing the growth and survival of cancer cells.31 Thus, the effects of BPs on MSCs in the bone marrow microenvironment contribute to anti-tumor activity by affecting the ability of MSCs to migrate and develop tumors in pre-metastatic niches. BPs disrupt the interaction between MSCs and breast cancer cells within the bone microenvironment, where BPs may also directly inhibit breast cancer cell growth.

The antiangiogenic effect of BP administration in tumor patients also plays a role in therapy.32 When administered systemically, BPs effectively inhibit angiogenesis. The pronounced antiangiogenic properties of BPs enhance their effectiveness in the treatment of malignant bone diseases. In addition to suppressing RANTES/CCL5 (R/C) expression in MSCs, BP administration plays a role in the treatment of tumor patients.33 Similar to exogenous glucocorticoids and estrogen,34 BPs are ischemic and hypoxia-related stressors of bone health that alter jawbone metabolism, thus leading to osteonecrosis. While tumor-associated BP therapy is currently the heavy weight for bone health, it may accelerate existing, chronic pathophysiological events within the microcirculation of bone marrow compartments in the jaw. BRONJ development is often characterized by a slow start and usually presents with infarcts and thrombosis of small vascular sections of the supplying artery within the medullary canal; these features also correspond to AIOJ/BMD/FDOJ. Myeloid elements (including fat marrow) liquefy and cancellous trabeculae are resorbed, so that individual bone spaces merge and gradually create larger cavities.

If we compare the findings in the sections titled, Bisphosphonates and mesenchymal stem cells and Bisphosphonates and antiangiogenesis to pre-existing AIOJ/BMD/FDOJ, several strikingly common characteristics shared by BRONJ and AIOJ/BMD/FDOJ can be observed that help to answer our research question. In the sections following Bisphosphonates and antitumor therapy, we present the foundations for the development of AIOJ/BMD/FDOJ and draw similarities with the development of BRONJ.

The key function of proinflammatory chemokines R/C in the formation of breast cancer and its metastasis, as well as a possible connection with the intramedullary signaling of R/C overexpression from AIOJ/BMD/FDOJ areas, has been pointed out in previous studies.35,36 The conspicuous overexpression of R/C in little-known BMDs, as found in AIOJ/BMD/FDOJ, has been reported.37,38 R/C overexpression is a regulator of healthy bone metabolism in bone needing repair. The starting point for a typical AIOJ/BMD/FDOJ BMDs is the expression of R/C and its chemokine receptors (CCR5) in both osteoblasts (OBs) and osteoclasts (OCs). Ligands (CCL5) and receptors (CCR5) simultaneously activate autocrine and paracrine mechanisms in the bone.39 One study examined the effects of BPs on human primary OBs and was able to show that the overexpression of proinflammatory R/C from BP-treated OBs also occurs in areas affected by BRONJ.40 The secretion of proinflammatory cytokines interleukin (IL)-8 and R/C increased after 14 days of treatment with the highest dose of BPs.40 The complexity of cytokine control becomes clear at this point. In contrast to the tumor, where BPs in the MSCs reduce R/C expression to such an extent that metastasis is prevented, R/C expression is increased by BPs in OBs. If AIOJ/BMD/FDOJ is already present, it may be assumed that the associated increased R/C secretion is thus further increased by BPs. Specifically, NE-BRONJ may develop as BPs increase the expression of IL-8 and R/C.41 Other researchers have confirmed increases in the secretion of proinflammatory IL-8 and R/C from BP-treated OBs.42 Combined with the lower proliferation rate of OBs and a decrease in their differentiation, higher doses or accumulations of BPs cause undesirable local changes in the bone by increasing the secretion of IL-8 and R/C from OBs. If these findings are applied to BP administration in the context of a chronic, pre-existing AIOJ/BMD/FDOJ area, then such areas may be expected to exhibit increased R/C secretion in response to BPs. This increase may result from the inhibition of OC activity, leading to the development of BRONJ. Figure 1 summarizes the effects of BP administration on the pre-existing physiological derailments associated with tumor and osteoporosis development.

Figure 1 Comparison of the effects of BP administration (+BP) in the context of a tumor (upper part of Figure 1) and pre-existing osteoporosis (lower part of Figure 1). Legend: The red arrows indicate overactivity; the green arrows show reversal following BP administration.

In the literature, the vascular composition of AIOJ/BMD/FDOJ is characterized by the fact that blood flow in the medullary canal is impaired by micro-infarcts, which leads to chronic marrow ischemia.43 BRONJ also shows reduced vascularization in the medullary canal.44 Several publications have shown that ischemic bone diseases such as AIOJ/BMD/FDOJ and BRONJ are of multifactorial origin and emphasize the multiple stroke model as the cause of ischemic bone diseases.45,46 In the orthopedic literature, intensive research conducted on the development of ischemic bone disease in the early stages of the disease process is presented.47 Our aim here is to apply this knowledge not only to extreme forms of the disease, such as osteoradionecrosis and BRONJ, but also to chronic, subclinical, and ischemic forms such as bone marrow edema and AIOJ/BMD/FDOJ, which often progress asymptomatically. Many of these forms are manifestations of both local and systemic risk factors that compromise circulation in the bone marrow, and may also impact on the homeostasis of bone resorption and formation, in addition to BP therapy. The importance of this multifactorial exposure to risk factors for ischemia and the associated causal genetics that are very similar to those in cases of AIOJ/BMD/FDOJ is shown by observing how bone that is exposed to BPs demonstrates minimal OC activity, followed by the deposition of newly formed, thicker bone with reduced vascular supply.48 The resulting mosaic-like pattern of bone remodeling is strikingly similar to that found in Pagets disease, which tends to be associated with the development of osteomyelitis.49 Similar to AIOJ/BMD/FDOJ, the remodeling induced by BPs leaves cavities, otherwise known as cavitations, which leads to both necrosis and unlike that which is found in AIOJ/BMD/FDOJ subsequent infection by colonizing bacteria. Many patients with AIOJ/BMD/FDOJ have inherited prothrombotic tendencies, which is comparable to what is found in patients with idiopathic osteonecrosis of the femoral head (Pagets disease) and includes thrombophilia and hypofibrinolysis.5052 Although a consensus has been reached that ischemic marrow edema is not part of the pathogenesis of BRONJ,53 it is regarded as a typical characteristic of AIOJ/BMD/FDOJ, serving as a precursor to BRONJ development. Systemic antibiotic therapy has limited access to these avascular zones and surgical debridement is usually necessary.

The initial OB situation found in AIOJ/BMD/FDOJ is highly characteristic; under pathological conditions, OBs express R/C chemokines in a non-physiological manner.54,55 The increasing frequency of ONJ and its possible association with high cumulative doses of BPs was investigated in one study, which concluded that high doses of BPs had both OC and OB effects, and thus bone remodeling was inhibited in vivo.56 Other researchers have examined the proliferation, viability, expression, and secretion of bone markers and cytokines/chemokines from primary OBs following exposure to BPs.42 Increased concentrations of proinflammatory cytokines were found in response to BPs. Similarly, increased R/C expression is present in AIOJ/BMD/FDOJ. Following treatment with the highest dose of BPs, the secretions of proinflammatory cytokines IL-8 (P<0.001) and R/C (P<0.001) were significantly increased after 14 days. In addition, the secretion of proinflammatory R/C from OBs exposed to BPs increased. It has also been determined that R/C plays a role in the etiology of the osteolytic changes that are present in AIOJ/BMD/FDOJ.37,57 The aim of another study was to investigate the effect of BPs on human OBs in vitro, while considering RANKL and osteoprotegerin (OPG), both of which mediate OC differentiation.40 OPG increased significantly in the group that received BPs at a dose of 10 M, while RANKL expression decreased significantly with different concentrations of BPs. In summary, exposure to various BP concentrations had a positive effect on OB differentiation, but did not affect proliferation. In contrast, the BP-associated changes in RANKL and OPG production contributed to the suppression of osteoclastic bone resorption. Excess R/C leads to OC inhibition which, in our model, also leads to a disturbance in RANK/RANKL homeostasis (see Figure 2). The chain of reactions that arise from pre-existing AIOJ/BMD/FDOJ and BP administration result in the development of BRONJ in response to the subsequent OB depression; it also leads to increased OC apoptosis. In addition, bone densification takes place following BP administration as a result of increased OB activity. As such, osteonecrosis occurs in the jawbone when BPs are used parenterally. The reasons for these different reactions to BPs have not yet been clarified.

Figure 2 The effects of BP administration and the characteristics of AIOJ/BMD/FDOJ both include depressed alkaline phosphatase (AP) activity with subsequent R/C overexpression. On the one hand, this leads to OC inhibition and, on the other, to RANK/RANKL deactivation, which subsequently causes increased OC apoptosis and depressed OB activity resulting in BRONJ development. Legend: The red arrows indicate deactivation; the green arrows show a reversal of the effect following BP administration.

The first step in tumor necrosis factor alpha (TNF-a)-induced OC genesis occurs in the bone marrow.58 Although mature OCs erode the resorption of the bone as a focal point over the course of months to years, the lifespan of individual OCs is only a few weeks. Thus, mature OCs must be constantly replaced. With respect to OC formation, TNF-a directly stimulates the formation of mature OCs,59,60 and supports and promotes the survival of mature OCs.61 TNF-a increases the survival time of OCs to extend the duration of bone resorption. In the early stages of AIOJ/BMD/FDOJ, the situation for OCs is highly contradictory: the extremely low TNF-a values found in areas of AIOJ/BMD/FDOJ as compared to the values in healthy jawbone samples (as documented in our previous studies) indicate that any inflammatory erosion due to TNF-a supported OC formation is unlikely. Due to reduced TNF-a activation, OC formation in AIOJ/BMD/FDOJ is inhibited, which results in a fatty-degenerative morphology.62

In the same way, BPs inhibit the ability of OCs to resorb bone. They do so by suppressing farnesyl diphosphate synthetase activity, which inhibits OC recruitment and impacts the life expectancy of OCs through increased apoptosis. Where the OC function is excessively inhibited, dying OCs will not be replaced, and the capillary network of the bone will not be maintained, which leads to BRONJ.19 The ability of BPs to regulate bone turnover by suppressing OC activity has led to its widespread use in the treatment of osteoporosis, Pagets disease, humoral hypercalcemia, and in tumors metastasizing to bone.17,63 Several studies have shown the effectiveness of BPs in suppressing OC activity in arthritic bone erosions, which was comparable to the effects of OPG injections.64

The initial alkaline phosphatase (AP) situation in AIOJ/BMD/FDOJ is as follows: AP has an optimum pH in the alkaline range. The pH level of AIOJ/BMD/FDOJ areas, however, is reduced as a consequence of the proinflammatory characteristics of R/C overexpression, resulting in a chronic inflammatory state. AP activity is thus inhibited within the increasingly acidic environment of such areas. Furthermore, BPs increase R/C secretion from OBs, and the acidity of areas affected by AIOJ/BMD/FDOJ, together with an excess of R/C, leads to OC inhibition.65 At the same time, there is also reduced osteogenesis due to the suppression of AP activity,66 as well as the overexpression of R/C that is present in AIOJ/BMD/FDOJ areas and also caused by BP administration. In our model, these two factors led to OC inhibition via disturbed RANK//RANKL homeostasis. In addition, depressed OB activity and increased OC apoptosis result in BRONJ development. While the skeletal bone consolidation that results from BP administration occurs in response to increased OB activity, BRONJ develops in the jawbone when BP is administered parenterally. The reasons for these different responses to BPs have not yet been clarified. If we apply these considerations to an existing AIOJ/BMD/FDOJ area (as shown in Figure 2), then BRONJ and AIOJ/BMD/FDOJ both show suppressed AP activity with subsequent R/C overexpression.67 This leads to OC inhibition and RANK/RANKL deactivation and, subsequently, increased OC apoptosis. Decreased OB activity may ultimately lead to the development of exposed BRONJ.

Despite the similarities detailed in the section titled Osteoimmunological parameters of AIOJ/BMD/FDOJ and BRONJ with the same impact in response to BPs, BRONJ and AIOJ/BMD/FDOJ present two very different clinical pictures; different reactions to BP administration are also likely to occur.

The initial involvement of RANKL in AIOJ/BMD/FDOJ has been described in the literature as follows: pathological increases in levels of R/C and MCP-3 from activated OBs stimulate chemotactic recruitment and RANKL formation of resorptive OCs and aggravate local osteolysis. However, BP administration indirectly inhibits OC maturation by increasing OPG protein secretion and decreases transmembrane RANKL expression in human OBs. Several studies have shown that although BPs do not significantly affect RANKL gene expression, they reduce transmembrane RANKL protein expression in OBs.68,69 This shows that BPs, in addition to directly inhibiting mature OCs, prevent OC recruitment and differentiation by splitting transmembrane RANKL into OBs. OC activation and RANKL activation in areas of AIOJ/BMD/FDOJ, and OC inhibition and RANKL inhibition in BRONJ distinguish these two forms of derailed bone metabolism and thus yield different clinical results. Specifically, imperceptible fatty osteolysis of the marrow structures in AIOJ/BMD/FDOJ and painful BRONJ sequestrum arise as a result. BPs have been shown to downregulate the expression of RANKL, the OC-differentiating factor produced by OBs.70

The initial involvement of OPG in AIOJ/BMD/FDOJ is described in the literature. Since the TNF-a level found in AIOJ/BMD/FDOJ represents only 50% of the TNF-a level in healthy jawbone,36,37 the OPG enzyme that belongs to the TNF family is deactivated. In the resulting osteolysis found in areas of AIOJ/BMD/FDOJ, this leads to reduced RANKL binding and thus results in OC activation. In conclusion, data from previously published studies have suggested that BPs modulate the production of OPG by normal OBs, which may contribute to the inhibition of OC bone resorption.71 As the production of OPG increases with OB maturation, the amplification of OPG by BPs may be linked to OB differentiation via stimulatory BP effects. BPs have been shown to increase the gene expression for the decoy receptor, OPG, in human OBs.71 OPG balance is disturbed in both AIOJ/BMD/FDOJ and BRONJ, albeit in opposite ways. However, the prior imbalance of OPG activity in AIOJ/BMD/FDOJ may increase the effects associated with BP administration.

With respect to the exposed variant of BRONJ, radiographic procedures are required in order to determine the extent to which the degree of ossification has increased.72 However, the existence of this variant of BRONJ is clinically evident. In contrast, the non-exposed BRONJ variant and AIOJ/BMD/FDOJ are associated with very similar problems in terms of diagnostic imaging. As with AIOJ/BMD/FDOJ, the prevalence of this variant of BRONJ is largely underestimated as the disease is often underdiagnosed and under-reported.73 Studies have shown that almost a quarter of patients with BRONJ remain undiagnosed.74

The initial histopathological presentation of AIOJ/BMD/FDOJ found in the literature is as follows: Bouquot describes these bone modeling disorders as ischemic osteonecrosis, which is a bone disease characterized by the degeneration and death of marrow and bone due to a slow or abrupt decrease in marrow blood flow.75 Clumps of coalesced, liquefied fat (oil cysts) may be seen. Bone death is represented by a focal loss of OCs. Dark masses of calcific necrotic detritus may often be present.75 The histopathological features of AIOJ/BMD/FDOJ include necrotic adipocytes and fibrosis, but an almost complete absence of inflammatory cells.76 Additional research has shown the role of aseptic necrosis following injury or drug therapy in the pathophysiology of BRONJ. Aseptic bone necrosis, as found in AIOJ/BMD/FDOJ, has been reported as a manifestation of selected systemic diseases and also documented following operations, trauma, and immunosuppressive therapy at the site of BRONJ.77,78 The development of aseptic necrosis has been documented in the upper and lower jaw, particularly following osteotomies.79,80 Researchers have observed a relationship between oral BP use and non-specific aseptic osteonecrosis among a cohort of older cardiovascular patients.81 Other researchers have identified necrotic liquefaction, which often extend to large areas of the jaw, especially within BRONJ lesions of cancer patients, as shown using digital volume tomography (DVT)/cone beam computed tomography (CBCT).82 Research has been published on BRONJ samples that were characterized by low to moderate inflammation.83 This is in accordance with other reports of histopathological analyses of BRONJ samples.48,78,8486 Bone samples from BRONJ patients were investigated by microscopy and the presence of inflammatory infiltrates in the bone tissues was not observed.87 These studies have demonstrated that aseptic necrosis, a lack of inflammatory reactions, and empty OC lacunae are common histopathological features of AIOJ/BMD/FDOJ and BRONJ.

The diagnostic difficulties associated with BRONJ and AIOJ/BMD/FDOJ present another common feature. In order to diagnose BRONJ with imaging procedures, the Task Force Report of the American Society for Bone and Mineral Research highlights that the differential diagnosis of BRONJ should exclude other common intraoral diseases such as periodontitis, gingivitis, infectious osteomyelitis, osteoradionecrosis, neuralgia-inducing cavitational osteonecrosis (NICO), bone tumors, and metastases.15 The authors of the report thus rule out an etiological equation for diagnosing NICO and BRONJ. The current review is focused on the potential role of imaging techniques in the diagnosis of the early stages of BRONJ. A combination of clinical and radiological symptoms suggest that, while not specific to BRONJ, they may collectively be more comprehensive and representative of the bone disease process.2 The American Association of Maxillofacial Surgery accepts the use of imaging techniques when detecting BRONJ during presurgical evaluation.72 It is important for the BRONJ patient that various imaging methods be examined critically prior to being adopted for the early detection and diagnosis of BRONJ.

Figure 3 Left panel shows jawbone area 18; hematoxylin and eosin staining, magnification 200. The lower half of the image illustrates eosinophilic bone substance with empty osteocyte cavities corresponding to devitalized bone sequestrum. Middle part of the left panel: Highly irregular trabecular surfaces with a wide edging comprised of Actinomyces colonies surrounded by a wall of leukocytes. Upper part of left panel: Fibrin particles and individual lymphocytes. Right panel: Actinomyces granules visualized in a PAS reaction; the red color represents a broad band of granules in the middle. The lower edge of the right panel images once again shows a bone sequestrum and typically empty osteocyte lacunae. Diagnosis: Aseptic bone necrosis with Actinomyces colonization.

The histopathological changes in necrotic bone may be visualized with MRI scans, as with CBCT/DVT. The images detect progressive cell death and the repair response (ie, edema). As the fat cells in normal bone marrow provide high signal intensity, it may be assumed that signal changes evident in the marrow are related to the death of fat cells. Necrotic adipocytes are a morphological characteristic of AIOJ/BMD/FDOJ.76 Following the application of a contrast agent, areas of ischemia may be identified as non-enhancing regions. Cases in which fibrosis and sclerosis of the bone occur may also result in lower signal intensity. Nevertheless, the currently available data on MRI results for BRONJ are limited,96 as are those related to AIOJ/BMD/FDOJ. Studies showed positron-emission tomography (PET) as a sensitive method for diagnosis of BRONJ. Thus, PET could be useful for evaluating the severity of BRONJ.97

2D-OPG is used to identify osteopathies of the jawbone. However, this imaging technique fails to show AIOJ/BMD/FDJ areas, thus generating false-negative findings. As a result, AIOJ/BMD/FDOJ have been highly neglected in dentistry and medicine.98 Therefore, transalveolar ultrasound sonography (TAU) appears to be necessary as an additional imaging technique in order to improve the diagnosis of AIOJ/BMD/FDOJ.99,100 A newly developed TAU device (TAU-n) measures sound velocity attenuation when the bone marrow has been penetrated. An ultrasound transmitter is placed over the jaw area and a thumbnail-sized receiver is placed inside the mouth. To obtain reproducible results when measuring bone density, the transmitter and receiver are arranged in a coplanar and fixed position. The parts of the receiving unit are placed inside a patients mouth, the acoustic coupling between those parts and the alveolar ridge is performed with the aid of a semi-solid gel (Figure 3). With the receiver containing 91 piezoelectric fields, sound waves are registered and converted into a color graph of the corresponding areas of bone density (Figure 4).On the graphic visualization, green indicates healthy, dense, and solid bone, yellow indicates the presence of ischemic metabolism, and orange and red highlight areas of AIOJ/BMD/FDOJ presence.101

Figure 4 Left panel shows positioning of transmitter (outside) and receiver (enoral) in the lower jaw; the red band marks the cheek. Right panel shows the transmitter (in blue at the right) and receiver (in green at the left) in a fixed coplanar position (blue bar connecting the transmitter and receiver); semi-solid gel pads between the transmitter and the cheek on the outside of the mouth and between receiver and the alveolar ridge in the enoral position; trans-alveolar ultrasonic impulse from the transmitter to receiver (arrows in blue).

Figure 5 Inconspicuous 2D-OPG findings (left panel); suspected osteolytic processes in areas 1719 in the sagittal section of the image using DVT (right panel). Lower panel: TAU measurement from region 17 to retromolar region 19. Legend: Green areas indicate normal bone density; yellow, orange, and red areas show decreasing bone density until complete osteolysis is reached.

A clinical case of a 55-year-old patient with prostate carcinoma who was treated with parenteral BPs received an X-ray diagnosis of non-exposed BRONJ with normal intraoral findings in the right upper jawbone from area 17 to retromolar area 19. While 2D-OPG of area 18/19 showed no suspicious findings, the CBCT/DVT image demonstrated ossification irregularities and partial cavities that resembled AIOJ/BMD/FDOJ. The development and progression of BRONJ could not be reliably determined by reference to these images and it was not possible to make a differential diagnosis. In contrast, TAU-n images clearly indicated osteolysis (see Figure 4, below). The postoperative light microscopy findings from area 18/19 showed marrow with adipose tissue, significant fibrillar and myxoid degeneration of adipocytes, individual lymphocytes, and mast cells; however, no florid inflammation was observed. These are the typical histological features of AIOJ/BMD/FDOJ.76 It is worth noting, however, that there was a large bone sequestrum with empty OC cavities, highly irregular trabecular surfaces, and empty marrow spaces, with Actinomyces colonization (Figure 3).

Several reviews have indicated that light microscopy examinations were able to detect that 68.8% of BRONJ cases featured Actinomyces colonization.32 Anaerobic Actinomyces has long been associated with necrotic bone findings in BRONJ lesions.102 Actinomyces colonization is thus a top priority as a possible pathological trigger with respect to BRONJ. Since we have not identified bacterial colonization in areas of AIOJ/BMD/FDOJ in our own studies,103 an accompanying secondary Actinomyces colonization seems to be an additional prerequisite for the development of BRONJ from an area of AIOJ/BMD/FDOJ in response to BP administration.

Table 1 displays all studies and their impact on the research question based on the inclusion and exclusion criteria in literature review.

Table 1 The Table Displays the Criteria for Inclusion of Specific Manuscripts in Our Research. Exclusion Criteria Were Unspecific Reviews Concentrating on Exposed BRONJ Only

Can hitherto little-known, yet according to our clinical experience37,76 epidemiologically widespread AIOJ/BMD/FDOJ represent cofactors in the development of BRONJ? The development of biological processes takes place in different stages and during various phases of transition. This also seems to be the case for BRONJ, as the exposed form found in the maxillofacial region represents the final, late-stage form of the NE-BRONJ variant. The focus of our study is thus on the early stage of BRONJ (Stage 0) without exposed bone, as based on the recommendations of the American Association of Oral and Maxillofacial Surgeons.5,20,104 Our hypothesis considers the NE-BRONJ variant as one stage of development featuring an unrecognized BMD that is characteristic of AIOJ/BMD/FDOJ and amplified by BP administration. The cumulative effects of BPs on pre-existing AIOJ/BMD/FDOJ support this premise. The relationship between AIOJ/BMD/FDOJ and the administration of BPs (as shown in Figure 6) leads, etiologically, to the non-exposed BRONJ variant, which is less clearly described in the literature than the late-stage form of BRONJ, and also results in considerable oral impairment.

Figure 6 Overview of the individual osteoimmunological signal cascades present in AIOJ/BMD/FDOJ and their conversion or amplification following BP administration, resulting in the development of BRONJ. Legend: A pair of arrows, one red and one green, indicates the reinforcement or, in one instance, the reversal of the typical overexpression or inhibition found in AIOJ/BMD/FDOJ following BP administration.

As BPs and AIOJ/BMD/FDOJ exert the same effects, resulting in the hyperfunctioning of R/C expression, OB activity, hypoxia/ischemia, and the inhibition of OC activity, vascularization, and AP activity, AIOJ/BMD/FDOJ may be regarded as a prerequisite to the formation of BRONJ. Changes in silent AIOJ/BMD/FDOJ processes, including strongly inhibited OC production, reduced RANKL activity, and increased OPG activity, appear to induce the occurrence of BRONJ. Figure 7 presents a hypothetical three-step model detailing the basic stages for the development of BRONJ at AIOJ/BMD/FDOJ areas. Regions with fatty-degenerative changes may be the focal point for the subsequent development of BRONJ, as such changes may constitute an additional risk factor. This is consistent with the hypothesis described in the literature, whereby bone necrosis precedes clinically evident ONJ that is exposed through the oral mucosa.78,105 Regions featuring subclinical changes and necrotic bone may represent significant risk factors in the development of BRONJ.104 Further, it is known that patients at each stage exhibit a very different bone composition.104

Figure 7 Three-step model for the development of BRONJ beginning with undetected AIOJ/BMD/FDOJ followed by the development of the NE-BRONJ variant, and finally by BRONJ.Notes: Exposed bone BNOJ (left panel). Bony sequestrum BRONJ (right panel). Figure courtesy of Professor J Bouquot.

The prevention of BRONJ is of paramount importance and has been repeatedly emphasized.106108 Thus, BPs should not be regarded as the sole cause of osteonecrosis. The results of this study indicate that unresolved areas of wound healing at extraction sites especially in former wisdom tooth areas may directly contribute to the pathogenesis of BRONJ. Other research has already described the involvement of the jaw in BRONJ as opposed to other bone sites.109 This may be because BPs are preferentially deposited in bones with high turnover rates such as the jawbone. The jawbone also presents with hidden conditions that according to our hypothesis share common characteristics with those found in AIOJ/BMD/FDOJ. Under the influence of BPs, areas of AIOJ/BMD/FDOJ may develop the pathological features of BRONJ. Efforts to prevent BRONJ, therefore, should not ignore the fact that BRONJ and AIOJ/BMD/FDOJ share similar osteoimmunological characteristics with respect to amplifying or reversing derailed signal cascades. Since AIOJ/BMD/FDOJ represent chronic, subclinical states, the sudden formation of BRONJ may be interpreted as a subsequent acute event. The early detection of BRONJ (as well as AIOJ/BMD/FDOJ) using X-ray techniques appears to be difficult. A new risk-benefit analysis should be considered: Patients should be screened for hidden oral risk factors, such as AIOJ/BMD/FDOJ. Thus, TAU may be used to measure bone density and fill this diagnostic gap. When parenteral BP therapy is administered, periodontal prophylaxis and tooth restoration should take precedence;110,111 furthermore, AIOJ/BMD/FDOJ should be diagnosed first, preferably (and accurately) with TAU-n, and then surgically eliminated. The formation of difficult-to-treat BRONJ could be avoided in certain cases if the exacerbation of pre-existing areas of AIOJ/BMD/FDOJ is prevented before initiating anti-tumorigenic BP therapy. Surgical opening of the cortex, removal of ischemic marrow, and accompanying wound care represent the only way to address cases of AIOJ/BMD/FDOJ.112 Consultation with an oncologist is mandatory, as the oncologist may insist on radiation therapy and the prevention of osteoradionecrosis of the jawbones via tooth restoration. To the best of our knowledge, we have highlighted, for the first time, the possible impact chains flowing from AIOJ/BMD/FDOJ and leading to the development of NE-BRONJ and further to exposed BRONJ. We also support the hypothesis presented herein with scientific data from the available literature. Due to the lack of clinical studies investigating these impact chains, multiple studies are necessary to elucidate the hypothesized relationships.

AIOJ, aseptic-ischemic osteonecrosis of the jawbone; BMD, bone marrow defects; BRONJ, bisphosphonate (BP)-related osteonecrosis of the jaw; CBCT, cone beam computed tomography; CCL5, chemokine (C-C motif) ligand 5; DVT, digital volume tomography; FDOJ, fatty-degenerative osteonecrosis/osteolysis of the jawbone; HU, hounsfield units; OPG, orthopantomogram; R/C, RANTES/CCL5; RANTES, regulated on activation, normal T cell expressed and secreted; TAU, transalveolar ultrasonography; TAU-n, new transalveolar ultrasonography device.

Hereby we confirm that written informed consent has been provided by the patient to have the case details and any accompanying images published. The data were collected as part of the normal everyday medical care of the patients and evaluated retrospectively. Institutional approval was not required to publish the case details.

English language editing of this manuscript was provided by Journal Prep Services. Additional English language editing was provided by Natasha Gabriel.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

The corresponding author, Johann Lechner, is the holder of a patent used in the TAU-n apparatus and its associated software and reports a patent CaviTAU licensed to Dr. Johann Lechner. Bernd Zimmermann is an employee of QINNO. The authors report no other potential conflicts of interest for this work.

1. Ruggiero SL, Dodson TB, Fantasia J, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw2014 update. J Oral Maxillofacial Surg. 2014;72:19381956. doi:10.1016/j.joms.2014.04.031.

2. Khan A, Sandor G, Dore E, et al. Canadian consensus practice guidelines for bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2008;35:13911397.

3. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofacial Surg. 2003;61:11151117. doi:10.1016/S0278-2391(03)00720-1.

4. Rosenberg T, Ruggiero S. Osteonecrosis of the jaws associated with the use of bisphosphonates. J Oral Maxillofac Surg. 2003;61:60. doi:10.1016/S0278-2391(03)00566-4

5. Wang J, Goodger NM, Pogrel MA. Osteonecrosis of the jaws associated with cancer chemotherapy. J Oral Maxillofacial Surg. 2003;61:11041107. doi:10.1016/S0278-2391(03)00328-8.

6. van Dessel J, Ferreira Pinheiro Nicolielo L, Huang Y, et al. Quantification of bone quality using different cone-beam CT devices: accuracy assessment for edentulous human mandibles. Eur J Oral Implantol. 2016;9:411424.

7. Imada T, van Dessel J, Rubira-Bullen I, Santos P. Long-term effects of zoledronic acid on alveolar bone remodeling and quality in the jaw of an oncological rat model. Dent Craniofacial Res. 2018;1.

8. Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofacial Surg. 2005;63:15671575. doi:10.1016/j.joms.2005.07.010.

9. Palomo L, Bissada N, Liu J. Bisphosphonate therapy for bone loss in patients with osteoporosis and periodontal disease: clinical perspectives and review of the literature. Quintessence Int. 2006;37:103107.

10. Vahtsevanos K, Kyrgidis A, Verrou E, et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol. 2009;27:53565362. doi:10.1200/JCO.2009.21.9584.

11. Kyrgidis A, Vahtsevanos K, Koloutsos G, et al. Bisphosphonate-related osteonecrosis of the jaws: a case-control study of risk factors in breast cancer patients. J Clin Oncol. 2008;26:46344638. doi:10.1200/JCO.2008.16.2768.

12. Palaska PK, Cartsos V, Zavras AI. Bisphosphonates and time to osteonecrosis development. Oncologist. 2009;14:11541166. doi:10.1634/theoncologist.2009-0115.

13. Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:51325139. doi:10.1200/JCO.2010.29.7101.

14. Lipton A, Fizazi K, Stopeck AT, et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, Phase 3 trials. Eur J Cancer. 2012;48:30823092. doi:10.1016/j.ejca.2012.08.002.

15. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Min Res. 2007;22:14791491. doi:10.1359/jbmr.0707onj.

16. Khl S, Walter C, Acham S, Pfeffer R, Lambrecht JT. Bisphosphonate-related osteonecrosis of the jaws a review. Oral Oncol. 2012;48:938947. doi:10.1016/j.oraloncology.2012.03.028.

17. Bamias A, Kastritis E, Bamia C, et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol. 2005;23:85808587. doi:10.1200/JCO.2005.02.8670.

18. Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofacial Surg. 2007;65:415423. doi:10.1016/j.joms.2006.10.061.

19. Gutta R, Louis PJ. Bisphosphonates and osteonecrosis of the jaws: science and rationale. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2007;104:186193. doi:10.1016/j.tripleo.2006.12.004.

20. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws2009 update. J Oral Maxillofacial Surg. 2009;67:212. doi:10.1016/j.joms.2009.01.009.

21. Patel S, Choyee S, Uyanne J, et al. Non-exposed bisphosphonate-related osteonecrosis of the jaw: a critical assessment of current definition, staging, and treatment guidelines. Oral Dis. 2012;18:625632. doi:10.1111/j.1601-0825.2012.01911.x.

22. Yarom N, Fedele S, Lazarovici TS, Elad S. Is exposure of the jawbone mandatory for establishing the diagnosis of bisphosphonate-related osteonecrosis of the jaw? J Oral Maxillofacial Surg. 2010;68:705. doi:10.1016/j.joms.2009.07.086.

23. Mignogna MD, Sadile G, Leuci S. Drug-related osteonecrosis of the jaws: Exposure, or not exposure: that is the question. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:704705. doi:10.1016/j.oooo.2012.01.004.

24. Junquera L, Gallego L. Nonexposed bisphosphonate-related osteonecrosis of the jaws: another clinical variant? J Oral Maxillofacial Surg. 2008;66:15161517. doi:10.1016/j.joms.2008.02.012.

25. Fedele S, Porter SR, DAiuto F, et al. Nonexposed variant of bisphosphonate-associated osteonecrosis of the jaw: a case series. Am J Med. 2010;123:10601064. doi:10.1016/j.amjmed.2010.04.033.

26. Schiodt M, Reibel J, Oturai P, Kofod T. Comparison of nonexposed and exposed bisphosphonate-induced osteonecrosis of the jaws: a retrospective analysis from the Copenhagen cohort and a proposal for an updated classification system. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:204213. doi:10.1016/j.oooo.2013.10.010.

27. Gnant M, Mlineritsch B, Stoeger H, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol. 2011;12:631641. doi:10.1016/S1470-2045(11)70122-X.

28. Deans RJ, Moseley AB. Mesenchymal stem cells. Exp Hematol. 2000;28:875884. doi:10.1016/S0301-472X(00)00482-3.

29. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557563. doi:10.1038/nature06188.

30. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285293. doi:10.1038/nrc2621.

31. Gallo M, de Luca A, Lamura L, Normanno N. Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: implications for adjuvant therapy of breast cancer. Ann Oncol. 2012;23:597604. doi:10.1093/annonc/mdr159.

32. Hinson AM, Smith CW, Siegel ER, Stack BC. Is bisphosphonate-related osteonecrosis of the jaw an infection? A histological and microbiological ten-year summary. Int J Dent. 2014;2014:17. doi:10.1155/2014/452737.

33. Wood J, Bonjean K, Ruetz S, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302:10551061. doi:10.1124/jpet.102.035295.

34. Glueck CJ, McMahon RE, Bouquot JE, Triplett D. Exogenous estrogen may exacerbate thrombophilia, impair bone healing and contribute to development of chronic facial pain. CRANIO. 1998;16:143153. doi:10.1080/08869634.1998.11746052.

35. Gonzalez RM, Daly DS, Tan R, Marks JR, Zangar RC. Plasma biomarker profiles differ depending on breast cancer subtype but RANTES is consistently increased. Cancer Epidemiol Biomarkers Prev. 2011;20:15431551. doi:10.1158/1055-9965.EPI-10-1248.

36. Lechner J, von Baehr V. Hyperactivated signaling pathways of chemokine RANTES/CCL5 in osteopathies of jawbone in breast cancer patients-case report and research. Breast Cancer. 2014;8:8996. doi:10.4137/BCBCR.S15119.

37. Lechner J, von Baehr V. Chemokine RANTES/CCL5 as an unknown link between wound healing in the jawbone and systemic disease: is prediction and tailored treatments in the horizon? EPMA J. 2015;6:10. doi:10.1186/s13167-015-0032-4.

38. Lechner J, von Baehr V. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med. 2013;6:277290. doi:10.2147/IJGM.S43852.

39. Lechner J, von B. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med. 2013;277. doi:10.2147/IJGM.S43852.

40. Greiner S, Kadow-Romacker A, Lbberstedt M, Schmidmaier G, Wildemann B. The effect of zoledronic acid incorporated in a poly(D,L-lactide) implant coating on osteoblasts in vitro. J Biomed Mater Res A. 2007;80A:769775. doi:10.1002/jbm.a.30950.

41. Troeltzsch M, Kriegelstein S, Messlinger K, Steiner T, Messlinger K, Troeltzsch M. Physiology and pharmacology of nonbisphosphonate drugs implicated in osteonecrosis of the jaw. J Can Dent Assoc. 2012;78:c85.

42. Krger TB, Herlofson BB, Landin MA, Reseland JE. Alendronate alters osteoblast activities. Acta Odontol Scand. 2016;74:550557. doi:10.1080/00016357.2016.1217041.

43. Bouquot J, McMahon R The histopathology of chronic ischemic bone disease (ON) parameters and disease classification. Tucson, Arizona: Proceedings of the Annual Meeting of the American Association of Oral & Maxillofacial Pathology; 2010.

44. Assael LA. New foundations in understanding osteonecrosis of the jaws. J Oral Maxillofacial Surg. 2004;62:125126. doi:10.1016/j.joms.2003.11.009.

45. Kenzora J, Glimcher M. Accumulative cell stress: the multifactorial etiology of idiopathic osteonecrosis. Orthop Clin North Am. 1985;16:669679.

46. Schoutens A, Arlet J, Gardeniers J, Hughes S, editors. Bone Circulation and Vascularization in Normal and Pathological Conditions. New York, NY: Plenum Press; 1993.

47. Arlet J, Mazieres B. Bone Circulation and Bone Necrosis. Heidelberg, Germany: Springer-Verlag; 1990.

48. Favia G, Pilolli GP, Maiorano E. Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: an analysis of 31 cases with confocal laser scanning microscopy. Bone. 2009;45:406413. doi:10.1016/j.bone.2009.05.008.

49. Paparella ML, Brandizzi D, Santini-Araujo E, Cabrini RL. Histopathological features of osteonecrosis of the jaw associated with bisphosphonates. Histopathology. 2012;60:514516. doi:10.1111/j.1365-2559.2011.04061.x.

50. Gruppo R, Glueck CJ, Mcmahon RE, et al. The pathophysiology of alveolar osteonecrosis of the jaw: anticardiolipin antibodies, thrombophilia, and hypofibrinolysis. J Lab Clin Med. 1996;127:481488. doi:10.1016/S0022-2143(96)90065-7.

51. Glueck CJ, McMahon RE, Bouquot J, et al. Thrombophilia, hypofibrinolysis, and alveolar osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1996;81:557566. doi:10.1016/S1079-2104(96)80047-3.

52. Glueck C, Freiberg R, Gruppo R. Osteonecrosis: Etiology, Diagnosis, and Treatment. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1997.

53. Gabriel H, Fitzgerald SW, Myers MT, Donaldson JS, Poznanski AK. MR imaging of hip disorders. RadioGraphics. 1994;14:763781. doi:10.1148/radiographics.14.4.7938767.

54. Votta BJ, White JR, Dodds RA, et al. CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues. J Cell Physiol. 2000;183:196207. doi:10.1002/(SICI)1097-4652(200005)183:2<96::aid-jcp6>3.0.CO;2-8.

55. Lisignoli G, Toneguzzi S, Grassi F, et al. Different chemokines are expressed in human arthritic bone biopsies: IFN- and IL-6 differently modulate IL-8, MCP-1 AND RANTES production by arthritic osteoblasts. Cytokine. 2002;20:231238. doi:10.1006/cyto.2002.2006.

56. Pozzi S, Vallet S, Mukherjee S, et al. High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res. 2009;15:58295839. doi:10.1158/1078-0432.CCR-09-0426.

57. Kamalakar A, Bendre MS, Washam CL, et al. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 2014;61:176185. doi:10.1016/j.bone.2014.01.015.

Originally posted here:
[Full text] Osteonecrosis of the Jaw Beyond Bisphosphonates: Are There Any Unknown | CCIDE - Dove Medical Press

Shipyard worker Brad Lawson from Walney may have saved a stranger’s life with his stem cell donation – NW Evening Mail

A SHIPYARD worker has potentially saved a stranger's life after donating his stem cells to a person in desperate need.

Brad Lawson, from Walney, first signed up to be a stem cell donor six years ago after an event at his college.

Stem cells are cells with the potential to develop into many different types of cells in the body.

Every 14 minutes, someone is diagnosed with blood cancer such as leukaemia.

For many, a bone marrow or blood stem cell transplant is their only chance.

They need cells from a healthy person with the same tissue type to replace and repair their own damaged cells.

About 30 per cent of people in need can find a suitable donor in their family but the other 70 per cent rely on a stranger to save their lives.

This is what prompted Mr Lawson to travel hundreds of miles to London to give his much-needed donation.

The 23-year-old said: "I first signed onto the register six years ago and hadn't thought much about it since.

"Then I was shocked to get a phone call the other week to say they'd matched a patient with my stem cells.

"It's quite rare to match with someone - it's only one in 800 people so I knew I had to help."

Mr Lawson travelled down to London where he underwent peripheral blood stem cell collection.

The process involves having a course of injections prior to collection to stimulate the bone marrow and increase the number of stem cells and white blood cells in the blood.

He said: "I had no hesitation about going down there when I got the call. When you sign up, you need to be fully committed if you do get a call.

"This could be someone's chance of survival and I would never pull out of something like that.

"The process was actually really easy. It takes about five hours and isn't painful at all.

"I absolutely hate needles and didn't find it painful at all."

Mr Lawson said it felt 'rewarding' to know his donation could have possibly saved a stranger's life.

"You could potentially give someone the chance to survive by signing up," he said.

"It's an amazing thing to do which could seriously make a difference.

"I may be in that position one day where I desperately need stem cells and would like to think someone out there would help me.

"Donations literally saves lives. It's a really rewarding thing to do to be able to help someone in this way."

Mr Lawson is urging the public to sign up to the register.

"Only about two per cent of people in the UK are actually on the register," he said.

"I'm telling everyone to sign up and raise awareness of stem cell donation.

"The more people we can get to sign up, and save lives, the better."

To register, visit: http://www.dkms.org.uk/en/register-now.

Read more from the original source:
Shipyard worker Brad Lawson from Walney may have saved a stranger's life with his stem cell donation - NW Evening Mail

Bone Marrow Processing Systems Market- Global Research Analysis, Trends, Competitive Share and Forecasts 2018 2025 – NeighborWebSJ

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.

Request for Report Sample:https://www.trendsmarketresearch.com/report/sample/3374

Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.

Place a Direct Purchase Order: https://www.trendsmarketresearch.com/checkout/3374/Single

Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.

Get Request for Table of Contents: https://www.trendsmarketresearch.com/report/discount/3374

https://neighborwebsj.com/

Continued here:
Bone Marrow Processing Systems Market- Global Research Analysis, Trends, Competitive Share and Forecasts 2018 2025 - NeighborWebSJ

Adipose Derived Stem Cell Therapy Market 2018: Production, Sales, Supply, Demand, Analysis and Forecast To 2026 | BioRestorative Therapies, Inc.,…

The Global Adipose Derived Stem Cell Therapy Market report provides a holistic evaluation of the market for the forecast period (20192025). The report comprises various segments as well as an analysis of the trends and factors that are playing a substantial role in the market. These factors; the market dynamics involve the drivers, restraints, opportunities and challenges through which the impact of these factors in the market are outlined. The drivers and restraints are intrinsic factors whereas opportunities and challenges are extrinsic factors of the market. The Global Adipose Derived Stem Cell Therapy Market study provides an outlook on the development of the market in terms of revenue throughout the prognosis period.

In order to present an executive-level model of the market and its future perspectives, the Adipose Derived Stem Cell Therapy Market report presents a clear segmentation based on different parameters. The factors that affect these segments are also discussed in detail in the report.

Adipose derived stem cells (ADSCs) are stem cells derived from adipocytes, and can differentiate into variety of cell types. ADSCs have multipotency similar to bone marrow mesenchymal stem cells, thus ADSCs substitute for bone marrow as a source of stem cells. Numerous manual and automatic stem cell separation procedures are adopted in order to separate adipose stem cells (ASCs) from adipose tissue. Flow cytometry can also be used to isolate ADSCs from other stem cells within a cell solution.

Major Players included in this report are as follows BioRestorative Therapies, Inc., Celltex Therapeutics Corporation, Antria, Inc., Cytori Therapeutics Inc., Intrexon Corporation, Mesoblast Ltd., iXCells Biotechnologies, Pluristem Therapeutics, Inc., Thermo Fisher Scientific, Inc., Tissue Genesis, Inc., Cyagen US Inc., Celprogen, Inc., and Lonza Group, among others.

Get PDF Brochure Of This Research Report @ https://www.coherentmarketinsights.com/insight/request-pdf/2357

Adipose Derived Stem Cell Therapy Market: Regional analysis includes:

The study will also feature the key companies operating in the industry, their product/business portfolio, market share, financial status, regional share, segment revenue, SWOT analysis, key strategies including mergers & acquisitions, product developments, joint ventures & partnerships an expansions among others, and their latest news as well. The study will also provide a list of emerging players in the Adipose Derived Stem Cell Therapy Market.

Adipose Derived Stem Cell Therapy Market scope

A basic summary of the competitive landscape A detailed breakdown of the regional expanse A short overview of the segmentation

Furthermore, this study will help our clients solve the following issues:

Cyclical dynamics We foresee dynamics of industries by using core analytical and unconventional market research approaches. Our clients use insights provided by us to maneuver themselves through market uncertainties and disruptions.

Identifying key cannibalizes Strong substitute of a product or service is the most prominent threat. Our clients can identify key cannibalizes of a market, by procuring our research. This helps them in aligning their new product development/launch strategies in advance.

Spotting emerging trends Our Ecosystem offering helps the client to spot upcoming hot market trends. We also track possible impact and disruptions which a market would witness by a particular emerging trend. Our proactive analysis helps clients to have an early mover advantage.

Interrelated opportunities This report will allow clients to make decisions based on data, thereby increasing the chances that the strategies will perform better if not best in the real world.

Request Sample Copy of Research Report @ https://www.coherentmarketinsights.com/insight/request-sample/2357

Some of the Major Highlights of TOC covers:

Adipose Derived Stem Cell Therapy Regional Market Analysis

Adipose Derived Stem Cell Therapy Production by Regions Global Adipose Derived Stem Cell Therapy Production by Regions Global Adipose Derived Stem Cell Therapy Revenue by Regions Adipose Derived Stem Cell Therapy Consumption by Regions

Adipose Derived Stem Cell Therapy Segment Market Analysis (by Type)

Global Adipose Derived Stem Cell Therapy Production by Type Global Adipose Derived Stem Cell Therapy Revenue by Type Adipose Derived Stem Cell Therapy Price by Type

Adipose Derived Stem Cell Therapy Segment Market Analysis (by Application)

Global Adipose Derived Stem Cell Therapy Consumption by Application Global Adipose Derived Stem Cell Therapy Consumption Market Share by Application (2014-2019)

Adipose Derived Stem Cell Therapy Major Manufacturers Analysis

Adipose Derived Stem Cell Therapy Production Sites and Area Served Product Introduction, Application and Specification Adipose Derived Stem Cell Therapy Production, Revenue, Ex-factory Price and Gross Margin (2014-2019)Main Business and Markets Served

Key questions answered in the report:

LIMITED TIME OFFER Hurry Up!

Get Discount For Buyers UPTO 30% OFF On Any Research Report

Apply Promo Code CMIFIRST1000 And Get Instant Discount Of USD 1000

Ask For Discount Before Purchasing This Business Report @ https://www.coherentmarketinsights.com/insight/request-discount/2357

Key Benefits

Major countries in each region are mapped according to individual market revenue. Comprehensive analysis of factors that drive and restrict market growth is provided. The report includes an in-depth analysis of current research and clinical developments within the market. Key players and their key developments in recent years are listed.And More.

About Coherent Market Insights

Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contact Us

Mr. ShahCoherent Market Insights1001 4th Ave, #3200Seattle, WA 98154Tel: +1-206-701-6702Email: sales@coherentmarketinsights.com

View post:
Adipose Derived Stem Cell Therapy Market 2018: Production, Sales, Supply, Demand, Analysis and Forecast To 2026 | BioRestorative Therapies, Inc.,...

Bone Marrow Processing System Market: Segmental Highlights and Table of Content 2025 – NeighborWebSJ

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

Request for Report Sample: https://www.trendsmarketresearch.com/report/sample/3184

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

Place a Direct Purchase Order : https://www.trendsmarketresearch.com/checkout/3184/Single

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

Request for Report Discount: https://www.trendsmarketresearch.com/report/discount/3184

https://neighborwebsj.com/

View post:
Bone Marrow Processing System Market: Segmental Highlights and Table of Content 2025 - NeighborWebSJ

Global stem cell banking market Analysis With Key Players, Applications, Trends And Forecasts 2028 – The Courier

DBMR has added a new report titled Global stem cell banking market with analysis provides the insights which bring marketplace clearly into the focus and thus help organizations make better decisions. This market research report contains fundamental, secondary and advanced information related to the global status and trend, market size, sales volume, market share, growth, future trends analysis, segment and forecasts from 2020 2027. This Global stem cell banking market report helps businesses to define their own strategies for the up gradation in the existing product, possible modifications required in the future product, sales, marketing promotion and distribution of the product in the existing and the new market. In this report, a thorough investment analysis is offered which forecasts imminent opportunities for the market players and develops the strategies to grow return on investment (ROI).

Global stem cell banking market is set to witness a substantial CAGR of 11.03% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. The increased market growth can be identified by the increasing procedures of hematopoietic stem cell transplantation (HSCT), emerging technologies for stem cell processing, storage and preservation. Increasing birth rates, awareness of stem cell therapies and higher treatment done viva stem cell technology.

Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-banking-market&pm

Competitive Analysis:

Global stem cell banking market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of inflammatory disease drug delivery market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

Key Market Competitors:

Few of the major competitors currently working in global inflammatory disease drug delivery market are: NSPERITE N.V, Caladrius, ViaCord, CBR Systems, Inc, SMART CELLS PLUS, LifeCell International, Global Cord Blood Corporation, Cryo-Cell International, Inc., StemCyte India Therapeutics Pvt. Ltd, Cordvida, ViaCord, Cryoviva India, Vita34 AG, CryoHoldco, PromoCell GmbH, Celgene Corporation, BIOTIME, Inc., BrainStorm Cell Therapeutics and others

Market Definition:Global Stem Cell Banking Market

Stem cells are cells which have self-renewing abilities and segregation into numerous cell lineages. Stem cells are found in all human beings from an early stage to the end stage. The stem cell banking process includes the storage of stem cells from different sources and they are being used for research and clinical purposes. The goal of stem cell banking is that if any persons tissue is badly damaged the stem cell therapy is the cure for that. Skin transplants, brain cell transplantations are some of the treatments which are cured by stem cell technique.

Cord Stem Cell Banking MarketDevelopment and Acquisitions in 2019

Cord Stem Cell Banking MarketScope

Cord Stem Cell Banking Marketis segmented on the basis of countries into U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

All country based analysis of the cord stem cell banking marketis further analyzed based on maximum granularity into further segmentation. On the basis of storage type, the market is segmented into private banking, public banking. On the basis of product type, the market is bifurcated into cord blood, cord blood & cord tissue. On the basis of services type, the market is segmented into collection & transportation, processing, analysis, storage. On the basis of source, market is bifurcated into umbilical cord blood, bone marrow, peripheral blood stem, menstrual blood. On the basis of indication, the market is fragmented into cerebral palsy, thalassemia, leukemia, diabetes, autism.

Cord stem cell trading is nothing but the banking of the vinculum plasma cell enclosed in the placenta and umbilical muscle of an infant. This ligament plasma comprises the stem blocks which can be employed in the forthcoming time to tackle illnesses such as autoimmune diseases, leukemia, inherited metabolic disorders, and thalassemia and many others.

Market Drivers

Market Restraint

Key Pointers Covered in the Cord Stem Cell Banking MarketIndustry Trends and Forecast to 2026

Key Developments in the Market:

For More Insights Get FREE Detailed TOC @https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-banking-market&pm

Reasons to Purchase this Report

Customization of the Report:

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @ Corporatesales@databridgemarketresearch.com

Go here to read the rest:
Global stem cell banking market Analysis With Key Players, Applications, Trends And Forecasts 2028 - The Courier

Mum of girl, 8, with rare illness is in ‘torture’ waiting for results of vital operation – Irish Mirror

Little Evie's mum confessed it's "torture" and the "worst bit for a parent" waiting to find out results of her daughter's life-saving transplant.

Evie Hodgson, eight, was given a vital transplant from a stem cell donor after she was diagnosed with the rare blood disorder, aplastic anaemia.

The mother and daughter spoke to Holly Willoughby and Phillip Schofield on This Morning via video link from hospital in Newcastle on Tuesday.

It was at Great North Childrens Hospital where the little girl had the six-hour operation for the transplant.

Tina, 37, of Whitby, North Yorkshire, admitted it was "torturous" waiting to find out whether her daughter's body accepts the new bone marrow.

Their journey isn't over yet as the family won't find out for three to four weeks.

However, the mother expressed her relief was "phenomenal" now Evie had the life-saving transplant.

She said: "This is the worst bit for a parent. We got the donor, we had been searching for the transplant. It went ahead. The relief was phenomenal.

"We're waiting for her body to accept new stem cells. They've said three to four weeks. It's torture."

She added: "Absolutely, hopefully we will have some good news then."

Little Evie told This Morning presents that she feels "great" right now.

The brave girl gushed about the "kind" nurses and doctors who have been looking after her.

She said: "Yes, all the nurses and doctors are very kind to me. They're always getting me chocolate milk."

The mother and daughter duo will join Holly and Phil once again in three to four weeks' time once the results are in.

Evie was diagnosed with aplastic anaemia in May last year.

Aplastic anaemia is a disease where the body has a deficiency of all blood cells types.

Last year, Evie was unable to undergo vital surgery because her original donor dropped out in September.

At the time, the original donor was the only match available in the world before the new match was found.

The Mirrors Change the Law for Life crusade saw a new opt out' system introduced in England last May.

Named Max and Keiras Law in honour of our poster boy Max Johnson, 13, of Winsford, Cheshire, and his heart donor Keira Ball, nine, who died in a car accident near her home in Barnstaple, Devon, it means everyone is understood to be a donor when they die.

Go here to see the original:
Mum of girl, 8, with rare illness is in 'torture' waiting for results of vital operation - Irish Mirror

Bone Therapeutics and Rigenerand sign partnership for cell therapy process development – GlobeNewswire

Gosselies, Belgium and Modena, Italy, 14January 2021, 7am CET BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, and Rigenerand SRL, the biotech company that both develops and manufactures medicinal products for cell therapy applications, primarily for regenerative medicine and oncology, today announce the signing of a first agreement for a process development partnership.

Allogeneic mesenchymal stem cell (MSC) therapies are currently being developed at an incredible pace and are evaluated in numerous clinical studies covering diverse therapeutic areas such as bone and cartilage conditions, liver, cardiovascular and autoimmune diseases in which MSCs could have a significant positive effect. Advances in process development to scale up these therapies could have major impacts for both their approval and commercial viability. This will be essential to bring these therapies to market to benefit patients as quickly as possible, said Miguel Forte, CEO, Bone Therapeutics. Hence, whilst Bone Therapeutics is driving on its existing clinical development programs, we have signed a first formal agreement with Rigenerand as a fellow MSC-based organization. This will result in both companies sharing extensive expertise in the process development and manufacturing of MSCs and cell and gene therapy medicinal products. Bone Therapeutics also selected Rigenerand to partner with for their additional experience with wider process development of advanced therapy medicinal products (ATMPs), including the conditioning and editing of MSCs. Rigenerand was founded by Massimo Dominici, a world opinion leader in the cell therapy with an unparalleled MSC expertise and knowledge.

The scope of collaborations between Bone Therapeutics and Rigenerand aims to focus on different aspects of product and process development for Bone Therapeutics expanding therapeutic portfolio. Rigenerand will contribute to improving the processes involved in the development and manufacture of Bone Therapeutics MSC based allogeneic differentiated cell therapy products as they advance towards patients. The first collaboration between the two organizations will initially focus on augmented professional bone-forming cells cells that are differentiated and programmed for a specific task. There is also potential for Bone Therapeutics to broaden its therapeutic targets and explore new mechanisms of action with potential gene modifications for its therapeutic portfolio.

In addition to Rigenerands MSC expertise, Bone Therapeutics also selected Rigenerand as a partner for Rigenerands GMP manufacturing facility. This facility, situated in Modena, Italy, has been designed to host a number of types of development processes for ATMPs. These include somatic, tissue engineered and gene therapy processes. These multiple areas of Rigenerand capabilities enable critical development of new processes and implementation of the gene modification of existing processes. In addition, Rigenerand has built considerable experience in cGMP manufacturing of MSC-based medicinal products, including those that are genetically modified.

Process development and manufacturing is a key part of the development for ATMPs internationally. Navigating these therapies through the clinical development phase and into the market requires a carefully considered process development pathway, said Massimo Dominici, scientific founder, Rigenerand, professor of medical oncology, and former President of the International Society for Cell & Gene Therapy (ISCT). This pathway needs to be flexible, as both the market and materials of these therapies continues to evolve alongside an improved clinical efficacy.

Rigenerand will offer considerable input from its experience of MSC-based therapies to enable Bone Therapeutics to keep and further accelerate the pace in development of the product processes of its MSC based allogeneic differentiated cell therapy as they advance towards patients, said Giorgio Mari, CEO, Rigenerand. We will continue to use our MSC expertise in the development of Rigenerands own products, as well as in process development and manufacturing cell and gene therapies for partner organizations across the globe.

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a, diversified portfolio of cell and biologic therapies at different stages ranging from pre-clinical programs in immunomodulation to mid-to-late stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.

Bone Therapeutics is developing an off-the-shelf next-generation improved viscosupplement, JTA-004, which is currently in Phase III development for the treatment of pain in knee osteoarthritis. Consisting of a unique combination of plasma proteins, hyaluronic acid - a natural component of knee synovial fluid, and a fast-acting analgesic, JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain and inflammation. Positive Phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement.

Bone Therapeutics core technology is based on its cutting-edge allogeneic cell therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company has initiated patient recruitment for the Phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.

Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.

About Rigenerand

Rigenerand SRL is a biotech company that both develops and manufactures medicinal products for cell therapy applications, primarily for regenerative medicine and oncology and 3D bioreactors as alternative to animal testing for pre-clinical investigations.

Rigenerand operates through three divisions:

Rigenerand is developing RR001, a proprietary ATMP gene therapy medicinal product for the treatment of pancreatic ductal adenocarcinoma (PDAC). RR001 has been granted an Orphan Drug Designation (ODD) by US-FDA and from the European Medicine Agency. The Clinical trial is expected to start in Q2 2021.

Rigenerand is headquartered in Medolla, Modena, Italy, with more than 1,200 square metres of offices, R&D and quality control laboratories and a cell factory of 450 square metres of sterile cleanroom (EuGMP Grade-B) with BSL2/BSL3 suites for cell and gene therapies manufacturing. It combines leaders and academics from biopharma and medical device manufacturing sectors.

For further information, please contact:

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com

For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be

International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

Original post:
Bone Therapeutics and Rigenerand sign partnership for cell therapy process development - GlobeNewswire

Unlocking The Unlimited Potential Of Stem Cells – CodeBlue

As we enter 2021, it goes without saying that Covid-19 has changed how we live our lives. On top of pushing multiple industries to adopt digital processes like never before, the pandemic has accelerated the advancements in the field of biotechnology, with one of the most recent successes being the development of Covid-19 vaccines with a 95 per cent success rate.

Prior to that, however, the world has already seen several leaps forward in the world of biotechnology over the past decades, especially in the field of medicine. Before Covid-19, diseases like H1N1 and SARS ravaged the world. Through a significant amount of research in the field of biotechnology, we have made sure that those diseases no longer pose a great threat.

Beyond creating more robust defences against diseases, one of the most well-known biotechnological breakthroughs is the in-vitro fertilization (IVF) method. This breakthrough gave birth to Dolly the sheep in 1996, which opened a floodgate for future exploration and development in the field of biotechnology.

In recent years, some of the most exciting news in biotechnology came from stem cell research. For instance, CRISPR, a powerful gene-editing technology is now being used to treat sickle-cell anemia and can potentially cure cancer and HIV in the future.

As stem cell research continues to progress, it is important for patients to be aware of the kinds of stem cells which can be collected and stored, along with their unlimited potential for curing a variety of diseases.

Biotechnological Breakthroughs Over The Years In A Continuous Bid for Medical Advancement

In the 1980s, stem cells could only be collected right before the transplant, which posed a few problems. They included not having enough stem cells if the patient develops a complication and the risk that the quality and validity of stem cells might be compromised.

Since then, many discoveries have been made and developed in the biotechnology industry. These include isolation, cryopreservation, and long-term storage technology which paved the way for stem cell storage and cord blood banking.

Through this technology, we are able to collect and store stem cells for future use. This allows for more stem cells to be well-preserved ahead of time, giving patients the assurance and peace of mind needed.

With stem cells being increasingly used in a variety of medical cases, cord blood banking a simple and harmless procedure in which cord blood, also known as umbilical cord blood (UCB), is collected and cryopreserved for future use.

In recent years, UCB has gained more prominence among medical experts. This is because cord blood is loaded with stem cells that can be used to treat diseases such as anemia and immune system disorders.

One thing to note is that UCB can only be collected at the time of delivery. However, among patients and their loved ones, cord blood banking remains something that doesnt quite come to mind when considering health insurance plans for their children. Many parents are under the notion that because they are healthy, their babies are also healthy.

Because of this, they do not see the importance of collecting and storing UCB at birth. Aside from that, they also fail to realise that no one can truly predict when a loved one might need this particular form of treatment in the future. Hence, storing UCB is a form of biological insurance, to ensure that if something were to befall a family member one day, there are means to treat it.

With that said, there are many different types of stem cells. Each of them functions differently to carry out a specific task.

Examples Of Stem Cells In Action

Hematopoietic Stem Cells (HSC) are stem cells that produce red blood cells, white blood cells, and platelets to treat blood disorders.

One of the most effective uses of HSC is in the treatment of childhood Acute Lymphoblastic Leukemia (ALL). With stem cells transplant, more than 90% of cases have been successfully treated. A typical treatment method of ALL is through chemotherapy drugs and radiation.

However, there are times when a higher dosage of drugs and radiation is required to treat certain patients and this can be severely damaging to the patients bone marrow. In these cases, HSC transplants after using higher doses of drugs to kill the cancer cells help the patients to produce normal blood-forming cells to restore the bone marrow functions.

Aside from that, HSC can potentially be very effective in treating blood disorders such as cancer, thalassemia (a blood disorder when the body doesnt make enough of a protein called hemoglobin), and aplastic anemia (a condition that leaves one fatigued and more prone to infections and uncontrolled bleeding).

Another type of stem cells is Mesenchymal Stem Cells (MSC). These can be obtained from Umbilical Cord Lining and Wharton Jelly. These are very versatile and important types of stem cells.

In recent times, doctors have been using MSC to treat patients with severe respiratory syndrome as a result of Covid-19 infection. The results were very promising and the patients showed improvements after their treatment. Because the immune system is now functioning better, we have seen a decrease in the inflammatory response and an improvement in theimmune response.

More than that, MSCs have shown a great deal of promise in addressing autism, a disease that did not have a viable cure previously. Currently, many clinical trials are being conducted around the world in universities with stem cell departments, like Duke Universitys Autism trial.

Aside from that, MSCs are also used in clinical trials to study potential cures for neurodegenerative disorders such as Parkinsons and Alzheimers Disease. Another exciting area of research is using MSCs to treat heart conditions, Type 1 Diabetes Mellitus, and cancer.

Stem cell research has definitely come a long way, from the discovery of embryonic stem cells in mice in 1981 by Martin Evans of Cardiff University, to being able to treat an increasing number of diseases over the years.

While there is no guarantee that stem cell transplants will completely cure any particular disease, the potential of stem cells is undeniable. Doctors across the world are working relentlessly to discover more and more of the seemingly endless potential of stem cells.

Dr Menaka Hariharan is the Medical Director of StemLife.

See the original post:
Unlocking The Unlimited Potential Of Stem Cells - CodeBlue

Hemostemix steps into the new year with capital and its critical clinical study data in hand – InvestorIntel

With a new management team spearheading Hemostemix Inc. (TSXV: HEM | OTC: HMTXF), the Company started 2021 with its critical clinical study data in hand. Raising over $4 million in 2020 and then in December adding an additional $4 million to the coffers ($2.75 million at a 50% premium), Hemostemix completed a 1-for-20 share consolidation as it charges into the New Year.

Receiving a copy of its entire clinical trial database relating to the clinical trial for Critical Limb Ischaemia (CLI) using its ACP-01 therapy (Angiogenic Cell Precursors) in November 2020 was a key event for Hemostemixs management team and it garnered real interest from the market.

Hemostemix Platform for Stem Cell Therapies

Based in Calgary and founded in 2006, Hemostemix is a clinical-stage biotechnology company specializing in blood-derived stem cell therapeutics with its lead product (ACP-01) in Stage 2 clinical trials for the treatment of CLI.

CLI is a disease caused by the narrowing of arteries in the limbs, particularly the legs, hands, and feet, causing chronic pain and soreness. Untreated CLI can sometimes require the amputation of the specific limb.

Stem cell treatments have been used for over 30 years to treat people with cancer conditions such as leukemia and lymphoma.

There are two main types of stem cell transplants: allogeneic and autologous. In an allogeneic stem cell transplant procedure, the patient receives stem cells from a donor. In an autologous stem cell transplant procedure, the patient provides themselves the stem cells for the procedure from various sources, including bone marrow or blood.

Hemostemixs autologous stem cell therapy platform uses the patients own blood to harvest the stem cells and the treatment helps to restore circulation in the damaged tissues.

Hemostemix has a strong intellectual property (IP) portfolio of 91 patents and has treated more than 500 patients with clinical results showing an improvement in 83% of the patients receiving its ACP-01 stem cell therapy.

Advantages with Hemostemixs process include the use of blood, which is safer and less invasive than extracting bone marrow, and since you are using the patients own blood, there is no immune rejection.

The clinical trials have shown that ACP-01 is safe and effective in the treatment of CLI. Now that Hemostemix has received the entire clinical trial database, it has entered into a contract with a new Clinical Research Organization (CRO) to complete the midpoint statistical analyses of the efficacy of ACP-01 and expects to publish the results this quarter.

Hemostemix Not a 1-Trick Pony Company

ACP-01 has the potential to treat other conditions such as Angina, Ischemic & Dilated Cardiomyopathy, and Peripheral Artery Disease (PAD). Currently, Hemostemix is preparing for Phase 2 trials for the treatment of Angina and is seeking joint-venture partners to fund the other Phase 2 trials.

Hemostemix has also developed NCP-01 (Neural Cellular Precursor) from blood with the potential, through building new neuronal lineage cells in a patient, to treat Alzheimers disease, Amyotrophic Lateral Sclerosis (ALS), Parkinsons disease, spinal cord injuries, and stroke-related issues. NCP-01 is currently in the R&D phase and is pre-clinical.

Market Size

According to the American Heart Association, Cardiovascular disease (CVD) accounted for approximately 1 of every 3 deaths in the United States in 2019.

Factors that increase the risk of CLI include diabetes, high cholesterol levels, high blood pressure, obesity, or smoking, all risk factors also associated with CVD.

Unfortunately, most of these factors are increasing at an alarming rate a study by the Centers for Disease Control and Prevention (CDC) in the United States, showed the prevalence of diagnosed diabetes has more than doubled from 3.3% in 1995 to 7.40% in 2015, affecting 23.4 million Americans.

According to a market research report released in 2019, the value of just the global CLI treatment market is projected to reach US$5.39 billion by 2025, up from US$3.13 billion in 2018, at an annual growth rate of 8%.

Competitive Landscape and Market Cap Comparisons

Even with Hemostemixs recent market surge, its market cap is only C$32.5 million. Similar-sized biotech companies focusing on CLI trade much higher.

Cynata Therapeutics Limited (ASX: CYP) is an Australian biotechnology company with a Phase 2 clinical-stage trial for its stem cell therapy for CLI using bone marrow and has a market cap of C$93.6 million.

Pluristem Therapeutics Inc. (NASDAQ: PSTI) is a Phase 3 bio-therapeutics company, based in Israel, that also has an allogeneic cell therapy for the treatment of CLI using the placenta and has a market cap of C$231.9 million.

In November 2020, Bristol-Myers Squibb Company (NYSE: BMY) bought MyoKardia, Inc. for US$13.1 billion. MyoKardia was a clinical-stage biopharmaceutical company that developed therapies for the treatment of cardiovascular diseases and its lead product was a Phase III clinical trial drug used in the treatment of hypertrophic cardiomyopathy (HCM).

As a company shifts from Phase 2 to Phase 3 clinical trials, the market cap often has a step-function shift higher, making it an ideal time to look at Hemostemix.

SOURCE:

Go here to see the original:
Hemostemix steps into the new year with capital and its critical clinical study data in hand - InvestorIntel

Global Organ and Tissue Transplantation and Alternatives Market to 2024 – Impact Analysis of COVID-19 – Yahoo Finance

Dublin, Jan. 06, 2021 (GLOBE NEWSWIRE) -- The "Organ and Tissue Transplantation and Alternatives" report has been added to ResearchAndMarkets.com's offering.

This report offers forecasts, by product segment, from 2018 through 2024, including supporting analyses for projections. Product segments covered consist of the solid organ (e.g., kidneys, liver, heart-lung, pancreas, intestines) and the tissue transplantation (e.g., bone, skin, cornea, heart valve) markets, along with the pharmaceuticals that accompany each market.

Also included are experimental xenografts and artificial organs; tissue transplants; and cell transplants (e.g., bone marrow, cord blood, peripheral blood, islet cell). The report touches on the use of fetal cells, stem cells, and altered cancer cells.

The arrangement of this report offers an overview of the key elements in the transplantation process: tissue typing, procurement and preservation, immunosuppressants for solid organ and tissue transplants, and postoperative monitoring. International markets are discussed, and information is provided on industry structure and the regulatory environment.

Within each section are discussions of commercialization opportunities for each segment of the market. New or emerging devices, techniques, and pharmaceuticals are highlighted.

Profiles of leading companies involved with solid organ transplantation, tissue transplantation, and alternative technologies are included. The report provides information on company placement within the market and strategic analyses of the companies' available and emerging products.

An appendix featuring various terms and processes used in transplantation is provided at the end of the report.

This report cites autologous products only in relation to their impact on the market for allografts. It does not include blood products, except for peripheral and umbilical cord blood as a source of stem cells.

By geography, the market has been segmented into North America, Europe, Asia-Pacific, and Rest of the World regions. Detailed analysis of the market in major countries such as the U.S., Germany, the U.K., Italy, France, Spain, Japan, China, India, Brazil, Mexico, GCC countries, and South Africa will be covered in the regional segment. For market estimates, data will be provided for 2019 as the base year, with estimates for 2020 and forecast value for 2024.

Story continues

Report Includes:

26 data tables and 37 additional tables

An overview of the global organ and tissue transplantation and alternatives market

Estimation of the market size and analyses of market trends, with data from 2018 to 2019, estimates for 2020, and projection of CAGR through 2024

Details about organ and tissue transplantation and alternatives, their pathophysiology and effects, and major advancement and latest trends

A look at the regulatory scenarios and initiatives by a government organization

Analysis of current and future market dynamics and identification of key drivers, restraints, and opportunities such as increasing incidence of organ donations, improved awareness about organ donations, side effects of organ and tissue transplantation, and antibiotic resistance infections

Coverage of emerging procedures and products in development and discussion on the prevalence of major chronic diseases which initiates organ damage or donation

Discussion on the role of the organ procurement organization and information on transplantation process and preparation and coverage of issues like black market donors

Impact analysis of COVID-19 on organ and tissue transplantation and alternatives market

Market share analysis of the key companies of the industry and coverage of events like mergers & acquisitions, joint ventures, collaborations or partnerships, and other key market strategies

Company profiles of major players of the industry, including Abiomed Inc., Bayer AG, F. Hoffmann-La Roche & Co., Johnson & Johnson, Novartis AG, Pfizer Inc., and XVIVO Perfusion

Growth of the global market is attributed to factors such as the growing prevalence of obesity, diabetes, cancer, and other chronic diseases which leads to organ damage, a strong product regulatory scenario, and strong investment in research and development activities by key market players including Abbott Laboratories, Cryolife Inc., Bristol-Myers Squibb, Novartis Ag, F. Hoffmann-La Roche Ltd., Medtronic, Arthrex Inc., Depuy Synthes (Johnson & Johnson), and Allosource.

Although various factors facilitate the global market for organ and tissue transplantation and alternatives, certain parameters such as challenges in HLA sequencing and gaps in supply and demand can constrain market growth. For instance, although there is an increasing need for organ transplants, the shortage of organs worldwide limits the number of transplant procedures performed, and in turn, creates an impact on transplant diagnostics procedures. An increasing number of candidates on the waiting list for organ transplant procedures worldwide further widens this gap of availability and requirement of organs for transplant purposes.

Successful organ and tissue transplantation began to arrive in the mid-1970s when tissue typing coupled with the use of cyclosporine provided more successful graft and patient survival. Today, patient and graft survival for kidney transplants is higher than 90% for the first year post-transplant, and often the success rate is 80% to 90% for five years post-transplant, with some recipients living more than 20 years after their transplant.

Continuing developments in organ procurement, organ preservation, tissue typing, and immunosuppressant use have bolstered successful transplantation surgical techniques. Evolving posttransplant drug and testing regimens have added to the success rate with close post-transplant monitoring and immunosuppressant dosage review.

Key Topics Covered:

Chapter 1 Introduction

Chapter 2 Summary and Highlights

Chapter 3 Market and Technology Background

Organ and Tissue Transplantation and Alternatives

Cost of Care

Solid Organ Preservation

Immunosuppression

Organ Transplantation Alternatives

Trends in Organ and Tissue Transplantation Techniques and Their Alternatives

3D Tissue Assembly

Nanotechnology for Tissue Regeneration

Innovation by Small Firms

Chapter 4 Market Dynamics

Market Drivers

Increasing Epidemiology of Different Diseases Influencing Organ Transplantations

Rise in the Geriatric Population

Rising Awareness of Importance of Organ and Tissue Donation

New Therapeutic Pathways for Organ Transplantation and Their Alternatives

Market Restraints

Challenges in Human Leukocyte Antigen (HLA) Sequencing

Demand and Supply Gap

Market Opportunities

Growing Economic Benefits of Organ and Tissue Transplants

Improvement in Healthcare Infrastructure

Chapter 5 Market Breakdown by Product & Devices

Global Market for Organ and Tissue Transplantation and Alternatives

Alternative Technologies

Market Size and Forecast

Alternatives to Heart Transplantation

Surgical

Mechanical

Total Artificial Heart

Ventricular Assist Devices (VADs)

Generations of Designs

Orthopedic Alternatives

Tissue Products

Market Size and Forecast

Immunosuppressants

Market Size and Forecast

Solid Organ Preservation Solutions

Market Size and Forecast

Preservation Solutions in Development

Tissue Typing

Market Size and Forecast

Chapter 6 Market Breakdown by Region

Global Market for Organ and Tissue Transplantation and Alternatives by Region

North America

United States

Canada

Mexico

Europe

Germany

France

U.K.

Italy

Spain

Rest of Europe

Asia-Pacific

Japan

China

India

Australia and New Zealand

Rest of Asia-Pacific

Rest of the World

Market Analysis

Brazil

South Africa

Rest of the World Countries

Chapter 7 Impact of COVID-19

Introduction

Impact on Kidney Transplant Program

Impact on Pharmaceutical Companies

Donor Testing

Visit link:
Global Organ and Tissue Transplantation and Alternatives Market to 2024 - Impact Analysis of COVID-19 - Yahoo Finance

Top 10 ALS Stories of 2020 – ALS News Today

ALS News Today brought you daily coverage of key findings, treatment developments, clinical trials, and other important events related to amyotrophic lateral sclerosis (ALS) throughout 2020, a year marked by the COVID-19 pandemic.

As a reminder of what mattered most to you in 2020, here are the top 10 most-read articles of last year with a brief description of what made them interesting and relevant to the ALS community.

We look forward to reporting more relevant news to patients, family members, and caregivers dealing with ALS throughout 2021.

A team of researchers in Germany found that caffeine and nicotinamide adenine dinucleotide in its oxidized form (NAD+) two powerful antioxidants improved the health of lab-grown motor neurons derived from a mouse model of sporadic ALS.

These benefits, seen in cells derived from mice either in a progressive or a stable disease state, were likely associated with a reduction in oxidative stress, a known contributor to sporadic ALS.

Of note, motor neurons, the specialized nerve cells that control voluntary movement, are progressively lost in people with ALS. Oxidative stress is an imbalance between the natural production of potentially harmful reactive oxygen species and the ability of cells to detoxify them with antioxidant agents.

In an April story, we reported AB Sciences plans to launch a Phase 3 clinical trial (NCT03127267) testing its experimental oral therapy masitinib as an add-on treatment for people with ALS, after the U.S. Food and Drug Administration (FDA) cleared its request for this study.

Masitinib is designed to block the activity of multiple cell types involved in the inflammatory and neurodegenerative processes marking ALS.

The study aims to assess whether add-on treatment with masitinib is superior to placebo at slowing functional decline in up to 495 ALS patients diagnosed in the past two years. Participants functional abilities will be assessed through the ALS functional rating scale-revised (ALSFRS-R). Both masitinib and placebo will be given in combination with Sanofis Rilutek (riluzole), an approved ALS medication.

The trial is currently recruiting patients at a single U.S. clinical site(Johns Hopkins in Maryland), but another site in Ulm, Germany, is expected to open shortly. Should study findings be positive, they are expected to support future requests for regulatory approval of masitinib as an ALS treatment.

Using different mouse models of ALS, a team of researchers in the U.S. discovered a self-destructive mechanism in mitochondria the cells powerhouses that may be one of the first triggers of motor neuron degeneration in ALS.

This mitochondrial suicide was found only in the upper motor neurons those that send messages from the brain to the spinal cord, and whose degeneration is thought to be an early disease event of ALS mice, and before any signs or symptoms of the disease were evident.

These findings suggest that currently available therapies targeting mitochondrial degeneration may help to stop neurodegeneration in ALS, supporting further research in this area.

In July, BrainStorm Cell Therapeutics announced that all ALS patients enrolled in a pivotal Phase 3 clinical trial (NCT03280056) testing NurOwn, its investigational cell-based therapy, had completed dosing.

NurOwn involves expanding and maturing mesenchymal stem cells (MSCs) collected from a patients own bone marrow into cells that produce high levels of molecules promoting nerve cell growth and survival. MSCs are stem cells that can generate a variety of other cell types.

The mature cells called MSC-NTF cells are then injected into the patients spinal canal to promote and support nerve cell repair.

In the U.S.-based trial, 189 patients with rapidly progressing ALS were randomly assigned to either a total of three injections of either NurOwn, or a placebo, given directly into the spinal canal every other month.

The studys main goal was to assess the therapys safety, and whether treatment was superior to placebo at slowing disease progression as measured by the ALSFRS-R at seven months following the first dose.

A couple of months earlier, we reported the results of a preclinical study suggesting that NurOwn may not only boost nerve cell protection and repair, but also suppress the damaging immune responses that contribute to ALS progression by promoting a shift toward an anti-inflammatory state.

BrainStorm researchers found that growing healthy B-cells and T-cells immune cells known to be involved in ALS in the lab with NurOwn suppressed the growth of pro-inflammatory cell subsets, and lowered the levels of pro-inflammatory molecules. At the same time, the therapy increased the numbers of immunosuppressive cell subsets and the levels of a major anti-inflammatory molecule.

BrainStorm announced in June that patient dosing in its Phase 3 trial evaluating NurOwn in people with ALS remained on track, despite occasional treatment scheduling changes due to the COVID-19 pandemic.

The company attributed the trials successful advancement during the pandemic to coordination among its six U.S. clinical sites, support and guidance from the FDA, and the fact that its main goal based on the ALSFRS-R could be assessed by phone.

Top-line data were shared before the years end, as anticipated by BrainStorm, and are under review by the FDA.

In April, ALS News Today reported onSeneca Biopharmas plans to launch a Phase 3 clinical trial to assess the safety and effectiveness of NSI-566, its leading stem cell treatment candidate, in adults with ALS.

The decision was supported by previous positive data from a Phase 1 (NCT01348451) and Phase 2 (NCT01730716) clinical trial and a meeting with the FDA that provided guidance on how to best design and conduct the upcoming late-stage trial.

NSI-566 treatment involves the injection of fetal spinal cord stem cells into a patients spinal cord, where they mature into nerve cells that surround and support motor neurons. These mature cells also produce certain molecules that promote motor neuron growth and survival.

Results from the previous studies confirmed NSI-566s safety, and suggested that the therapy may help to prevent further functional decline in ALS patients, when compared with data from other ALS trials.

A small study in Italy suggested that creatinine kinase a marker of muscle damage could be used as a biomarker to predict the rate of disease progression in people with ALS.

By analyzing this enzyme in 126 ALS patients, the researchers found that creatinine kinase levels were significantly higher in people with slow progressing disease compared with those with fast progressing disease, and that these differences were sustained over time.

Further analyses in mouse models of ALS confirmed these findings, and suggested that the slow progression was associated with greater muscle mass and a better ability to counter disease mechanisms for longer periods.

Elevated creatinine kinase blood levels also seemed to be specific to ALS among neurodegenerative diseases, suggesting that the muscle may be a therapeutic target in ALS.

In January, we reported that a Phase 1/2a clinical trial (NCT03482050) testing AstroRx, Kadimastems investigational cell therapy, had completed dosing a second group ofALS patients.

AstroRx delivers healthy, mature astrocytes derived from human embryonic stem cells to a patients spinal cord to compensate for diseased astrocytes and to prevent motor neuron loss. Astrocytes are star-shaped cells that normally support and protect nerve cells, but are abnormal in ALS.

Data from the first group of patients given the lowest therapy dose showed that the treatment was safe and slowed the rate of disease progression over the first three to four months following dosing. Results from the second group (given a higher dose) went on toconfirm these promising three-month findings of a single treatment.

Our most-read article of 2020 concerned the discovery that an abnormal uptake of metals from chromium to zinc during childhood is associated with ALS in adults.

By analyzing teeth samples from 36 ALS patients and 31 unaffected people with a powerful technology, the researchers were able to establish and assess differences in temporal profiles of metal exposure. They found that ALS patients had greater exposure to several metals at various developmental stages, starting as early as birth.

These findings were confirmed in mouse models of ALS, both in their teeth and in their brains, suggesting that abnormal metal metabolism may contribute to several molecular changes that could increase the susceptibility of motor neurons to premature damage.

While deficiencies and excess of essential elements and toxic metals are known to contribute to ALS, researchers were now able to provide an idea of when these metabolic abnormalities start. The results also suggested that metal metabolism could be a viable therapeutic target to prevent or halt ALS.

***

At ALS News Today, we hope these stories and our reporting throughout 2021 help to better inform and improve the lives of everyone affected by ALS.

We wish all our readers a happy 2021.

Marta Figueiredo holds a BSc in Biology and a MSc in Evolutionary and Developmental Biology from the University of Lisbon, Portugal. She is currently finishing her PhD in Biomedical Sciences at the University of Lisbon, where she focused her research on the role of several signalling pathways in thymus and parathyroid glands embryonic development.

Total Posts: 45

Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.

See more here:
Top 10 ALS Stories of 2020 - ALS News Today

Brave West Lothian women discovers back pain is actually deadly blood cancer – Daily Record

A brave West Lothian mum was floored after doctors found her sciatica pain was actually a symptom of a deadly blood cancer which had hollowed out her bones.

Judith Green had suffered from back pain on several occasions over the last 10 years but was repeatedly told it was likely due to a trapped nerve and would resolve itself.

The 42-year-olds pain became too much in June 2019 when she woke screaming in the middle of the night before repeatedly vomiting blood over the next two days.

She took herself to St Johns Hospital in Livingston where doctors soon made the shock diagnosis of myeloma cancer which had left her kidneys functioning at only 15 per cent.

The mum-of-two was told that the condition - which normally affects men over the age of 60 - was incurable but doctors hoped to extend her life through various treatments.

She underwent a stem cell transplant with her own cells in January 2019 but was heartbroken when medics revealed the cancer had returned just seven months later.

The former waitress has vowed to keep fighting so she can meet her future grandchildren and is urging people to register as stem cell donors in a bid to save more lives.

She explained: I remember thinking but its just a sore back. I had never heard of myeloma before I got diagnosed with it.

I 100 per cent thought I was going to hospital that day because I had sciatica. With myeloma, it eats away at your bone marrow.

My ribs were sore but I brushed it off thinking it was my new bra digging in. When my back hurt, I thought it was the new car seat causing it.

But in reality, I had almost no bone marrow. It was 90 per cent cancerous cells. I just made excuse after excuse but looking back I now realise that it was all part of it.

My kidneys were only working at 15 per cent, which explained why I was so thirsty.

Doctors immediately started Judith on a course of chemotherapy and steroids before attempting to harvest some of her remaining bone marrow.

The first attempt was unsuccessful but the next managed to gather enough cells to provide at least three more transplants.

The cells were then deep frozen before being transplanted back into the mum-of-two in January this year - a move which they hoped would buy her at least 18 more months.

But a blood test in August revealed that the myeloma had returned a lot quicker than expected meaning she now has to undergo a second transplant from a mystery donor.

They then discovered Judith had sepsis and MRSA and having no immune system and blood cancer, Judith said she was the sickest she had ever been.

She continued: They were hoping I would make it 18 months post transplant but they discovered in August that the cancer had returned and it had only worked for seven months.

Thats when we found out that they wouldnt be able to use my own cells again because it wasnt worth putting me through all that again.

So now Ill be going back on chemo in January and getting a transplant from a worldwide donor. Thankfully the transplant team has already found a match for me on the system.

Judith continued: Im really lucky that theres a match out there for me. But there are so many others, who are a lot sicker than I am, that dont have theirs yet.

The reason I wanted to speak out is to raise awareness of myeloma and stem cell donation.

You really could be giving someone a second chance at life by spitting into a tube. Back in the day it was a bone marrow transplant but now its stem cells.

Its no different from giving blood. I would just ask everyone to go have a look into it and see if they want to or are able to register.

Judith, who lives with her two sons and partner Steven (46), added: I may not be able to do some of the things I did before like go to the cinema with the boys but Im still here.

And I hope to be here long enough to see my grandkids. I know Ill keep fighting after that to see them grow up then. But for now, its just taking each day as it comes.

To find out more about stem cell donation for those aged under 30 visit https://www.anthonynolan.org/.

Those over 30 can visit https://www.dkms.org.uk/en.

Read more:
Brave West Lothian women discovers back pain is actually deadly blood cancer - Daily Record

Global Bone Marrow Aspirate Concentrates (BMAC) Market : Industry Analysis and forecast (2019 to 2026): By product Type, Application, End Users, and…

Global Bone Marrow Aspirate Concentrates Market was valued US$ XX Bn in 2018 and is expected to reach US$ XX Bn by 2026, at CAGR of 6.5 % during forecast period of 2019 to 2026

Bone marrow concentrate (BMC) uses stem cells that are harvested from your own bone marrow to help the body heal itself. These cells when injected directly into an injury site, prompt a rapid and efficient restoration of the tissue, returning it to a more healthy state by stimulating the bodys natural healing response. It is non-surgical treatment for various orthopedic injuries, including mild to moderate osteoarthritis, disc degeneration and soft tissue injuries.The report study has analyzed revenue impact of COVID -19 pandemic on the sales revenue of market leaders, market followers and market disrupters in the report and same is reflected in our analysis.

Global Bone Marrow Aspirate Concentrates Market Drivers and RestrainsBone marrow-derived stem cell treatment is considered a promising and advanced therapy. It reduces the injury healing time in orthopedic diseases to five to six weeks from four to six months in case of surgery. Reduction in the healing time is a factor likely to fuel the Bone Marrow Aspirate Concentrates market during the forecast period.

Pain associated with the treatment, lack of awareness, and use of alternative treatments are major restraints to the Global Bone Marrow Aspirate Concentrates Market. Furthermore, increased investments in R&D and clinical trials attributed to slow approval processes entailing sunken costs, and marginal returns on investment for manufacturers are factors hindering Global Bone Marrow Aspirate Concentrates Market.

Global Bone Marrow Aspirate Concentrates Market key segmentationBy end-use market is divided into hospitals & clinics, pharmaceutical & biotechnology companies, Contract Research Organizations (CROs) & Contract Manufacturing Organizations (CMOs), and academic & research institutes. The hospitals & clinics segment dominated the bone marrow aspirate concentrates market in 2018 and is expected to maintain its dominance during the forecast period. The hospitals & clinics segmental growth is boosted by the biotechnology & biopharmaceutical companies in terms of revenue during the forecast period. Growth of the segment is attributed to increasing number of biotechnology companies and rising partnerships among the market players to expand globally.

Global Bone Marrow Aspirate Concentrates Market regional analysisBy regional analysis, global bone marrow aspirate concentrates market is divided into major five geographical regions, including North America, Europe, Asia-Pacific, Latin America and Middle East and Africa. North America held largest share of the Global Bone Marrow Aspirate Concentrates market owing to technological advancements and regulatory approval for new devices, rising awareness about stem cell therapy, and number of cosmetic surgical procedures. Furthermore, Asia Pacific orthopedic market is key driver, which led to this massive and augmented growth. The orthopedic market in Asia including bone graft, spine, and bone substitute is anticipated to grow as fast as the overall orthopedic market which will further boost growth of BMAC market in the region during forecast period.

The objective of the report is to present comprehensive analysis of Global Bone Marrow Aspirate Concentrates Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of industry with dedicated study of key players that includes market leaders, followers and new entrants by region. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors by region on the market have been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give clear futuristic view of the industry to the decision makers.

Global Bone Marrow Aspirate Concentrates Market Request For View Sample Report Page @ : https://www.maximizemarketresearch.com/request-sample/37078

The report also helps in understanding Global Bone Marrow Aspirate Concentrates Market dynamics, structure by analyzing the market segments, and project the Global Bone Marrow Aspirate Concentrates Market size. Clear representation of competitive analysis of key players by Bone Marrow Aspirate Concentrates Type, price, financial position, product portfolio, growth strategies, and regional presence in the Global Bone Marrow Aspirate Concentrates Market make the report investors guide.Global Bone Marrow Aspirate Concentrates Market by product type

Bone Marrow Aspirate Concentrates Systems Bone Marrow Aspirate Concentrates AccessoriesGlobal Bone Marrow Aspirate Concentrates Market Application

Orthopaedic Surgery, Wound Healing, Chronic Pain, Peripheral Vascular Disease, Dermatology;Global Bone Marrow Aspirate Concentrates Market by region

Asia Pacific North America Europe Latin America Middle East AfricaGlobal Bone Marrow Aspirate Concentrates Market by end-user

Hospitals & Clinics Pharmaceutical & Biotechnology Companies Contract Research Organizations (CROs) and Contract Manufacturing Organizations (CMOs) Academic & Research InstitutesKey players operating on Global Bone Marrow Aspirate Concentrates Market

Terumo Corporation (Terumo BCT), Ranfac Corp., Arthrex, Inc., Globus Medical, Inc., Cesca Therapeutics Inc., MK Alliance Inc. (TotipotentSC), and Zimmer Biomet Holdings, Inc Cesca Therapeutics Inc. Stryker Paul Medical Systems LIFELINX SURGIMED PVT. LTD.

Global Bone Marrow Aspirate Concentrates Market Do Inquiry Before Purchasing Report Here @: https://www.maximizemarketresearch.com/inquiry-before-buying/37078

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:Name: Vikas GodageOrganization: Maximize Market Research Pvt.Ltd.PuneEmail: [emailprotected]Contact: +919607065656 / +919607195908Website:www.maximizemarketresearch.com

https://lionlowdown.com/

See the article here:
Global Bone Marrow Aspirate Concentrates (BMAC) Market : Industry Analysis and forecast (2019 to 2026): By product Type, Application, End Users, and...

Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke – PRNewswire

PHOENIX, Dec. 16, 2020 /PRNewswire/ --Creative Medical Technology Holdings Inc., (OTC CELZ) announced today positive preclinical data supporting the utilization of its ImmCelz cell based immunotherapy for treatment of stroke. In an animal model of ischemia stroke, the middle cerebral artery ligation model, administration of ImmCelz resulted in 34% reduction in infarct volume, whereas control bone marrow mesenchymal stem cells reduced infarct volume by 21%. Additionally, improvements in functional recovery where observed using the Rotarod test. At 28 days after induction of stroke the animals receiving ImmCelz had superior running time (92% of non-stroke controls) compared to animals which received bone marrow mesenchymal stem cells (73% of non-stroke control). Animals that received saline had a running time that was 50% of non-stroke controls.

"The regenerative potential of immune cells that have been programmed by stem cells is a fascinating and novel area of research." Said Dr. Amit Patel, coinventor of ImmCelz, and board member of the Company. "Conceptual advantages of using reprogrammed T cells include higher migratory ability due to smaller size, as well as ability to replicate and potentially form "regenerative memory cells."

"This data, which is covered by our previous filed patents, such as no. 15/987739, Generation of autologous immune modulatory cells for treatment of neurological conditions, demonstrate that immune modulation via this stem cell based method may be a novel and superior way of addressing the $30 billion dollar market for stroke therapeutics1." Said Dr. Thomas Ichim, coinventor of the patent and Chief Scientific Officer of the Company. "The fact that this technology, which has priority back to 2017, is demonstrating such stunning results, motivates us to consider filing an Investigational New Drug Application for use in stroke."

Creative Medical Technology Holdings possesses numerous issued patents in the area of cellular therapy including patent no. 10,842,815 covering use of T regulatory cells for spinal disc regeneration, patent no. 9,598,673 covering stem cell therapy for disc regeneration, patent no. 10,792,310 covering regeneration of ovaries using endothelial progenitor cells and mesenchymal stem cells, patent no. 8,372,797 covering use of stem cells for erectile dysfunction, and patent no. 7,569,385 licensed from the University of California covering a novel stem cell type.

"While stroke historically has been a major area of unmet medical need, the rise in stroke cases , as well as the fact that younger people are increasingly falling victim to stroke, strongly motivates us to accelerate our developmental programs and to continue to explore participation of Big Pharma in this space." Said Timothy Warbington, President and CEO of the Company. "We are eager to replicate the existing experiments start compiling the dossier needed to take ImmCelz into humans using the Investigational New Drug Application (IND) route through the FDA."

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visitwww.creativemedicaltechnology.com.

Forward Looking Statements

OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website atwww.sec.gov.

Timothy Warbington, CEO[emailprotected] CreativeMedicalHealth.com

Creativemedicaltechnology.comwww.StemSpine.comwww.Caverstem.comwww.Femcelz.com

1 Stroke Management Market Size Forecasts 2026 | Statistics Report (gminsights.com)

SOURCE Creative Medical Technology Holdings, Inc.

Home

Read more from the original source:
Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke - PRNewswire

Organ and Tissue Transplantation and Alternatives – GlobeNewswire

New York, Dec. 21, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Organ and Tissue Transplantation and Alternatives" - https://www.reportlinker.com/p096592/?utm_source=GNW g., kidneys, liver, heart-lung, pancreas, intestines) and the tissue transplantation (e.g., bone, skin, cornea, heart valve) markets, along with the pharmaceuticals that accompany each market.

Also included are experimental xenografts and artificial organs; tissue transplants; and cell transplants (e.g., bone marrow, cord blood, peripheral blood, islet cell). The report touches on the use of fetal cells, stem cells and altered cancer cells.

The arrangement of this report offers an overview of the key elements in the transplantation process: tissue typing, procurement and preservation, immunosuppressants for solid organ and tissue transplants, and postoperative monitoring. International markets are discussed, and information is provided on industry structure and the regulatory environment.

Within each section are discussions of commercialization opportunities for each segment of the market. New or emerging devices, techniques and pharmaceuticals are highlighted.

Profiles of leading companies involved with solid organ transplantation, tissue transplantation, and alternative technologies are included. The report provides information on company placement within the market and strategic analyses of the companies available and emerging products.

An appendix featuring various terms and processes used in transplantation is provided at the end of the report.

This report cites autologous products only in relation to their impact on the market for allografts. It does not include blood products, except for peripheral and umbilical cord blood as a source of stem cells.

By geography, the market has been segmented into the North America, Europe, Asia-Pacific, and Rest of the World regions. Detailed analysis of the market in major countries such as the U.S., Germany, the U.K., Italy, France, Spain, Japan, China, India, Brazil, Mexico, GCC countries and South Africa will be covered in the regional segment. For market estimates, data will be provided for 2019 as the base year, with estimates for 2020 and forecast value for 2024.

Report Includes:- 26 data tables and 37 additional tables- An overview of the global organ and tissue transplantation and alternatives market- Estimation of the market size and analyses of market trends, with data from 2018 to 2019, estimates for 2020 and projection of CAGR through 2024- Details about organ and tissue transplantation and alternatives, their pathophysiology and affects, and major advancement and latest trends- A look at the regulatory scenarios and initiatives by government organization- Analysis of current and future market dynamics and identification of key drivers, restraints and opportunities such as increasing incidence of organ donations, improved awareness about organ donations, side effects of organ and tissue transplantation and antibiotic resistance infections- Coverage of emerging procedures and products in development and discussion on prevalence of major chronic diseases which initiates organ damage or donation- Discussion on the role of the organ procurement organization and information on transplantation process and preparation and coverage of issues like black market donors- Impact analysis of COVID-19 on organ and tissue transplantation and alternatives market- Market share analysis of the key companies of the industry and coverage of events like mergers & acquisitions, joint ventures, collaborations or partnerships, and other key market strategies- Company profiles of major players of the industry, including Abiomed Inc., Bayer AG, F. Hoffmann-La Roche & Co., Johnson & Johnson, Novartis AG, Pfizer Inc. and XVIVO Perfusion

Summary:The global organ and tissue transplantation and alternatives market was valued at REDACTED in 2019.The market is expected to grow at a compound annual growth rate (CAGR) of REDACTED to reach approximately REDACTED by 2024.

Growth of the global market is attributed to factors such as the growing prevalence of obesity, diabetes, cancer, and other chronic diseases which leads to organ damage, a strong product regulatory scenario, and strong investment in research and development activities by key market players including Abbott Laboratories, Cryolife Inc., Bristol-Myers Squibb, Novartis Ag, F. Hoffmann-La Roche Ltd., Medtronic, Arthrex Inc., Depuy Synthes (Johnson & Johnson), and Allosource.

Although various factors facilitate the global market for organ and tissue transplantation and alternatives, certain parameters such as challenges in HLA sequencing and gaps in supply and demand can constrain market growth.For instance, although there is an increasing need for organ transplants, the shortage of organs worldwide limits the number of transplant procedures performed, and in turn creates an impact on transplant diagnostics procedures.

An increasing number of candidates on the waiting list for organ transplant procedures worldwide further widens this gap of availability and requirement of organs for transplant purposes.

Successful organ and tissue transplantation began to arrive in the mid-1970s when tissue typing coupled with the use of cyclosporine provided more successful graft and patient survival. Today, patient and graft survival for kidney transplants is higher than 90% for the first year post-transplant, and often the success rate is 80% to 90% for five years post-transplant, with some recipients living more than 20 years after their transplant.

Continuing developments in organ procurement, organ preservation, tissue typing, and immunosuppressant use have bolstered successful transplantation surgical techniques. Evolving posttransplant drug and testing regimens have added to the success rate with close post-transplant monitoring and immunosuppressant dosage review.Read the full report: https://www.reportlinker.com/p096592/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Read more from the original source:
Organ and Tissue Transplantation and Alternatives - GlobeNewswire

How Researchers Are Making Do in the Time of COVID-19 – The Wire Science

Image: UN/Unsplash.

One of the astonishing aspects of the human response to the COVID-19 pandemic has been how quickly scientists pivoted to studying every facet of the virus in order to mitigate the loss of life and plan for a return to normalcy. At the same time, a lot of non-coronavirus research ground to a near halt.

With research labs and offices shuttered for all but essential workers, many scientists were stuck at home, their fieldwork and meetings canceled and planned experiments kicked down the road as they struggled to figure out how to keep their research programs going. Many took the opportunity to catch up on writing grants and papers; some in between caring for kids came up with strategic workarounds to keep the scientific juices flowing.

To gauge how researchers in different fields are managing,Knowable Magazine spoke with an array of scientists and technical staff among them a specialist keeping alive genetically important strains of fruit flies, the maintenance chief of an astronomical observatory working to keep telescopes safe and on standby during the lockdown, and a paediatrician struggling to manage clinical trials for a rare genetic disease. Here are a few slices of scientific life during the pandemic.

Agnieszka Czechowicz, Stanford University School of Medicine

Czechowicz is a paediatrician in Stanfords division of stem cell transplantation and regenerative medicine, where she manages a research group that develops new therapies and conducts clinical trials on rare genetic diseases.

Agnieszka Czechowiczs father suffers from severe Parkinsons disease. The coronavirus pandemic forced him to remain indoors and away from people, robbing him of the physical conditioning and social interactions he needs to cope with his disease. A recent fall left him in the hospital, bringing the additional worry that he might contract COVID-19 there and isolating him further.

For Czechowicz, his situation brought into sharp relief the challenges the coronavirus has forced upon those carrying out clinical trials, including those she is running, which involve patients traveling to hospitals around the country. Would I have him travel to any clinical site right now for a new Parkinsons treatment? she says. Absolutely not.

The pandemic forced Czechowicz to halt clinical trials she oversees for a rare genetic disease of children called Fanconi anAemia, a condition that impairs the bodys ability to repair damaged DNA and often leads to bone marrow failure and cancer. The treatment Czechowicz and colleagues are testing involves extracting blood-forming stem cells from the patients bone marrow, inserting a healthy copy of a missing or malfunctioning gene and then reinfusing those cells back into the patient.

Every aspect of what I do is massively impacted by the pandemic, Czechowicz says. One of her early-stage clinical trials involves testing the safety of the therapy. But during the initial shutdown which started in mid-March and lasted for two months her patients could not readily travel to Stanford for the necessary follow-up visits, and remote monitoring was difficult.

Theres special blood testing and bone marrow testing that we need to do. In particular, its critical to get the samples to make sure the patients, for example, arent developing leukAemia, she says. Theres no way to know that without really checking the bone marrow. She had to clear large hurdles to get her patients evaluated.

Another early-stage trial, designed to determine the effectiveness of the therapy, also had to stop enrolling new patients. Because speed is important when it comes to treating Fanconi anaemia the children are likely losing stem cells all the time any delay in treatment can be a source of great anxiety for their parents. Czechowicz had to explain to them why the trials were temporarily halted. It was really challenging to have these discussions with the families, she says.

With the easing of travel and workplace restrictions, the families began traveling to Stanford in June but with infections back on the rise, many families are becoming hesitant again, says Czechowicz. Fortunately, her trials are small, so she can guide each family through the process of safely resuming the trials and continuing with follow-up. Her own team also has to follow strict safety protocols. For example, even though her lab has 10 members, only two can be in the lab at any one time, and only one parent is allowed into the clinic with the child.

Not all clinical trials can pay such close attention to individual patients. Large trials with hundreds of patients can involve multiple sites and require much more monitoring, so resuming those remains difficult. Also, restrictions on working full bore are slowing the pipeline for new therapies. The impact of that, were not going to see for many years to come, Czechowicz says.

Abolhassan Jawahery, University of Maryland, College Park

Jawahery is a particle physicist and a member of LHCb, one of the main experiments at the Large Hadron Collider (LHC) at CERN, the particle physics laboratory near Geneva.

In December 2018, well before the coronavirus pandemic began, the LHC shut down for upgrades. Housed in a 27-kilometre-long tunnel about 100 meters underground, the LHC accelerates two beams of protons, one clockwise and one counterclockwise, and makes them collide head-on at four locations. There, four gigantic subterranean detectors ATLAS, CMS, LHCb and ALICE sift through the debris of particles created by the collisions, looking for evidence of new physics. (For example, ATLAS and CMS found the Higgs boson, the fundamental particle of the Higgs field, which gives all elementary particles their mass.)

For its next set of experiments, which aim to probe the properties of subatomic particles with greater precision, the LHC needed to increase the intensity of its proton beams. Consequently, the four detectors needed to be upgraded too, to handle the resultant higher temperatures and increased radiation at the sites of the particle collisions. The work was on track for a restart around May 2021 until the pandemic swept all the scientists careful plans away.

The LHC and its four detectors are each run by a separate collaboration. CERN, which manages the LHC, is hopeful it can restart the collider by February 2022. They think that they can get the accelerator going if there are no more major catastrophic events, says physicist Abolhassan Jawahery. But the impact on the four detectors is less clear.

For the LHCb upgrade, Jawaherys team at the University of Maryland had been working on building about 4,000 extremely sensitive electronic circuit boards. These boards have to be burned in before they can be sent to CERN. We put them in an oven, literally cooking the boards and then running extensive tests in order to get them ready so that we can put them in the accelerator and run them for 10 to 20 years, says Jawahery. And none of that could be done during the pandemic shutdown.

The team resumed its work in June, but with restrictions put in place by the state of Maryland. Jawahery runs two labs, and for months was allowed only two people at a time in one lab and three in the other, making progress extremely slow. Still, his team is fortunate that it does not depend on supplies from countries hit hard by the coronavirus. Other labs werent so lucky. Scientists in Milan, for example, built some electronics and detector components for the LHCb, and a lab at Syracuse University in New York built sensors that relied on shipments from Milan. When Milan was completely closed down at the height of the pandemic, Syracuse, too, stopped working on Milan-dependent components.

For Jawahery the lockdown had a silver lining. The LHCs most recent run had produced about 25 gigabytes of data per second but his team had found little time to analyse any of it before the pandemic. We were complaining that we were spending all our time building the new instrument and the data keeps on coming, he says. When he and his team were locked out of their labs, they turned to their data backlog. We could do actual physics, he says. We are already getting ready to publish some papers.

Gordon Gray, Princeton University

Gray is a professionalDrosophila specialist in the department of molecular biology.

Gordon Gray has been called the chef de cuisine of Princetons fly kitchen, where he has been feeding flies for 46 years. He concocts meals for millions of fruit flies, at least 150 litres each week. When the pandemic hit in March and universities around the world shut down, Princeton deemed Grays work an essential service: The Drosophilafruit flies could not be allowed to die off.

Princetons flies include mutant and transgenic strains everything from ones that allow researchers to study the genes that influence normal development of a fly embryos organs, to those that have cancer-causing mutations. If the flies starved, researchers would need months or years to recreate these strains, says Princeton molecular biologist Elizabeth Gavis. And often, as techniques in molecular biology improve, the biologists reexamine flies they had studied earlier to get a more fine-grained understanding, making it worthwhile to preserve the strains.

Normally, if a lab had to shut down, researchers would send their flies to stock centres, such as one at Bowling Green State University in Ohio, that preserve the flies as part of their genetic library. But the stock centres couldnt handle Princetons flies, so Gray found himself on his own. Its basically catch as catch can with regards to the various labs here, just to keep things operational, he says.

For months, university pandemic restrictions have allowed only one person to be in Grays kitchen at a time. This has caused problems. Before the pandemic began, Gray, who is in his late 60s, had started training someone as a backup. But because of the one-person restriction, Gray and his trainee havent been able to work together. Gray envisions doing so soon, while wearing masks, keeping nearly 12 feet apart and communicating using hand signals.

To whip up a batch of fly food, or media, Gray uses a 50-litre steel cauldron, to which is attached a mixer that looks like an outboard motor. Gray fills the cauldron with water and adds agar, sugars, yeasts, salts and cornmeal, then brings it to a boil, all the while stirring watchfully. You dont want it to boil over, because when it does you wind up with a gigantic pancake on the floor, which you have to scoop up immediately because it gels, he says. Once the suspension cools to the right temperature, Gray adds an acid to inhibit mould, then dispenses precise amounts of the media into bottles and vials.

Even before the pandemic, Grays kitchen was isolated, to keep errant fruit flies from contaminating the pristine media. But at least he could work regular hours, because he knew the rhythms of the 10 or so fly labs he cooked for. That has changed. Labs, restricted to two occupants at a time, are now working seven days a week on rotating shifts. Gray comes in to work at all hours, because he cannot predict when each batch of fly food will run out and hell need to cook more.

He tries to work mostly at night to avoid coming into contact with others. But he still worries for his health, given his asthma and age-related risk. The relentless pandemic is taking a toll. Its exhausting, he says. It doesnt help not knowing when we will return to a sense of normalcy.

Celeste Kidd, University of California, Berkeley

Kidd is a child developmental psychologist who uses behavioural tests and computational methods to understand how children acquire knowledge.

When UC Berkeley locked down in March, Celeste Kidd found herself closeted at home, dealing simultaneously with virtual meetings and her three-year-old son. During the early days of the pandemic, Kidd kept a supply of treats handy, and when her toddler came up to her during a meeting shed sneak him some under the desk. But she hadnt accounted for how long the pandemic would last. It turns out thats not a good strategy, long term, she says. I was very literally rewarding him for bad behaviour.

Kidds son soon learned that acting up during her meetings meant more candy. I knew that would happen. I did it anyway because I didnt have the bandwidth to come up with a better solution, she says. But Kidd knew from her own research that children are also extremely flexible and can unlearn behaviours. Eventually, she had a chat with her son. First, she admitted to him that she had made a mistake by giving him candy when he disrupted her meetings, and that was bad of her. Then she brought in new rules: no candy for misbehaving and misbehaviour could even mean no treats for the rest of day. We had some meltdown moments, says Kidd. But he gets it now and he doesnt do those things.

Her son may be the only child Kidd gets to interact with during the pandemic. Thats a huge loss for her research, because the bulk of her work focuses on young children. In normal times, families would bring their children to her lab, where her research team would track their gaze as they watched videos. In one study, for example, infants about seven to nine months old would look away (demonstrating lack of interest) when the events in the video were either too complex or too simple, suggesting that infants use their cognitive resources for stimuli that have just the right amount of information.

Such work, of course, requires the presence of parent, child and researchers, all in the same room. None of that is going to happen anytime soon, she says. Those families are not going to feel comfortable coming in for a while.

Kidd is also concerned about the impact of the pandemic on younger scientists. One of her undergraduate students had spent six months working on a study aimed at exploring the complexity of kids play patterns using physical objects and their relation to working memory and other cognitive resources. The university had approved the protocol, but shelter-in-place orders went into effect the week the first child was to come for the experiment. I feel so bad for her as a young scientist, to have done all this hard work and then right when you get to the fun part, which is collecting the data and finding out if her ideas have lasting merit, she doesnt get to do that part, Kidd says.

The situation might be even worse for grad students and postdocs. All of them are experiencing a big blow to morale in general, because there is so much uncertainty about what the future holds, she says. University budget cuts mean fewer slots for graduate students and fewer jobs for postdocs. Its very hard to stay motivated and get things done when youre not sure if there will be a payoff in the future, says Kidd. Thats literally a study that we ran in the lab so were all acutely aware of it.

Maxime Boccas, ESO Paranal Observatory

Boccas is the head of maintenance, support and engineering at the European Southern Observatorys Paranal Observatory in Chile.

When the massive domes of the Very Large Telescope, a constellation of four 8-meter-class telescopes atop Mount Paranal in Chiles Atacama Desert, open to the night sky each evening and the telescopes get ready for observations, its like a dragon waking up.

When the pandemic hit in March, the dragon on Mount Paranal closed its eyes to the cosmos and slept the first shutdown in its 20-year history, which included a major earthquake in 2010 that paralyzed much of the rest of Chile. For those who had to leave Paranal, it was like being sent away from home. We spend 40% of our life here, says Maxime Boccas, who oversaw the process of ensuring an orderly shutdown of the sites scientific and technical facilities. We work and sleep here, and we stay here eight days in a row. Some of Boccass colleagues have been doing that for 20 to 25 years. Leaving Paranal was like leaving their second home. That was a weird feeling.

The skeleton staff just 20 of the normal 150 or so people remained on site kept the observatory safe, ensuring that essential systems continued working: computers that astronomers were accessing remotely, the fire detection system and the earthquake protection system essential for protecting the 8-meter-wide primary mirrors from Chiles frequent quakes. The mirrors will likely never be made again, says Boccas. All the factories that cast and polished them are dismantled. If we lost a mirror, it would take between 5 and 10 years to build up the factory again and fabricate it. So each mirror has an airbag a tube that inflates around it when the system detects tremors and other protections.

During the shutdown, astronomers kept their fingers crossed. They were anxious that no big thing, like a supernova in our galaxy, would explode, Boccas says. The heavens have been quiet, but the six-month shutdown harmed research that involves continuously monitoring the same patch of the sky for transient phenomena such as gamma ray bursts. It creates a hole in their science program, says Boccas.

The observatory began a slow return to normalcy on September 9. Boccas is overseeing the reawakening of each telescope, one at a time. The staff still less than full strength is now working in shifts that have doubled from 8 to 15 days to limit the amount of travel to and from the site. The four large telescopes are now up and running again, and Boccas hopes they will be back to working together as one by the end of January.

Boccas, his crew and a few lucky astronomers are glad to be back at Paranal. It really feels like a family and I think everyone has noticed that, he says. Even in the kitchen, they have to cook for 30 people instead of 150, so the quality of the food is different, its slightly better.

But even as people return to the observatory, Boccas worries about long-term effects of the shutdown. Given the reduced staff, he has had to cut down on the frequency of preventive maintenance tasks, such as changing belts and lubricating motors, potentially shortening the lifetime of some components. We will not know until six months, a year or three years from now, he says.

This article is part ofReset: The Science of Crisis & Recovery, an ongoing series exploring how the world is navigating the coronavirus pandemic, its consequences and the way forward. Reset is supported by a grant from the Alfred P. Sloan Foundation.

Anil Ananthaswamy is a science journalist who enjoys writing about cosmology, consciousness and climate change. Hes a 2019-20 MIT Knight Science Journalism fellow. His latest book is Through Two Doors at Once. http://www.anilananthaswamy.com.

This article originally appeared in Knowable Magazine, an independent journalistic endeavour from Annual Reviews.

Read more:
How Researchers Are Making Do in the Time of COVID-19 - The Wire Science

FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn’s Phase 3 Trial…

FDAs decision will enable CytoDyn to respond to ongoing requests for leronlimab until Phase 3 trial data is unblinded

VANCOUVER, Washington, Dec. 22, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing Vyrologix (leronlimab-PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today a treating physician has received authorization from the U.S. Food and Drug Administration (FDA) to administer leronlimab for a COVID-19 patient under emergency IND (eIND).

Nader Pourhassan, Ph.D., President and Chief Executive Officer of CytoDyn, commented, We are very thankful the FDA is allowing severe-to-critical COVID-19 patients access to Vyrologix (leronlimab) again under eIND while we await the unblinding of data from our recently completed Phase 3 registrational trial. We are receiving daily requests from families seeking our drug for a loved one with COVID-19. In recent months, leronlimab received more than 60 eIND authorizations from the FDA, and during the pendency of our COVID-19 trials, we deferred seeking authorizations for eINDs in order to accelerate the pace of enrollment. Now that enrollment has been completed, we are pleased to be able to assist once again and remain hopeful the upcoming results of our Phase 3 trial will enable leronlimab to be more readily available for severe-to-critical COVID-19 patients.

CytoDyns Phase 2b/3 trial to evaluate the efficacy and safety ofleronlimabfor patients with severe-to-critical COVID-19 indications is a two-arm, randomized, double blind, placebo controlled, adaptive design multicenter study. Patients are randomized to receive weekly doses of 700 mg leronlimab, or placebo. Leronlimab and placebo are administered via subcutaneous injection. The study has three phases: Screening Period, Treatment Period, and Follow-Up Period. The primary outcome measured in this study is: all-cause mortality at Day 28. Secondary outcomes measured are: (1) all-cause mortality at Day 14, (2) change in clinical status of subject at Day 14, (3) change in clinical status of subject at Day 28, and (4) change from baseline in Sequential Organ Failure Assessment (SOFA) score at Day 14.

About Coronavirus Disease 2019 CytoDyn completed its Phase 2 clinical trial (CD10) for COVID-19, a double-blinded, randomized clinical trial for mild-to-moderate patients in the U.S. which produced statistically significant results for NEWS2. CytoDyn completed enrollment of 390 patients in its Phase 2b/3 randomized clinical trial for the severe-to-critically ill COVID-19 population and expects to release results in mid-January 2021.

About Leronlimab (PRO 140) The FDA has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for critical illnesses. The first indication is a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH.Leronlimab has completed nine clinical trials in over 800 people and met its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab could significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 may play a role in tumor invasion, metastases, and tumor microenvironment control. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation. It may be crucial in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells.CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to support further the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD, blocking the CCR5 receptor from recognizing specific immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD. Due to the lack of patients during the COVID-19 pandemic, the Company is closing down its Phase 2 trial for acute GvHD.

About CytoDyn CytoDyn is a late-stage biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a critical role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as GvHD and NASH.

CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients. The FDA met telephonically with Company key personnel and its clinical research organization and provided written responses to the Companys questions concerning its recent Biologics License Application (BLA) for this HIV combination therapy in order to expedite the resubmission of its BLA filing for this indication.

CytoDyn has completed a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients. CytoDyn plans to initiate a registration-directed study of leronlimab monotherapy indication. If successful, it could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV. No drug-related serious site injection reactions reported in about 800 patients treated with leronlimab and no drug-related SAEs reported in patients treated with 700 mg dose of leronlimab. Moreover, a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients; some patients on leronlimab monotherapy have remained virally suppressed for more than six years.

CytoDyn is also conducting a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking StatementsThis press release contains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. Forward-looking statements specifically include statements about leronlimab, its ability to have positive health outcomes, the possible results of clinical trials, studies or other programs or ability to continue those programs, the ability to obtain regulatory approval for commercial sales, and the market for actual commercial sales. The Company's forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Company's cash position, (ii) the Company's ability to raise additional capital to fund its operations, (iii) the Company's ability to meet its debt obligations, if any, (iv) the Company's ability to enter into partnership or licensing arrangements with third parties, (v) the Company's ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Company's ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Company's clinical trials, (viii) the results of the Company's clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Company's products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Company's control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTSInvestors: Michael MulhollandOffice: 360.980.8524, ext. 102mmulholland@cytodyn.com

See the original post:
FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn's Phase 3 Trial...

Priming the Immune System to Fight Cancer – PRNewswire

PHILADELPHIA, Dec. 17, 2020 /PRNewswire/ --Immunotherapies, such as checkpoint inhibitor drugs, have made worlds of difference for the treatment of cancer. Most clinicians and scientists understand these drugs act on what's known as the adaptive immune system, the T cells and B cells that respond to specific threats to the body.

New research from a team co-led by Penn Dental Medicine's George Hajishengallis suggests that the innate immune system, which responds more generally to bodily invaders, may be an important yet overlooked component of immunotherapy's success.

Their work, published in the journal Cell, found that "training" the innate immune system with -glucan, a compound derived from fungus, inspired the production of innate immune cells, specifically neutrophils, that were programmed to prevent or attack tumors in an animal model.

"The focus in immunotherapy is placed on adaptive immunity, like checkpoint inhibitors inhibit the interaction between cancer cells and T cells," says Hajishengallis. "The innate immune cells, or myeloid cells, have not been considered so important. Yet our work suggests the myeloid cells can play a critical role in regulating tumor behavior."

The current study builds on earlier work by Hajishengallis and a multi-institutional team of collaborators, which showed that trained immunity, elicited through exposure to the fungus-derived compound -glucan, could improve immune recovery after chemotherapy in a mouse model.

In that previous study, the researchers also showed that the "memory" of the innate immune system was held within the bone marrow, in hematopoietic stem cells that serve as precursors of myeloid cells, such as neutrophils, monocytes, and macrophages.

The team next wanted to get at the details of the mechanism by which this memory was encoded. "The fact that -glucan helps you fight tumors doesn't necessarily mean it was through trained immunity," says Hajishengallis.

To confirm that link, the researchers isolated neutrophils from mice that had received the innate immune training via exposure to -glucan and transferred them, along with cells that grow into melanoma tumors, to mice that had not received -glucan. Tumor growth was significantly dampened in animals that received cells from mice that had been trained.

-glucan is already in clinical trials for cancer immunotherapy, but the researchers say this finding suggests a novel mechanism of action with new treatment approaches.

"This is a breakthrough concept that can be therapeutically exploited for cancer immunotherapy in humans," Hajishengallis says, "specifically by transferring neutrophils from -glucan-trained donors to cancer patients who would be recipients."

Contact: Beth Adams, [emailprotected]

SOURCE Penn Dental Medicine

http://www.dental.upenn.edu

View original post here:
Priming the Immune System to Fight Cancer - PRNewswire

Archives