Archive for the ‘Bone Marrow Stem Cells’ Category
Bone Therapeutics’ allogeneic cell therapy product, ALLOB, shows 90% fusion rate at 24 months in Phase IIa study in lumbar spinal fusion -…
Gosselies, Belgium, 14 October 2020, 7am CEST BONE THERAPEUTICS(Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, today announces positive 24-month follow-up results for the Phase IIa study with the allogeneic cell therapy product, ALLOB, in patients undergoing lumbar spinal fusion procedures.
The 24-month data show a high percentage of successful lumbar vertebrae fusion of 90%. Patients also continue to experience important clinical improvements in function and pain, from as early as six months after treatment, up to the 24-month follow-up period.
Degenerative spine disorders have a major impact on the quality of life of patients. These impacts include decreases in the stability of the spine and pain in motion,said Dr. Alphonse Lubansu, M.D., Head of the Spinal Clinic, Erasme University Hospital, Universit libre de Bruxelles. The 24 month follow-up data of this Phase IIa clinical trial have demonstrated that patients treated with ALLOB in spinal fusion procedure show a high incidence in fusion, and benefit from a sustained, clinically meaningful improvement in function and pain throughout the 24 months following treatment together with a good safety profile. These results show that ALLOB in combination with the standard spine fusion surgery could be a promising treatment option to address the currently unmet needs of these patients.
This positive data forlumbar spinal fusion complementsthe strong Phase I/IIa results from ALLOB in patients with delayed union fractures,said Miguel Forte, MD, PhD, Chief Executive Officer of Bone Therapeutics. These studies provide promising clinical evidence for the potential ofBone Therapeuticsunique allogeneic cell therapy platform to address high unmet medical needs in orthopaedics and bone related disorders. We will now hold discussions with global regulators and our partners to explore a variety of options for the next stages of clinical development for ALLOB in different orthopedic indications, while pursuing the phase IIb study of ALLOB in difficult tibial fractures.In addition, theclinical results provide further evidence for the expansion of ALLOB and our platform of differentiated MSCs to other indications.
The multi-center, open-label proof-of-concept Phase IIa study was designed to evaluate the safety and efficacy of ALLOB administered, procedure in which an interbody cage with bioceramic granules mixed with ALLOB is implanted into the spine to achieve fusion of the lumbar vertebrae. The main endpoints of the 24-month follow-up analysis included safety and radiological assessments to evaluate vertebrae fusion (continuous bone bridges) and clinical assessments to evaluate improvement in patients functional disability as well as reduction in back and leg pain. The study evaluated 30 patients treated with ALLOB, 29 patients attended the 24-month visit.
Radiological data was collected from CT-scans at 24 months and assessed by three external readers. It showed a successful fusion of the lumbar vertebrae in 27 out of 30 patients (90%). In addition, the remaining 3 patients showed radiological evidence of bone formation. Treatment with ALLOB also resulted in a clear and statistically significant clinical improvement in function and reduction in pain over the 24-month follow-up period. Functional disability improved from the pre-treatment baseline to 24-month by a mean score of 60% (p<0.001) on the Oswestry Disability Index(1). Back and leg pain were strongly reduced by 57 to 62% (p<0.001) and 68 to 70% (p<0.001) respectively compared to pre-treatment baseline. Treatment with ALLOB was generally well-tolerated by the patients, consistent with previous reported results.
(1)The Oswestry Disability Index (ODI) is an index derived from the Oswestry Low Back Pain Questionnaire used by clinicians and researchers to measure a patients permanent functional disability. This validated questionnaire was first published by Jeremy Fairbank et al. in Physiotherapy in 1980. ODI score of 0%-20%: minimal disability; 21%-40%: moderate disability; 41%-60%: severe disability; 61%-80%: crippled; 81%-100%: bed bound.
About Spinal Fusion
Due to ageing populations and sedentary lifestyles, the number of people suffering from degenerative spine disorders continues to increase. Today, spinal fusion procedures are performed to relieve pain and improve patient daily functioning in a broad spectrum of degenerative spine disorders. Spinal fusion consists of bridging two or more vertebrae with the use of a cage and graft material, traditionally autologous bone graft or demineralised bone matrix placed into the intervertebral space for fusing an unstable portion of the spine and immobilizing a painful intervertebral motion segment. Over 1,000,000 spinal fusion procedures are performed annually in the US and EU, of which half at lumbar level and the market is growing at a rate of 5% per year. Although spinal fusion surgery is routine, non-fusion, slow progression to fusion and failure to eliminate pain are still frequent with up to 35% of patients not being satisfied with their surgery.
About ALLOB
ALLOB is the Companys off-the-shelf allogeneic cell therapy platform consisting of human allogeneic bone-forming cells derived from cultured bone marrow mesenchymal stem cells (MSC) from healthy adult donors, offering numerous advantages in product quality, injectable quantity, production, logistics and cost as compared to an autologous approach. To address critical factors for the development and commercialisation of cell therapy products, Bone Therapeutics has established a proprietary, optimised production process that improves consistency, scalability, cost effectiveness and ease of use of ALLOB. This optimized production process significantly increases the production yield, generating 100,000 of doses of ALLOB per bone marrow donation. Additionally, the final ALLOB product will be cryopreserved, enabling easy shipment and the capability to be stored in a frozen form at the hospital level. The process will therefore substantially reduce overall production costs, simplify supply chain logistics, improve patient accessibility and facilitate global commercialisation. The Company will implement the optimized production process for all future clinical trials with ALLOB.
About Bone Therapeutics
Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a, diversified portfolio of cell and biologic therapies at different stages ranging from pre-clinical programs in immunomodulation to mid-to-late stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.
Bone Therapeutics is developing an off-the-shelf next-generation improved viscosupplement, JTA-004, which is currently in phase III development for the treatment of pain in knee osteoarthritis. Consisting of a unique combination of plasma proteins, hyaluronic acid a natural component of knee synovial fluid, and a fast-acting analgesic, JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain and inflammation. Positive phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement.
Bone Therapeutics core technology is based on its cutting-edge allogeneic cell therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company is ready to start the phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.
Bone Therapeutics cell therapy products are manufactured to the highest GMP standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available atwww.bonetherapeutics.com.
For further information, please contact:
Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com
For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be
International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency
For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu
For US Media and Investor Enquiries:LHA Investor RelationsYvonne BriggsTel: +1 310 691 7100ybriggs@lhai.com
Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.
Read the rest here:
Bone Therapeutics' allogeneic cell therapy product, ALLOB, shows 90% fusion rate at 24 months in Phase IIa study in lumbar spinal fusion -...
New Therapies in Development for Myelofibrosis – Targeted Oncology
Building on the transformative impetus from the first Food and Drug Administration (FDA)-approved Janus kinase (JAK) 1/2 inhibitor, ruxolitinib (Jakafi), in the clinical landscape of myeloproliferative neoplasms (MPNs), we are entering a new era of multiple JAK inhibitors and other diverse classes of drugs in rapid clinical development. Advancements in elucidating the pathophysiology of MPNs have spurred significant progress in developing novel promising agents or combination regimens with ruxolitinib to treat patients who are unresponsive to standard treatments or have specific clinical needs.
In myelofibrosis (MF), the most aggressive MPN, with an average survival of 5 to 7 years, abnormal clonal hematopoietic stem cell proliferation in the bone marrow (BM) leads to liberation of pro-inflammatory cytokines and extensive fibrosis, causing progressive pancytopenia, especially anemia and thrombocytopenia, along with splenomegaly and other symptoms, compromising quality of life.1
For nearly a decade, ruxolitinib has been the centerpiece therapy for patients with MF, markedly improving splenomegaly and constitutional symptoms and providing survival benefit.2 The second FDA-approved JAK2 inhibitor, fedratinib (Inrebic), may actually be a good second-line option for patients who are ruxolitinib-resistant with intermediate-2 and high-risk MF (primarily thrombocytopenic and characterized by platelet counts 50100 109/L).3 At present, 2 ongoing phase 3 clinical trials, the single-arm FREEDOM trial (NCT03755518) and the double-arm FREEDOM 2 trial (NCT03952039), are assessing the efficacy and safety of fedratinib in patients with MF who are resistant/refractory/intolerant to ruxolitinib. The FREEDOM trials are important because the previous JAKARTA studies (NCT01523171, NCT01437787) were placed on hold or terminated given concerns for the development of Wernicke encephalopathy. Pacritinib is a potent inhibitor of both JAK2 and fms-related receptor tyrosine kinase
3, or FLT3, but does not affect JAK1. Pacritinib is being evaluated in comparison with the physicians choice in an ongoing phase 3 trial (PACIFICA; NCT03165734) in patients with MF and severe thrombocytopenia (baseline platelet count < 50 109/L) at the optimal dose determined in the PAC203 study (200 mg twice daily; NCT03165734).3 Successful clinical development of pacritinib will provide a non-myelosuppressive JAK2 inhibitor for frontline treatment of patients with MF who have severe thrombocytopenia, a setting currently lacking approved drugs. Another JAK1/2 inhibitor that is in advanced clinical development and complements its predecessors is momelotinib, possessing the exclusive attribute to improve anemia, which becomes severe in patients with MF.3 At present, momelotinib is undergoing evaluation in patients who are symptomatic and anemic with advanced MF, previously treated with a JAK inhibitor, in a phase 3 trial (MOMENTUM; NCT04173494); the comparator drug is danazol.
Targeting anemia and thrombocytopenia. Given that patients with MF experience disease-associated and JAK inhibitor-induced anemia, several clinical trials have been evaluating drugs counteracting anemia, as monotherapies or in combination with ruxolitinib, in patients with MF-associated anemia.4 Currently, a global, multicenter phase 2 trial is under way to evaluate the safety and efficacy of luspatercept-aamt (Reblozyl), an activin receptor ligand trap that enhances late-stage erythropoiesis in patients with anemia and MF, including ruxolitinib-treated, transfusion-dependent individuals; a phase 3 trial (INDEPENDENCE) is planned for 2020. Interim results of the phase 2 study demonstrated significant efficacy of luspatercept-aamt, achieving reduction in red blood cell transfusion burden in ruxolitinib-treated patients with MF. Thalidomide (Thalomid), an immunomodulatory agent, significantly improved anemia and thrombocytopenia (platelet counts increased in 60% of patients) in a phase 2 trial evaluating ruxolitinib-treated patients with MF and baseline thrombocytopenia (NCT03069326).5
Synergistic combinations with ruxolitinib targeting epigenetics and JAK2 (TABLE). CPI-0610 is a selective bromodomain and extraterminal protein inhibitor that improved spleen volume, anemia, BM fibrosis, total symptom score, and transfusion dependence (alone or with ruxolitinib) in patients with MF who are enrolled in the global phase 2 MANIFEST study (NCT02158858).3 Furthermore, a phase 1 clinical trial combining an inhibitor of heat shock protein 90 (JAK2 is its chaperone protein), PU-H71, with ruxolitinib in patients with primary/secondary MF is under way (NCT03935555).3 The previous 2 trials are supported by preclinical data showing drug synergism. In a phase 2 trial of ruxolitinib/azacitidine (hypomethylating agent) in patients with MF, synergism was demonstrated in spleen length reduction and BM fibrosis improvement compared with ruxolitinib monotherapy (NCT01787487).5
Synergistic combinations with ruxolitinib targeting antiapoptotic proteins and JAK2. Navitoclax is an orally bioavailable inhibitor of the antiapoptotic B-cell lymphoma 2 (BCL2) family of proteins (primarily BCL extra-large [XL]). In preclinical studies, the nonclinical analogue of navitoclax, ABT-737, in combination with ruxolitinib showed synergism in inducing apoptosis of JAK2 V617F-driven MPN cell lines. Interim data from an ongoing phase 2 clinical trial evaluating navitoclax in combination with ruxolitinib in ruxolitinib-treated patients with MF (with baseline platelet count 100 109/L) showed reduction in spleen volume and BM fibrosis (1 grade) and improvement in total symptom score in a proportion of the patients (NCT03222609).3
Imetelstat is a short oligonucleotide telomerase inhibitor that possibly prolonged median overall survival in patients with MF in the higher-dose (9.4-mg/kg) arm of the phase 2 IMbark study (NCT02426086).3 A phase 3 trial comparing imetelstat to best available therapy in patients with refractory MF is planned for early 2021.
PRM-151, a plasma-derived analogue of the human antifibrotic protein pentraxin 2, improved BM fibrosis in mice models and patients with MF in preclinical and phase 1/2 clinical studies, respectively.3 The promising results merit a phase 3 trial, especially given the scarcity of antifibrotic agents.
The two relatively indolent MPN subtypes, polycythemia vera (PV) and essential thrombocythemia (ET), are characterized by abnorabnormal proliferation of myeloid cells, resulting in elevated blood counts (erythrocytosis and thrombocytosis in PV and ET, respectively), considerable risk of thrombosis and hemorrhage, and progression to secondary MF and acute myeloid leukemia (more common in PV than ET).6 In PV and ET, therapies are aimed at reducing risk of thrombosis, which is higher in patients over 60 years old or with a history of thrombosis, and in ET, when the calreticulin gene, CALR, is absent. A particularly promising agent for the two indolent MPNs is the long-acting ropeginterferon -2b, which was approved in Europe for frontline treatment of high-risk patients with PV and without symptomatic splenomegaly on the basis of the PROUD/CONTINUATION-PV studies [EudraCT, 2012-005259-18 (PROUD-PV) and 2014-001357- 17 (CONTINUATION-PV)].7 The previous investigations demonstrated superiority of ropeginterferon -2b versus hydroxyurea after 3 years of therapy. Besides awaiting possible approval of ropeginterferon -2b to treat patients with PV in the United States, a phase 3 trial of ropeginterferon -2b versus anagrelide in hydroxyurea-resistant/intolerant patients with ET has been planned to start in 2020. Givinostat, an inhibitor of histone deacetylases, demonstrated promising clinical responses (reduction in pruritus and thrombosis, and normalization of hematological parameters) in phase 1/2 studies in patients with JAK2 V617F positive PV and is entering a phase 3 trial in 2021.7 Currently, hydroxyurea and ruxolitinib are the first- and second-line treatments for high-risk patients with PV, respectively, and hydroxyurea is the first-line treatment for ET.
Herein we highlighted an array of drugs ranging from new JAK inhibitors to an antifibrotic agent, epigenetic modifiers, and telomerase and BCL-XL/BCL2 inhibitorsthat are in early or advanced clinical development in MPN. We are looking forward to enrichment of the MPN arsenal with new disease-modifying agents complementing the clinical benefits of ruxolitinib and fulfilling unmet needs in this population.
References:
1. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi:10.1186/s13045-017-0527-7
2. Bose P, Verstovsek S. Management of myelofibrosis after ruxolitinib failure. Leuk Lymphoma. Published online April 16, 2020. doi:10.1080/1 0428194.2020.1749606
3. Bose P, Verstovsek S. Management of myelofibrosis-related cytopenias. Curr Hematol Malig Rep. 2018;13(3):164-172. doi:10.1007/s11899- 018-0447-9
3. Bose P, Alfayez M, Verstovsek S. New concepts of treatment for patients with myelofibrosis. Curr Treat Options Oncol. 2019;20(1):5. doi:10.1007/s11864-019-0604-y
4. Bose P, Verstovsek S. Updates in the management of polycythemia vera and essential thrombocythemia. Ther Adv Hematol. 2019;10:2040620719870052. doi:10.1177/2040620719870052
5. Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196-e208. doi:10.1016/S2352- 3026(19)30236-4
6. Chifotides HT, Bose P, Verstovsek S. Givinostat: an emerging treatment for polycythemia vera. Expert Opin Investig Drugs. 2020;29(6):525- 536. doi:10.1080/13543784.2020.1761323
Read this article:
New Therapies in Development for Myelofibrosis - Targeted Oncology
BrainStorm Announces Financial Results for the Third Quarter of 2020 and Provides a Corporate Update – BioSpace
NEW YORK, Oct. 15, 2020 /PRNewswire/ -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of cellular therapies for neurodegenerative diseases, announced today financial results for the third quarter ended September 30, 2020, and provided a corporate update.
"The most important near-term event for BrainStorm will be the upcoming top-line data readout for the NurOwn Phase 3 trial in ALS, expected by the end of November. A successful outcome will set us on the path to filing a Biologic License Application (BLA) for what we believe will be a valuable new treatment for ALS," said Chaim Lebovits, Chief Executive Officer of BrainStorm Cell Therapeutics. "In parallel to our preparations for upcoming data read out, we are very busy planning and executing on other pre-BLA activities. On the management front, we appointed William K. White and Dr. Anthony Waclawski, adding valuable commercial and regulatory expertise to our leadership team. This expertise will be crucial as we work towards obtaining regulatory approval for NurOwn and ensuring that, if approved, it will be readily accessible to ALS patients in need of new treatment options for this devastating disease."
NurOwn has an innovative mechanism of action that is broadly applicable across neurodegenerative diseases and BrainStorm continues to invest in clinical trials evaluating the product in conditions beyond ALS to maximize value creation for its various stakeholders. The company remains on track to complete dosing in its Phase 2 clinical trial in progressive multiple sclerosis (PMS) by the end of 2020. In addition, the Company recently unveiled a clinical development program in Alzheimer's' disease (AD) and is planning a Phase 2 proof-of-concept clinical trial at several leading AD centers in the Netherlands and France.
Third Quarter 2020 and Recent Corporate Highlights:
Presented at the following Investor Conferences:
Cash and Liquidity as of October 14, 2020
Total available funding as of October 14, 2020, which includes cash, cash equivalents and short-term bank deposits of approximately $33.1 million as well as remaining non-dilutive funding from CIRM, IIA and other grants, amounts to approximately $36 million.
Financial Results for the Three Months Ended September 30, 2020
Conference Call & WebcastThursday, October 15, 2020 at 8 a.m. Eastern TimeFrom the US: 877-407-9205International: 201-689-8054Webcast: https://www.webcaster4.com/Webcast/Page/2354/37811
Replays, available through October 29, 2020From the US: 877-481-4010International: 919-882-2331Replay Passcode: 37811
About NurOwn
NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received acceptance from the U.S. Food and Drug Administration (FDA) to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS) and completed enrollment in August 2020.
About BrainStorm Cell Therapeutics Inc.
BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) completed enrollment in August 2020. For more information, visit the company's website at http://www.brainstorm-cell.com.
Safe-Harbor Statement
Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.
ContactsInvestor Relations:Corey Davis, Ph.D.LifeSci Advisors, LLCPhone: +1 646-465-1138cdavis@lifesciadvisors.com
Media:Paul TyahlaSmithSolvePhone: + 1.973.713.3768Paul.tyahla@smithsolve.com
BRAINSTORM CELL THERAPEUTICS INC. AND SUBSIDIARIESINTERIM CONDENSED CONSOLIDATED BALANCE SHEETSU.S. dollars in thousands(Except share data)
September 30,
December 31,
2020
2019
U.S. $ in thousands
Unaudited
Audited
ASSETS
Current Assets:
Cash and cash equivalents
$
24,770
$
536
Short-term deposit (Note 4)
4,038
33
Other accounts receivable
1,473
2,359
Prepaid expenses and other current assets (Note 5)
56
432
Total current assets
30,337
3,360
Long-Term Assets:
Prepaid expenses and other long-term assets
27
32
Operating lease right of use asset (Note 6)
1,377
2,182
Property and Equipment, Net
950
960
Total Long-Term Assets
2,354
3,174
Total assets
$
32,691
$
6,534
LIABILITIES AND STOCKHOLDERS' EQUITY (DEFICIT)
Current Liabilities:
Accounts payable
$
3,283
$
14,677
Accrued expenses
917
1,000
Operating lease liability (Note 6)
1,216
1,263
Other accounts payable
1,013
714
Total current liabilities
6,429
17,654
Long-Term Liabilities:
Operating lease liability (Note 6)
284
1,103
Total long-term liabilities
284
1,103
Total liabilities
$
6,713
$
18,757
Stockholders' Equity (deficit):
Stock capital: (Note 7)
12
11
Common Stock of $0.00005 par value - Authorized: 100,000,000 shares at September 30, 2020 and December 31, 2019 respectively; Issued and outstanding: 31,567,592 and 23,174,228 shares at September 30, 2020 and December 31, 2019 respectively.
Additional paid-in-capital
Notice of Lead Plaintiff Deadline for Shareholders in the Mesoblast Limited Class Action Lawsuit – Business Wire
SAN DIEGO--(BUSINESS WIRE)--Robbins Geller Rudman & Dowd LLP announces that a class action lawsuit has been filed in the Southern District of New York on behalf of purchasers or acquirers of Mesoblast Limited (NASDAQ:MESO) securities between April 16, 2019 and October 1, 2020, inclusive (the Class Period). The case is captioned Kristal v. Mesoblast Limited, No. 20-cv-08430, and is assigned to Judge Philip M. Halpern. The Mesoblast class action lawsuit charges Mesoblast and certain of its executives with violations of the Securities Exchange Act of 1934.
The Private Securities Litigation Reform Act of 1995 permits any investor who purchased Mesoblast securities during the Class Period to seek appointment as lead plaintiff in the Mesoblast class action lawsuit. A lead plaintiff will act on behalf of all other class members in directing the Mesoblast class action lawsuit. The lead plaintiff can select a law firm of its choice to litigate the Mesoblast class action lawsuit. An investors ability to share in any potential future recovery of the Mesoblast class action lawsuit is not dependent upon serving as lead plaintiff. If you wish to serve as lead plaintiff of the Mesoblast class action lawsuit or have questions concerning your rights regarding the Mesoblast class action lawsuit, please provide your information here or contact counsel, J.C. Sanchez of Robbins Geller, at 800/449-4900 or 619/231-1058 or via e-mail at jsanchez@rgrdlaw.com. Lead plaintiff motions for the Mesoblast class action lawsuit must be filed with the court no later than December 7, 2020.
Mesoblast develops allogeneic cellular medicines using its mesenchymal lineage cell therapy platform. Mesoblasts lead product candidate, RYONCIL (remestemcel-L), is an investigational therapy comprising mesenchymal stem cells derived from bone marrow. In February 2018, Mesoblast announced that remestemcel-L met its primary endpoint in a Phase 3 trial to treat children with steroid refractory acute graft versus host disease (SR-aGVHD). In early 2020, Mesoblast completed its rolling submission of its Biologics License Application with the U.S. Food and Drug Administration (FDA) to secure marketing authorization to commercialize remestemcel-L for children with SR-aGVHD.
The Mesoblast class action lawsuit alleges that during the Class Period defendants made false and/or misleading statements and/or failed to disclose that: (1) comparative analyses between Mesoblasts Phase 3 trial and three historical studies did not support the effectiveness of remestemcel-L for SR-aGVHD due to design differences between the four studies; (2) thus, the FDA was reasonably likely to require Mesoblast to conduct further clinical studies; (3) as such, Mesoblasts commercialization of remestemcel-L in the United States was likely to be delayed; and (4) as a result of the foregoing, defendants positive statements about Mesoblasts business, operations, and prospects were materially misleading and/or lacked a reasonable basis.
On August 11, 2020, the FDA released briefing materials for its Oncologic Drugs Advisory Committee meeting revealing that Mesoblast provided post hoc analyses of other studies to further establish the appropriateness of 45% as the null Day-28 overall response rate for its primary endpoint. The briefing materials further stated that, due to design differences between these historical studies and Mesoblasts submitted study, it is unclear that these study results are relevant to the proposed indication. On this news, Mesoblasts share price fell by nearly 35%.
Then, on October 1, 2020, Mesoblast disclosed that it had received a Complete Response Letter (CRL) from the FDA regarding its marketing application for remestemcel-L for treatment of SR-aGVHD in pediatric patients. According to the CRL, the FDA recommended that Mesoblast conduct at least one additional randomized, controlled study in adults and/or children to provide further evidence of the effectiveness of remestemcel-L for SR-aGVHD. The CRL also identified a need for further scientific rationale to demonstrate the relationship of potency measurements to the products biologic activity. On this news, Mesoblasts share price fell an additional 35%, further damaging investors.
Robbins Geller Rudman & Dowd LLP is one of the worlds leading law firms representing investors in securities class action litigation. With 200 lawyers in 9 offices, Robbins Geller has obtained many of the largest securities class action recoveries in history. For seven consecutive years, ISS Securities Class Action Services has ranked the Firm in its annual SCAS Top 50 Report as one of the top law firms in the world in both amount recovered for shareholders and total number of class action settlements. Robbins Geller attorneys have helped shape the securities laws and have recovered tens of billions of dollars on behalf of aggrieved victims. Beyond securing financial recoveries for defrauded investors, Robbins Geller also specializes in implementing corporate governance reforms, helping to improve the financial markets for investors worldwide. Robbins Geller attorneys are consistently recognized by courts, professional organizations, and the media as leading lawyers in the industry. Please visit http://www.rgrdlaw.com for more information.
Continue reading here:
Notice of Lead Plaintiff Deadline for Shareholders in the Mesoblast Limited Class Action Lawsuit - Business Wire
CAR T-cell Therapies for the Treatment of Patients with Acute Lymphoblastic Leukemia – OncoZine
Acute Lymphoblastic Leukemia (AML), also called acute myeloblastic leukemia, acute myelogenous leukemia, acute myeloid leukemia, or acute nonlymphocytic leukemia, is an aggressive, fast-growing, heterogenous group of blood cancers that arise as a result of clonal expansion of myeloid hematopoietic precursors in the bone marrow. Not only are circulating leukemia (blast) cells seen in the peripheral blood, but granulocytopenia, anemia, and thrombocytopenia are also common as proliferating leukemia cells interfere with normal hematopoiesis.
Approximately 40-45% of younger and 10-20% of older adults diagnosed with AML are cured with current standard chemotherapy. However, the outlook for patients with relapsed and/or refractory disease is gloomy. Relapse following conventional chemotherapy remains is a major cause of death.
The process of manufacturing chimeric antigen receptor (CAR) T-cell therapies. [1] T-cells (represented by objects labeled as t) are removed from the patients blood. [2] Then in a lab setting the gene that encodes for the specific antigen receptors is incorporated into the T-cells. [3] Thus producing the CAR receptors (labeled as c) on the surface of the cells. [4] The newly modified T-cells are then further harvested and grown in the lab. [5]. After a certain time period, the engineered T-cells are infused back into the patient. This file is licensed by Reyasingh56 under the Creative Commons Attribution-Share Alike 4.0 International license.Today, the only curative treatment option for patients with AML is allogeneic hematopoietic stem cell transplantation or allo-HSCT, which through its graft-vs.-leukemia effects has the ability to eliminate residual leukemia cells. But it is an ption for only a minority. And despite a long history of success, relapse following allo-HSCT is still a major challenge and is associated with poor prognosis.
In recent years, rresearchers learned a lot about the genomic and epigenomic landscapes of AML. This understanding has paved the way for rational drug development as new drugable targets, resulting in treatments including the antibody-drug conjugate (ADC) gemtuzumab ozogamycin (Mylotarg; Pfizer/Wyeth-Ayerst Laboratories).
CAR T-cell TherapiesChimeric antigen receptor (CAR) T-cells therapies, using a patients own genetically modified T-cells to find and kill cancer, are one of the most exciting recent developments in cancer research and treatment.
Traditional CAR T-cell therapies are an autologous, highly personalised, approach in which T-cells are collected from the patient by leukopheresis and engineered in the laboratory to express a receptor directed at a cancer antigen such as CD19. The cells are then infused back into the patient after administration of a lymphodepletion regimen, most commonly a combination of fludarabine and cyclophosphamide. Durable remissions have been observed in pediatric patients with B-ALL and adults with NHL.
CD19-targeted CAR T-cell therapies, have, over the last decade, yielded remarkable clinical success in certain types of B-cell malignancies, and researchers have made substantial efforts aimed at translating this success to myeloid malignancies.
While complete ablation of CD19-expressing B cells, both cancerous and healthy, is clinically tolerated, the primary challenge limiting the use of CAR T-cells in myeloid malignancies is the absence of a dispensable antigen, as myeloid antigens are often co-expressed on normal hematopoietic stem/progenitor cells (HSPCs), depletion of which would lead to intolerable myeloablation.
A different approachBecause autologous CAR T-cell therapies are patient-specific, each treatment can only be used for that one patient. Furthermore, because CAR T-cells are derived from a single disease-specific antibody, they are, by design, only recognized by one specific antigen. As a consequence, only a small subset of patients with any given cancer may be suited for the treatment.
This specificity means that following leukopheresis, a lot of work needs to be done to create this hyper personalised treatment option, resulting in 3 5 weeks of manufacturing time.
The manufacturing process of CAR T-cell therapies, from a single academic center to a large-scale multi-site manufacturing center further creates challenges. Scaling out production means developing processes consistent across many collection, manufacturing, and treatment sites. This complexity results in a the realitively high cost of currently available CAR T-cell therapies.
To solve some of the concerns with currently available CAR T-cell therapies, researchers are investigating the option to develop allogenic, off-the-shelf Universal CAR T-cell (UCARTs) treatments that can be mass manufactured and be used for multiple patients.
Allogeneic CAR T-cell therapy are generally created from T-cells from healthy donors, not patients. Similar to the autologous approach, donor-derived cells are shipped to a manufacturing facility to be genetically engineered to express the antibody or CAR, however, in contrast to autologous CAR T-cells, allogeneic CAR T-cells are also engineered with an additional technology used to limit the potential for a graft versus host reaction when administered to patients different from the donor.
One unique benefit ofn this approach is that because these therapies hey are premade and available for infusion, there is no requirement to leukopheresis or a need to wait for the CAR T-cells to be manufactured. This strategy also will benefit patients who are cytopenic (which is not an uncommon scenario for leukemia patients) and from whom autologous T-cell collection is not possible.
PioneersAmong the pioneers of developing allogeneic CAR-T therapies are companies including Celyad Oncology, Cellectis, Allogene Therapeutics, and researchers at University of California, Los Angeles (UCLA) in colaboration with Kite/Gilead.
Researchers at UCLA were, for example, able to turn pluripotent stem cells into T-cells through structures called artificial thymic organoids. These organoids mimic the thymus, the organ where T-cells are made from blood stem cells in the body.
Celyad OncologyBelgium-based Celyad Oncology is advancing a number of both autologous and allogeneic CAR T-cell therapies, including proprietary, non-gene edited allogeneic CAR T-cell candidates underpinned by the companys shRNA technology platform. The shRNA platform coupled with Celyads all-in-one vector approach provides flexibility, versatility, and efficiency to the design of novel, off-the-shelf CAR T-cell candidates through a single step engineering process.
In July 2020, the company announced the start of Phase I trials with CYAD-211, Celyads first-in-class short hairpin RNA (shRNA)-based allogeneic CAR T candidate and second non-gene edited off-the-shelf program. CYAD-211 targets B-cell maturation antigen (BCMA) for the treatment of relapsed/refractory multiple myeloma and is engineered to co-express a BCMA-targeting chimeric antigen receptor and a single shRNA, which interferes with the expression of the CD3 component of the T-cell receptor (TCR) complex.
During the 2020 American Society of Clinical Oncology (ASCO) Virtual Scientific Program in May 2020, the company presented updates from its allogeneic programs, including additional data from the alloSHRINK study, an open-label, dose-escalation Phase I trial assessing the safety and clinical activity of three consecutive administrations of CYAD-101, an investigational, non-gene edited, allogeneic CAR T-cell candidate engineered to co-express a chimeric antigen receptor based on NKG2D (a receptor expressed on natural killer (NK) cells that binds to eight stress-induced ligands and the novel inhibitory peptide TIM TCR Inhibitory Molecule), for the treatment of metastatic colorectal cancer (mCRC).
The expression of TIM reduces signalling of the TCR complex, which is responsible for graft-versus host disease.every two weeks administered concurrently with FOLFOX (combination of 5-fluorouracil, leucovorin and oxaliplatin) in patients with refractory metastatic colorectal cancer (mCRC).
The safety and clinical activity data from the alloSHRINK trial in patients with mCRC demonstrated CYAD-101s differentiated profile as an allogeneic CAR T-cell candidate. Furthermore, the absence of clinical evidence of graft-versus-host-disease (GvHD) for CYAD-101 confirms the potential of non-gene edited approaches for the development of allogeneic CAR-T candidates.
Interim data from the alloSHRINK trial showed encouraging anti-tumor activity, with two patients achieving a confirmed partial response (cPR) according to RECIST 1.1 criteria, including one patient with a KRAS-mutation, the most common oncogenic alteration found in all human cancers. In addition, nine patients achieved stable disease (SD), with seven patients demonstrating disease stabilization lasting more than or equal to three months of duration.
Based on these results, clinical trials were broadened to include evaluating CYAD-101 following FOLFIRI (combination of 5-fluorouracil, leucovorin and irinotecan) preconditioning chemotherapy in refractory mCRC patients, at the recommended dose of one billion cells per infusion as an expansion cohort of the alloSHRINK trial. Enrollment in the expansion cohort of the trial is expected to begin during the fourth quarter of 2020.
CellectisCellectis is developping a universal CAR T-cell (UCART) platform in an attempy to create off-the-shelf CAR T-cell therapies. The companys pipeline includes UCART123, a CAR T-cell therapy designed to targets CD123+ leukemic cells in acute myeloid leukemia (AML). The investigational agent is being studied in two open-label Phase I trials: AML123 studying the therapys safety and efficacy in an estimated 156 AML patients, and ABC123 studying the therapys safety and activity in an estimated 72 patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN).
UCART22Another investigational agent in clinical trials is UCART22 which is designed to treat both CD22+ B-cell acute lymphoblastic leukemia (B-ALL) and CD22+ B-cell non-Hodgkin lymphoma (NHL). Cellectis reported that UCART22 is included in an open-label, dose-escalating Phase I trial to study its safety and activity in relapsed or refractory CD22+ B-ALL patients.
UCART22 harbors a surface expression of an anti-CD22 CAR (CD22 scFv-41BB-CD3z) and the RQR8 ligand, a safety feature rendering the T-cells sensitive to the antibody rituximab. Further, to reduce the potential for alloreactivity, the cell surface expression of the T-cell receptor is abrogated through the inactivation of the TCR constant (TRAC) gene using Cellectis TALEN gene-editing technology.[1]
Preclinical data supporting the development of UCART22 was presented by Marina Konopleva, M.D., Ph.D. and her vteam during the 2017 annual meeting of the American Society of Hematology (ASH) meeting. [1]
Cellectis is also developing UCARTCS1 which is developed to treat CS1-expressing hematologic malignancies, such as multiple myeloma (MM). UCARTCLL1 is in preclinical development for treating CLL1-expressing hematologic malignancies, such as AML.
Cellectis and Allogene Therapeutics, another biotech company involved in the developmen t of CAR T-cell therapies, are developing ALLO-501, another CAR T-cell therapy which targets CD19 and is being developed for the the treatment of patients with relapsed or refractory NHL. Allogene Therapeutics is also developing ALLO-715, an investigational CAR T-cell therapy targeting the B-cell maturation antigen (BCMA) for treating relapsed or refractory multiple myeloma and ALLO-819, which targets CD135 (also called FLT3), for treating relapsed or refractory AML.
Allogene, in collaboration with both Cellectis, Pfizer (which has a 25% stake in Allogene) and Servier have numerous active open-label, single-arm Phase I trials for an off-the-shelf allogeneic CAR-T therapy UCART19* in patients with relapsed or refractory CD19+ B-ALL. Participating patients receive lymphodepletion with fludarabine and cyclophosphamide with alemtuzumab, followed by UCART19 infusion. Adults patients with R/R B-ALL are eligible.
The PALL aims to evaluate the safety and feasibility of UCART19 to induce molecular remission in pediatric patients with relapsed or refractory CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) in 18 pediatric patients.
The CALM trial is a dose-escalating study evaluating the therapys safety and tolerability in 40 adult patients; and a long-term safety and efficacy follow-up study in 200 patients with advanced lymphoid malignancies.
Allogene reported preliminary proof-of-concept results during the annual meeting of the American Society of Hematology (ASH) in December 2018.
Data from the first 21 patients from both the PALL (n=7) and CALM (n=14) Phase I studies were pooled. The median age of the participating patients was 22 years (range, 0.8-62 years) and the median number of prior therapies was 4 (range, 1-6). Sixty-two percent of the patients (13/21) had a prior allogeneic stem cell transplant.
Of the 17 patients who received treatment with UCART19 and who received lymphodepletion with fludarabine, cyclophosphamide and alemtuzumab, an anti-CD52 monoclonal antibody, 14 patients (82%) achieved CR/CRi, and 59% of them (10/17) achieved MRD-negative remission.
In stark contrast, the four patients who only received UCART19 and fludarabine and cyclophosphamide without alemtuzumab did not see a response and minimal UCART19 expansion.
Based on these results, researchers noted that apparent importance of an anti-CD52 antibody for the efficacy of allogeneic CAR-T therapies. In addition, safety data also looked promising. The trial results did not include grade 3 or 4 neurotoxicity and only 2 cases of grade 1 graft-versus-host disease (10%), 3 cases of grade 3 or 4 cytokine release syndrome which were considered manageable (14%), 5 cases of grade 3 or 4 viral infections (24%), and 6 cases of grade 4 prolonged cytopenia (29%).
Precision BiosciencesPrecision Biosciences is developing PBCAR0191, an off-the-shelf investigational allogeneic CAR T-cell candidate targeting CD19. The drug candidate is being investigated in a Phase I/IIa multicenter, nonrandomized, open-label, parallel assignment, dose-escalation, and dose-expansion study for the treatment of patients with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) or R/R B-cell precursor acute lymphoblastic leukemia (B-ALL).
The NHL cohort includes patients with mantle cell lymphoma (MCL), an aggressive subtype of NHL, for which Precision has received both Orphan Drug and Fast Track Designations from the U.S. Food and Drug Administration (FDA).
A clinical trial with PBCAR0191 Precision Biosciences is exploring some novel lymphodepletion strategies in addition to fludarabine and cyclophosphamide. Patients with R/R ALL, R/R CLL, R/R Richter transformation, and R/R NHL are eligible. Patients with MRD+ B-ALL are eligible as well. This trial is enrolling patients.
In late September 2020, Precision BioSciences, a clinical stage biotechnology amd Servier, announced the companies have added two additional hematological cancer targets beyond CD19 and two solid tumor targets to its CAR T-cell development and commercial license agreement.
PBCAR20APBCAR20A is an investigational allogeneic anti-CD20 CAR T-cell therapy being developed by Precision Biosciences for the treartment of patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL) and patients with R/R chronic lymphocytic leukemia (CLL) or R/R small lymphocytic lymphoma (SLL). The NHL cohort will include patients with mantle cell lymphoma (MCL), an aggressive subtype of NHL, for which Precision BioSciences has received orphan drug designation from the United States Food and Drug Administration (FDA).
PBCAR20A is being evaluated in a Phase I/IIa multicenter, nonrandomized, open-label, dose-escalation and dose-expansion clinical trial in adult NHL and CLL/SLL patients. The trial will be conducted at multiple U.S. sites.
PBCAR269APrecision Biosciences is, in collaboration with Springworks Therapeutics, also developing PBCAR269A, an allogeneic BCMA-targeted CAR T-cell therapy candidate being evaluated for the safety and preliminary clinical activity in a Phase I/IIa multicenter, nonrandomized, open-label, parallel assignment, single-dose, dose-escalation, and dose-expansion study of adults with relapsed or refractory multiple myeloma. In this trial, the starting dose of PBCAR269A is 6 x 105 CAR T cells/kg body weight with subsequent cohorts receiving escalating doses to a maximum dose of 6 x 106 CAR T cells/kg body weight.
PBCAR269A is Precision Biosciencess third CAR T-cell candidate to advance to the clinic and is part of a pipeline of cell-phenotype optimized allogeneic CAR T-cell therapies derived from healthy donors and then modified via a simultaneous TCR knock-out and CAR T-cell knock-in step with the =companys proprietary ARCUS genome editing technology.
The FDA recently granted Fast Track Designation to PBCAR269A for the treatment of relapsed or refractory multiple myeloma for which the FDA previously granted Orphan Drug Designation.
TCR2 TherapeuticsTCR2 Therapeutics is developing a proprietary TRuC (TCR Fusion Construct) T-cells designed to harness the natural T cell receptor complex to recognize and kill cancer cells using the full power of T-cell signaling pathways independent of the human leukocyte antigen (HLA).
While succesful in hematological malignancies, CAR T-cells therapies have generally struggled to show efficacy against solid tumors. Researchers at TCR2 Therapeutics believe this is is caused by the fact that CAR T-cell therapies only utilize a single TCR subunit, and, as a result, do not benefit from all of the activation and regulatory elements of the natural TCR complex. By engineering TCR T-cells, which are designed to utilize the complete TCR, they have demonstrated clinical activity in solid tumors. However, this approach has also shown major limitations. TCR T-cells require tumors to express HLA to bind tumor antigens. HLA is often downregulated in cancers, preventing T-cell detection. In addition, each specific TCR-T cell therapy can only be used in patients with one of several specific HLA subtypes, limiting universal applicability of this approach and increasing the time and cost of patient enrollment in clinical trials.
In an attempt to solve this problem, researchers at TCR2 Therapeutics have developped a proprieatarry TRuC-T Cells which are designed to incorporate the best features of CAR-T and TCR-T cell therapies and overcome the limitations. The TRuC platform is a novel T cell therapy platform, which uses the complete TCR complex without the need for HLA matching.
By conjugating the tumor antigen binder to the TCR complex, the TRuC construct recognizes highly expressed surface antigens on tumor cells without the need for HLA and engage the complete TCR machinery to drive the totality of T-cell functions required for potent, modulated and durable tumor killing.
In preclinical studies, TCR2 Therapeutics TRuC T-cells technology has demonstrated superior anti-tumor activity in vivo compared to CAR T-cells therapies, while, at the same time, releasing lower levels of cytokines. These data are encouraging for the treatment of solid tumors where CAR T-cells have not shown significant clinical activity due to very short persistence and for hematologic tumors where a high incidence of severe cytokine release syndrome remains a major concern.
TCR2 Therapeutics product candidates include TC-210 and TC-110.
TC-210 is designed to targets mesothelin-positive solid tumors. While its expression in normal tissues is low, mesothelin is highly expressed in many solid tumors. Mesothelin overexpression has also been correlated with poorer prognosis in certain cancer types and plays a role in tumorigenesis. TC-210 is being developed for the treatment of non-small cell lung cancer, ovarian cancer, malignant pleural/peritoneal mesothelioma and cholangiocarcinoma.
The companys TRuC-T cell targeting CD19-positive B-cell hematological malignancies, TC-110, is being developed to improve upon and address the unmet needs of current CD19-directed CAR T-cell therapies. The clinical development TC-110 focus on the treatment of adult acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). Preclinical data demonstrates that TC-110 is superior to CD19-CAR-T cells (carrying either 4-1BB or CD28 co-stimulatory domains) both in anti-tumor activity as well as the level of cytokine release which may translate into lower rates of adverse events. The development of TC-110 starts with autologous T-cells collection by leukopheresis. These T-cells undergo genetic engineering to create TRuC-T cells targeting CD19.
This strategy combines the best features of CAR T-cells and the native T-cell receptor. It is open for R/R NHL and R/R B-ALL.
AUTO1Auto1 is an autologous CD19 CAR T-cell investigational therapyis being developped by Autolus Therapeutics. The investigational drug uses a single-chain variable fragment (scFv) called CAT with a lower affinity for CD19 and a faster off-rate compared to the FMC63 scFv used in other approved CD19 CAR T-cell therapies. The investigational therapy is designed to overcome the limitations in safety while maintaining similar levels of efficacy compared to current CD19 CAR T-cell therapies.
Designed to have a fast target binding off-rate to minimize excessive activation of the programmed T-cells, AUTO1 may reduce toxicity and be less prone to T-cell exhaustion, which could enhance persistence and improve the T-cells abilities to engage in serial killing of target cancer cells.
In 2018, Autolus signed a license agreement UCL Business plc (UCLB), the technology-transfer company of UCL, to develop and commercialize AUTO1 for the treatment of B cell malignancies. AUTO1 is currently being evaluated in two Phase I studies, one in pediatric ALL and one in adult ALL.
CARPALL trialInitial results from the ongoing Phase I CARPALL trial of AUTO1 were presented during European Hematology Association 1st European CAR T Cell Meeting held in Paris, France, February 14-16, 2019.
Enrolled patients had a median age of 9 years with a median of 4 lines of prior treatment. Seventeen patients were enrolled, and 14 patients received an infusion of CAR T cells. Ten of 14 patients had relapsed post allogeneic stem cell transplant. Eight patients were treated in second relapse, 5 in > second relapse and 3 had relapsed after prior blinatumomab or inotuzumab therapy. Two patients had ongoing CNS disease at enrollment.
This data confirmed that AUTO1 did not induces severe cytokine release syndrome (CRS) (Grade 3-5). Nine patients experienced Grade 1 CRS, and 4 patients experienced Grade 2 CRS. No patients required tociluzumab or steroids. As previously reported, one patient experienced Grade 4 neurotoxicity; there were no other reports of severe neurotoxicity (Grade 3-5). The mean cumulative exposure to AUTO1 CAR T-cells in the first 28 days as assessed by AUC was 1,721,355 copies/g DNA. Eleven patients experienced cytopenia that was not resolved by day 28 or recurring after day 28: 3 patients Grades 1-3 and 8 patients Grade 4. Two patients developed significant infections, and 1 patient died from sepsis while in molecular complete response (CR).
With a single dose of CAR T cells at 1 million cells/kg dose, 12/14 (86%) achieved molecular CR. Five patients relapsed with CD19 negative disease. Event free survival (EFS) based on morphological relapse was 67% (CI 34-86%) and 46% (CI 16-72%) and overall survival (OS) was 84% (CI 50-96%) and 63% (CI 27-85%) at 6 and 12 months, respectively.
CAR T cell expansion was observed in all responding patients (N=12), with CAR T cells comprising up to 84% of circulating T cells at the point of maximal expansion. The median persistence of CAR T-cells was 215 days.
The median duration of remission in responding patients was 7.3 months with a median follow-up of 14 months. Five of 14 patients (37%) remain in CR with ongoing persistence of CAR T-cells and associated B cell aplasia.
Fate TherapeuticsFT819 is an off-the-shelf CAR T-cell therapy targeting CD19 being developed by Fate Therapeutics. The T-cells are derived from a clonal engineered master induced pluripotent stem cell line (iPSCs) with a novel 1XX CAR targeting CD19 inserted into the T-cell receptor alpha constant (TRAC) locus and edited for elimination of T-cell receptor (TCR) expression.
Patients participating in the companys clinbical trial will receive lymphodepletion with fludarabine and cyclophosphamide. Some patients will also receive IL-2. Patients with R/R ALL, R/R CLL, R/R Richter transformation, and R/R NHL are eligible. Patients with MRD+ B-ALL are eligible as well.
At the Annual Meeting of the American Societ of Hematology held in December 2019, researchers from Fate Therapeutics presented new in vivo preclinical data demonstrating that FT819 exhibits durable tumor control and extended survival. In a stringent xenograft model of disseminated lymphoblastic leukemia, FT819 demonstrated enhanced tumor clearance and control of leukemia as compared to primary CAR19 T-cells. At Day 35 following administration, a bone marrow assessment showed that FT819 persisted and continued to demonstrate tumor clearance, whereas primary CAR T cells, while persisting, were not able to control tumor growth. [2]
CAR-NK CD19Allogeneic cord blood-derived Natural Killer (NK) cells are another off-the-shelf product that does not require the collection of cells from each patient.
Unlike T-cells, NK-cells do not cause GVHD and can be given safely in the allogeneic setting. At MD Anderson Cancer Center, Katy Rezvani, M.D., Ph.D, Professor, Stem Cell Transplantation and Cellular Therapy, and her team broadly focuses their research on the role of natural killer (NK) cells in mediating protection against hematologic malignancies and solid tumors and strategies to enhance killing function against various cancer.
As part of their research, the team has developed a novel cord blood-derived NK-CAR product that expresses a CAR against CD19; ectopically produces IL-15 to support NK-cell proliferation and persistence in vivo; and expresses a suicide gene, inducible caspase 9, to address any potential safety concerns.
In this phase I and II trial researchers administered HLA-mismatched anti-CD19 CAR-NK cells derived from cord blood to 11 patients with relapsed or refractory CD19-positive cancers (non-Hodgkins lymphoma or chronic lymphocytic leukemia [CLL]). NK cells were transduced with a retroviral vector expressing genes that encode anti-CD19 CAR, interleukin-15, and inducible caspase 9 as a safety switch. The cells were expanded ex vivo and administered in a single infusion at one of three doses (1105, 1106, or 1107 CAR-NK cells per kilogram of body weight) after lymphodepleting chemotherapy. The preliminarry resilts of the trials confirmed that administration of CAR-NK cells was not associated with the development of cytokine release syndrome, neurotoxicity, or graft-versus-host disease, and there was no increase in the levels of inflammatory cytokines, including interleukin-6, over baseline.
The study results also demonstrated that of the 11 patients who were treated, 8 patients (73%) had a response. Of these patients, 7 (4 with lymphoma and 3 with CLL) had a complete remission ICR), and 1 had remission of the Richters transformation component but had persistent CLL. Noteworthy was that responses were rapid and seen within 30 days after infusion at all dose levels. The infused CAR-NK cells expanded and persisted at low levels for at least 12 months. The researchers also noted that a majority of the 11 participating patients with relapsed or refractory CD19-positive cancers had a response to treatment with CAR-NK cells without the development of major toxic effects.[3]
Note* Servier will hold ex-US commercial rights. Servier is the sponsor of the UCART19 trials.
Clinical trialsalloSHRINK Standard cHemotherapy Regimen and Immunotherapy With Allogeneic NKG2D-based CYAD-101 Chimeric Antigen Receptor T-cells NCT03692429Study Evaluating Safety and Efficacy of UCART123 in Patients With Relapsed/ Refractory Acute Myeloid Leukemia (AMELI-01) NCT03190278Study to Evaluate the Safety and Clinical Activity of UCART123 in Patients With BPDCN (ABC123) NCT03203369Study of UCART19 in Pediatric Patients With Relapsed/Refractory B Acute Lymphoblastic Leukemia (PALL) NCT02808442Dose Escalation Study of UCART19 in Adult Patients With Relapsed / Refractory B-cell Acute Lymphoblastic Leukaemia (CALM) NCT02746952Dose-escalation Study of Safety of PBCAR0191 in Patients With r/r NHL and r/r B-cell ALL NCT03666000.Dose-escalation Study of Safety of PBCAR20A in Subjects With r/r NHL or r/r CLL/SLL NCT04030195A Dose-escalation Study to Evaluate the Safety and Clinical Activity of PBCAR269A in Study Participants With Relapsed/Refractory Multiple Myeloma NCT04171843TC-110 T Cells in Adults With Relapsed or Refractory Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia NCT04323657Phase 1/2 Trial of TC-210 T Cells in Patients With Advanced Mesothelin-Expressing Cancer NCT03907852CARPALL: Immunotherapy With CD19 CAR T-cells for CD19+ Haematological Malignancies NCT02443831Umbilical & Cord Blood (CB) Derived CAR-Engineered NK Cells for B Lymphoid Malignancies NCT03056339
Reference[1] Petti F. Broadening the Applicability of CAR-T Immunotherapy to Treat the Untreatable. OncoZine. October 24, 2019 [Article][2] Wells J, Cai T, Schiffer-Manniou C, Filipe S, Gouble A, Galetto R, Jain N, Jabbour EJ, Smith J, Konopleva M. Pre-Clinical Activity of Allogeneic Anti-CD22 CAR-T Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia Blood (2017) 130 (Supplement 1): 808. https://doi.org/10.1182/blood.V130.Suppl_1.808.808%5B3%5D Chang C, Van Der Stegen S, Mili M, Clarke R, Lai YS, Witty A, Lindenbergh P, Yang BH, et al. FT819: Translation of Off-the-Shelf TCR-Less Trac-1XX CAR-T Cells in Support of First-of-Kind Phase I Clinical Trial. Blood (2019) 134 (Supplement_1): 4434.https://doi.org/10.1182/blood-2019-130584%5B4%5D Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Nunez Cortes A, Cao K, Daher M, Hosing C, Cohen EN, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall EJ, Rezvani K. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020 Feb 6;382(6):545-553. doi: 10.1056/NEJMoa1910607. PMID: 32023374; PMCID: PMC7101242.
Featured image: T-cells attacking a cancer cell. Photo courtesy: Fotolia/Adobe 2016 2020. Used with permission.
Go here to read the rest:
CAR T-cell Therapies for the Treatment of Patients with Acute Lymphoblastic Leukemia - OncoZine
BrainStorm Announces Financial Results for the Third Quarter 2020 – Citybizlist
BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of cellular therapies for neurodegenerative diseases, announced today financial results for the third quarter ended September 30, 2020, and provided a corporate update.
"The most important near-term event for BrainStorm will be the upcoming top-line data readout for the NurOwn Phase 3 trial in ALS, expected by the end of November. A successful outcome will set us on the path to filing a Biologic License Application (BLA) for what we believe will be a valuable new treatment for ALS," said Chaim Lebovits, Chief Executive Officer of BrainStorm Cell Therapeutics. "In parallel to our preparations for upcoming data read out, we are very busy planning and executing on other pre-BLA activities. On the management front, we appointed William K. White and Dr. Anthony Waclawski, adding valuable commercial and regulatory expertise to our leadership team. This expertise will be crucial as we work towards obtaining regulatory approval for NurOwn and ensuring that, if approved, it will be readily accessible to ALS patients in need of new treatment options for this devastating disease."
NurOwn has an innovative mechanism of action that is broadly applicable across neurodegenerative diseases and BrainStorm continues to invest in clinical trials evaluating the product in conditions beyond ALS to maximize value creation for its various stakeholders. The company remains on track to complete dosing in its Phase 2 clinical trial in progressive multiple sclerosis (PMS) by the end of 2020. In addition, the Company recently unveiled a clinical development program in Alzheimer's' disease (AD) and is planning a Phase 2 proof-of-concept clinical trial at several leading AD centers in the Netherlands and France.
Third Quarter 2020 and Recent Corporate Highlights:
Presented at the following Investor Conferences:
Cash and Liquidity as of October 14, 2020
Total available funding as of October 14, 2020, which includes cash, cash equivalents and short-term bank deposits of approximately $33.1 million as well as remaining non-dilutive funding from CIRM, IIA and other grants, amounts to approximately $36 million.
Financial Results for the Three Months Ended September 30, 2020
About NurOwn
NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received acceptance from the U.S. Food and Drug Administration (FDA) to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS) and completed enrollment in August 2020.
About BrainStorm Cell Therapeutics Inc.
BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) completed enrollment in August 2020. For more information, visit the company's website at http://www.brainstorm-cell.com.
More:
BrainStorm Announces Financial Results for the Third Quarter 2020 - Citybizlist
‘Never give up hope and please join the register’ says 11-year-old in need of stem cell donor match – Asian Image
An appeal has gone out to help an 11-year-old girlwho needs a stem cell transplant from a stranger, to give her a second chance of life.
Arya was diagnosed with a rare blood disorder. But following a diagnosis of aplastic anaemia, a serious condition that occurs when the body stops producing enough new blood cells, she will also be starting immunosuppressant treatment.
This means her immune system isn't working as it should, putting her at a greater risk of infections.
To cure her aplastic anaemia Arya needs a lifesaving stem cell transplant. Blood cancer charity Antony Nolan is searching the worldwide stem cell registers for a donor whose tissue type matches Arya's and who is willing to donate their stem cells to help her live a normal life again.
However, the search for a perfect match is difficult for people like Arya, who is half Indian, with mixed ethnicity so she is sharing her story with Anthony Nolan in order to raise awareness of the need for more people of mixed race to join the stem cell register.
She said, "'They said it would be hard to find a donor for me because of my ethnicity but it isn't impossible. There is hope."
The best possible match for Arya is most likely to have the same background or mix of ethnicities. Currently, people with mixed Asian or other minority backgrounds have a 20% chance of finding a match from an unrelated donor, compared with nearly 70% for people with white, north European heritage.
Arya was diagnosed earlier this year and is receiving treatment at St Mary's Hospital, London.She added, 'When I first became unwell, I remember getting a stomach ache. At first it felt like a stitch but the pain didn't go away so I had more tests.'
These tests revealed something more serious. Arya's mum Brundha recalls: "Arya has always been fit and healthy, but life changed very quickly; all of a sudden we were talking to doctors about aplastic anaemia and Arya has had to stop many of the things she liked doing because her platelets, the tiny blood cells that help your body form clots, were low."
The family were given news of the treatment Arya would need to undergo and the need for a suitable donor.As the search continues, waiting for a match for Arya has inspired the Lloyd family to share their story. Their aim is to raise awareness of the need for more stem cell donors of mixed ethnicities to join the Anthony Nolan register and so increase the likelihood of finding a match for young people like Arya.
Brundha said: 'Because Arya is of mixed race, it was always unlikely we would find a match quickly. We have therefore started this appeal because we don't want to give up hope. It's a waiting game, but there could be someone out there who is a match. We also understand that younger people make better matches, so we would like to do all we can to make this more widely known.'
Aryas Consultant, Professor Josu de la Fuente, who is a Consultant Haematologist and Director of the Paediatric Bone Marrow Transplant Programme at Imperial College Healthcare in London said A well matched donor offers the best opportunity for Arya to establish normal blood production long-term and not to worry about the future.
"I will urge anyone, but particularly those of mixed ethnicity to consider joining the Anthony Nolan register so that no child with blood disorders faces an uncertain future: we can all contribute and be part of the solution.
Arya added: 'What stands out most for me are the bone marrow biopsies and being undergeneral anaesthetic for the first time.'
Rebecca Pritchard leads Anthony Nolan's work to recruit donors aged 1630 to its stem cell register. Rebecca says: 'Despite all she is going through, Arya is standing up to share her story in order to inspire people of mixed background to join the register. There is a potential lifesaver out there who could help her. If you're aged 1630 you can join the Anthony Nolan register online by completing a form and swabbing your cheeks with swabs we'll send in the post.
'Each time we're told a patient is in need of a transplant we'll check whether you're a match for them; if you're found to be a match you could give your stem cells to give hope to families like Arya's.'
Brundha said, 'We were unprepared for this and when it happens you want to know there is a source of donors for your child. That's why we're doing this to highlight the need. Being on the register could have a major impact on someone else's life. It's such an important thing you could do without realising.
"Families would be eternally grateful. You may never be called on, but if you are you could be a lifeline for someone. One person out there could be that person. It's a win-win for everybody.'
Arya added: 'The message I would like people to take away is Never give up hope and please join the register.
To find out more about joining the Anthony Nolan register, or to find out more about how you can support the charity click here
Original post:
'Never give up hope and please join the register' says 11-year-old in need of stem cell donor match - Asian Image
Stem Cell Banking Market to witness an impressive growth during the forecast period 2020 2025 – Express Journal
In the latest Stem Cell Banking market report, factors that are positively impacting the industry progression as well as the major threats & challenges existing in this domain are expounded. To unveil all the possible opportunities for business expansion, the study scrutinizes the regulatory and macroeconomic framework across the various geographies. It also delves into the competitive dynamics and evaluates how it will evolve during the forecast period. Further, it suggests strategies for dealing with the impact of the COVID-19.
Key highlights from COVID-19 impact analysis:
A gist of the regional landscape:
Request Sample Copy of this Report @ https://www.express-journal.com/request-sample/218931
Other highlights from the Stem Cell Banking market report:
Market Status:The complete details on Stem Cell Banking Market situation, principal regions, distribution channels, pricing structures are blanketed.
Why Buy this Report?
Strategic Analysis Covered in TOC: - Key Topics Covered
Initially, the document offers an outline of the global market with a complete take a look at key drivers, constraints, challenges, traits and product types sold by using the employer. The file studies the Stem Cell Banking market capacity of key packages with the identity of forecast opportunities. The local evaluation with a focus on specific international locations and area of interest markets is presented. The pinnacle organization profiles with key-word market size and proportion estimation, revenue strategies, products, and other factors are studied.
Request Customization on This Report @ https://www.express-journal.com/request-for-customization/218931
Read the original here:
Stem Cell Banking Market to witness an impressive growth during the forecast period 2020 2025 - Express Journal
This Dublin-based startup raises 30M to develop promising therapies for leukemia – Silicon Canals
The global blood and bone marrow cancer treatment market was valued at $38.8B (approx 32.8B) in 2018 and is reportedly expected to reach $74.9B (approx 63.4B) by 2027, expanding at a CAGR of 7.7% from 2019 to 2027.
Blood cancer begins in the bone marrow which is the integral source of stem cells, which are later differentiated into different types of blood cells in the human body. Researchers have stated that approximately 1.85 million new cases of blood cancer will be diagnosed by 2040 throughout the globe.
These are the top global tech PR agencies you should absolutely check out in 2020
Europe holds a market share of 30.8% owing to the supportive regulatory framework provided by the European Medical Agency for the development and sale of medication for the treatment of blood cancer.
In the recent development, blood and bone marrow cancer treatment developer Priothera Limited, has raised 30M in its Series A round of funding led by Fountain Healthcare Partners with participation from co-lead investor HealthCap and funds managed by Tekla Capital Management, LLC, as well as EarlyBird Venture Capital.
According to the medtech startup, the raised funds will be used to progress the clinical development of mocravimod a modulator of sphingosine 1 phosphate (S1P) receptors, to enhance the curative potential of allogenic hematopoietic stem cell transplantation (HSCT) for treating AML.
Priothera expects to generate further randomised clinical data in high-risk AML patients with these funds.
Dublin-based Priothera was founded in 2020 by Drs. Florent Gros and Dhaval Patel. Joining the founding team include experienced industry executive, Dr. Christoph Bucher, Dr. Simone Seiter, and CFO Brice Suire.
The company claims to be leading the way in developing orally applied sphingosine 1 phosphate (S1P) receptor modulators for haematological malignancies. S1P receptor modulators have been suggested to largely reduce egress of T cell subsets from lymphatic tissues allowing for dual inhibition of graft-versus-host-disease (GvHD) and enhancing graft-versus-leukemia benefits in patients receiving allogenic stem cell transplant.
Allogenic stem cell transplant is the only potentially curative approach for AML patients but has unacceptably high mortality with current treatments, says Florent Gros, co-founder, and CEO of Priothera.
Florent Gros further adds, We are excited about mocravimod which has a unique mechanism of action and clinical proof of concept demonstrating its ability to improve survival outcomes for this devastating disease.
Acute myeloid leukemia (AML) is an aggressive and highly proliferative form of cancer where the bone marrow generates abnormal myeloblasts (a type of white blood cell). According to the company, AML is the most common form of leukemia in adults and can metastasise quickly if left untreated. This can typically lead to death within a few months of diagnosis.
Priothera has acquired rights to a drug called mocravimod from Japans Kyorin Pharmaceutical for the treatment of acute myeloid leukaemia.
According to the company, Mocravimod has already been extensively tested in multiple immunologic indications and has shown a survival benefit in an early clinical study evaluating acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) patients undergoing hematopoietic stem cell transplantation (HSCT).
Priothera is developing mocravimod in AML with the aim of enhancing the curative potential of Hematopoietic Stem Cell Transplantation (HSCT). The company claims that promising early clinical results have revealed that mocravimod has the potential to rebalance the patients immune system by decoupling Graft-versus-Host Disease (GvHD) from Graft-versus-Leukemia (GvL), preventing the first and preserving the latter.
Following the closing of the financing, people who have joined the Board of Directors include Florent Gros (Priotheras co-founder and CEO), Dr. Dhaval Patel (Priotheras co-founder and CSO at UCB), Dr. Manus Rogan (Fountain Healthcare Partners co-founder and MD), Dr. Marten Steen (partner at HealthCap), Dr. Henry Skinner (senior vice president at Tekla Capital Management, LLC) and Lionel Carnot (partner at EarlyBird Venture Capital).
Image credits: Jarun Ontakrai/ShutterStock
Follow this link:
This Dublin-based startup raises 30M to develop promising therapies for leukemia - Silicon Canals
Clinical trials with stem cells to treat effects of COVID-19 in the lungs advance – Granma English
Photo composition: Claudia Garca Martnez
Dr. Odalis Mara de la Guardia Pea, an expert immunologist, describes as "encouraging" preliminary findings obtained at the conclusion of the first phase of clinical trials evaluating the use of stem cells in patients facing lung damage caused by COVID-19.
The study, begun during the month of May at the Cuban Institute of Hematology and Immunology (IHI), was undertaken with a view toward eliminating or reducing interstitial inflammatory or fibrotic lung lesions following the infection.
The doctor, also an infectious disease specialist and head of External Services at the IHI, explains that the research will have significant impact "if, as we hope, stem cell therapy produces positive results in these patients with pulmonary alterations post-COVID-19.
"If the treatment is effective, it will be generalized across the entire country, improving the quality of life and respiratory capacity of these patients," she stated with the enthusiasm of someone devoted to the most important mission in the world: saving lives.
THE LUNG, THE "TARGET" ORGAN
De la Guardia Pea commented that, although SARS-COV-2 has a variety of dissimilar effects (cardiovascular, renal, cerebral, vascular, in distal or lower limbs, and others); the "target" organ in the case of COVID-19 is the lung, in which patients experience the most serious impact, both during the disease and once they have recovered, a pattern being studied internationally.
"We have detected cases, specifically in Cuban patients, who have presented this kind of affectation, especially those who have suffered symptoms over a longer period. Among those visited for the study, there were cases of important pulmonary alterations, which is the most frequent, but perhaps not the most serious," the specialist continued.
RECRUITMENT OF VOLUNTEERS
"These recruitment consultations were atypical, as they were done in the field, visiting the homes of recovered patients," the doctor explained, adding that potential volunteers needed to meet several criteria for inclusion in the clinical trials.
Those selected were between 18 and 70 years of age, of both sexes, who had contracted COVID-19 thirty days prior to the trial treatment, testing negative on a PCR at the time of recruitment, and exhibited respiratory symptoms since the beginning of the disease.
Specifically sought for the trials were patients who experienced a more torpid evolution of the disease, those who were hospitalized for more than 20 days, requiring oxygen, assisted ventilation, or the use of some aerosol as treatment, upon reaching serious or critical condition.
"More than 130 homes were visited over almost three months, from May to June; and 141 patients were interviewed, of which about 50 were studied. Twenty patients were included in the trial, which was the determined number," the doctor reported.
PULMONARY SEQUELAE
"During the investigation, several long term effects of COVID-19 were noted, although the most frequent involved the lungs. In some cases, indications of pulmonary fibrosis were detected, a condition that cannot be completely corrected, and can only be treated to increase lung capacity and improve quality of life," the doctor explained.
"The study is still in progress. The first phase has been completed, but there is some time remaining before final evaluation of the patients. What we can say is that, thus far, we are very happy with the results we have observed, they are encouraging," she emphasized.
UNFORGETTABLE STORIES
-Could you recount some stories that particularly impacted you?
-The first day I went out to recruit volunteers, I arrived at the home of a patient who, when she opened the door, exhibited obvious difficulty breathing, evident in plain sight.
We conducted the interview and learned that she experienced this difficulty on a daily basis, five weeks after being diagnosed with COVID-19 and 15 days after a negative PCR test.
This case was significant because we became aware of the lingering effects some patients face, who after having the disease, being discharged and completing all treatment, can have symptoms for a long time.
On another occasion, a patient received us effusively, grateful that he would continue to be treated, that he would receive some follow-up. This attitude was very common in many cases, confirming for us that the patients we visited were still feeling unwell, despite having recovered and been discharged from the hospital.
YOU CAN BE ASYMPTOMATIC OR YOU CAN DIE
"You can be infected and be asymptomatic, or develop the most severe symptoms of the disease and die. This is random, no one understands or can control it," the specialist warns, emphasizing the importance of being fully conscious of taking care of ourselves, since anyone can develop an aggressive case of COVID-19.
"I agree with everything Professor Durn says every day at nine o'clock in the morning, about how measures must be maintained and complied with: the use of facemasks, hand washing, shoe disinfection (with doormats soaked in 0.5% hypochlorite at the entrance to common areas), social distancing, and collective discipline.
"The population must take care; success in containing the pandemic lies in individual responsibility," she concluded.
STEM CELL TREATMENT
-When the patient is included in the study, treatment begins by injecting the granulocyte colony stimulating factor, Ior Leukocim, a product manufactured at Cubas Center for Molecular Immunology, to achieve the mobilization of stem cells from the bone marrow to the bloodstream.
-Subsequently, the patient's blood is extracted and mononuclear cells are separated and concentrated.
-This pool of cells includes hematopoietic and non-hematopoietic stem cells, which have immune-regulatory properties and promote the disappearance of lesions and the reconstitution of lung tissue.
-The cells are infused intravenously.
-The patient is evaluated one month following treatment and again at six months, to determine the clinical efficacy of the stem cell therapy.
Source: Granma interview with Consuelo Macas Abraham, director of the National Institute of Hematology and Immunology.
Read the original:
Clinical trials with stem cells to treat effects of COVID-19 in the lungs advance - Granma English
The Hindu Explains | How does a genome editing tool developed by two women scientists help in tackling diseases? – The Hindu
How is the tool different from other editing systems? Is there a possibility of the tool being misused?
The story so far: The 2020 Nobel Prizes for sciences announced this week made history of sorts when one of it was exclusively shared by two women. Scientists Jennifer Doudna and Emmanuelle Charpentier bagged the Nobel Prize for Chemistry for the development of a method for genome editing. The discovery of one of gene technologys sharpest tools: the CRISPR/Cas9 genetic scissors will lead to the emergence of novel biological applications by making it easier to edit genes, and may make the dream of curing inherited diseases come true.
Much like what Microsoft (MS) Word does for writing, the CRISPR/Cas9 system allows for adding, altering and deleting the genomic code in living beings. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are pieces of DNA that bacteria snip off from viruses that once attacked them, much like file names used to store various documents we write in MS Word.
The COVID-19 pandemic has brought to the fore the importance of memory cells, which can quickly produce relevant antibodies to neutralise a repeat infection by a virus. Similarly, the CRISPR are a part of bacterias immunological systems that help them in recognising threatening viruses. When they sense a lurking virus, the bacteria produce customised RNA, which is necessary to translate DNA into protein, gleaned from the CRISPR libraries. This also contains Cas (CRISPR-associated) genes that are used to produce enzymes such as Cas-9. These enzymes the Cas-9 being a particularly popular one can be used to chop the DNA of the virus and destroy them.
Using the tool, researchers can change the DNA of animals, plants and microorganisms with precision. Emmanuelle Charpentier, who is now director, Max Planck Institute for Infection Biology, Berlin, had studied Streptococcus pyogenes, a species of bacteria known to be associated with a range of illnesses such as pharyngitis, tonsillitis and scarlet fever. While studying this, she discovered a previously unknown molecule, tracrRNA. Her work showed that tracrRNA is part of bacterias ancient immune system, CRISPR/Cas, that disarms viruses by cleaving their DNA, the Nobel release explains. Dr. Charpentier published her discovery in 2011. The same year, she initiated a collaboration with biochemist Jennifer Doudna, now a professor at the University of California, Berkeley.
Together, they succeeded in recreating the bacterias genetic scissors in a test tube and simplifying the scissors molecular components so they were easier to use, says an explainer on the Nobel Prizes website on their work. In a significant experiment, they reprogrammed the genetic scissors. In their natural form, the scissors recognise DNA from viruses, but Charpentier and Doudna proved that they could be controlled so that they can cut any DNA molecule at a predetermined site. Where the DNA is cut it is then easy to rewrite the code of life, the note adds.
Also read | What is genome editing
Other genome editing systems like TALENs and Zinc-Finger Nucleases can do similar jobs, but several users consider the Charpentier-Doudna tool more adaptable and easier to use.
It is less than a decade since this system gained wide research and commercial interest, but in the past few years, scientists have been able to make precise single-base-pair changes or larger insertions. Coupled with the availability of genome sequences for a growing number of organisms, the technology allows researchers to find out what genes do, move mutations that are identified and associated with disease into systems where they can be studied and tested for treatment, or where they can be tested in combinations with other mutations.
Editorial | Scissoring the DNA
The commercial potential of the system is so compelling that within years of its development, there was a battle over the ownership of the intellectual property rights of the CRISPR/Cas9 involving the University of California and the Massachusetts Institute of Technology's Broad Institute. The essence of this was that Feng Zhang of the Broad Institute had discovered a way to deploy the system in eukaryotic cells (that make up animal cells), whereas Dr. Doudnas patent application covered the process more generally. Dr. Zhangs patent was granted before Dr. Doudnas application. The patent dispute is still ongoing, and both sides claim victory in terms of the commercial application of the patents.
Also read | CRISPR-Cas gene editing causes crisper debates
The prize to CRISPR/Cas9 may be unusual as it is rare for a method to be announced and conferred a Nobel within a decade of its discovery, but it underlines its game-changing potential. In the last five years, both Dr. Doudna and Dr. Charpentier have been recipients of several important prizes in sciences.
Earlier this year, a person with hereditary blindness became the first to have a CRISPR/Cas-9-based therapy directly injected into her body. Gene-editing company CRISPR Therapeutics announced in June that two patients with beta thalassemia and one with sickle cell disease would no longer require blood transfusions after their bone marrow stem cells were edited using CRISPR techniques.
Earlier this week, according to a report in Chemistry World, Dr. Doudna launched a new company, Scribe Therapeutics, to begin work on treatments for amyotrophic lateral sclerosis. Reuters reported that Dr. Doudna is already employing CRISPR in the battle against the COVID-19 as a co-founder of biotech startup Mammoth, which has tied up with GlaxoSmithKline to develop a test to detect infections.
This year, the CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) in Delhi developed a COVID-19 testing kit, nicknamed Feluda, after the fictional Bengali detective, based on the CRISPR/Cas9 system. There are commercial CRISPR-based home kits that allow amateur researchers to develop their own biotechnology applications, triggering a sub-culture called bio-hacking.
Also read | Change in ICMR rules stalls COVID-19 test kits from government labs
Research is already underway for using proteins that are smaller and more efficient than Cas-9, though the system purportedly holds promise for treating more complex diseases, such as cancer, heart diseases, mental illnesses, and the human immunodeficiency virus (HIV) infection.
The most controversial application of CRISPR/Cas9 was in 2018, when Chinese researcher He Jiankui announced that he had used it to create gene-edited twins Lula and Nana via in-vitro fertilisation. He used the gene scissors on the children when they were embryos to edit a gene, CCR5, that in its modified form would ostensibly protect the babies from HIV. The HIV uses the CCR5 to infect cells and the modified gene would shut the door against such an entry. He was widely condemned and sentenced to three years in jail, and stripped of his position at Shenzhen University, where he worked.
Also read | How safe is CRISPR?
While he broke a number of medical rules, what is particularly controversial is that the specific mutations that would supposedly protect the children from HIV were not achieved. There were a host of other unintended mutations too. It is not known how these mutations are going to play out over the children's lifetimes and whether they will spread to humanity more widely in due course. Thus, even though the CRISPR/Cas-9 system allows a democratic usage in labs across the world to tinker with genomes, it still has not reached the level of precision required to be sure that it does not cause unintentional side effects.
This year has seen a remarkable representation of women. Four women have been named Nobel Laureates in 2020 against five men so far. The Sveriges Riksbank (Swedens national bank) Prize for economics, or the 'economics Nobel', will be announced next week. The 2001-2019 interval has seen the maximum number of women Laureates 24 compared to just 11 from 1981 to 2000 and 7 from 1961 to 1980. There were only 12 women Laureates from 1901 to 1960. Only one woman, Marie Curie, has been honoured twice, with the 1903 Nobel Prize in Physics and the 1911 Nobel Prize in Chemistry.
Many women think that no matter what they do, their work will never be recognized the way it would be if they were a man, Al Jazeera quoted Dr. Doudna as saying. And I think (this prize) refutes that. It makes a strong statement that women can do science, women can do chemistry, and that great science is recognised and honoured.
See the original post:
The Hindu Explains | How does a genome editing tool developed by two women scientists help in tackling diseases? - The Hindu
Southfield woman meets boy she saved with bone marrow donation – C&G Newspapers
Grady Smith, 10, and Southfield resident Jessica Carroll were able to meet for the first time via Zoom in September at the DKMS Gala. Carroll was the bone marrow donor that helped save the boys life.
Photo provided by the Smith family
SOUTHFIELD If you were to take one look at 10-year-old Grady Smith, youd see a young boy who enjoys sports and school.
But the young Salem, New Hampshire, boy has been through more in 10 years than some people have in 50.
Grady was diagnosed with adrenoleukodystrophy, or ALD, back in 2018.
According to Boston Childrens Hospital, ALD is a rare genetic condition that causes the buildup of very long chain fatty acids in the brain. When the fatty acids accumulate, they destroy the protective myelin sheath around nerve cells, responsible for brain function. Without the myelin sheath, the nerves can no longer relay information to and from the brain.
Every single thing I read said, terminal, slow deterioration to death, one to five years, horrible, horrible death, Jillian Smith said. We just died. I havent been the same person since that day. It just changes you for the rest of your life.
With a diagnosis, Grady and his parents looked for options on how to help. Grady had a lesion with a Loes score which is a way of rating severity of 10. Scores range from 0-34.
His parents werent sure Grady would qualify for a bone marrow transplant because they usually only perform transplants for boys with scores of 9 and under. Grady was in luck, however, as Boston Childrens Hospital decided to move forward anyway.
The next move was to find a match for the boy, but that process could take weeks, months or even years. In Gradys case, it took just a few weeks.
Southfield resident Jessica Carroll registered as a potential bone marrow/blood stem cell donor with DKMS, a German bone marrow donor file, in 2014, but she didnt think much would come of it.
Four years later she got a call from the nonprofit organization letting her know that she was a match for a young boy. After some research, Carroll was totally on board with donating.
It was great knowing during that donation that this little bit that I went through was potentially saving somebodys life, Carroll said. Thats all I really cared about, was that I was helping somebody.
Grady was able to get his transplant in 2018.
According to his mother, Grady hasnt had any progression and has even made some recovery. Hes back in line with his academics and is playing sports again.
Grady has auditory processing issues, which make it hard for him to comprehend language and sound. His mother said he relies on reading lips to communicate.
Theres still a lot to it. It stopped the monster thats how we look at it but its not just so cut and dry, Jillian said. Hes a very rare outcome with his Loes score and with just how well hes doing. Hes just a really, really good boy. He works really hard to help bring awareness.
Carroll and the Smiths have talked via text, and they were able to meet virtually for the first time in September at the DKMS Gala.
For the Smiths and Carroll, the meeting was emotional. Grady was finally able to put a face to his donor, and vice versa for Carroll.
It was of course emotional, Carroll said. Being able to hear everything they went through, though, definitely made me so happy that I had chosen to register.
The Smiths and Carroll still talk periodically throughout the year, and Sept. 20 was the two-year anniversary of the transplant.
They are hoping to be able to meet in person soon, and the DKMS team wants to bring them to next years gala to help make that happen. However, they hope it will be sooner.
Throughout this journey with Grady, the Smiths have advocated, learned and spoken more about ALD.
Prior to Gradys birth, Massachusetts wasnt testing for ALD in newborns, but it has since started. New Hampshire wasnt either, but the Smiths got the state to add ALD to the newborn screening panel.
The next goal is to get more states to add the ALD screening. The family has also spoken at conferences to share Gradys story and have become big proponents of what DKMS has been able to do for not only their family, but families around the world.
I think a big thing, too, that we really want to get out there is bone marrow transplant or stem cell transplant, how easy it is, Jillian said. All people need to do is go on DKMSs website, and they can get a packet sent out to them. They just swab their cheeks, send it in and they could be saving anyones life, someone just like Grady.
According to the DKMS website, the organization is dedicated to the fight against blood cancer and blood disorders by creating awareness, recruiting bone marrow donors to provide a second chance at life, raising funds to match donor registration costs and supporting the improvement of blood cancer therapies by our own research.
Those looking for more information or wanting to register can visit dkms.org/en or call (212) 209-6700.
Read the original here:
Southfield woman meets boy she saved with bone marrow donation - C&G Newspapers
Boise State engineers given the opportunity to send stem cell research into space – Boise State University The Arbiter Online
Boise State engineers have been awarded $315,000 from the National Science Foundation (NSF) to launch stem cell research into space.
Alexander Regner, masters student in materials science engineering, has been working on stem cell research for nearly three years. Through Regners research, he has studied the health and maintenance of bone and bone marrow.
As you exercise and move, your bone marrow stimulates cells, which is a vital part of maintaining health, according to Regner.
Thats why exercise is so good for you. We know all of this contributes to health and maintenance, but we dont actually know what it looks like mechanically to these cells, Regner said.
Regner and his associates Gunes Uzer, assistant professor of mechanical and biomedical engineering, and Aykut Satici, assistant professor of mechanical and biomedical engineering, have created a model to mimic the bone marrow mechanical environment and analyze what kind of mechanical environment is causing the cells to react in certain ways.
Regner uses a computer simulation that matches a 3D printed physical sample. This allows Regner to understand what the mechanical environment looks like so they can correlate the mechanical environment to the cellular response.
Through this research, Regner asks the big question, is there a different mechanical environment generated due to changes in bone architecture?
Gunes and Satici looked at Regners research and wanted to bring it to a bigger audience. Their new goal was to determine how stem cell research can benefit Earth. According to Gunes, space travel tends to produce tissue types and cell behavior that is similar to aging. This aging happens over a matter of weeks in space, as opposed to a matter of years on Earth.
We take one of these bone cells and we age them for a year or two. But obviously, these bones have a shelf life, Gunes said. Maybe we can do that in space in three weeks and do the experiment in space. Maybe we can learn more about how the bone mechanical environment contributes to the aging process. Thats really the project, take Alexs work and send it to space.
Saticis contribution to this research is from a different perspective, robotics. According to Satici, there needs to be mechanical vibrations applied to particular cells. To accomplish this, there needs to be a robotic mechanism to perform that motion in a consistent matter.
Center for the Advancement of Science in Space (CASIS) holds a subcontract with the International Space Station along with the National Science Foundation (NSF). Each year, they ask the question, what type of research can we perform in space that can teach us something about Earth and improve advanced science on Earth?
Regner, Gunes and Satici argued that they cannot properly age experiments on Earth, and proposed that space could be a good platform for their research. They wrote a grant proposal for their research, what they have done in the past, what they plan to do and who is a part of the research team.
Regner, Gunes and Satici also work closely with the University of Texas, Rensselaer Polytechnic Institute and Space Tango to complete this research.
Through this extensive research, Regner, Satici and Gunes emphasize the importance of working hard to accomplish ones goals.
Just because its fun to do, doesnt mean you are going to learn it. You have to persevere and do the dirty work. Try to improve yourself with any resources you can get, Satici said.
Regner advocates for students to continuously work hard to help solve modern problems. There are a lot of job opportunities in the STEM field, and many jobs that may not require a STEM background at all, like politics.
A lot of our modern problems we are dealing with are multidisciplinary things. It requires the involvement of everyone. Space flight, for example, you need people to understand not only the mechanics but make sure were safe while were doing it, Regner said. [There are] a lot of problems we are facing in the middle age. If youre interested in helping solve them, there are so many different opportunities to get involved. If you want to go into politics, we need people to advocate for science in politics to make sure that we have adequate funding and focused goals for where we are going and what we are doing.
Gunes hopes students who want to get involved and achieve their goals will start with volunteer work.
Go to a lab youre interested in and say Hey, I want to do volunteering involving research. Before you know it you start getting your masters, your Ph.D., and then you become a scientist. If youre interested in [science] then stop thinking about it and do it, Gunes said.
Read the original here:
Boise State engineers given the opportunity to send stem cell research into space - Boise State University The Arbiter Online
NMDP/Be The Match partners with M Health Fairview and Duke University cryopreservation labs to launch Be The Match BioBank – PRNewswire
MINNEAPOLIS, Oct. 6, 2020 /PRNewswire/ --The National Marrow Donor Program (NMDP)/Be The Match today announced a collaboration with the Minnesota health system M Health Fairview and Marcus Center for Cellular Cures (MC3)/Carolinas Cord Blood Bank at Duke University (Duke) to offer cryopreservation services to transplant centers through the Be The Match BioBank. The collaboration brings together industry-leading expertise in cryopreservation and storage of patient-directed donor blood stem cell products to improve donor availability, collection quality, and ultimately, to provide a more reliable path to transplant for patients.
Through the Be The Match BioBank, blood stem cell donors will be able to donate bone marrow or peripheral blood stem cells (PBSC) for an intended patient on a timeline that is convenient for the donor. The cells are then cryopreserved and stored for the transplant center at no cost to them and shipped to coincide with initiation of the patient's conditioning regimen and optimal treatment timeline.
"We're excited to expand our partnership with Duke University by adding the expertise of physicians and researchers at M Health Fairview University of Minnesota Medical Center to continue to overcome logistical barriers to blood and marrow transplantation that might otherwise disrupt optimal patient care. Through the flexibility offered by the Be The Match BioBank, we believe we can provide transplant centers with a well-matched, available donor more often, and allow the transplant to occur at the best time for the patient," explained Steven Devine, MD, Chief Medical Officer, NMDP/Be The Match, and Associate Scientific Director, CIBMTR (Center for International Blood and Marrow Transplant Research). "The team at the Duke University lab was instrumental in the development of the Be The Match BioBank, as well as supporting donor product cryopreservation during the COVID-19 pandemic to ensure patients can continue to receive the transplants they need."
"We are proud to extend our partnership with the NMDP/Be The Match in a new way. Be The Match BioBank is an innovative way to remove barriers that otherwise may stand in the way of a patient's transplant," said Joanne Kurtzberg, MD, who leads the Marcus Center for Cellular Cures (MC3)/Carolinas Cord Blood Bank at Duke University.
"We are thrilled to be working with the NMDP/Be The Match to offer Be The Match BioBank. Through this partnership, transplant physicians can have confidence a high-quality bone marrow or PBSC product will be available from the donor they requested in the timeframe that works best for their patient," said David McKenna, MD, who leads the Molecular and Cellular Therapeutics program at M Health Fairview.
Be The Match BioBank can be used by any transplant center in the NMDP/Be The Match Network of more than 180 transplant centers worldwide. Blood stem cell donors are informed that the transplant center is requesting cryopreservation and provide consent prior to collection. Donors can also consent to having their donated cells made available to other searching patients in the unlikely event the intended patient is unable to proceed to transplant as planned.
To learn more about Be The Match BioBank, visit Network.BeTheMatchClinical.org/BioBank.
About the National Marrow Donor Program/Be The Match The National Marrow Donor Program/Be The Match is the global leader in providing a cure to patients with life-threatening blood and marrow cancers like leukemia and lymphoma, as well as other diseases. The organization manages the world's largest registry of potential blood stem cell donors and cord blood units. The NMDP/Be The Match partners with a global network to connect patients to their donor match for a transplant, and provides education and support for patients. Through Be The Match BioTherapies, the NMDP/Be The Match partners with cell and gene therapy companies to support the development and delivery of new therapies. The organization conducts research through its research program, CIBMTR (Center for International Blood and Marrow Transplant Research), in collaboration with Medical College of Wisconsin.
About M Health Fairview M Health Fairview is the newly expanded collaboration betweenthe University of Minnesota, University of Minnesota Physicians,and Fairview Health Services. The healthcare system combines the best of academic and community medicine expanding access to world-class, breakthrough care through its 10 hospitals and 60 clinics.
SOURCE Be The Match
Go here to see the original:
NMDP/Be The Match partners with M Health Fairview and Duke University cryopreservation labs to launch Be The Match BioBank - PRNewswire
First Man Cured of AIDS Dies From Cancer – The Keystone Newspaper
By Dylan Adams News Editor
Timothy Ray Brown, the first known person to be cured of HIV, died on Sept. 29 at age 54 after battling cancer.
Timothy Ray Brown, a figurehead in the AIDS and HIV community, passed away surrounded by friends after a five-month battle with leukemia, stated Tim Hoeffgen, Browns partner.
Brown received a positive HIV diagnosis in 1995 while studying in Berlin.
In 2006, Brown was diagnosed with acute myeloid leukemia, which is a cancer that builds in the bone marrow and blood interfering with blood cell production. After bouts of infections from several rough rounds of chemotherapy, Browns leukemia came out of remission.
Due to leukemia in his bones, Brown required a stem cell transplant, a process that allows healthy stem cells to be introduced into a host to stimulate the immune system and healthy bone marrow growth. At the time, the survival rates for stem cell transplant were around fifty percent.
Doctors found a match to Browns genetic type, a donor with the CCR5 Delta 32 mutation, a protein that acts as a doorway to stop the HIV from infecting new cells. Three months after Brown stopped taking his HIV medication, doctors found he no longer had HIV in his blood.
After another round of stem cell treatment in February of 2008, Brown went through several near-death complications, almost going blind and becoming paralyzed but slowly recovering. His body was still successfully fighting off HIV.
In July 2012, the Timothy Ray Brown Foundation was created during the World AIDS Conference in Washington, DC. This foundation was built for Brown to show his support and work with medical institutions and scientists to develop a unifying cure and vaccination against HIV.
Brown would often donate large amounts of blood and tissue samples to researchers in the hope of progressing closer towards an HIV cure. According to his partner, Hoeffgen, Tims lifework was to tell his story about his HIV cure and become an ambassador of hope to those in need.
Doctors have since used Brown as a blueprint to work on a potential cure and vaccine for HIV. Most notably for the second person to ever be cured of HIV the London Patient, Adam Castillejo who went through similar stem cell transplants in 2019 before coming forward to the public.
Like Loading...
Excerpt from:
First Man Cured of AIDS Dies From Cancer - The Keystone Newspaper
Becoming a donor easier than you think – Randfontein Herald
When thinking about donating bone marrow, most will break out in a cold sweat.
The thought of needles, prodding and poking is enough to put anyone off from becoming a donor but Ndinae Muligwe, Sustainability and Donor Recruitment Coordinator for the South African Bone Marrow Registry (SABMR) explained that it is a less complicated and relatively painless process.
The SABMR was established in 1991 and is a non-profit organisation that conducts searches to find matching bone marrow donors for critically ill children and adults in South Africa who cannot find a match in their own families.
Bone marrow transplants help to treat and even sometimes cure illnesses like leukaemia, Non-Hodgkin lymphoma, bone marrow failure, and some genetic blood and immune-system disorders.
Ndinae explained that the likelihood of a donor finding a match is about one in 100 000. What is more concerning is that there are currently only around 74 000 local donors on the South African Bone Marrow Registry.
Although they do form part of the World Marrow Donor Association that represents about 38 million donors, there are not enough donors for the South African demographic.
Ethnicity plays a role when it comes to who is able to donate, and at the moment the numbers do not match the ethnic groups represented in South Africa. You are more likely to find a match within your own ethnic group.
But how do you become a donor and what is the process involved?
Ndinae said it is as easy as registering on the website. Of course there are some questionnaires to fill in and you will have to meet the criteria and be healthy.
The donating age has recently been lowered from 18 to 16 years of age, and applicants must be between 16 and 45 to register as a potential donor.
If you are eligible you will then be contacted by the SABMR to do a cheek swab free of charge.
Peripheral blood stem cell (PBSC) collection is the most likely way of collecting stem cells. These cells are found in your bone marrow and also the blood stream. A five-day course of growth factor or Granulocyte-Colony Stimulating Factors is given prior to the donation to encourage the stem cells to move from your marrow to your blood.
At the time of donation a needle is placed in one arm. The blood is then passed through a machine that collects the stem cells, and the remaining blood is returned to your body similar to donating blood platelets.
You do not have to pay for anything to make a tissue or blood donation of your bone marrow stem cells, the SABMR covers the cost of testing and collection.
Visitwww.sabmr.co.zafor more information.
Excerpt from:
Becoming a donor easier than you think - Randfontein Herald
MESOBLAST ALERT: Bragar Eagel & Squire, PC Announces That a Class Action Lawsuit Has Been Filed Against Mesoblast Limited and Encourages Investors…
NEW YORK, Oct. 08, 2020 (GLOBE NEWSWIRE) -- Bragar Eagel & Squire, P.C., a nationally recognized shareholder rights law firm, announces that a class action lawsuit has been filed in the United States District Court for the Southern District of New York on behalf of investors that purchased Mesoblast Limited (NASDAQ: MESO) securities between April 16, 2019 and October 1, 2020 (the Class Period). Investors have until December 7, 2020 to apply to the Court to be appointed as lead plaintiff in the lawsuit.
Click here to participate in the action.
Mesoblast develops allogeneic cellular medicines using its proprietary mesenchymal lineage cell therapy platform. Its lead product candidate, RYONCIL (remestemcel-L), is an investigational therapy comprising mesenchymal stem cells derived from bone marrow. In February 2018, the Company announced that remestemcel-L met its primary endpoint in a Phase 3 trial to treat children with steroid refractory acute graft versus host disease (aGVHD).
In early 2020, Mesoblast completed its rolling submission of its Biologics License Application (BLA) with the FDA to secure marketing authorization to commercialize remestemcel-L for children with steroid refractory aGVHD.
On August 11, 2020, the FDA released briefing materials for its Oncologic Drugs Advisory Committee (ODAC) meeting to be held on August 13, 2020. Therein, the FDA stated that Mesoblast provided post hoc analyses of other studies to further establish the appropriateness of 45% as the null Day-28 ORR for its primary endpoint. The briefing materials stated that, due to design differences between these historical studies and Mesoblasts submitted study, it is unclear that these study results are relevant to the proposed indication.
On this news, the Companys share price fell $6.09, or approximately 35%, to close at $11.33 per share on August 11, 2020.
On October 1, 2020, Mesoblast disclosed that it had received a Complete Response Letter (CRL) from the FDA regarding its marketing application for remestemcel-L for treatment of SR-aGVHD in pediatric patients. According to the CRL, the FDA recommended that the Company conduct at least one additional randomized, controlled study in adults and/or children to provide further evidence of the effectiveness of remestemcel-L for SR-aGVHD. The CRL also identified a need for further scientific rationale to demonstrate the relationship of potency measurements to the products biologic activity.
On this news, the Companys share price fell $6.56, or 35%, to close at $12.03 per share on October 2, 2020.
The complaint, filed on October 8, 2020, alleges that throughout the Class Period defendants made materially false and/or misleading statements, as well as failed to disclose material adverse facts about the Companys business, operations, and prospects. Specifically, defendants failed to disclose to investors: (1) that comparative analyses between Mesoblasts Phase 3 trial and three historical studies did not support the effectiveness of remestemcel-L for steroid refractory aGVHD due to design differences between the four studies; (2) that, as a result, the FDA was reasonably likely to require further clinical studies; (3) that, as a result, the commercialization of remestemcel-L in the U.S. was likely to be delayed; and (4) that, as a result of the foregoing, defendants positive statements about the Companys business, operations, and prospects were materially misleading and/or lacked a reasonable basis.
If you purchased Mesoblast securities during the Class Period and suffered a loss, have information, would like to learn more about these claims, or have any questions concerning this announcement or your rights or interests with respect to these matters, please contact Brandon Walker, Melissa Fortunato, or Marion Passmore by email at investigations@bespc.com, telephone at (212) 355-4648, or by filling out this contact form. There is no cost or obligation to you.
About Bragar Eagel & Squire, P.C.:Bragar Eagel & Squire, P.C. is a nationally recognized law firm with offices in New York and California. The firm represents individual and institutional investors in commercial, securities, derivative, and other complex litigation in state and federal courts across the country. For more information about the firm, please visit http://www.bespc.com. Attorney advertising. Prior results do not guarantee similar outcomes.
Contact Information:Bragar Eagel & Squire, P.C.Brandon Walker, Esq.Melissa Fortunato, Esq.Marion Passmore, Esq.(212) 355-4648investigations@bespc.comwww.bespc.com
Read the original here:
MESOBLAST ALERT: Bragar Eagel & Squire, PC Announces That a Class Action Lawsuit Has Been Filed Against Mesoblast Limited and Encourages Investors...
Cytovia Therapeutics partners with Inserm to develop selective CD38 NK therapeutics and offer new treatment options for Multiple Myeloma patients |…
DetailsCategory: DNA RNA and CellsPublished on Thursday, 08 October 2020 15:15Hits: 536
NEW YORK, NY, USA and PARIS, France I October 08, 2020 I Cytovia Therapeutics ("Cytovia"), an emerging biopharmaceutical company, announces today that it has entered a research and licensing agreement with Inserm to develop NK engager bi-specific antibodies and iPSC CAR NK cell therapy targeting CD38, a key marker of multiple myeloma. The licensing agreement has been negotiated and signed by Inserm Transfert, the private subsidiary of Inserm, on behalf of Inserm (the French National Institute of Health and Medical Research) and its academic partners. Cytovia is licensing Inserm's CD38 antibody and Chimeric Antigen Receptor (CAR) patent and applying its proprietary NK engager bispecific antibody and iPSC CAR NK technology platforms. The research agreement will include evaluation of the therapeutic candidates at Hpital Saint-Louis Research Institute (Inserm Unit 976) under the leadership of Professors Armand Bensussan and Jean-Christophe Bories.
Dr Daniel Teper, Cytovia's Chairman and CEO commented: "We are delighted to partner with one of the top centers of excellence in the world for research and treatment in hematology. CD38 is a validated target and Natural Killer cells have significant cytotoxicity to Myeloma cells. We are looking forward to bringing promising new options to address the unmet needs of patients with Multiple Myeloma and aim for a cure."
Professor Armand Bensussan, Director of The Immuno-Oncology Research Institute at Hpital Saint-Louis added: "We have demonstrated the selectivity of our novel CD38 antibody in killing myeloma cells but not normal cells such as NK, T, and B cells. The activation of NK cells through NKp46 may enhance the efficacy of the bispecific antibody in patients not responsive to CD38 monoclonal antibody therapy. CD38 CAR NK is a promising approach forrelapsed/refractory patients and an alternative to CAR T therapies."
About Multiple MyelomaMultiple Myeloma is a currently incurable cancer, affecting a type of white blood cell known as plasma cells. It leads to an accumulation of tumor cells in the bone marrow, rapidly outnumbering healthy blood cells. Instead of producing beneficial antibodies, cancerous cells release abnormal proteins causing several complications. While symptoms are not always present, the majority of patients are diagnosed due to symptoms such as bone pain or fracture, low red blood cell counts, fatigue, high calcium levels, kidney problems, and infections. According to the World Cancer Research Fund, Multiple Myeloma is the second most common blood cancer, with nearly 160,000 new annual cases worldwide, including close to 50,000 in Europe. 32,000 in the US, and 30,000 in Eastern Asia. Over 95% of cases are diagnosed late, with a 5-year survival rate of 51%. Initial treatment comprises of a combination of different therapies, including biological and targeted therapies, corticosteroids, and chemotherapy, with the option for bone marrow transplants for eligible patients. Immunotherapy and cell therapy are the most promising new treatment option for Multiple Myeloma, with the potential for long term cancer remission.
About CAR NK cellsChimeric Antigen Receptors (CAR) are fusion proteins that combine an extracellular antigen recognition domain with an intracellular co-stimulatory signaling domain. Natural Killer (NK) cells are modified genetically to allow insertion of a CAR. CAR-NK cell therapy has demonstrated initial clinical relevance without the limitations of CAR-T, such as Cytokine Release Syndrome, neurotoxicity or Graft vs Host Disease (GVHD). Induced Pluripotent Stem Cells (iPSC) - derived CAR-NKs are naturally allogeneic, available off-the-shelf and may be able to be administered on an outpatient basis. Recent innovative developments with the iPSC, an innovative technology, allow large quantities of homogeneous genetically modified CAR NK cells to be produced from a master cell bank, and thus hold promise to expand access to cell therapy for many patients.
About CytoviaCytovia Therapeutics Inc is an emerging biotechnology company that aims to accelerate patient access to transformational immunotherapies, addressing several of the most challenging unmet medical needs in cancer and severe acute infectious diseases. Cytovia focuses on Natural Killer (NK) cell biology and is leveraging multiple advanced patented technologies, including an induced pluripotent stem cell (iPSC) platform for CAR (Chimeric Antigen Receptors) NK cell therapy, next-generation precision gene-editing to enhance targeting of NK cells, and NK engager multi-functional antibodies. Our initial product portfolio focuses on both hematological malignancies such as multiple myeloma and solid tumors including hepatocellular carcinoma and glioblastoma. The company partners with the University of California San Francisco (UCSF), the New York Stem Cell Foundation (NYSCF), the Hebrew University of Jerusalem, and CytoImmune Therapeutics. Learn more at http://www.cytoviatx.com
About InsermFounded in 1964, the French National Institute of Health and Medical Research (Inserm) is a public science and technology institute, jointly supervised by the French Ministry of National Education, Higher Education and Research, and the Ministry of Social Affairs, Health and Womens Rights. Inserm is the only French public research institute to focus entirely on human health and position itself on the pathway from the research laboratory to the patients bedside. The mission of its scientists is to study all diseases, from the most common to the rarest. With an initial 2020 budget of 927.28 million, Inserm supports nearly 350 laboratories throughout France, with a team of nearly 14,000 researchers, engineers, technicians, and post-doctoral students. http://www.inserm.fr
SOURCE: Cytovia Therapeutics
Knowledge is key: What you need to know about the most common childhood cancer in SA – News24
There are only a few specialised childhood cancer centres in Southern Africa.
Leukaemia and lymphoma are two of the most prevalent cancers in children in South Africa with between 800 and 1000 children diagnosed annually. Tragically, it is estimated that half of the children with cancer in this country are never diagnosed.
Dr Marion Morkel, Chief Medical Officer at Sanlam, believes that we all need to educate ourselves so we can recognise the symptoms of cancer.
Below, Dr Morkel explains what can be done in the fight against leukaemia and lymphoma.
Knowledge is key
You must be aware of the symptoms related to leukaemia and lymphoma so that you can notify your health professional should you see these symptoms in your child.
Leukaemia
Leukaemia is the most common childhood cancer accounting for 25% of all cases in South Africa.
Symptoms include:
Lymphoma
Lymphoma primarily originates from the lymph nodes and can often appear like any other illness that triggers an inflammatory response.
Symptoms to look out for include:
While other childhood illnesses can present in the same manner as leukaemia and lymphoma, health professionals have been trained to look out for symptoms that persist after routine treatment and will conduct tests to rule out the possibility of these childhood blood-related cancers.
Parents are encouraged to consult their doctor if there are any concerns about their childs health.
ALSO READ|Should I be worried if my child has pain in his tummy?
Register to become a blood stem cell (bone marrow) donor
The Sunflower Fund is a non-profit organisation that fights blood diseases through a blood stem cell transplant which replaces a persons defective stem cells with healthy ones and can be a potentially life-saving treatment for more than 70 different diseases.
Kim Webster, Head of Communications at The Sunflower Fund advises that finding a matching donor for a stem cell transplant is not as easy as finding a blood type match.
There is only a 1:100 000 chance of a patient finding their life-saving match with siblings only having a 25% chance of a match.
You can register to become a donor online via http://www.sunflowerfund.org.
Submitted to Parent24 by Atmosphere
Chatback:
Share your stories and questions with us via email atchatback@parent24.com. Anonymous contributions are welcome.
Don't miss a story!
For a weekly wrap of our latest parenting news and advice sign up to our free FridayParent24 newsletter.
Follow us, and chat, onFacebookandTwitter.
Read more:
Knowledge is key: What you need to know about the most common childhood cancer in SA - News24
Bone Therapeutics, Link Health and Pregene to develop and commercialize the ALLOB allogeneic bone cell therapy platform in China and Southeast Asia -…
Gosselies, Belgium, 5 October 2020, 7am CEST BONE THERAPEUTICS(Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, Link Health Pharma Co., Ltd (Link Health) and Shenzhen Pregene Biopharma Company, Ltd (Pregene) today announce the signing of an exclusive license agreement for the manufacturing, clinical development and commercialization of Bone Therapeutics allogeneic, off-the-shelf, bone cell therapy platform ALLOB in China (including Hong Kong and Macau), Taiwan, Singapore, South Korea, and Thailand.
Under the agreement, Bone Therapeutics is eligible to receive up to 55 million in development, regulatory and commercial milestone payments including 10 million in upfront and milestone payments anticipated in the next 24 months. Bone Therapeutics is also entitled to receive tiered double-digit royalties on annual net sales of ALLOB. Bone Therapeutics retains development and commercialization rights to ALLOB in all other geographies outside of those covered by this agreement. As a result, Bone Therapeutics will continue to concentrate on its development and commercialization plans for ALLOB in the US and Europe and novel innovative cell-based products globally.
This collaboration between Bone Therapeutics, Link Health and Pregene expands our geographic reach and demonstrates the global commercial potential of ALLOB,said Miguel Forte, MD, PhD, Chief Executive Officer of Bone Therapeutics. We already have operational experience in Asia with the Phase III clinical trial of our lead product JTA-004 in Hong Kong. We selected Link Health and Pregene to partner with us in Asia as a result of their expertise in advanced therapeutics and cell therapies, their proven track record of development and commercial implementation in Chinese and Asian markets, and Pregenes well established cell therapy manufacturing capacity. Bone Therapeutics will continue to develop the ALLOB cell therapy platform for other markets while exploring additional partnership opportunities in the U.S. and Europe.
The agreement grants Link Health and Pregene exclusive rights to clinically develop and commercialize ALLOB for the treatment of human bone disorders in Greater China, Taiwan, Singapore, South Korea, and Thailand. All rights for China will be transferred to Pregene and Link Health will gain rights for the remaining countries Bone Therapeutics will share its patented proprietary manufacturing expertise for the expansion and differentiation of bone-forming cells and has the option to sell clinical supplies to Link Health and Pregene in preparation for their clinical development of ALLOB.
This collaboration and license agreement for Bone Therapeutics ALLOB provides a strong addition to our pipeline. ALLOB has demonstrated the potential to reduce the recovery time and stimulate bone growth for a variety of bone conditions, and to have a considerable impact on patients lives,said Yan Song, PhD, Chief Executive Officer of Link Health. It is important for Link Health to collaborate with companies that have strong therapeutic product portfolios and entrepreneurial management. This partnership with Bone Therapeutics is a direct result of our shared commitment to appreciate the enormous potential of cell therapy and regenerative medicine.
Pregene now has a flourishing portfolio of CAR-T cell therapy-based cancer treatments. Bone Therapeutics ALLOB provides anallogeneic, off-the-shelf cell therapy that expands our portfolio of cell therapies to include the sizable commercial potential of orthopedics,said Hongjian Li, Co-founder and Chief Executive Officer of Pregene. We expect to be able to leverage our extensive international cell and gene therapy experience to develop Bone Therapeutics ALLOB platform and subsequently launch products in China and Southeast Asian markets.
ALLOB, an allogeneic and off-the-shelf cell therapy product manufactured through a proprietary, scalable production process, consists of human bone-forming cells derived from cultured bone marrow mesenchymal stem cells of healthy adult donors. In preclinical studies ALLOB has shown to reduce healing time in a delayed-union fracture model by half, and has demonstrated good tolerability and signs of efficacy in two Phase IIa studies for two separate indications. The Companys randomized, placebo-controlled, double-blind Phase IIb clinical trial in patients with difficult tibial fractures has received approval from regulatory authorities in six of the seven planned European countries to date, and is expected to enroll the first patient later this year.
About Link Health Pharma Co., Ltd
Link Health is a leading Chinese pharmaceutical company based in Guangzhou, Southern China, focusing on the development of innovative drugs for unmet medical needs.
Link Health has created a highly professional team with diverse expertise in drug development, medical affairs and regulatory affairs. Leveraging deep understanding of China market, regulatory environment and strong network with global biopharmaceutical companies, Link Health is well positioned to bring innovative drugs to the market efficiently. The company has a drug development pipeline of 5 clinical stage assets and 1 under NDA reviewing in China.
The company has also established a fully owned subsidiary in Amsterdam, the Netherlands. The Dutch office builds and further strengthen collaborations with global pharma/biotech partners and research institutes.
About Pregene Biopharma Co., Ltd
Shenzhen Pregene Biopharma Co. Ltd is a leading enterprise in the cell and gene therapy field with the core technology for industrialization. The companys core team comes from well-known institutions and companies including the Academy of Military Medical Sciences, the University of Toronto, and the US FDA.
Pregene has established the gene editing platform, viral vector and cell production platform, nanobody selection platform and other small to pilot trial manufacturing system, with total investment over 100 million CNY. It has the laboratories and GMP plants for cell and gene therapy of over 10,000 square meter.
The company focuses on the research and development of cell and gene therapy drugs, and participated in the drafting the national standard Considerations for CAR-T Cell Quality Study and Non-clinical Evaluation issued by the National Institutes for Food and Drug Control in June 2018. The CAR-T cell therapy for the treatment of multiple myeloma have obtained NMPA IND clearance as the Class I new drug, which is the first in China and fastest in the world using the humanized single domain antibody in CAR construct, and phase I clinical trials are now in progress. Other pipelines such as CAR-T, TCR-T and mRNA drugs for tumors, autoimmune diseases and other indications are in the development at different stages. The company has broad development prospects with the abundant backup technologies.
Looking forward to the future, the company will build the core capacity in one-stop solution for cell and gene therapy drugs, and fulfill the Express of innovative medicine development from drug discovery to clinical products.
About Bone Therapeutics
Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a, diversified portfolio of cell and biologic therapies at different stages ranging from pre-clinical programs in immunomodulation to mid-to-late stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.
Bone Therapeutics is developing an off-the-shelf next-generation improved viscosupplement, JTA-004, which is currently in phase III development for the treatment of pain in knee osteoarthritis. Consisting of a unique combination of plasma proteins, hyaluronic acid a natural component of knee synovial fluid, and a fast-acting analgesic, JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain and inflammation. Positive phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement.
Bone Therapeutics core technology is based on its cutting-edge allogeneic cell therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company is ready to start the phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.
Bone Therapeutics cell therapy products are manufactured to the highest GMP standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available atwww.bonetherapeutics.com.
For further information, please contact:
Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com
For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be
International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency
For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu
For US Media and Investor Enquiries:LHA Investor RelationsYvonne BriggsTel: +1 310 691 7100ybriggs@lhai.com
Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.
Hemogenyx Pharmaceuticals PLC Announces SAFE-HEMO-CAR-T Effective against AML in vitro – BioSpace
LONDON, UK / ACCESSWIRE / October 6, 2020 / Hemogenyx Pharmaceuticals plc (LSE:HEMO), the biopharmaceutical group developing new therapies and treatments for blood diseases, is pleased to announce the following update on its activities.
As previously announced, Hemogenyx Pharmaceuticals' CDX bi-specific antibody has the potential to treat Acute Myeloid Leukemia ("AML") directly as well as to provide a benign conditioning regimen for blood stem cell replacement therapy. The Company has now carried out extensive work developing treatments for AML and has to date obtained encouraging results.
As announced on 20 February 2020, the Company has constructed and successfully tested in vivo Chimeric Antigen Receptor ("CAR") programmed T cells ("HEMO-CAR-T") for the potential treatment of AML. HEMO-CAR was constructed using the Company's proprietary humanized monoclonal antibody against a target on the surface of AML cells.
It was also announced that the Company was engaging in additional engineering of HEMO-CAR-T cells to increase their safety and versatility. The Company has now introduced and successfully in vitro tested a safety switch within the HEMO-CAR. The aim of this safety switch is to modulate the activity of HEMO-CAR-T cells and to turn them into a "controllable drug" - SAFE-HEMO-CAR-T. The purpose of these efforts is to dramatically improve the safety and potential versatility of HEMO-CAR-T cells for the treatment of AML and/or conditioning of bone marrow transplants, as well as a number of additional potential indications.
Following the successful completion of these in vitro tests, in vivo tests of the efficacy of SAFE-HEMO-CAR-T against AML are being conducted using a model of AML established on the background of Advanced peripheral blood Hematopoietic Chimera (ApbHC) - humanized mice developed by Immugenyx, LLC, a subsidiary of Hemogenyx Pharmaceuticals. If these in vivo tests are successful, the Company will discuss its findings with its partners under the Sponsored Research Agreement with the University of Pennsylvania, announced on 11 August 2020, with a view to considering the inclusion of SAFE-HEMO-CAR-T in the program of pre-clinical trials currently underway there.
Dr Vladislav Sandler, Chief Executive Officer, commented, "We are encouraged by this new data which demonstrates our continuing progress in the development of novel treatments for blood cancers such as AML. The development of SAFE-HEMO-CAR-T further expands the Company's pipeline and advances it into a cutting-edge area of cell-based immune therapy. We are excited to have developed another unique product candidate that should, if successful, provide a new and potentially effective treatment for blood cancers for which survival rates are currently very poor."
About AML and CAR-T
AML, the most common type of acute leukemia in adults, has poor survival rates (a five-year survival rate of less than 25% in adults) and is currently treated using chemotherapy, rather than the potentially more benign and effective form of therapy being developed by Hemogenyx Pharmaceuticals. The successful development of the new therapy for AML would have a major impact on treatment and survival rates for the disease.
CAR-T therapy is a treatment in which a patient's own T cells, a type of immune cell, are modified to recognize and kill the patient's cancer cells. The procedure involves: isolating T cells from the patient, modifying the isolated T cells in a laboratory using a CAR gene construct (which allows the cells to recognize the patient's cancer); amplifying (growing to large numbers) the newly modified cells; and re-introducing the cells back into the patient.
Market Abuse Regulation (MAR) Disclosure
Certain information contained in this announcement would have been deemed inside information for the purposes of Article 7 of Regulation (EU) No 596/2014 until the release of this announcement.
Enquiries:
Hemogenyx Pharmaceuticals plc
Dr Vladislav Sandler, Chief Executive Officer & Co-Founder
Peter Redmond, Director
SP Angel Corporate Finance LLP
Tel: +44 (0)20 3470 0470
Matthew Johnson, Vadim Alexandre, Soltan Tagiev
Peterhouse Capital Limited
Tel: +44 (0)20 7469 0930
Lucy Williams, Duncan Vasey, Charles Goodfellow
About Hemogenyx Pharmaceuticals plc
Hemogenyx Pharmaceuticals is a publicly traded company (LSE: HEMO) headquartered in London, with its US operating subsidiaries, Hemogenyx LLC and Immugenyx LLC, located in New York City at its state-of-the-art research facility.
The Company is a pre-clinical stage biopharmaceutical group developing new medicines and treatments to treat blood and autoimmune disease and to bring the curative power of bone marrow transplantation to a greater number of patients suffering from otherwise incurable life-threatening diseases. Hemogenyx Pharmaceuticals is developing several distinct and complementary product candidates, as well as a platform technology that it uses as an engine for novel product development.
For more than 50 years, bone marrow transplantation has been used to save the lives of patients suffering from blood diseases. The risks of toxicity and death that are associated with bone marrow transplantation, however, have meant that the procedure is restricted to use only as a last resort. The Company's technology has the potential to enable many more patients suffering from devastating blood diseases such as leukemia and lymphoma, as well as severe autoimmune diseases such as multiple sclerosis, aplastic anemia and systemic lupus erythematosus (Lupus), to benefit from bone marrow transplantation.
This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact rns@lseg.com or visit http://www.rns.com.
SOURCE: Hemogenyx Pharmaceuticals PLC
View source version on accesswire.com:https://www.accesswire.com/609275/Hemogenyx-Pharmaceuticals-PLC-Announces-SAFE-HEMO-CAR-T-Effective-against-AML-in-vitro
See more here:
Hemogenyx Pharmaceuticals PLC Announces SAFE-HEMO-CAR-T Effective against AML in vitro - BioSpace
Hematopoietic Stem Cell Transplantation (HSCT) Market to eyewitness massive growth by 2026 | Escape Therapeutics Inc., Cryo-Save AG, Regen Biopharma…
Hematopoietic Stem Cell Transplantation (HSCT) Market Scenario 2020-2026:
The Global Hematopoietic Stem Cell Transplantation (HSCT) market exhibits comprehensive information that is a valuable source of insightful data for business strategists during the decade 2014-2026. On the basis of historical data, Hematopoietic Stem Cell Transplantation (HSCT) market report provides key segments and their sub-segments, revenue and demand & supply data. Considering technological breakthroughs of the market Hematopoietic Stem Cell Transplantation (HSCT) industry is likely to appear as a commendable platform for emerging Hematopoietic Stem Cell Transplantation (HSCT) market investors.
This Hematopoietic Stem Cell Transplantation (HSCT) Market Report covers the manufacturers data, including shipment, price, revenue, gross profit, interview record, business distribution, etc., these data help the consumer know about the competitors better.
Get Sample Report: https://grandviewreport.com/sample/63228
The complete value chain and downstream and upstream essentials are scrutinized in this report. Essential trends like globalization, growth progress boost fragmentation regulation & ecological concerns. This Market report covers technical data, manufacturing plants analysis, and raw material sources analysis of Hematopoietic Stem Cell Transplantation (HSCT) Industry as well as explains which product has the highest penetration, their profit margins, and R&D status. The report makes future projections based on the analysis of the subdivision of the market which includes the global market size by product category, end-user application, and various regions.
Topmost Leading Manufacturer Covered in this report:Escape Therapeutics Inc., Cryo-Save AG, Regen Biopharma Inc., CBR Systems Inc., ViaCord Inc., Lonza Group Ltd., Pluristem Therapeutics Inc., China Cord Blood Corp.
Product Segment Analysis: Allogeneic, Autologous
Application Segment Analysis:Peripheral Blood Stem Cells Transplant (PBSCT), Bone Marrow Transplant (BMT), Cord Blood Transplant (CBT)
Get Discount @ https://grandviewreport.com/discount/63228
Regional Analysis For Hematopoietic Stem Cell Transplantation (HSCT)Market
North America(the United States, Canada, and Mexico)Europe(Germany, France, UK, Russia, and Italy)Asia-Pacific(China, Japan, Korea, India, and Southeast Asia)South America(Brazil, Argentina, Colombia, etc.)The Middle East and Africa(Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)
Market Synopsis:The market research report consists of extensive primary research, as well as an in-depth analysis of the qualitative and quantitative aspects by various industry specialists and professionals, to gain a deeper insight into the market and the overall landscape.
The objectives of the report are:
To analyze and forecast the market size of Hematopoietic Stem Cell Transplantation (HSCT)Industry in theglobal market. To study the global key players, SWOT analysis, value and global market share for leading players. To determine, explain and forecast the market by type, end use, and region. To analyze the market potential and advantage, opportunity and challenge, restraints and risks of global key regions. To find out significant trends and factors driving or restraining the market growth. To analyze the opportunities in the market for stakeholders by identifying the high growth segments. To critically analyze each submarket in terms of individual growth trend and their contribution to the market. To understand competitive developments such as agreements, expansions, new product launches, and possessions in the market. To strategically outline the key players and comprehensively analyze their growth strategies.
View Full Report @ https://grandviewreport.com/industry-growth/Hematopoietic-Stem-Cell-Transplantation-(HSCT)-Market-63228
At last, the study gives out details about the major challenges that are going to impact market growth. They also report provides comprehensive details about the business opportunities to key stakeholders to grow their business and raise revenues in the precise verticals. The report will aid the companys existing or intend to join in this market to analyze the various aspects of this domain before investing or expanding their business in the Hematopoietic Stem Cell Transplantation (HSCT) markets.
Contact Us:Grand View Report(UK) +44-208-133-9198(APAC) +91-73789-80300Email : [emailprotected]
Stem Cell Therapy Market Growth Factors, Rising Trends and Outlook 2020 to 2027 – X Herald
The market research report on the Stem Cell Therapy Market provides a comprehensive analysis of the market dynamics, including development trends, application, types, competitive environment, value chain optimization, and region. Besides this, the report also provides key statistics on the Stem Cell Therapy Market status of the leading market players, key trends, and potential growth opportunities in the market.
The Stem Cell Therapy Market was valued at USD 117.66 Million in 2019 and is projected to reach USD 255.37 Million by 2027, growing at aCAGR of 10.97% from 2020 to 2027.
These study reports are designed with the goal to help the reader in favorable retrieve information and make decisions that are helpful to grow their business. Further, it also provides an examination of the economic synopsis, along with the benefits, drivers, restraints, production, supply, demand, and the level of market growth.
Get a Sample Copy of the Stem Cell Therapy Market Report with Latest Industry Trends @ https://www.verifiedmarketresearch.com/download-sample/?rid=24113
The varying landscape for the overall Stem Cell Therapy industry is offered in the report providing a comprehensive pattern of the Stem Cell Therapy industry and its rapidly changing market landscape. The details mentioned in the report can assist the players in formulating strategies and approaches to gain a robust footing in the industry. Profitable insights and analytical data have been covered in the report to offer insight into global expansion strategies. Each key manufacturer and producer have been thoroughly assessed in the report.
The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:
The market report sheds light on the latest strategic developments and growth patterns of the market players to provide a clear view. The report is an investigative study that provides insights for the players to formulate their business expansion strategies and expand their footing in the market.
1.Stem Cell Therapy Market, By Cell Source:
Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources
2.Stem Cell Therapy Market, By Therapeutic Application:
Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications
3.Stem Cell Therapy Market, By Type:
Allogeneic Stem Cell Therapy Market, By Application Musculoskeletal Disorders Wounds and Injuries Surgeries Acute Graft-Versus-Host Disease (AGVHD) Other Applications Autologous Stem Cell Therapy Market, By Application Cardiovascular Diseases Wounds and Injuries Gastrointestinal Diseases Other Applications
To get Incredible Discounts on this Premium Report, Click Here @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113
Table of Content:
Market Overview: This is the first section of the report that includes an overview of the scope of products offered in the Stem Cell Therapy market, segments by product and application, and market size.
Market Competition by Player: Here, the report shows how the competition in the Stem Cell Therapy market is growing or decreasing based on deep analysis of market concentrate rate, competitive situations and trends, expansions, merger and acquisition deals, and other subjects. It also shows how different companies are progressing in the Stem Cell Therapy market in terms of revenue, production, sales, and market share.
Company Profiles and Sales Data: This part of the report is very important as it gives statistical as well as other types of analysis of leading manufacturers in the Stem Cell Therapy market. It assesses each and every player studied in the report on the basis of main business, gross margin, revenue, sales, price, competitors, manufacturing base, product specification, product application, and product category.
Market Status and Outlook by Region: The report studies the status and outlook of different regional markets such as Europe, North America, the MEA, Asia Pacific, and South America. All of the regional markets researched about in the report are examined based on price, gross margin, revenue, production, and sales. Here, the size and CAGR of the regional markets are also provided.
Market by Product: This section carefully analyzes all product segments of the Stem Cell Therapy market.
Market by Application: Here, various application segments of the Stem Cell Therapy market are taken into account for research study.
Market Forecast: It starts with revenue forecast and then continues with sales, sales growth rate, and revenue growth rate forecasts of the Stem Cell Therapy market. The forecasts are also provided taking into consideration product, application, and regional segments of the Stem Cell Therapy market.
Upstream Raw Materials: This section includes industrial chain analysis, manufacturing cost structure analysis, and key raw materials analysis of the Stem Cell Therapy market.
Marketing Strategy Analysis, Distributors: Here, the research study digs deep into behavior and other factors of downstream customers, distributors, development trends of marketing channels, and marketing channels such as indirect marketing and direct marketing.
Research Findings and Conclusion: This section is solely dedicated to the conclusion and findings of the research study on the Stem Cell Therapy market.
Appendix: This is the last section of the report that focuses on data sources, viz. primary and secondary sources, market breakdown and data triangulation, market size estimation, research programs and design, research approach and methodology, and the publishers disclaimer.
Have Any Query? Ask Our Expert @ https://www.verifiedmarketresearch.com/need-customization/?rid=24113
About us:
Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.
Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.
Contact us:
Mr. Edwyne Fernandes
US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768
Email: sales@verifiedmarketresearch.com
Read this article:
Stem Cell Therapy Market Growth Factors, Rising Trends and Outlook 2020 to 2027 - X Herald
AVROBIO and University of Manchester Enter Agreement for MPS II Research – BioSpace
Massachusetts-based AVROBIO announced today that it has entered an exclusive global license agreement, as well as a collaborative research funding agreement, with The University of Manchester. Together, the university and AVROBIO will look into an investigational lentiviral gene therapy for mucopolysaccharidosis type II (MPS II), or Hunter syndrome.
The condition, which impacts an estimated one in 100,000 males worldwide, causes complications throughout the body and brain. Children with severe cases typically show symptoms beginning in their toddler years. At the moment, the standard of care is weekly enzyme replacement therapy, but it does not halt progression of the disease or address cognitive issues that may arise.
We believe a lentiviral gene therapy approach is well suited to treat a progressive and pervasive disease such as Hunter syndrome, which affects organs throughout the body and severely impairs cognitive function. If we treat children early, before their symptoms arise, we hope to prevent the tragic complications that rob these young children of their futures, said Geoff MacKay, AVROBIOs president and CEO. We believe our deep experience with investigational gene therapies for lysosomal disorders will enable us to efficiently move the program through clinical development in collaboration with Prof. Brian Bigger, who has done tremendous work to develop and optimize this investigational gene therapy. Were proud to add this program to our leading lysosomal disorder pipeline and excited about its potential to change the lives of patients and families living with Hunter syndrome.
The investigational gene therapy, titled AVR-RD-05, includes ex vivo transduction of the patients own hematopoietic stem cells with a therapeutic transgene. The transgene is meant to express functional enzymes that the patient needs to maintain cellular health. When reinfused back into the patient, the modified stem cells are designed to engraft in the bone marrow and produce generations of daughter cells, each carrying the transgene.
This is just one company looking toward making an impact in the MPS II realm as of late. REGENXBIO announced at the end of September that it was expanding its RGX-121 program, looking into the treatment of MPS II. RGX-121 is an investigational one-time gene therapy that uses the AAV9 vector to deliver the gene that encodes the iduronate-2-sulfatase (I2S) enzyme directly to the central nervous system.
An ongoing Phase I/II study is evaluating a single intracisternal administration of RGX-121 in severe instances of MPS II in patients under the age of five. As of Sept. 16, RGX-121 was reported to be well-tolerated in patients and there were no drug-related serious adverse events.
"MPS II is a serious and debilitating lysosomal disease that affects 1 in 100,000 children, and available treatments are inadequate to treat the neurodegenerative manifestations of the disease, said Terri Klein, President and Chief Executive Officer of the National MPS Society. Initiating a natural history study will increase the understanding of neurocognitive effects and key biomarkers of severe MPS II, and is critical to advancing the development of new treatment options. We are grateful for REGENXBIO's dedication to MPS and commitment to share the learnings from this observational study with the community.
REGENXBIO has also announced that the U.S. Food and Drug Administration cleared an Investigational New Drug application. The company plans on initiating a second Phase I/II multicenter, open-label trial of RGX-121 for the treatment of pediatric patients with severe MPS II between the ages of five and 18.
See the original post here:
AVROBIO and University of Manchester Enter Agreement for MPS II Research - BioSpace
A Uniquely Patient-Focused Take on Treating AML in Older Adults – Medscape
A diagnosis of acute myeloid leukemia (AML) is particularly challenging in older adults, whose age makes them highly susceptible to the disease and treatment-related toxicity. To help patients and practitioners navigate the clinical decision-making process, the American Society of Hematology (ASH) convened an panel of experts who conducted a thorough review of the literature. The result of their work can be found in a new set of guidelines for the treatment of newly diagnosed AML in older adults.
Dr Mikkael Sekeres
Medscape spoke with Mikkael Sekeres, MD, chair of the ASH AML guideline panel and director of the Leukemia Program at Cleveland Clinic Taussig Cancer Institute. Sekeres shared the rationale behind the panel's key recommendations and the importance of keeping the patient's goals in mind.
Medscape: What is the average life expectancy of a 75-year-old developing AML compared with someone of the same age without AML?
Dr Sekeres: A 75-year-old developing AML has an average life expectancy measured in fewer than 6 months. Somebody who is 75 without leukemia in the United States has a life expectancy that can be measured in a decade or more. AML is a really serious diagnosis when someone is older and significantly truncates expected survival.
What is the median age at AML diagnosis in the United States?
About 67 years.
What are the biological underpinnings for poor outcomes in older AML patients?
There are a few of them. Older adults with AML tend to have a leukemia that has evolved from a known or unknown previous bone marrow condition such as myelodysplastic syndrome. Older adults also have worse genetics driving their leukemia, which makes the leukemia cells more resistant to chemotherapy. And the leukemia cells may even have drug efflux pumps that extrude chemotherapy that tries to enter the cell. Finally, older adults are more likely to have comorbidities that make their ability to tolerate chemotherapy much lower than for younger adults.
In someone who is newly diagnosed with AML, what initial options are they routinely given?
For someone who is older, we divide those options into three main categories.
The first is to take intensive chemotherapy, which requires a 4-6 week hospitalization and has a chance of getting somebody who is older into a remission of approximately 50% to 60%. But this also carries with it significant treatment-related mortality that may be as high as 10% to 20%. So, I have to look my older patients in the eyes when I talk about intensive chemotherapy and say, "There is a 1 in 10 or 1 in 5 chance that you might not make it out of the hospital alive."
The second prong is lower-dose therapy. While the more-intensive therapy requiring hospitalization does have a low, but real, chance of curing that person, less-intensive therapy is not curative. Our best hope with less-intensive therapy is that our patients enter a remission and live longer. With less-intensive therapy, the chance that someone will go into remission is probably around 20%, but again it is not curative. The flip side to that is that it improves a person's immediate quality of life, because they're not in the hospital for 4 to 6 weeks.
The final prong is to discuss palliative care or hospice upfront. We designed these guidelines to be focused on a patient's goals of therapy and to constantly revisit those goals to make sure that the treatment options we are offering are aligning with them.
The panel's first recommendation is to offer antileukemic therapy over best supportive care in patients who are appropriate candidates. Can you provide some context for this recommendation?
Doesn't that strike you as funny that we even have to make a recommendation about getting chemotherapy? Some database studies conducted over the past two decades show that, as recently as 15 years ago, only one third of patients who were over the age of 65 received any type of chemotherapy for AML. More recently, as we have had a few more drugs available that allow us to use lower-dose approaches, that number has crept up to probably about 50%. We still have half the patients offered no therapy at all. So, we felt that we had to deliberately make a recommendation saying that, if it aligns with a patient's goals, he or she should be offered chemotherapy.
The second recommendation is that patients considered candidates for intensive antileukemic therapy should receive it over less-intensive antileukemic therapy. How did you get to that recommendation?
There is a debate in our field about whether older adults should be offered intensive inpatient chemotherapy at all or whether we should be treating all of them with less-intensive therapy. There are not a huge amount of high-quality studies out there to answer some of these questions, in particular whether intensive chemotherapy should be recommended over less-intensive therapy. But with the available evidence, what we believe is that patients live longer if they are offered intensive antileukemic chemotherapy. So, again, if it aligns with a patient's goals, we support that patient receiving more-intensive therapy in the hospital.
What does the panel recommend for patients who achieve remission after at least a single cycle of intensive antileukemic therapy and who are not candidates for allogeneic hematopoietic stem cell transplantation?
Once again, this may seem at first blush to be an obvious recommendation. The standard treatment of someone who is younger with AML is to offer intensive inpatient chemotherapy to induce remission. This is followed by a few cycles of chemotherapy, mostly in an outpatient setting, to consolidate that remission.
What is the underlying philosophy for this approach?
Every time we give chemotherapy, we probably get about a 3 to 4 log kill of leukemia cells. Imagine when a person first presents with AML, they may have 10 billion leukemia cells in his or her body. We are reducing that 3 to 4 log with the first course of chemotherapy.
When we then look at a bone marrow biopsy, it may appear to be normal. When leukemia is at a lower level in the body, we simply can't see it using standard techniques. But that doesn't mean the leukemia is gone. For younger patients, we give another cycle of chemotherapy, then another, then another, and then even another to reduce the number of leukemia cells left over in the body until that person has a durable remission and hopefully cure.
For someone who is older, the data are less clear. While some studies have shown that if you give too much chemotherapy after the initial course, it doesn't help that much, there is a paucity of studies that show that any chemotherapy at all after the first induction course is helpful. Consequently, we have to use indirect data. Older people who are long-term survivors from their acute leukemia always seem to have gotten more than one course of chemotherapy. In other words, the initial course of chemotherapy that a patient receives in the hospital isn't enough. They should receive more than that.
What about older adults with AML considered appropriate for antileukemic therapy but not for intensive antileukemic therapy?
This again gets to the question of what are a patient's goals. It takes a very involved conversation with a person at the time of their AML diagnosis to determine whether he or she would want to pursue an aggressive approach or a less-aggressive approach. If a person wants a less-aggressive approach, and wants nothing to do with a hospital stay, then he or she is also prioritizing initial quality of life. In this recommendation, based on existing studies, we didn't have a preference for which of the available less-aggressive chemotherapies a person selects.
There's also debate about what to do in those considered appropriate for antileukemic therapy, such as hypomethylating agents (azacitidine and decitabine) or low-dose cytarabine, but not for intensive antileukemic therapy. What did the available evidence seem to indicate about this issue?
There have been a lot of studies trying to add two drugs together to see if those do better than one drug alone in patients who are older and who choose less-intensive therapy. The majority of those studies have shown no advantage to getting two drugs over one drug.
Our recommendation is that in these situations a patient gets one drug, not two, but there are a couple of caveats. One caveat is that there has been a small study showing the effectiveness of one of those low-dose chemotherapies combined with the drug glasdegib. The second caveat is that there have been results presented combining one of these low-dose chemotherapies with the drug venetoclax. One of those was a negative study, and another was a positive study showing a survival advantage to the combination vs the low-dose therapy alone. We had to couch our recommendation a little bit because we knew this other study had been presented at a conference, but it hadn't come out in final form yet. It did recently, however, and we will now revisit this recommendation.
The other complicated aspect to this is that we weren't 100% convinced that the combination of venetoclax with one of these lower-dose therapies is truly less-intensive therapy. We think it is starting to creep up toward more-intensive chemotherapy, even though it is commonly given to patients in the outpatient setting. It gets into the very complicated area of what are we defining as more-intensive therapy and less-intensive therapy.
Is there a recommended strategy for older adults with AML who achieve a response after receiving less-intensive therapy?
This is also challenging because there are no randomized studies in which patients received less-intensive therapy for a finite period of time vs receiving those therapies ad infinitum. Given the lack of data and also given a lot of anecdotal data out there about patients who stopped a certain therapy and relapsed thereafter, we recommended that patients continue the less-intensive therapy ad infinitum. So as long as they are receiving a response to that therapy, they continue on the drug.
Of course, there are also unique considerations faced by older patients who are no longer receiving antileukemic therapy, and have moved on to receiving end-of-life care or hospice care. What advice do the guidelines offer in this situation?
There are a lot of aspects of these recommendations that I think are special. The first is the focus on patient goals of care at every point in these guidelines. The second is that the guidelines follow the real disease course and a real conversation that doctors and patients have at every step of the way to help guide the decisions that have to be made in real time.
A problem we have in the United States is that once patients enter a hospice, most will not allow blood transfusions. One reason is that some say it is antithetical to their philosophy and consider it aggressive care. The second reason is that, to be completely blunt, economically it doesn't make sense for hospices to allow blood transfusions. The amount that they are reimbursed by Medicare is much lower than the cost of receiving blood in an infusion center.
We wanted to make a clear recommendation that we consider transfusions in a patient who is in a palliative care or hospice mode to be supportive and necessary, and that these should be provided to patients even if they are in hospice, and as always if consistent with a patient's goals of care.
How does a patient's age inform the discussion surrounding what intensity treatment to offer?
With younger adults, this is not as complicated a conversation. A younger person has a better chance of being cured with intensive chemotherapy and is much more likely to tolerate that intensive chemotherapy. For someone who is younger, we offer intensive chemotherapy and the chance of going into remission is higher, at 70% to 80%. The chance of dying is lower, usually less than 5%. It is an easy decision to make.
For an older adult, the riskbenefit ratio shifts and it becomes a more complicated option. Less-intensive therapy or best supportive care or hospice become viable.
Are there other factors confounding the treatment decision-making process in older adults with AML that practitioners should consider?
Someone who is older is making a different decision than I would. I have school-aged children and believe that my job as a parent is to successfully get them to adulthood, so I would take any treatment under the sun to make sure that happens. People who have lived a longer life than I have may have children and even grandchildren who are adults, and they might have different goals of care. My goals are not going to be the same as my patient's goals.
It is also harder because someone who is older may feel that he or she has lived a good life and doesn't need to go through heroic measures to try to be around as long as possible, and those goals may not align with the goals of that person's children who want their parent to be around as long as possible. One of the confounding factors in this is navigating the different goals of the different family members.
Dr Sekeres has disclosed no relevant financial relationships.
Kate O'Rourke is a freelance writer in Portland, Maine. She has covered the field of oncology for over 10 years.
For more news, follow Medscape on Facebook, Twitter, Instagram, andYouTube.
Continued here:
A Uniquely Patient-Focused Take on Treating AML in Older Adults - Medscape