Page 40«..1020..39404142..5060..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Oliver and Elizabeth Hedgepeth column: Human donations are a gift of life – Richmond.com

By Oliver and Elizabeth Hedgepeth

There are special suppliers of life in our great country, from North Carolina to Virginia to Alaska. They are those hospitals that collect the basic raw material for giving life. They work with a network of donor service organizations across the United States. In Virginia, it is Donate Life Virginia. In North Carolina, it is Carolina Donor Services. In Alaska, it is Life Alaska Donor Services.

The raw material that comprises those supply items are you, me, anyone from 3 months old to 75 years old, so far in our experience. Yes, a 3-month-old can die of many causes some accidents, others an incurable disease. But, that 3 month-old can give life and sight and other helpful body parts to others, as can that 75-year-old. The final person to receive such a gift is you, your wife, child, husband, mother, father, a teacher, a prisoner in jail anyone and everyone.

There are more than 50 different parts of a persons body that can be donated to help others live a better life. Those supply items are organs, corneas, tissues, hands and face, blood stem cells, cord blood, bone marrow, blood and platelets. The number of people given this gift of life exceeded 113,000 in 2019.

Real-life experience: We recently attended a Donor Family Tribute in Greenville, N.C. The sponsor of this event was Carolina Donor Services. The building was huge and looked like a country club. We were not sure if we were at the right place, and we even questioned why we should spend our Sunday afternoon there.

This nice-looking building clearly was a place to hold a special event. When we reached the register desk, we discovered our name was not on the list. We debated for three months after the invitation arrived whether we wanted to be around a group of people who lost their loved ones.

There was a meeting and dining area, much as you would expect at a professional conference. There was nice, light music playing in the background, the walls were black and there were quilts hanging all over the front of the room. The quilts had small 12-inch squares on them. It was obvious that the quilt was a remembrance of the ones who had died.

We sat at a table that had many place settings and chairs. We sat quietly for about 30 minutes, as around 200 people entered the room and took their seats. When the room filled, the talking was in whispers, as if we were in church waiting for a service to begin. We thought about quietly getting up and leaving. We did not fit in here.

The 200 people were a mix of races, ages and abilities. A spokesperson on stage invited all the guests to join the buffet line. We all did, and the group ate for about 30 minutes, again like a church social. Then it began.

The speaker asked if anyone would like to tell about a loved one who donated to help others live. Slowly, people many of whom had never spoken in front of a group walked to the microphone. One woman, smiling and happy with tears of joy running down her face, spoke about finding her 15-year-old son in his room at home, hanged. She described how it took three days for him to die of his suicide.

Then, she happily said his hand was being used by another young boy who had lost his in an accident and how her sons eyes would make another person see for the first time in years.

Another person shared the story of how a 3-month-olds death from an incurable disease helped other life-threatened babies live. The sharing of stories went on for about three hours.

When we gathered to leave, we and those 200 people were all the same. We were friends, like long-lost relatives. There was no age or race or illness separating us. We all treated each other as the same.

People are waiting: When someone you love dies, grief memoirs seem the same. Being around those who also have lost someone and are grieving seems to be a logical connection. The topic of conversation is similar and shared. But the loss is still there for the person so loved. Something changed with this donor tribute.

The 200 or so people with their common loss encountered a gain. Many of them know the person who has received a new hand, or can see, or can talk for the first time in years. Knowing that their loved one is still alive in a small part of someone else, maybe even the heart itself, gives comfort to us who have been left with such grief in the past.

The donor process of giving was not around when our parents died. If it had been, our visits to the gravesites would hold a little more light of happiness, knowing someone was walking around on a farm or in an office with our loved ones heart or arteries or hands.

Donate Life Virginia is a small part of life-giving across all of America. Please, donate in your state when your time comes. We are.

Oliver Hedgepeth is professor of logistics for the American Military University. Elizabeth Hedgepeth is former managing editor of the Petersburg Progress-Index. Contact them at: blh4835@gmail.com

View original post here:
Oliver and Elizabeth Hedgepeth column: Human donations are a gift of life - Richmond.com

U.S. stem cell clinic offering unapproved therapies brings direct-to-consumer marketing to Ottawa – Ottawa Citizen

Just a few months after Health Canada began cracking down on private clinics offering unapproved stem cell therapies, at least one U.S. clinic has moved in to fill the vacuum with direct marketing to Canadian consumers.

The clinic from Burlington, Vermont, even offers shuttle buses to transport people from Ottawa to the clinic four hours away for treatment it suggests will end joint pain, among other things. Lunch and dinner are free, but each injection costs $6,880. Two for $10,880.

The treatments, using umbilical cord-derived mesenchymal stem cells, are not approved in either Canada or the United States. Health Canada warns that Canadians who travel abroad for stem cell treatments may put themselves at risk.

While stem cells, which were discovered at the University of Toronto in 1961 by James Till and Ernest McCulloch, promise to revolutionize many treatments and could offer breakthroughs for diseases, almost all are still considered experimental and have yet to be proven safe or effective. Clinical trials on numerous potential stem cell therapies are under way, including in Ottawa.

While research progresses, private stem cell clinics have popped up around the world making promises for treatments not yet proven safe or effective.

A 2018 study by Leigh Turner of the University of Minnesota Center for Bioethics found 43 clinics offering stem cell treatments in Canada and 750 in the U.S. Earlier this year, Health Canada sent Canadian clinics, including some in Ottawa, cease-and-desist letters.

Clinics in Vermont, near the Canadian border, appear to have ramped up marketing to Canadians since then. One clinic has been holding back-to-back seminars. Another says it stopped marketing in Canada after receiving a warning from Health Canada.

There have been cases of harm as a result of treatments, including two women who had permanent damage to their sight after stem cells were injected into their eyes at a Florida clinic. Other patients have been infected with unsterilized equipment and others have developed tumours at the site of stem cell injections.

A common harm, critics say, is exploitation.

Dr. Michael Rudnicki is director of the regenerative medicine program and Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, says of stem cell therapy claims: If it sounds too good to be true, it probably is too good to be true.jpg

Health officials say the clinics are misusing the promise of stem cell therapy to exploit vulnerable patients.

These patients are in pain and they are suffering and they are looking for help and they are being exploited, said Dr. Michael Rudnicki, director of the regenerative medicine program and Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute.

If it sounds too good to be true, it probably is too good to be true.

At a recent seminar at a west-end Ottawa hotel meeting room, Roseanna Ammendolea of the Vermont Center for Regenerative Medicine told a packed room that her clinic and others like it had successfully treated people for pain related to arthritis, neuropathy and other ailments that affected joints using mesenchymal stem cells from umbilical cords. The stem cells, she claimed, are both effective and safe, saying there had been no issues with cell rejection.

We will not give injections if we feel that this injection will not be beneficial to our patients. This is why we are so successful.

Participants, including some who walked with canes and others who talked about being in pain and having mobility issues, were shown videos of people described as Canadian clients who claimed the treatments worked. One man said it was probably the best money I have spent in my life as far as my health. Another said she would do it again in a heartbeat and was able to do things she hadnt been able to do earlier.

They were also shown a slide showing long wait times for hip and knee replacements in Ontario, We are not a priority, she said. Where does that leave us? Participants werent told exactly how the stem cells were supposed to work, but claimed they had successfully improved pain and mobility issues in clients.

What the seminar goers werent told is that, even in the U.S., the treatment is not covered by health insurance because it remains unproven.

The U.S. Federal Drug Administration has issued a warning to consumers not to use cell therapies that are unapproved or unproven.

Stem cells have been called everything from cure-alls to miracle treatments. But dont believe the hype. Some unscrupulous providers offer stem cell products that are both unapproved and unproven. So beware of potentially dangerous procedures and confirm whats really being offered before you consider anytreatment, the FDA said in a statement.

The only stem-cell-based products that are FDA-approved for use in the United States are blood-forming stem cells derived from cord blood for limited use in patients with disorders affecting the body system that is involved in the production of blood. Bone marrow is also used for these treatments, but is generally not regulated by the FDA for that use.

Health Canada has granted market authorization for a stem cell therapy to treat graft-versus-host disease and two cell-based gene therapies to treat certain cancers. Most cell therapies are still experimental.

I totally understand the skepticism of it, Doug Argento, who works at the Vermont Center for Regenerative Medicine, said in a telephone interview, but the fact is that things that are approved now and medically paid for were seen as renegade 20 or 30 years ago.

The treatment employs technology developed by Neil Riordan, founder, chairman and chief science officer of the Stem Cell Institute in Panama, using human umbilical cord tissue-derived mesenchymal stem cells. There are 41 such clinics across the U.S. Riordan also played a role in the development of a nutritional product called Stem-Kine, which producers claim without scientific backing increases the number of stem cells circulating in a persons body.

The stem cells injected in the clinic, Argento said, are from umbilical cord tissue as a result of caesarean births to reduce risk of infection.

Rudnicki, of The Ottawa Hospital Research Institute, says there is no evidence that these sorts of cells are regenerative at all. It would not pass muster in Canada.

The public has to understand that there are people out to remove them from their money.

Rudnicki says he regularly receives inquiries from people desperate to get stem cell treatments. He says he tries to connect them with clinical trials that they might be able to participate in.

Rudnicki noted there were multiple clinical trials in Canada, including treatments of autoimmune diseases, trials involving treatment for Type 1 diabetes and others.

But the use of these inappropriate cell types for treating arthritis and joints and so on is certainly not approved by Health Canada and would not be allowed in Canada under the regulations.

There is some evidence that injections of some stem cell products might have a temporary positive impact on inflammation, he said, but it will not be regenerative and will not restore function to joints. They are being sold a bill of goods.

Leigh Turner of the University of Minnesota Center for Bioethics, meanwhile, says the explosion in clinics offering unproven stem cell therapies in the U.S. is a marketplace that traffics in misrepresentation. It is easy to see how people are taken advantage of and scammed.

It is also difficult to find out about physical harms being done to patients.

There are no safety studies. We dont have good data. But we do know there have been some serious harms.

Stem cell therapies have the potential to become standard treatment in some areas, but they are not there yet, Turner said.

Businesses are tapping into genuine human suffering, desperation and also hope.

Turner also noted there was an excellent chance that the vials of liquid being injected into patients did not actually contain stem cells.

Dr. Jonathan Fenton of another stem cell clinic in Burlington, the Vermont Regenerative Medicine, said he had complained about the new clinic, the Vermont Center for Regenerative Medicine, which has a similar name and employs hard-sell tactics, he said.

His clinic takes bone marrow from patients hips and injects it. The procedure is done the same day. He says he regularly sees Canadian patients for bone marrow aspiration therapy and platelet-rich plasma treatments, using their own blood. The treatments, he says, speed healing and are allowed in the U.S. The use of bone marrow aspiration is neither proven nor allowed in Canada.

Fenton, who is secretary-treasurer of the American Academy of Orthopedic Medicine, acknowledged many people offering stem cell treatments are not doing it to the highest ethical standards.

He has filed complaints with state officials over clinics selling unsafe or fraudulent treatments. I have asked the state and federal judiciary to close down this clinic for committing fraud.

He said his platelet and bone marrow treatments were covered by a major Vermont health insurer because they saw the cost of benefits were going down and patients were requiring fewer surgeries.

He said he was told by Health Canada that he could not market in Canada. Representatives of the Vermont Center for Regenerative Medicine, meanwhile, said they had discussions with Health Canada about what they could and could not say when marketing in Canada before holding seminars in Ottawa and Halifax.

We have looked at the information provided and have not identified any immediate non-compliance with advertising regulations pertaining to Canadian health products, a Health Canada spokesperson said, adding that the agency was continuing to assess.

Back at a west-end Ottawa hotel, some participants in the seminar, including a retired pharmacist, said they were considering getting the treatments. But its expensive.

Another participant said he was skeptical. They seemed very sketchy when I went online.

epayne@postmedia.com

ALSO IN THE NEWS

Hoffman and Kaushic: Were losing the fight against superbugs

Super-agers, who live to at least 110, boast stronger immune systems, helping them fight off diseases

Spinal-cord stimulator really promising: Survivor moves legs for first time since Humboldt bus crash

See the article here:
U.S. stem cell clinic offering unapproved therapies brings direct-to-consumer marketing to Ottawa - Ottawa Citizen

These Scientists May Have Found a Cure for ‘Bubble Boy’ Disease – Smithsonian

On the morning of April 25, 2018, in Fort Wayne, Indiana, Omarion Jordan came into the world ten-fingers-and-toes perfect. His mother, Kristin Simpson, brought her dark-haired newborn home to a mostly empty apartment in Kendallville, about 30 miles to the north. Shed just moved in and hadnt had time to decorate. Her son, however, had everything he needed: a nursery full of toys, a crib, a bassinet and a blue octopus blanket.

Still, within his first couple of months, he was plagued by three different infections that required intravenous treatments. Doctors thought he had eczema and cradle cap. They said he was allergic to his mothers milk and told her to stop breastfeeding. Then, not long after he received a round of standard infant vaccinations, his scalp was bleeding and covered with green goop, recalled the first-time mother, who was then in her late teens. She took him to the hospital emergency room, where, again, caregivers seemed puzzled by the babys bizarre symptoms, which didnt make any sense until physicians, finally, ordered the right blood test.

What they learned was that Omarion was born with a rare genetic disorder called X-linked severe combined immunodeficiency (SCID), better known as the bubble boy disease. Caused by a mutated gene on the X chromosome, and almost always limited to males, a baby born with X-linked SCID, or SCID-X1, lacks a working immune system (hence the unusual reaction to vaccination). The bubble boy name is a reference to David Vetter, a Texas child born with SCID-X1 in 1971, who lived in a plastic bubble and ventured out in a NASA-designed suit. He died at 12, but his highly publicized life inspired a 1976 TV movie starring John Travolta.

Today, technological advances in hospitals provide a kind of bubble, protecting SCID-X1 patients with controlled circulation of filtered air. Such safeguards are necessary because a patient exposed to even the most innocuous germs can acquire infections that turn deadly. As soon as Omarion tested positive for the disorder, an ambulance carried him to Cincinnati Childrens Hospital in nearby Ohio and placed him in isolation, where he remained for the next few months. I had no idea what would happen to him, his mother recalled.

Approximately one in 40,000 to 100,000 infants is born with SCID, according to the Centers for Disease Control and Prevention. Only about 20 to 50 new cases of the SCID-X1 mutationwhich accounts for about half of all SCID casesappear in the United States each year. For years, the best treatments for SCID-X1 have been bone marrow or blood stem cell transplantations from a matched sibling donor. But fewer than 20 percent of patients have had this option. And Omarion, an only child, was not among them.

As it happened, medical scientists at St. Jude Childrens Research Hospital in Memphis, Tennessee, were then developing a bold new procedure. The strategy: introduce a normal copy of the faulty gene, designated IL2RG, into a patients own stem cells, which then go on to produce the immune system components needed to fight infection. Simpson enrolled Omarion in the clinical study and Cincinnati Childrens Hospital arranged a private jet to transport her and her son to the research hospital, where they stayed for five months.

St. Jude wasnt the first to try gene therapy for SCID-X1. Nearly 20 years ago, researchers in France reported successfully reconditioning immune systems in SCID-X1 patients using a particular virus to deliver the correct gene to cells. But when a quarter of the patients in that study developed leukemia, because the modified virus also disrupted the functioning of normal genes, the study was halted and scientists interested in gene therapy for the disorder hit the brakes.

At St. Jude, experts led by the late Brian Sorrentino, a hematologist and gene therapy researcher, set out to engineer a virus delivery vehicle that wouldnt have side effects. They started with a modified HIV vector emptied of the virus and its original contents, and filled it with a normal copy of the IL2RG gene. They engineered this vector to include insulators to prevent the vector from disturbing other genes once it integrated into the human genome. The goal was to insert the gene into stem cells that had come from the patients own bone marrow, and those cells would then go on to produce working immune system cells. It was crucial for the viral vector to not deliver the gene to other kinds of cellsand thats what the researchers observed. After gene therapy, for example, brain cells do not have a correct copy of the gene, explained Stephen Gottschalk, who chairs St. Judes Department of Bone Marrow Transplantation and Cellular Therapy.

In the experimental treatment, infants received their re-engineered stem cells just 12 days after some of their bone marrow was obtained. They went through a two-day, low-dose course of chemotherapy, which made room for the engineered cells to grow. Within four months, some of the babies were able to fight infections on their own. All eight of the initial research subjects left the hospital with a healthy immune system. The remarkably positive results made news headlines after being published this past April in the New England Journal of Medicine. Experimental gene therapy frees bubble boy babies from life of isolation, the journal Nature trumpeted.

So far, the children who participated in that study are thriving, and so are several other babies who received the treatmentincluding Omarion. As a physician and a mom, I couldnt ask for anything better, said Ewelina Mamcarz, lead author of the journal article and first-time mother to a toddler nearly the same age as Omarion. The children in the study are now playing outside and attending day care, reaching milestones just like my daughter, Mamcarz says. Theyre no different. Mamcarz, who is from Poland, came to the United States to train as a pediatric hematologist-oncologist and joined St. Jude six years ago.

Other medical centers are pursuing the treatment. The University of California, San Francisco Benioff Childrens Hospital is currently treating infant patients, and Seattle Childrens Hospital is poised to do the same. Moreover, the National Institutes of Health has seen success in applying the gene therapy to older patients, ages 3 to 37. Those participants had previously received bone marrow transplants from partially matched donors, but theyd been living with complications.

In the highly technical world of medicine today, it takes teamwork to achieve a breakthrough, and as many as 150 peoplephysicians, nurses, regulators, researchers, transplant coordinators and othersplayed a role in this one.

Sorrentino died in November 2018, but hed lived long enough to celebrate the trial results. In the early 90s, we thought gene therapy would revolutionize medicine, but it was kind of too early, said Gottschalk, who began his career in Germany. Now, nearly 30 years later, we understand the technology better, and its really starting to have a great impact. We can now develop very precise medicine, with very limited side effects. Gottschalk, who arrived at St. Jude a month before Sorrentinos diagnosis, now oversees the hospitals SCID-X1 research. Its very, very gratifying to be involved, he said.

For now the SCID-X1 gene therapy remains experimental. But with additional trials and continued monitoring of patients, St. Jude hopes that the therapy will earn Food and Drug Administration approval as a treatment within five years.

Simpson, for her part, is already convinced that the therapy can work wonders: Her son doesnt live in a bubble or, for that matter, in a hospital. He can play barefoot in the dirt with other kids, whatever he wants, because his immune system is normal like any other kid, she said. I wish there were better words than thank you.

Continue reading here:
These Scientists May Have Found a Cure for 'Bubble Boy' Disease - Smithsonian

CNST Stock Is Particularly Risky After Its Recent Run – Investorplace.com

In my view, few investment sectors are as frustrating as the pharmaceutical industry. One moment, you could be riding high on bullish momentum. The next, you could be staring at unfathomable losses. For stakeholders of Constellation Pharmaceuticals (NASDAQ:CNST), though, theyre enjoying the positive end of this dynamic. Year to date, CNST stock is up a blistering 846%.

Source: Shutterstock

Most of these bonkers gains came within the last two months. Since the beginning of October, Constellation Pharmaceuticals stock has jumped nearly 400%. And in this month alone, CNST is up over 68%. Seemingly, this company has no downside, inspiring others to jump aboard this extreme momentum name. Should you follow suit?

Unlike other speculative gambles, a fundamental case exists for the massive skyrocketing of CNST stock. Among the underlying companys therapies is an experimental drug called CPI-0610, a treatment for myelofibrosis. According to pharma giant Celgenes (NASDAQ:CELG) website, myelofibrosis is a rare blood cancer. Only 5,000 people in the U.S. are diagnosed with the illness each year.

Further, myelofibrosis starts in the stem cells of the bone marrow, leading to the production of faulty blood cells. Prior efforts in treating this illness have not produced substantive results. However, Constellations CPI-0610 has performed exceptionally well in a phase II study; hence, the massive surge in Constellation Pharmaceuticals stock.

In fact, all four patients that participated in the study responded positively to the drug. Because of the positive data that came from the clinical trial, Constellation will expand the study to include more patients. This, of course, suggests supreme confidence in the CPI-0610 therapy, and that could ultimately represent a paradigm-shifting breakthrough.

Still, I think you should consider the long road ahead before jumping aboard CNST stock.

By their very nature, rare diseases are difficult to address. And among this class of debilitating conditions, myelofibrosis is particularly nasty. According to Dr. Ruben Mesa, myelofibrosis is a variable disease. This means that medical doctors must apply custom-tailored treatments for different patients.

Thus, while Constellation may have won the initial round in its Phase II study, the real work is coming ahead. With many more test subjects, the chances that CPI-0610 could be considered ineffective or even adverse jump significantly.

In other words, the enthusiasm were seeing now with CNST stock could quickly go the other way.

Theres also the little matter of the economics and politics of addressing myelofibrosis. As you might imagine, combating rare diseases without financial incentives wouldnt make much economic sense. But the Orphan Drug Act, passed in 1983, encouraged pharmaceuticals to address rare diseases through various incentive programs.

Unfortunately, like anything involving government action, good intentions gave way to hellish results. Pharmaceuticals gamed the system the Orphan Drug Act created, pocketing massive profits for rare-disease therapies. Since the patients had no recourse in this monopolized environment, they (and their insurance companies) foot the bill.

Underlining the current bullish thesis for CNST stock is the idea that Constellation will become the only viable myelofibrosis player. Celgene is trying but is coming up short. Essentially, Constellation can charge what they want for their drug if theyre successful.

But even if they are successful and thats a huge if the political environment for price-gouging pharmaceuticals is extremely unfavorable.

No matter how great a scientific achievement Constellation has made, diving into Constellation Pharmaceuticals stock seems risky. With shares gaining 400% in the past month and a half, most of the good news is surely baked in.

Of course, we could hear even better results once the company expands its myelofibrosis study. But that too is a risky perspective.

For those who are not familiar with the pharmaceutical industry, I highly recommend reading Dr. Mario Beauregards book Brain Wars. Among the many topics that Dr. Beauregard covers, a central motif is the mysteries of the mind. Compelling evidence indicates that our mental state can generate healing.

But a flipside to this concept is that an alarming number of pharmaceuticals fail the placebo test; that is, many if not most drugs are no more effective than patients belief in their efficacy.

Soon, well see how good CPI-0610 really is. For those that cant handle extreme price swings, you should stay away from Constellation Pharmaceuticals stock.

As of this writing, Josh Enomoto did not hold a position in any of the aforementioned securities.

Originally posted here:
CNST Stock Is Particularly Risky After Its Recent Run - Investorplace.com

Growth of Autologous Stem Cell And Non Stem Cell Based Therapies Market projected to amplify during 2026 – Crypto News Byte

Autologous stem cell and non-stem cell based therapiesinvolve an individuals cell to be cultured and then re-introduced to the donors body. These therapies do not use foreign organism cells and are therefore free from HLA incompatibility, disease transmission, and immune reactions.Increasing demand for the new therapies in the field of regenerative medicine is directly facilitating the growth of autologous stem cell and non-stem cell based therapies market. Furthermore, since the risk to transplantation surgeries is significantly reduced in these therapies, they are increasingly being preferred for treatment of bone marrow diseases, aplastic anemia, multiple myeloma, non-Hodgkins lymphoma, Hodgkins lymphoma, Parkinsons disease, thalassemia, and diabetes.

Moreover, rising incidents of cancer, diabetes and cardiovascular diseases along with growing geriatric population is another factor attributed for its high growth. However, side-effects of autologous stem cell and non-stem cell based therapies such as nausea, infection, hair loss, vomiting, diarrhea, etc. are expected to affect the market to an extent. High cost is another factor that can act as challenge to autologous stem cell and non-stem cell based therapies market. In spite of this, less risk post transplantation surgeries and favorable tax reimbursement policies are anticipated to reduce the impact of these limitation during the forecast period.Autologous stem cell and non-stem cell based therapies market can be segmented on the basis of application, end-user, and region.

In terms of application, the autologous stem cell and non-stem cell based therapies market can be segmented into blood pressure (BP) monitoring devices, intracranial pressure (ICP) monitoring devices, and pulmonary pressure monitoring devices.

In terms of end-user, the market can be segmented into ambulatory surgical center and hospitals. By region, the market can be segmented into North America, Europe, Asia Pacific, Middle East and Africa and South America. Amongst all, Asia Pacific is anticipated to be the most attractive market owing to favorable reimbursement policies in the region.The players operating in autologous stem cell and non-stem cell based therapies market are limited. They are consistently involved in research and development activities for product development to keep up with the growing competition, thereby aiding the growth of autologous stem cell and non-stem cell based therapies market across the world.

The major players operating in autologous stem cell and non-stem cell based therapies market are Regennex, Antria(Cro), Bioheart, Orgenesis Inc., Virxys corporation , Dendreon Corporation, Tigenix, Georgia Health Sciences University, Neostem Inc, Genesis Biopharma, Brainstorm Cell Therapeutics, Tengion Inc., Fibrocell Science Inc., Opexa Therapeutics Inc, Regeneus Ltd, and Cytori Inc., among others.

More:
Growth of Autologous Stem Cell And Non Stem Cell Based Therapies Market projected to amplify during 2026 - Crypto News Byte

Bone marrow transplant: What it is, uses, risks, and recovery – Medical News Today

Bone marrow is soft, spongy tissue within some bones, including those in the hips and thighs. People with certain blood-related conditions benefit from a transplant that replaces damaged cells with healthy cells, possibly from a donor.

Bone marrow transplants can be lifesaving for people with conditions such as lymphoma or leukemia, or when intensive cancer treatment has damaged blood cells.

This type of transplant can be an intensive procedure, and recovery can take a long time.

Here, we provide an overview of bone marrow transplants, including their uses, risks, and recovery.

Bone marrow contains stem cells. In healthy people, stem cells in bone marrow help create:

If a medical condition such as one that damages the blood or immune system prevents the body from creating healthy blood cells, a person may need a bone marrow transplant.

A person with any of the following conditions may be a candidate for a bone marrow transplant:

There are three types of bone marrow transplant, based on where the healthy bone marrow cells come from.

In many cases, the donor is a close family member, such as a sibling or parent. The medical name for this is an allogenic transplant.

Transplants are more likely to be effective if the donated stem cells have a similar genetic makeup to the person's own stem cells.

If a close family member is not available, the doctor will search a registry of donors to find the closest match. While an exact match is best, advances in transplant procedures are making it possible to use donors who are not an exact match.

In a procedure called an autologous transplant, the doctor will take healthy blood stem cells from the person being treated and replace these cells later, after removing any damaged cells in the sample.

In an umbilical cord transplant, also called a cord transplant, doctors use immature stem cells from the umbilical cord following a baby's birth. Unlike cells from an adult donor, the cells from an umbilical cord do not need to be as close a genetic match.

Before a bone marrow transplant, the doctor will run tests to determine the best type of procedure. They will then locate an appropriate donor, if necessary.

If they can use the person's own cells, they will collect the cells in advance and store them safely in a freezer until the transplant.

The person will then undergo other treatment, which may involve chemotherapy, radiation, or a combination of the two.

These procedures typically destroy bone marrow cells as well as cancer cells. Chemotherapy and radiation also suppress the immune system, helping to prevent it from rejecting a bone marrow transplant.

While preparing for the transplant, the person may need to stay in the hospital for 12 weeks. During this time, a healthcare professional will insert a small tube into one of the person's larger veins.

Through the tube, the person will receive medication that destroys any abnormal stem cells and weakens the immune system to prevent it from rejecting the healthy transplanted cells.

Before entering the hospital, it is a good idea to arrange:

A bone marrow transplant is not surgery. It is similar to a blood transfusion.

If a donor is involved, they will provide the stem cells well in advance of the procedure. If the transplant involves the person's own cells, the healthcare facility will keep the cells in storage.

The transplant typically takes place in several sessions over several days. Staggering the introduction of cells in this way gives them the best chance of integrating with the body.

The healthcare team may also use the tube to introduce liquids such as blood, nutrients, and medications to help fight infection or encourage the growth of bone marrow. The combination depends on the body's response to treatment.

The procedure will temporarily compromise the person's immune system, making them very susceptible to infection. Most hospitals have a dedicated, isolated space for people undergoing bone marrow transplants to help reduce their risk of infection.

After the last session, the doctor will continue to check the blood each day to determine how well the transplant has worked. They will test whether new cells are beginning to grow in bone marrow.

If a person's white blood cell count starts to rise, it indicates that the body is starting to create its own blood, indicating that the transplant has been successful.

The amount of time that it takes for the body to recover depends on:

Many other factors can affect recovery, including:

Some people are able to leave the hospital soon after the transplant, while others need to stay for several weeks or months.

The medical team will continue to monitor the person's recovery for up to 1 year. Some people find that effects of the transplant remain for life.

A bone marrow transplant is a major medical procedure. There is a high risk of complications during and after it.

The likelihood of developing complications depends on various factors, including:

Below are some of the more common complications that people who receive bone marrow transplants experience:

Some people die as a result of complications from bone marrow transplants.

A person who receives a bone marrow transplant may also experience reactions that can follow any medical procedure, including:

The body's response to a bone marrow transplant varies greatly from person to person. Factors such as age, overall health, and the reason for the transplant can all affect a person's long term outlook.

If a person receives a bone marrow transplant to treat cancer, their outlook depends, in part, on how far the cancer has spread. Cancer that has spread far from its origin, for example, responds less well to treatment.

According to the National Marrow Donor Program, the 1-year survival rate among people who have received transplants from unrelated donors increased from 42% to 60% over about the past 5 years.

A bone marrow transplant is a major medical procedure that requires preparation. This involves determining the best type of transplant, finding a donor, if necessary, and preparing for a lengthy hospital stay.

The time that it takes for the body to recover from a transplant varies, depending on factors such as a person's age and overall health and the reason for the transplant.

Read the original here:
Bone marrow transplant: What it is, uses, risks, and recovery - Medical News Today

Redding woman donates bone marrow, saves life of a father – FOX61 Hartford

Please enable Javascript to watch this video

A 25-year-old Redding, Connecticut woman meets the Arizona man who was battling deadly Acute Lymphoblastic Leukemia (ALL) until she saved his life by donating her bone marrow.

Jennie Bunce joined Gift of Life Marrow Registry through a sorority swab drive at North Carolinas High Point University in 2016. "I can remember being like 13 or 14 years old during some school bucket list project. On there was save a life and I got to cross it off so thats pretty cool."

Her life-saving match-- 33-year-old father of six from Mesa, Mark Roser. Roser learned he had ALL after breaking a hip and feeling increasingly weak in 2018.

He needed a bone marrow transplant to survive. He says, "When they discovered it, 94% of my blood cells basically contaminated, so I was really at the final deadline."

Gift of Life Marrow Registry matched the Jennie to Mark with months.

The pair met for the first time at Boca Oyster Bar in Bridgeport in October. Mark says, " I feel great. Im much more positive between work and family. My priorities have completely changed. Time with the kids, time with my wife, just being there for them instead of working so much... I treasure every moment with them now."

According to the gift of Life marrow registry website: "Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. In most blood cancers, normal blood cell development is interrupted by uncontrolled growth of abnormal blood cells. The abnormal blood cells can prevent blood from fighting off infection or preventing uncontrolled bleeding.

Unfortunately, blood cancer can strike any one of us at any time. Approximately every three minutes, a child or adult in the United States is diagnosed with a type of blood cancer. Thats 360 people a day, 130,000 people a year.

There are three main types of blood cancers: Leukemia, cancer that is found in your blood and bone marrow; Lymphoma, blood cancer that affects the lymphatic system; and Myeloma, blood cancer that specifically targets your plasma cells.

For many, there is hope of a cure through a bone marrow or peripheral blood stem cell transplant. Today, transplantation, of healthy stem cells donated by related and unrelated volunteers, offers hope to many patients suffering from these sometimes deadly diseases.

Advances in transplantation have made this procedure a reality for thousands who are alive today because a stranger gave them the Gift of Life!."

check out: https://www.giftoflife.org to learn more and even register for a swab kit and become a donor yourself.

Read the original here:
Redding woman donates bone marrow, saves life of a father - FOX61 Hartford

We live in an age of miracles. And my nephew needs one – The Times

November 15 2019, 12:01am,The Times

Al Murray

Its unfashionable to say so these days but we live in an age of miracles. Or at least potential miracles. We all have the opportunity to save someones life and you dont have rush into a burning building or a fast flowing river to do it.

My nephew Finley is six. He is, I think, like a lot of six-year-old boys, he likes trains and tanks and planes, hes into playing football and swimming, and hes almost completely beguiled by video games. So far so normal. He is, however, unlucky enough to be one of the 12 children each year who suffer from juvenile myelomonocytic leukaemia (JMML).

JMML is a rare blood cancer and as difficult to defeat as it is rare. Its sort of

Want to read more?

Subscribe now and get unlimited digital access on web and our smartphone and tablet apps, free for your first month.

Follow this link:
We live in an age of miracles. And my nephew needs one - The Times

Im grateful for the kindness of strangers in my cancer recovery – The Globe and Mail

Illustration by Adam De Souza

First Person is a daily personal piece submitted by readers. Have a story to tell? See our guidelines at tgam.ca/essayguide.

A few days after my stem cell transplant this year, a young cleaner entered my hospital room to disinfect and swab. Broad faced and friendly, she saw me lying in bed reading a book.

Do you like reading, she asked? Well, I have the book for you. It is called Fifty Shades of Grey. Its porno!

Story continues below advertisement

That last part was whispered behind a cupped hand, as she grinned and then giggled. For good measure, she also recommended the teen vampire series Twilight.

Once shed left I laughed out loud in a way I hadnt done for days, weeks in fact. When you have cancer, these moments are golden.

Over the last year I have spent months in hospitals, being infused with chemotherapy that laid me low and then undergoing a risky transplant of stem cells from a heroic unknown donor. During this long period of remission and recovery, I have valued every opportunity to smile, to breathe and to feel hope. Much of this sense of being fully alive has come from the kindness of others.

The transplant had made me feel very sick and there was a point at which I was terrified of dying. I asked the hospital staff for a spiritual adviser and the next day a Buddhist monk came to visit me. I didnt expect this, but his calm face and compassionate manner brought me peace. He read me poems for meditation, encouraged deep breathing, and assured me that all emotions in illness are human expressions of identity and not to be judged or feared. His gentleness was echoed two days later, when a nurse with the loveliest face I had ever seen knelt down next to my bed, held my hand, and reassured me I would be okay.

Day by day, my son, his girlfriend, and my husband encouraged and supported me, too, even when I could barely hold up my head or speak without tears. My 21-year-old son sat with me through many painful procedures, setting his phone to play Bachs Brandenburg Concertos, squeezing my hand, looking into my face, loving me and giving me strength I didnt think I had.

I was diagnosed with acute myeloid leukemia in February 2019; before that fateful month I was a modern German historian teaching university students on the Weimar Republic, Nazism and the Holocaust. There were days when I had wept and raged with my students over the historical accounts of Nazi inhumanity, barbarity and chilling callousness inflicted upon innocent civilians, especially the Jews. I have often questioned whether human nature is fundamentally selfish, violent and nasty. Right now, in this world of hateful populism and climate devastation, I ask these questions even more. But since I became sick, the kindness, indeed the goodness, of other people has been a constant companion to me. I have been overwhelmed by the extraordinary outpouring of support and concern from so many. Compassion, care, affection, hope all have been expressed to me by family, friends, students and colleagues. Blood drives were organized in my name, and students asked me if they could be tested as a possible bone-marrow donor. My sister (who hates medical procedures) underwent several tests to see if she could be a sibling transplant. One colleague even offered me the umbilical blood he had saved from his three children. (Ultimately the hospital found a donor from an international registry.)

Friends and family kept in touch or visited despite the long drives to the two hospitals where I received treatment. Two of my girlfriends texted me every day, sending love, inspiration and photos of flowers. From other well-wishers I received quilts and artwork and shawls, books and lotion and lip balm. I read notes and e-mails that told me I was not alone, that love surrounded me and would lift me up. Prayers were said for me in Protestant, Catholic, Unitarian, Muslim and Jewish places of worship. Students sent me good luck charms, including a chemo bear (it worked! I went into remission). Money was donated in a go-fund-me campaign to help with the costs of travel and accommodation to cancer centres. Strangers (friends of friends) offered their homes at the times when we couldnt find accommodation. Delicious meals were dropped off at my home or brought to the hospitals: lentil soups, macaroni and cheese, banana bread and smoothies, all preventing me from having to imbibe those horrible meal-replacement drinks or the cafeteria food. Cancer patients came to see me and shared their experiences and wisdom. A quietly stoic man in his 40s with Stage 4 colorectal cancer expressed hope in the advances in cancer treatment; another inspirational friend with breast cancer revealed she had undergone over 100 chemo treatments and still managed to propel her bike in the annual Ride to Conquer Cancer. Other leukemia patients in my wards became friends and sources of enormous support. My sister-in-law, a liver transplant survivor, understood my physical and emotional pain and talked me through several hard times. On the stranger than fiction level, old boyfriends and ex-friends reappeared, expressing their love and sending me cards or messages that brought tears to my eyes. At the same time high-school and university pals from my ancient past got in touch and told me to hang in there!

Story continues below advertisement

Story continues below advertisement

I got through the worst days because of the superb doctors and nurses, the donor who gave her or his stem cells, and our excellent health-care system. But I also made it this far because I did not feel alone. I was constantly reminded that I am loved and that I have so much to live for. In the arduous world of my cancer treatment, the face of compassion has appeared so many times and in such beautiful ways that I now place much more faith in the goodness of human nature because I have seen that many of us will care for each other, especially in hard times.

I may not decide to read Fifty Shades of Grey, but I love that this young woman wanted to suggest something to make me forget the cancer and feel better. And, really, because of her and the support that surrounded me, I did.

Carolyn Kay lives in Peterborough, Ont.

Excerpt from:
Im grateful for the kindness of strangers in my cancer recovery - The Globe and Mail

An introduction to the use of transplantation for the treatment of AML – AML Global Portal

Transplant strategies for AML

Today, the only curative approach to treat patients with AML is the administration of high-dose chemotherapy followed by allogeneic HSCT (allo-SCT). Although autologous HSCT (auto-SCT) may still be an option for certain patients with favorable or intermediate risk AML, its use has been debated due to the fact that AML is a blood and bone marrow malignancy, thus transplantation with the patients own cells runs the risk of giving back some of the patients leukemia cells.1 In contrast, during the process of allo-SCT, cells from a donor are infused. This provides an additional benefit, called the graft-versus-leukemia or tumor (GvL or GvT) effect, whereby the donor immune cells have the potential of recognising and eradicating remaining leukemia cells in the host, thus reducing the risk of relapse.2

Various donors can be used for an allo-SCT, while the best stem cell source remains to be from a human leukocyte antigen (HLA)-matched sibling donor (MSD). However, in approximately 70% of the cases such donors are unavailable, leaving the next best option of an HLA-matched unrelated donor (MUD).3 For patients where MSD or MUD are unavailable, a partially HLA-matched related donor can be used. This is referred to as haploidentical transplant (HD) and is usually a 50% HLA-match. In the past, HD has been associated with a slow immune reconstitution and high mortality from infections. Today, the use of post-transplant management treatments, like post-transplant cyclophosphamide (PTCy), reduces mortality and has made HD a viable option for patients with AML. This was further discussed by Arnon Nagler in his interview4 with the AML Global Portal (AGP) during the 2019 European Society for Blood and Marrow Transplantation (EBMT) meeting (video below). Nevertheless, HD still leads to inferior outcomes when compared to MSD in patients with AML (read AGP article here). Other donor types include cells from umbilical cord (read AGP article here) or from HLA-mismatched unrelated donors (MMUD).2 The impact of donor type on the outcomes of allo-SCT has recently been explored in an article by the AGP here. The authors of the study concluded that the traditional hierarchy of donors (MSD, MUD, and then others) remains true in patients with AML and should be used as a treatment algorithm.

VIDEO INTERVIEW: EBMT 2019 | Haploidentical hematopoietic transplantation: current status and future perspectives

How to choose the right patients for transplantation

Choosing the right patient to receive transplantation following chemotherapy is crucial for maximising outcomes and reducing the risk of relapse and toxicity. As mentioned by Uwe Platzbecker in his AGP interview during the 2019 EBMT meeting (video below), there are two main considerations when choosing the right candidate for allo-SCT:

According to the ELN guidelines, patients are classified as favorable-risk, intermediate-risk, or poor-risk depending on the possibility of disease relapse. Patients with favorable-risk are usually not considered for allo-SCT after achieving their first complete remission (CR1), as the risk of toxicity and serious side effects outweighs the potential benefit from allo-SCT. For these patients, auto-SCT instead of chemotherapy after CR1 could be beneficial (read AGP article here). On the contrary, allo-SCT at CR1 is a common strategy for poor-risk patients with AML. In the case of intermediate-risk patients (the majority of patients with AML), the most suitable treatment option is less clear.6 Due to the high relapse rates seen in AML, allo-SCT has also been considered as a potential treatment strategy in second remission (CR2), although outcome is inferior compared to allo-SCT performed in CR1.7 In a recent study, summarized here by the AGP, it seems that myeloablative conditioning (MAC) and reduced intensity conditioning (RIC) lead to similar outcomes after allo-SCT in CR2, however more prospective trials are needed to tailor them for maximum efficacy and minimum toxicity.7 To date, it is evident that clinical decisions to perform transplantation need to be made on an individual basis. Recently, measurable residual disease (MRD) as a marker for disease severity and relapse risk has emerged as an important factor that can guide treatment decisions in the context of HSCT and has been reviewed in depth here by the AGP.

VIDEO INTERVIEW: EBMT 2019 | Considerations for transplantation in AML

Post-transplant issues & how to tackle them

Regardless of the advances in the transplantation field, allo-SCTs are associated with two main post-transplant issues: disease relapse and graft-versus-host disease (GvHD).

There is still a considerable number of patients that relapse after HSCT. At the moment, the best strategies to decrease the risk of post-transplantation relapse include:

Such agents include the use of FMS-like tyrosine kinase-3 (FTL3) inhibitors that are shown to delay disease relapse and to potentiate the GvL effect in patients with FLT3 mutations after allo-SCT.7 Multiple pre-clinical and clinical trials are currently underway to examine the efficacy of other targeted inhibitors, like sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, and midostaurin, amongst others.8 Another drug that has been shown to prevent disease relapse and to potentially increase the GvL effect is azacitidine. This is a hypomethylating agent that is currently used as a safe and effective prophylactic therapy in high-risk patients following allo-SCT (read AGP article here).9

Charlie Craddock provided an extensive presentation on the strategies for GvL effect optimization at the 2019 EBMT meeting (see full article on the AGP here):

VIDEO INTERVIEW: American Society of Clinical Oncology (ASCO) 2019 | Who should get azacitidine after transplant?

GvHD remains a major post-transplant challenge, occurring when transplanted donor cells start attacking host cells and tissues.10 There are two main strategies used today to prevent GvHD:

In a clinical trial, PTCy has shown superior outcomes when compared to ATG in patients undergoing HD transplant, leading to improved overall survival, leukemia-free survival, and GvHD-relapse free survival. The results of this study were discussed by Arnon Nagler in his interview with the AGP at European Hematology Association (EHA) 2019. A comprehensive review on available treatments for GvHD prophylaxis and their efficacies has been published here by our GvHD Hub.

VIDEO INTERVIEW: EHA 2019 | Should we use PTCy or ATG as GvHD prophylaxis in haploidentical stem cell transplantation?

In patients who develop severe GvHD, systemic administration of steroids remains the first choice of treatment. Treating GvHD is considered by many as a double-edged sword, since on one side it is necessary, but on the other hand it may hinder the GvL effect, thus contributing to potential disease relapse. Further research is needed to clarify the role of GvHD treatment on the GvL effect and to establish the best agent to treat GvHD without hindering the benefits of graft transplantation to the host. Some patients do not respond to post allo-SCT corticosteroids and are classified as steroid-refractory GvHD patients. These patients have a high mortality rate after allo-SCT with a 1-year survival between 30-35%. Many novel approaches are being tested for these patients with the Janus kinase 1/2 (JAK1/2) inhibitor, ruxolitinib, and the Brutons tyrosine kinase (BTK) inhibitor, ibrutinib, being recently approved by the Food and Drug Administration (FDA) for steroid-refractory GvHD.11,12

VIDEO INTERVIEW: EHA 2019 | What are the current treatment recommendations for acute GvHD and the promotion of the GvL effect?

Can the new treatments for AML reduce the need for transplantation?

With the recent therapeutic advances in the field of AML, one major question arises: Can these advances in diagnostics and new therapies replace allo-SCT? During the 1st National Cancer Research Institute (NCRI) AML academy meeting, AGP was pleased to film the headline debate on recently licensed drugs versus recent advances in transplantation, which can be accessed here. Although an unresolved issue, it is evident that some of the new treatments lack the toxicity associated with allo-SCT and have demonstrated improved survival rates. Moreover, with new diagnostic tools, the identification of the right subgroups of patients who may benefit from a transplant-free and more targeted approach will be feasible. One such novel approach to AML treatment is the use of CAR-T cells. Their use as monotherapy or in combination with allo-SCT for the treatment of relapsed or refractory AML is currently under consideration and of great interest in the field. More details on the potential of CAR-T cell therapy for AML can be found here in a recently published article by the AGP. However, it is too early to say whether these new treatment approaches can replace allo-SCT as a curative approach to treat AML. This topic was discussed by Gert Ossenkoppele in the interview with the AGP shown below.

VIDEO INTERVIEW: EHA 2019 | What is the clinical value of new drugs in AML?

Conclusions

Despite the curative potential conferred by allo-SCT in patients with AML, there is still a high risk of non-relapse mortality (mostly due to severe GvHD) in addition to the risk of relapse associated with transplantation. This warrants the need for the development of either novel management and prophylactic therapies that can improve post-transplantation outcomes or of transplantation-free approaches for the treatment of AML. With numerous clinical trials underway with novel targeted agents as monotherapy or in combination, the future of AML treatment starts to look more promising.

Read the rest here:
An introduction to the use of transplantation for the treatment of AML - AML Global Portal

Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) – PRNewswire

SHANGHAI and SUZHOU, China, Nov. 15, 2019 /PRNewswire/ --Gracell Biotechnologies Co., Ltd. ("Gracell"), a clinical-stage immune cell therapy company, today announced five presentations to be delivered at the upcoming American Society of Hematology (ASH) Annual Meeting in Orlando, Florida, held from December 7-10.

The presentations centre on Gracell's breakthrough FasTCARtechnology, and other two platform technology in four product categories used in the treatment of hematological malignancies, each with well-defined objectives, including:

The four product candidates are currently being studied in ongoing phase I clinical trials conducted by Gracell, Hebei Yanda Lu Daopei Hospital, and Xinqiao Hospital of AMU, and six other hospitals nationwide in China.

"These clinical studies demonstrated Gracell's product development strategy and strong capabilities to bring multiple novel therapies through clinical investigations," said Dr. William CAO, CEO of Gracell. "These invaluable data provides guidance for and enhance our confidence in pipeline selection."

Oral presentations:

A Feasibility and Safety Study of a New CD19-Directed Fast CAR-T Therapy for Refractory and Relapsed B cell Acute Lymphoblastic LeukemiaAbstract #825Session Name: 612. Acute Lymphoblastic Leukemia: Clinical Studies: Therapeutics StrategiesPresenter: Peihua Lu, M.D., Hebei Yanda Lu Daopei HospitalLocation: Orange County Convention Center, Tangerine 1 (WF1), Level 2Time: 5:00 pm, Monday, December 9, 2019https://ash.confex.com/ash/2019/webprogram/Paper121751.html

Anti-CD19/CD22 Dual CAR-T Therapy for Refractory and Relapsed B-Cell Acute Lymphoblastic LeukemiaAbstract #284Session Name: 612. Acute Lymphoblastic Leukemia: Clinical Studies: Novel TherapiesPresenter: Peihua Lu, M.D., Hebei Yanda Lu Daopei HospitalLocation: Orange County Convention Center, W224, Level 2Time: 4:15pm, Saturday, December 7, 2019https://ash.confex.com/ash/2019/webprogram/Paper126429.html

Poster presentations:

CD19-Directed Fast CART Therapy for Relapsed/Refractory Acute Lymphoblastic Leukemia: From Bench to BedsideAbstract #1340Session Name: 614. Acute Lymphoblastic Leukemia: Therapy, excluding Transplantation: Poster IPresenter: Cheng Zhang, M.D., Xinqiao Hospital of AMULocation: Orange County Convention Center, Hall B, Level 25:30-7:30 pm, Saturday, December 7, 2019https://ash.confex.com/ash/2019/webprogram/Paper128006.html

A Bcma and CD19 Bispecific CAR-T for Relapsed and Refractory Multiple MyelomaAbstract # 3147Session Name: 653. Myeloma: Therapy, excluding Transplantation: Poster IIPresenter: Hua Zhang, PhD., Gracell Biotechnology Ltd., Shanghai, China, Shanghai, ChinaLocation: Orange County Convention Center, Hall B, Level 26:00 PM-8:00 pm, Sunday, December 8, 2019https://ash.confex.com/ash/2019/webprogram/Paper131056.html

Role of Donor-Derived CD19.CAR-T Cells in Treating Patients That Relapsed after Allogeneic Hematopoietic Stem Cell TransplantationAbstract #4561Session Name: 723. Clinical Allogeneic and Autologous Transplantation: Late Complications and Approaches to Disease Recurrence: Poster IIIPresenter: Cheng Zhang, M.D., Xinqiao Hospital of AMULocation: Orange County Convention Center, Hall B, Level 26:00-8:00 pm, Monday, December 9, 2019https://ash.confex.com/ash/2019/webprogram/Paper128262.html

About FasT CAR-19

FasT CAR-19, or GC007F, is an investigational CD19-targeted CAR-T cell therapy for adolescent and adult patients with refractory or relapsed B-ALL, as well as aggressive non-Hodgkin lymphoma. Thanks to Gracell's patented FasTCAR technology, the bioprocessing time for GC007F has been significantly reduced from two weeks to 24 hours with substantially lower cost. The improved CAR-T cell fitness resulted in superior proliferation capabilities, potency, and extensive bone marrow migration making GC007F a potential best-in-class therapy for refractory or relapsed B-ALL.

About Dual CAR-19-22

Dual CAR-19-22, or GC022, is an investigational CAR-T cell therapy redirected to target CD19 and CD22, in treating patients with CD19+, or/and CD22+ relapsed/refractory B-ALL. A low toxicity with dose-dependent high CR rate including patients who previously treated with CD19 CAR-T cells were observed.

About Dual CAR-BCMA-19

Dual CAR-BCMA-19, or GC012, is an investigational CAR-T cell therapy redirected to target BCMA and CD19, in treating patients with BCMA+, or/and CD19+ relapsed/refractory multiple myeloma. Previous research shows CD19 could express on the myeloma progenitor cells, while BCMA is a well validated target for MM.

About Donor CAR-19

Donor CAR-19, or GC007G, is an investigational CD19 targeted CAR-T cell therapy manufactured in use of donor's lymphocytes. The objective of this study is to further investigate and better understand the safety and efficacy of donor derived CAR-T cells in treatment of relapsed and refractory B-ALL patients.

About B-ALL

B-ALL is a sub-type of acute lymphoblastic leukemia, although rare, is one of the most common forms of cancer in children between the ages of two and five and adults over the age of 50[1]. In 2015, ALL affected around 876,000 people globally and resulted in 110,000 deaths worldwide[2]. It is also the most common cause of cancer and death from cancer among children. ALL is typically treated initially with chemotherapy aimed at bringing about remission. This is then followed by further chemotherapy carried out over several years.

About MM

Myeloma begins when a plasma cell becomes abnormal. The abnormal cell divides to make copies of itself. These abnormal plasma cells are called myeloma cells. In time, myeloma cells collect in the bone marrow. They may damage the solid part of the bone. When myeloma cells collect in several of your bones, the disease is called "multiple myeloma." This disease may also harm other tissues and organs, such as the kidneys. Myeloma cells make antibodies called M proteins and other proteins. These proteins can collect in the blood, urine, and organs[3].

About Gracell

Gracell Biotechnologies Co., Ltd. ("Gracell") is a clinical-stage biopharma company, committed to developing highly reliable and affordable cell gene therapies for cancer. Gracell is dedicated to resolving the remaining challenges in CAR-T, such as high production costs, lengthy manufacturing process, lack of off-the-shelf products, and inefficacy against solid tumors. Led by a group of world-class scientists, Gracell is advancing FasTCAR, TruUCAR (off-the-shelf CAR), Dual CAR and Enhanced CAR-T cell therapies for leukemia, lymphoma, myeloma, and solid tumors.

CONTACT:

Linc HE Associate Director of Business Development sunwei.he@gracellbio.com

Dr. William Cao Founder, Chairman and CEOwilliam.cao@gracellbio.com

SOURCE Gracell

http://www.gracellbio.com

Read the original:
Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) - PRNewswire

bluebird bio and Forty Seven Announce a Research Collaboration to Study an All Antibody Conditioning Regimen for Use in Combination with Autologous…

CAMBRIDGE, Mass. & MENLO PARK, Calif.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) and Forty Seven, Inc. (Nasdaq:FTSV) announced today that they have entered into a research collaboration to pursue clinical proof-of-concept for Forty Sevens novel antibody-based conditioning regimen, FSI-174 (anti-cKIT antibody) plus magrolimab (anti-CD47 antibody), with bluebirds ex vivo lentiviral vector hematopoietic stem cell (LVV HSC) gene therapy platform. This collaboration will focus on a conditioning approach aimed to deliver reduced toxicity and will initially target diseases that have the potential to be corrected with transplantation of autologous gene-modified blood-forming stem cells. If successful, the new conditioning regimen could allow for more patients to undergo gene therapy.

Autologous hematopoietic stem cell transplantation (HSCT) and most ex vivo LVV HSC gene therapies require that a patients own stem cells first be depleted from the bone marrow to facilitate the engraftment of the new (or gene-modified) HSCs through a process called conditioning. Conditioning is performed using chemotherapy or radiation, which can place patients at risk for infection and require hospitalization until bone marrow cells have recovered. In addition, conventional conditioning can place patients at risk for secondary malignancy and infertility. As a result, the overall toxicity profile of current conditioning regimens limits the types of patients who are eligible for gene therapy. It is hoped that novel antibody based conditioning regimens could avoid these toxicities.

We are excited about this collaboration, combining our industry-leading LVV HSC gene therapy platform with Forty Sevens novel antibody-based conditioning regimen, said Philip Gregory, chief scientific officer, bluebird bio. We believe that, if successful, this novel conditioning modality could not only increase the number of patients and physicians who may consider gene therapy but also improve the overall risk benefit profile for stem cell-based gene therapy, as well as potentially reduce time and costs associated with hospital visits.

Forty Seven is advancing the pioneering work on CD47 and cKIT from our scientific founder, Irv Weissmans lab. We have shown that antibody blockade of CD47 can synergize with other antibodies targeting cancer to promote tumor engulfment. Based on this experience, coupled with the results of preclinical studies, we are eager to explore this dual-antibody approach for the potential treatment of non-malignant diseases, says Jens Peter Volkmer, M.D., Founder and Vice President of Research and Development at Forty Seven.

Forty Sevens President and Chief Executive Officer, Mark McCamish, M.D., Ph.D., commented, bluebird is a leading gene therapy company and we are excited to collaborate with them. Stem cell transplantation is potentially curative for a variety of blood diseases, including genetic blood disorders like sickle cell disease and beta-thalassemia. If successful, we believe our chemo- and radiation-free, all-antibody approach could expand transplantation beyond genetic blood disorders to a range of indications for which current transplantation approaches are suboptimal. In 2020, we plan to evaluate FSI-174 in healthy volunteers, before initiating a combination study of Forty Sevens novel all-antibody conditioning regimen and bluebirds gene therapy product.

Under the terms of the agreement, bluebird bio will provide its ex vivo LVV HSC gene therapy platform and Forty Seven will contribute its innovative antibody-based conditioning regimen for the collaboration.

About FSI-174 and MagrolimabFSI-174 is a humanized monoclonal antibody targeting cKIT, which is a receptor that is highly expressed on hematopoietic stem cells. Magrolimab is a humanized monoclonal antibody targeting CD47, which is a dont eat me signal to macrophages and is expressed on all cells. Magrolimab is currently being investigated in Phase 2 clinical trials to treat cancer and has established clinical efficacy in four indications, including myelodysplastic syndrome, acute myeloid leukemia, diffuse large B cell lymphoma and follicular lymphoma, with a favorable safety profile in over 350 patients treated, including some patients treated continuously for over two years. When combined, FSI-174 sends a positive signal to macrophages to target blood forming stem cells for removal and magrolimab disengages inhibitory signals that block phagocytosis. Combination of these antibodies has shown efficient removal of blood forming stem cells, allowing for transplantation in pre-clinical models.

About bluebird bio, Inc.bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders by researching cerebral adrenoleukodystrophy, sickle cell disease, transfusion-dependent -thalassemia and multiple myeloma using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

bluebird bio is a trademark of bluebird bio, Inc.

About Forty Seven Inc.Forty Seven, Inc. is a clinical-stage immuno-oncology company that is developing therapies targeting cancer immune evasion pathways based on technology licensed from Stanford University. Forty Sevens lead program, magrolimab, is a monoclonal antibody against the CD47 receptor, a dont eat me signal that cancer cells commandeer to avoid being ingested by macrophages. This antibody is currently being evaluated in multiple clinical studies in patients with myelodysplastic syndrome, acute myeloid leukemia, non-Hodgkins lymphoma, ovarian cancer and colorectal carcinoma.

For more information, please visit http://www.fortyseveninc.com or contact info@fortyseveninc.com.

Follow Forty Seven on social media: @FortySevenInc, LinkedIn

Forward-Looking StatementsThis release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as "may," "will," potentially, and similar expressions (as well as other words or expressions referencing future events, conditions, or circumstances) are intended to identify forward-looking statements. These statements include those related to the research and development plans for bluebird bios and Forty Sevens respective platforms and product candidates, the timing and success of Forty Sevens collaboration with bluebird bio, Forty Sevens plans to pursue clinical proof-of-concept for FSI-174 plus magrolimab with the LVV HSC gene therapy platform, the focus on diseases that have the potential to be corrected with transplantation of autologous gene-modified blood-forming stem cells, the tolerability and efficacy of FSI-174 and magrolimab, Forty Sevens plans to continue development of FSI-174 plus magrolimab, as well as related timing for clinical trials of the same.

Any forward-looking statements are based on the companies managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risks that the exploratory antibody-based conditioning platform will not be successful or will not be safe or effective in clinical trials, the risks that the collaboration between bluebird bio and Forty Seven will not continue or be successful, and the risk that the parties will not be successful in advancing the collaboration in development, the risk that potential product candidates that bluebird bio and Forty Seven develop may not progress through clinical development or receive required regulatory approvals within expected timelines or at all, the risk that clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release and the risk that such product candidates may not be beneficial to patients or successfully commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the companies actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in each companys most recent Form 10-K as well as discussions of potential risks, uncertainties and other important factors in subsequent filings with the Securities and Exchange Commission at http://www.sec.gov. All information contained in this press release are not guarantees of future performance and speak only as of the date hereof, and each of bluebird bio and Forty Seven disclaims any obligation to update this information to reflect future events or circumstances unless required by law.

Read the rest here:
bluebird bio and Forty Seven Announce a Research Collaboration to Study an All Antibody Conditioning Regimen for Use in Combination with Autologous...

The Value and Versatility of Clinical Flow Cytometry – Technology Networks

What is flow cytometry and how does it work?Flow cytometry(FCM) is a scientific technique used to measure the physical and biochemical characteristics of cells.1The sample is injected into the flow cytometer instrument, where it is typically focused to flow one cell at a time past light sources and detectors. Tens of thousands of cells can be examined in seconds to determine their morphology, granularity, scattering and transmission of light, or fluorescence of biomarkers, depending on the variation of FCM used.

The first conventional fluorescence-based flow cytometer was developed and commercialized in the late 60s/early 70s in Germany.2 Over the last five decades, FCM has developed rapidly in terms of the number of its applications and the quantity and dimensionality of the data it generates.1,3 Dr. Minh Doan, formerly of the Imaging Platform of the Broad Institute (USA) and now head of Bioimaging Analytics at GlaxoSmithKline in the USA, states, There have been significant advances in all three Vs of flow cytometry data: velocity (throughput/speed of data acquisition), volume (data content), and variety (sample types and signal acquisition technology).

Michael Parsons, manager of the Flow Cytometry Core of the Lunenfeld-Tanenbaum Research Institute in Toronto, Canada, agrees. The two biggest trends in flow cytometry are high content data and the merging of technologies from separate disciplines. For example, the last five years or so have seen the emergence of mass cytometry, which merges the disciplines of flow cytometry and mass spectrometry. In its latest iteration, an image cytometry module has been incorporated to generate unprecedented amounts of content (number of measured parameters) from relatively small amounts of patient tissue. Spectral flow cytometry has also established itself as an important emerging technology. Indeed, mass cytometry can now measure up to 50 features on a single cell simultaneously using antibodies tagged with rare earth metals,4 and imaging flow cytometry allows for 1000s of morphological features and multiple fluorescence markers to be analyzed per cell.3Flow cytometry, therefore, has inarguable potential as a clinical tool for disease diagnosis, prognosis, and therapeutic monitoring. However, some challenges remain in translating the full promise of FCM into clinical practice. Here, some of the current clinical applications of FCM will be discussed, as well as some of the compelling new applications being researched.

Similarly, FCM of liquid biopsies could be used to detect circulating tumor cells in the bloodstream.3 These cells are extremely rare, and with its high sensitivity, FCM is perfectly poised to make a significant impact in this area. This approach has potential for the clinical detection of early-stage cancer as well as the detection of circulating metastatic or drug-resistant cancer cells. For example, a study published earlier this year described label-free liquid biopsy with very high throughput (> 1 million cells/second) for drug-susceptibility testing during leukemia treatment.8

Prior to an organ transplant, FCM can be used to crossmatch the patient's serum with donor lymphocytes to detect antibodies that could result in organ rejection.1 Postoperatively, the analysis of various cell markers on the peripheral blood lymphocytes can indicate early transplant rejection, detect bone marrow toxicity arising from immunosuppressive therapies, and help differentiate infections from organ rejection. For blood transfusions, FCM can be used to detect contamination of blood with residual white blood cells, which can have adverse effects such as pulmonary edema.9Groups such as Dr. Roshini Abrahams at Nationwide Childrens Hospital in Ohio, USA, are using FCM to diagnose primary immunodeficiency disorders with the use of immunophenotyping and functional assays.10 These disorders are caused by genetic mutations that result in defects in the immune system, such as X-linked (Brutons) agammaglobulinemia and X-linked hyper-IgM syndrome. Over 300 of these disorders have been identified thus far, and the causative mutations lower immune defense against the attack of infections.

HIV is, of course, an example of a secondary (acquired) immunodeficiency disorder. FCM analysis of CD4 and other markers on lymphocytes in the peripheral blood is used to monitor the treatment of HIV patients, and a CD4 count <200 cells/mL together with a positive antibody test for HIV is used as a diagnostic for AIDS.1 Secondary immunodeficiencies can also be caused by e.g., substance abuse, malnutrition, other medical conditions, and certain medical treatments. FCM of a panel of markers can be used to confirm suspected cases.1In pregnancy, when a Rhesus blood group D-negative mother carries a D-positive fetus, fetal-maternal bleeding can sensitize the mother to the D-positive blood cells from the fetus and this can be fatal to subsequent D-positive newborns.11 FCM is used to measure the degree of fetal-maternal hemorrhage to determine the correct dose of prophylactics to be administered shortly after delivery.

In addition to oncology and immunology applications, FCM is also used to diagnose a variety of rare hematologic disorders12 as well as autoimmune/autoinflammatory disorders such as spondylarthritis (arthritis of the spine).13 Another area of research that is likely to give rise to increasing clinical applications in the future is that of platelet activity, which is important in many clinical conditions.1,14

Experts suggest that it may be possible to overcome this data analysis hurdle by applying machine learning approaches coupled with further standardization of FCM workflows.3,15 The most exciting applications of high content data revolve around the use of machine learning, in particular, deep learning, to extract relevant meaning from large data sets. Machine learning, coupled with big data, has the potential for driving diagnosis and treatment options tailored to the patients disease in a timely manner, says Dr. Parsons. In addition, Prof. Sadao Ota of RCAST at the University of Tokyo, Japan, points out, We still need to figure out how to design a workflow that convincingly validates diagnostic results, especially if the diagnosis employs the power of machine learning. Such developments are necessary before the rich information content of advanced FCM technology can be fully applied in the clinic.

In terms of other future advances in the field, Prof. Ota specifically makes mention of the potential of cell sorters combined with FCM.16 There are exciting and unique applications of sorters in fields such as cell therapy and regenerative medicine. Also, creating key applications of imaging cell sorters in pharmaceutical fields may accelerate global drug discovery. Dr. Doan concurs, Disease heterogeneity makes it hard to validate findings. Perhaps the use of flow cytometry with sorting capability can help such validation, where events-of-interest collected by flow cytometry can be validated with other downstream assays. Finally, as Dr. Doan notes, With multiple layers of data(types) incorporated altogether, there are now possibilities to do more with less, i.e., label-free sample measurement, which could lead to more direct, faster, and smarter diagnoses. Rare events (e.g., metastatic cancer cells) may soon be detected better than before.References1.Bakke A.C. Clinical Applications of Flow Cytometry. Laboratory Medicine. 2000; 31(2): 97104. doi: 10.1309/FC96-DDY4-2CRA-71FK.2.Herzenberg L.A., Parks D., Sahaf B., Perez O., Roederer M., Herzenberg L.A. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clinical Chemistry. 2002;48(10):181918273.Doan M., Vorobjev I., Rees P., Filby A., Wolkenhauer O., Goldfeld A.E., Lieberman J., Barteneva N., Carpenter A.E., Hennig H. Diagnostic potential of imaging flow cytometry. Trends in Biotechnology. 2018;36(7):649652. doi: 10.1016/j.tibtech.2017.12.008.4.Olsen L.R, Leipold M.D., Pedersen C.B., Maecker H.T. The anatomy of single cell mass cytometry data. Cytometry Part A. 2019;95(2):156172. doi: 10.1002/cyto.a.23621.5.Laerum O.D., Farsund T. Clinical application of flow cytometry: a review. Cytometry. 1981;2(1):113. doi: 10.1002/cyto.990020102.6.Li J., Wertheim G., Paessler M., Pillai V. Flow cytometry in pediatric hematopoietic malignancies. Clinics in Laboratory Medicine. 2017;37(4):879893. doi: 10.1016/j.cll.2017.07.009.7.Gupta S., Devidas M., Loh M.L., Raetz E.A., Chen S., Wang C., Brown P., Carroll A.J., Heerema N.A., Gastier-Foster J.M., Dunsmore K.P., Larsen E.C., Maloney K.W., Mattano L.A. Jr., Winter S.S., Winick N.J., Carroll W.L., Hunger S.P., Borowitz M.J., Wood B.L. Flow-cytometric vs. -morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Childrens Oncology Group (COG). Leukemia. 2018;32(6):13701379. doi: 10.1038/s41375-018-0039-7.8.Kobayashi H., Lei C., Wu Y., Huang C-J., Yasumoto A., Jona M., Li W., Wu Y., Yalikun Y., Jiang Y., Guo B., Sun C-W., Tanaka Y., Yamada M., Yatomi Y., Goda K. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab on a Chip. 2019;19(16):26882698. doi: 10.1039/c8lc01370e.9.Castegnaro S., Dragone P., Chieregato K., Alghisi A., Rodeghiero F., Astori G. Enumeration of residual white blood cells in leukoreduced blood products: Comparing flow cytometry with a portable microscopic cell counter. Transfusion and Apheresis Science. 2016;54(2):266270. doi: 10.1016/j.transci.2015.10.001.10.Abraham R.S., Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clinical and Vaccine Immunology. 2016;23(4):254271. doi: 10.1128/CVI.00001-16.11.Kim Y.A., Makar R.S. Detection of fetomaternal hemorrhage. American Journal of Hematology. 2012;87(4):417423. doi: 10.1002/ajh.22255.12.Bn M.C., Le Bris Y., Robillard N., Wuillme S., Fouassier M., Eveillard M. Flow cytometry in hematological nonmalignant disorders. International Journal of Laboratory Hematology. 2016;38(1):516. doi: 10.1111/ijlh.12438.13.Duan Z., Gui Y., Li C., Lin J., Gober H.J., Qin J., Li D., Wang L. The immune dysfunction in ankylosing spondylitis patients. Bioscience Trends. 2017;11(1):6976. doi: 10.5582/bst.2016.01171.14.Pasalic L. Assessment of platelet function in whole blood by flow cytometry. Methods in Molecular Biology. 2017;1646:349367. doi: 10.1007/978-1-4939-7196-1_27.15.Doan M., Carpenter A.E. Leveraging machine vision in cell-based diagnostics to do more with less. Nature Materials. 2019;18(5):414418. doi: 10.1038/s41563-019-0339-y.16.Ota S., Horisaki R., Kawamura Y., Ugawa M., Sato I., Hashimoto K., Kamesawa R., Setoyama K., Yamaguchi S., Fujiu K., Waki K., Noji H. Ghost cytometry. Science. 2018;360(6394):12461251. doi: 10.1126/science.aan0096.

Read the original here:
The Value and Versatility of Clinical Flow Cytometry - Technology Networks

Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT – Dove Medical Press

Dongmei Yan,1,* Botao Tang,2,* Lixin Yan,3 Lei Zhang,1 Meijuan Miao,1 Xi Chen,4 Guangyi Sui,5 Qi Zhang,1 Daoyuan Liu,1 Hui Wang1

1Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 2Department of Cardiology, Heilongjiang Red Cross Hospital, Harbin, Peoples Republic of China; 3Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 4Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 5Ethics Committee, The Tumor Hospital Affiliated to Harbin Medical University, Harbin, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Hui WangDepartment of Blood Transfusion, The Second Affiliated Hospital, Harbin Medical University, Xuefu Road No. 246, Nangang District, Harbin, Heilongjiang Province, Peoples Republic of ChinaTel +86-451-86605134Email wanghui@hrbmu.edu.cn

Purpose: Sodium selenite (Na2SeO3) has been known to restore the antioxidant capacity of bone marrow mesenchymal stem cells (BMSCs), reduce the production of reactive oxygen species (ROS) in the cells, and promote cell proliferation and inhibit cell apoptosis. However, it is still not clear whether selenium can mediate the differentiation and inhibit the induced hemagglutination of BMSCs. In this study, we attempted to explore the effect of Na2SeO3 on these aspects of BMSCs.Methods: We evaluated the fate of the MSCs isolated from the bone marrow of mice by studying their differentiation and proliferation after treatment with Na2SeO3. We also simultaneously evaluated the coagulation reaction induced by Na2SeO3-treated BMSCs in vitro.Results: While the mice-derived BMSCs expressed CD44, CD73, CD90, and CD105, they did not express CD45. The morphology of the derived cells was homogeneously elongated. These results showed that the isolated cells are indeed BMSCs. We found that 0.1 M and 1 M of Na2SeO3 promoted the proliferation and apoptosis of BMSCs, respectively. This showed that Na2SeO3 can be toxic and exert certain side effects on the BMSCs. The results of the osteogenic and adipogenic assay showed that 0.1 M Na2SeO3 could significantly promote the osteogenic and adipogenic differentiation of BMSCs by upregulating the lipid factors (LPL and PPRAG) and osteogenic factors, RUNX2, COL1, and BGP, in a concentration-dependent manner. Coagulation experiments in animals (mice and rats) revealed that Na2SeO3 can reduce the coagulation time of BMSCs in a concentration-dependent manner, which is related to the high expression of hematopoietic factors (SDF-1, GM-CSF, IL-7, IL-8, IL-11, and SCF).Conclusion: Na2SeO3 promotes the proliferation and differentiation as well as reduces the coagulation time of BMSCs, and this effect might enhance the therapeutic effect of BMSCs.

Keywords: sodium selenite, BMSCs, proliferation, differentiation, coagulation factors, clotting time

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Follow this link:
Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT - Dove Medical Press

BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society – Yahoo Finance

NEW YORK, Nov. 14, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc. (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today that the Company has received a $495,330 grant from the National Multiple Sclerosis Society, through its Fast Forward program, to advance BrainStorms Phase 2 open-label, multicenter clinical trial of repeated intrathecal administration of NurOwn (autologous MSC-NTF cells) in participants with progressive Multiple Sclerosis (NCT03799718).

Chaim Lebovits, President and CEO of BrainStorm stated, We are very pleased to receive this generous grant from the National MS Society. Currently, we are conducting our Phase 2 study in three leading US medical centers: The Keck School of Medicine of USC, The Stanford School of Medicine, and Cleveland Clinic. This research funding will help advance our investigational therapy NurOwn as a potential unmet need for patients with progressive MS. MS continues to devastate the lives of patients and their families and we thank the National MS Society for helping us advance our innovative research program.

Currently, progressive MS treatment options are limited and NurOwn is a promising new autologous cellular treatment modality that has the potential to directly address MS disease pathways, said Ralph Kern MD MHSc, COO and CMO of BrainStorm. He added, This funding from the National MS Society will help us explore key neuroinflammation and neural repair biomarkers in progressive MS to confirm NurOwns unique mechanism of action and guide the design of future clinical trials to address this important unmet patient need.

Leveraging resources in this Phase 2 clinical study of a cell-based therapy for progressive MS exemplifies our work to accelerate research to improve clinical care for people living with MS. said Mark Allegretta, PhD, Vice President of Research at the National MS Society. Were pleased to work with BrainStorm to test a broad panel of biomarkers of neuroinflammation and repair as correlates of the effect of treatment with NurOwn.

About Multiple SclerosisMultiple sclerosis is an unpredictable, often disabling disease of the central nervous system. There is currently no cure for MS. Symptoms vary from person to person and range from numbness and tingling, to mobility challenges, blindness and paralysis. An estimated 1 million people live with MS in the United States. Most people are diagnosed between the ages of 20 and 50 and it affects women three times more than men.

About The National Multiple Sclerosis Society:The National MS Society, founded in 1946, funds cutting-edge research, drives change through advocacy, and provides programs and services to help people affected by MS live their best lives. Connect to learn more and get involved: nationalMSsociety.org, Facebook, Twitter, Instagram, YouTube or 1-800-344-4867.

About NurOwnNurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.

About BrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019. For more information, visit the company's website at http://www.brainstorm-cell.com.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com

View original post here:
BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society - Yahoo Finance

At 27 with a new baby, she thought she had the flu. It was blood cancer. – IndyStar

New mom, 27, wife of IndyCar mechanic battling cancer Dana Hunsinger Benbow, dana.benbow@indystar.com

The chemotherapy coursing through her veins is brutal. One anti-nausea medication a day doesn'ttouch it so Caitlyn Goslee takes two. On a good day, theymight getrid of her gnawing sickness. Often, they don't.

Her 11-month-old daughter traipsingall over the house makes being sick right now both awful and wonderful.

Awful because her daughter has lived more than a third of her life with a mom battling cancer. She has spent days in a hospital bed, with her chubby cheeks and sweet smile and no clue of the fight her mom is in.

Wonderful because when Goslee gets throughall of this, her daughter will have been too young to remember any of it.

Caitlyn Goslee with her daughter, now 11 months old.(Photo: Provided by Caitlyn Goslee)

The 104.9 degree fever in July.

The diagnosis of sepsis. Ofinfluenza type A and influenza type B.

The day when what Goslee thought was astrain of the flu morphed into the diagnosis of aviciousblood cancer.

"I'm 27," she said Monday. "Things didn't add up."

The scary, unknown health issues started in July ata time in her life when Gosleeleast expected it.

She was young,healthy and had just had a baby girlin December. Goslee and IndyCar mechanic Brian Goslee who has worked for the series 18 years and is now with driver Jack Harvey were proud parents. In March, the couple was married.

By that summer, Goslee was a new mom, buttoning up onesies and changing diapers. She was a new wife andstarting a life as a stepmom to Brian Goslee's three children, a 9-year-old and 7-year-old twins.

Caitlyn Goslee is surrounded by her husband, Brian, baby girl and three stepchildren.(Photo: Provided by Caitlyn Goslee)

Goslee was busy and wrung out and she thought every bit of it was fabulous.

Then that bout with the "flu" hit. For six weeks between July and August, Goslee said doctors gave her different diagnoses. During thatsix-week period she was in and out of the hospital three times, 17 days in all.

The flu swab in her nose tested positive. Then she was told she was septic and, on top of that, had respiratory syncytial virus or RSV.

"All of that happened before they figured it out," she said. But then they studied her blood counts and it was those counts that gave the final, devastating clue.

Goslee had myelodysplastic syndromes, a group of cancers in which immature blood cells in the bone marrow do not mature or become healthy blood cells.

For apatient with MDS, the blood stem cells (immature cells) do not become mature red blood cells, white blood cells, or platelets in the bone marrow, according to the National Cancer Institute. Theimmature blood cells, calledblasts, don'twork the way they should and either die in the bone marrow or soon after they go into the blood. Thatmeans less room for healthy white blood cells, red blood cells, and platelets to form in the bone marrow.

"The only way to get a full remission is with a bone marrow transplant," Goslee said.

But first, Goslee has to get healthy enough for the transplant. Healthy enough means four rounds of chemotherapy. She has completed two and will start her third round next week.

Along the way, the Goslees have kept apositive attitude.

"For me, this is just a bump in the road," she said. "With the chemo and this transplant, it will be a memory; in five years we are going to look back on this. Of course, this isntthe bump anybody wants, but we stay positive for the kids."

Goslee will never forget the night she met her husband-to-be.In addition to working as a mechanic, he has a business turning old IndyCar gears into clocks.

Caitlyn Goslee wasputting on a fundraiser for Riley Hospital for Children at IU Health and had been texting Brian about donating one of his pieces to help. He said yes.

That night at the fundraiser attended by tons of people in the racing community ittook place during the Performance Racing Industry trade show she looked over and saw Brian.

Caitlyn and Brian Goslee with their four children.(Photo: Provided by Caitlyn Goslee)

"Who is that guy?" she asked a friend. Come to find out, it was the guy she'd been texting about donating his clocks.

"I think I kind of like him," Caitlyn Goslee remembers telling her friend. Thatlike turned into life. And now the two are fighting for hers together.

Goslee will have a biopsy in December to see if her cells are healthy enough the leukemic cells in her bone marrow need to be down to a certain level for a transplant. If so, the Goslees will have plenty of reason to celebrate both that and the first birthday of their baby girl.

The racing community, friends and family are helping Goslee in her fight with cancer. Gosleesays the insurance company will not pay for her chemotherapy, which is $38,000 a week.

To help, the public is invited to attend a fundraising event Monday, Nov. 11 from 5 p.m. to 10 p.m. at Speedway Indoor Karting,1067 N Main St, Speedway -- 50% of all money raised from karting will be donated, there will be live and silent auction items and a 50/50 raffle.

Several big-ticket items will be raffled off live at the event. For those who cannot attend, raffle tickets can be purchased online. The raffle will take place at 8:30 p.m. Tickets can be purchased online or in person until 8 p.m. Questions, contact Chris Wheeler at info@tntatsik.com.

Donate online toGoslee benefit: fundly.com/caitlyn-goslee-benefit

Follow IndyStar sports reporter Dana Benbow on Twitter:@DanaBenbow. Reach her via e-mail: dbenbow@indystar.com.

See original here:
At 27 with a new baby, she thought she had the flu. It was blood cancer. - IndyStar

BrainStorm Cell Therapeutics Announces Ralph Kern MD MHSc to Present at the 7th International Stem Cell Meeting – Yahoo Finance

NEW YORK, Nov. 12, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc. (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that the Companys Chief Operating and Chief Medical Officer Ralph Kern MD MHSc will present at the 7th International Stem Cell Meeting, which is hosted by the Israel Stem Cell Society. The Conference will be held November 12-13, in Tel Aviv, Israel.

Ralph Kern, MD, MHSc, said: I welcome the opportunity to participate in the 7th International Stem Cell Meeting where I will share the advances BrainStorm has made with NurOwn. It is a privilege to participate and to exchange ideas with many of the international scientific leaders in stem cell research.

About NurOwn

NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019. For more information, visit the company's website at http://www.brainstorm-cell.com

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

Story continues

More:
BrainStorm Cell Therapeutics Announces Ralph Kern MD MHSc to Present at the 7th International Stem Cell Meeting - Yahoo Finance

Heartbreaking moment dad meets the woman who saved his life – he feared his son would grow up without a father – Manchester Evening News

This is the tear-jerking moment a dad shares a hug with the woman who saved his life.

James O'Donnell, from Burnage, feared the worst after being diagnosed with a blood disorder similar to leukaemia in 2016.

Usual treatments were failing and James was undergoing a blood transfusion every week while battling constant infections, the Liverpool Echo reports.

James was running out of options and despaired at the pain his death could cause his eight-year-old son, Harrison.

But in a stunning stroke of fortune, his saviour was only the other side of the M62 - LiverpoolCouncil admin worker Leah McDougall.

The 29-year-old mum, from Bootle, had taken the time to sign up to the register of potential stem cell donors on her lunch break at a pop-up stall, organised by blood cancer charity DKSM, the previous year.

James, who despite his Manc heritage is an avid Liverpool FC fan, told staff at the charity that he would be up for meeting his donor, who could have been anyone from a number of European countries using the register.

James, along with his wife Andrea and young Harrison, got the chance to meet Leah for the first time at a DKSM charity gala in London on Wednesday last week (November 6).

James, who says he finally feels like himself after a long period of illness, told the ECHO: "I was just getting chest infections and water infections all the time.

"I am quite a healthy person, and I was in good shape and I knew I should not be getting ill all the time."

He said after a few weeks of tests his was invited to take a bone marrow biopsy and was told the devastating news on his 40th birthday.

The disease meant James' bone marrow was not producing enough white blood cells, but doctors told him a treatment called anti-thymocite globulin (ATG) had a "75% chance" of success.

However, when that failed, fear and doubt began to creep in.

He said: "We are always saying I would get through this, we were thinking I would get better. But I started to think it's not happening, it's not going to be for me, this.

"I thought, I have been good in life, I need some luck. We were having a really hard time.

"My son was four or five then, and it was hard for him having a dad going from playing football with him to being in hospital."

Eventually doctors revealed the only option was for James to have a bone marrow transplant.

The O'Donnell's went through further disappointment when tests on his three siblings revealed none were a match, so the waiting game to find a suitable donor began.

But on a March day in 2017, he got a call to say: "We have got a perfect match, a 10 out of 10."

The operation was a success and after four weeks doctors told James the new bone marrow cells were taking effect.

He said: "We were so lucky to find a donor only about 25 miles away. Some people never find one and we had one on our doorstep."

The powerful emotion of meeting Leah last week is summed up by James: "It was the second best moment of my life after my son being born.

"What she has done means that I can see my son growing up and that he has a father."

Leah did not hesitate to agree to help a total stranger when she was asked by DKSM.

Describing the moment she met James and his family, she told the ECHO: "We were both speechless. When I walked on stage we were just hugging each other for ages.

"It is weird, we felt like we had known each other for years, I felt like I had known him my whole life.

"It just takes five minutes out of your time to sign up to the register; that's like going to the kitchen to make a drink.

"You just think about the impact it is going to have on someone, it is saving someone's life. I feel lucky to have been able to give something back."

James says his family and Leah are planning to meet up again, possibly at a Liverpool FC game.

He said: "Without her, I wouldn't have a future."

DKSM has urged anyone aged 17-55, and in general good health, to sign up to the register here.

Dr Manos Niklolousis, Haematologist at University Hospital Birmingham NHS Foundation Trust, said:"Blood stem cells can be used to treat a wide range of blood cancers and blood disorders and we urgently need more people to come forward as donors.

"Currently, only 2% of the UK population are registered so matching donors with patients isnt easy within a growing multicultural population.

"Many of those in need are unable to find a sibling match and so rely on the generosity of strangers, and a blood stem cell transplant can be some patients only hope of survival.

"As a doctor who treats people with blood cancer or disorders, it is upsetting to know that some patients could have been saved if only more potential donors were registered and available to donate.

"I look forward to the day when there will be a donor for every patient in need."

Continued here:
Heartbreaking moment dad meets the woman who saved his life - he feared his son would grow up without a father - Manchester Evening News

From inspiration to innovation | UDaily – UDaily

Article by Karen B. Roberts Photos by Evan Krape November 11, 2019

The Merriam-Webster Dictionary defines an inventor as one who creates or introduces something new.

Thomas Edison is one. So is Emily Day.

Edison created the incandescent light bulb and the typewriter, among dozens of other things.

Day, an assistant professor in biomedical engineering at the University of Delaware, is working on technology that may one day replace bone marrow transplants by enabling nanoparticle carrier systems to deliver medication and cargo directly to stem cells without the need to remove them from the body.

The University recognized more than 225 inventors, including Day, on Tuesday, Oct. 29, for their remarkable contributions to UD and to society at large.

The event, held at the Roselle Center for the Arts and coordinated by the UDResearch Office, celebrated researchers with discoveries in engineering, health care, energy, agriculture and many other fields.

You, our inventors, have taken nuggets of ideas, of discoveries that youve made and developed them through hard work, trial and error, failure and success. Youve shown tenacity and drive, patience and persistence, and the results are what were celebrating today, said UD Provost Robin Morgan.

Enriching the environment for entrepreneurship

Since 2008, UD researchers have generated more than 500 inventions.

Working in collaboration with its partners, the University has made a concerted effort to enrich the environment for these types of efforts in Delaware, contributing to the states economic prosperity and positively impacting the greater good.

UD research expenditures for fiscal year 2019 totaled $161 million, a record-setting 10% increase over 2018, to explore pressing topics across the sciences, engineering, humanities and social sciences.

During this same time frame, UD researchers generated 33 patent applications and secured 11 patents, with the support of the Universitys Office of Economic Innovation and Partnerships (OEIP). OEIP has licensed six UD-developed technologies to outside companies and evaluated numerous other potential inventions currently under development.

Several UD-developed technologies are now featured in the Association of University Technology Managers Better World Project, which highlights successful examples where academic research and technology transfer combine to benefit the broader world. One of these is the UD-patented microbe UD10-22, a unique strain of Bacillus subtilis that helps plants grow stronger, developed by Harsh Bais, associate professor of plant and soil sciences, and Janine Sherrier, a former UD faculty member. UD licensed the technology to BASF, a global chemical company, in 2013. After completing successful trials and regulatory clearances, the technology is now available in the market as a key component of BASFs Velondis and Nodulator Duo product lines in Canada and the United States. Trials are ongoing for the product to be available in four additional product lines and for a range of crops to be sold in several countries in South America, Europe and Asia.

We are building a dynamic and rich ecosystem to support this type of activity, now and in the future, said Charles G. Riordan, UD vice president for research, scholarship and innovation.

Continued growth of UDs Science, Technology and Advanced Research (STAR) Campus through strategic partnerships and infrastructure development is one example that firmly positions the University as an innovation powerhouse for the community, state and region. The Delaware Innovation Space, the business incubator that is a public-private partnership between the state of Delaware, DuPont and UD, is another.

Riordan reported that Delaware Innovation Space, with its 130,000 square feet of lab-based tech space for startups, already is 90% occupied, hosting 13 companies including UD startups W7energy and MCET along with serving an additional dozen companies through its virtual program. The result more than 240 jobs created or retained.

Other resources available on campus to support innovators and entrepreneurs include, but are not limited to, OEIP, competitive funding opportunities, seed funding and training programs at UDs Horn Entrepreneurship,and new and existing core research facilities.

Other UD technologies that have had success in the marketplace during the past year include Avkin, a leading manufacturer of sensor-enabled, high-fidelity, wearable technology for health care simulation education founded byAmy Cowperthwait, director of Healthcare Theatre for the College of Health Sciences.The patented devices are used for training health care workers and caregivers to perform clinical procedures, such asdrawing blood, tracheostomy care or catheter insertion. Designed to be worn by a live actor, Avkin products provide a realistic, patient-centered simulation.

Today, the UD-developed products can be found in select medical and nursing schools and health systems.The company now has five products in the market, and recently launched a new package aimed at equipping todays practitioners with the knowledge and skills necessary to prevent hospital acquired infections and to improve patient outcomes.

Isao Noda, UD affiliated professor in materials science and engineering, said it is particularly important to foster innovation and invention among students. An inventor himself, Noda is named on more than 60grantedU.S. patents.

One of Nodas inventions is abio-basedplasticmade from vegetable oilsknown asNodax, which can be used to make eco-friendlyproductsranging from biodegradable plastic straws topiezoelectricnanofibers forsensors and other electronics. Nodainventedthe material while a research fellow atProcterand Gamble. Today, UDscientistsare part of theexploratorywork onNodax, collaboratingon fundamental research to see just what elsethisnovelmaterialcan do.

In industry, invention is required. If you dont invent, you will be fired. But many graduates get jobs in industry without any of the training on how to invent, so this is amazingly important, said Noda.

Day agreed and said her approach to innovation shifted in recent years, particularly when speaking with students.

In the beginning of my academic career I was more focused on publishing papers, Day said. As my group has become more established, I now tell my students, Hey, before you go present this or publish, its important for you to submit your invention disclosure to protect your ideas.

Excerpt from:
From inspiration to innovation | UDaily - UDaily

Discover the Global Cord Stem Cell banking Market gain impetus due to the growing demand over 2026 – Markets Gazette 24

Global Cord Stem Cell Banking Market By Storage Type (Private Banking, Public Banking), Product Type (Cord Blood, Cord Blood & Cord Tissue), Service Type (Collection & Transportation, Processing, Analysis, Storage), Source (Umbilical Cord Blood, Bone Marrow, Peripheral Blood Stem, Menstrual Blood), Indication (Cerebral Palsy, Thalassemia, Leukemia, Diabetes, Autism), Geography (North America, South America, Europe, Asia-Pacific, Middle East and Africa) Industry Trends and Forecast to 2026

Market Analysis: Global Cord Stem Cell Banking Market

Global Cord stem cell banking market is estimated to reach USD 13.8 billion by 2026 registering a healthy CAGR of 22.4%. The increasing number of parents storing their childs cord blood, acceptance of stem cell therapeutics, high applicability of stem cells are key driver to the market.

Market Definition: Global Cord Stem Cell Banking Market

Cord stem cells banking is nothing but the storing of the cord blood cell contained in the umbilical cord and placenta of a newborn child. This cord blood contains the stem cells which can be used in future to treat disease such as leukemia, thalassemia, autoimmune diseases, and inherited metabolic disorders, and few others.

Market Drivers

Market Restraint

Get Sample Analysis of Global Market Information: https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-cord-stem-cell-banking-market

Segmentation: Global Cord Stem Cell Banking Market

By Storage Type

By Product Type

By Service Type

By Indication

By Source

By Geography

Key Developments in the Market:

Get TOC of Full Report: https://www.databridgemarketresearch.com/toc/?dbmr=global-cord-stem-cell-banking-market

Competitive Analysis: Global Cord Stem Cell Banking Market

Global cord stem cell banking market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions and others to increase their footprints in this market. The report includes market shares of cord stem cell banking market for Global, Europe, North America, Asia Pacific, South America and Middle East & Africa.

Key Market Competitors: Global Cord Stem Cell Banking Market

Few of the major market competitors currently working in the global cord stem cell banking market are CBR Systems, Inc., Cordlife, Cells4Life Group LLP, Cryo-Cell International, Inc., Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord, SMART CELLS PLUS., Cryoviva India, Global Cord Blood Corporation, National Cord Blood Program, Vita 34, ReeLabs Pvt. Ltd., Regrow Biosciences Pvt. Ltd. , ACROBiosystems., Americord Registry LLC., New York Blood Center, Maze Cord Blood, GoodCell., AABB, Stem Cell Cryobank, New England Cryogenic Center, Inc. among others

Research Methodology:Global Cord Stem Cell Banking Market

Data collection and base year analysis is done using data collection modules with large sample sizes. The market data is analysed and forecasted using market statistical and coherent models. Also market share analysis and key trend analysis are the major success factors in the market report. To know more pleaseRequest an Analyst Callor can drop down your inquiry.

The key research methodology used byDBMR Researchteam is data triangulation which involves data mining, analysis of the impact of data variables on the market, and primary (industry expert) validation. Apart from this, other data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Company Market Share Analysis, Standards of Measurement, Top to Bottom Analysis and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

Primary Respondents

Demand Side: Doctors, Surgeons, Medical Consultants, Nurses, Hospital Buyers, Group Purchasing Organizations, Associations, Insurers, Medical Payers, Healthcare Authorities, Universities, Technological Writers, Scientists, Promoters, and Investors among others.

Supply Side: Product Managers, Marketing Managers, C-Level Executives, Distributors, Market Intelligence, and Regulatory Affairs Managers among others.

Reasons to Purchase this Report

Customization of the Report:

To Know More : https://www.databridgemarketresearch.com/reports/global-cord-stem-cell-banking-market

About Us

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. GetCustomizationandDiscounton Report by emailingCorporatesales@databridgemarketresearch.com. We are content with our glorious 99.9 % client satisfying rate.

Contact Us

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475Mail:Corporatesales@databridgemarketresearch.comhttps://databridgemarketresearch.com

Originally posted here:
Discover the Global Cord Stem Cell banking Market gain impetus due to the growing demand over 2026 - Markets Gazette 24

Cocker Spaniel Coco goes to US to try and save her puppy’s life – Lancaster and Morecambe Citizen

ONE man and his dog are travelling to North Carolina this week, to provide a puppy with a pioneering stem cell transplant that could save her life.

Robert Alcock and his cocker spaniel, Coco, are making the journey so Coco, 7, can donate her stem cells to one of her own puppies, Millie, 6, who has cancer.

The experimental procedure is not yet available in the UK and can only be performed at one US hospital, the NC State Veterinary Hospital.

It involves using stem cells from the bone marrow of one dog and injecting them into the other.

Even if the operation is a success, there is only a 50 percent chance that Millie will be cured.

Millie was taken to the USA when her owners, Serena and Andrew Lodge, emigrated for work. After moving across the pond, Millie contracted cancer.

Millie the dog last week and (inset) before she became ill

Mr Alcock, who lives in Darwen, said the only way to help her is the transplant.

The 52-year-old catering manager said: Serena and Andrew started chemo on Millie three months ago but theyve been told the only chance theyll have of curing her is if they find a positive donor so she can have a transplant.

They contacted us, and we sent some blood samples for testing, along with samples from one of Cocos other pups.

They both came back positive but because Coco is Millies mother the vet said she would be a better match.

Mr and Mrs Lodge then asked Mr Alcock if he would fly to the USA with Coco so she could help save Millies life.

On Wednesday, Mr Alcock made the journey to North Carolina, to the only animal hospital in the States that can perform that kind of transplant on dogs.

Mr Alcock added: The Lodges have paid for everything, and I didnt like to ask how much the operation is costing but I think it will be in the thousands.

We will be in America for about a week.

Coco will go into hospital on Sunday for the procedure and then the cells will be donated on Monday.

Coco is expected to make a full recovery from the operation, but there is only a 50 per cent chance that Millie could be cured once the transplant has been completed.

Robert and Coco

Mr Alcock added: If it was a human then the chances of survival would be really good.

But this is a pioneering procedure, they havent done very many of these transplants before, so well have to wait and see what happens.

See the original post:
Cocker Spaniel Coco goes to US to try and save her puppy's life - Lancaster and Morecambe Citizen

Global PNH and aHUS Industry: Sales, Revenue, Market Share and Competition by Manufacturer Covered in a Latest Research – Exchange 99

PNH and aHUS, both are extremely rare and genetic diseases. Due to PNH, destruction of red blood cells of a person occurs quite sooner than it should. It is an acquired hematopoietic stem cell disorder. Hematopoietic stem cells are developed in bone marrow and eventually turn into red blood cells, white blood cells and platelets. A person with PNH has some defected hematopoietic cells which create defective red blood cells. These defective cells are highly susceptible to premature destruction by the complement system. aHUS is a disorders in which blood clots are formed in small blood vessels throughout the body. TMA can lead to heart stroke, attack, kidney failure and death. Soliris is the only drug treatment available in the market for treating these diseases.

Access Report Details at: https://www.themarketreports.com/report/global-pnh-and-ahus-market-by-manufacturers-countries-type-and-application-forecast

Market share of global PNH and aHUS industry is dominate by companies like Alexion Pharmaceuticals, Alnylam Pharmaceuticals, Omeros Corporation, RA Pharmaceuticals and others which are profiled in this report as well in terms of Sales, Price, Revenue, Gross Margin and Market Share (2018-2019).

There are 15 Chapters to deeply display the global PNH and aHUS market.

Chapter 1, to describe PNH and aHUS Introduction, product scope, market overview, market opportunities, market risk, market driving force;

Chapter 2, to analyze the top manufacturers of PNH and aHUS, with sales, revenue, and price of PNH and aHUS, in 2017 and 2019;

Chapter 3, to display the competitive situation among the top manufacturers, with sales, revenue and market share in 2017 and 2019;

Chapter 4, to show the global market by regions, with sales, revenue and market share of PNH and aHUS, for each region, from 2013 to 2019;

Chapter 5, 6, 7, 8 and 9, to analyze the key regions, with sales, revenue and market share by key countries in these regions;

Chapter 10 and 11, to show the market by type and application, with sales market share and growth rate by type, application, from 2013 to 2019;

Chapter 12, PNH and aHUS market forecast, by regions, type and application, with sales and revenue, from 2019 to 2024;

Chapter 13, 14 and 15, to describe PNH and aHUS sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source

Purchase this premium research report at: https://www.themarketreports.com/report/buy-now/1502309

Market Segment by Regions, regional analysis covers:

North America (USA, Canada and Mexico)

Europe (Germany, France, UK, Russia and Italy)

Asia-Pacific (China, Japan, Korea, India and Southeast Asia)

South America (Brazil, Argentina, Columbia, etc.)

Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

Market Segment by Type, covers:

PNH

aHUS

Market Segment by Applications, can be divided into

Hospitals

Ambulatory Surgical Centers

Diagnostic Centers

Others

Ask your report related queries at: https://www.themarketreports.com/report/ask-your-query/1502309

Read more:
Global PNH and aHUS Industry: Sales, Revenue, Market Share and Competition by Manufacturer Covered in a Latest Research - Exchange 99

Tearful dad meets woman who saved his life and gave him future with his son – Liverpool Echo

This is the poignant moment a dad and his young family broke down as they met the woman who saved his life.

James O'Donnell, 43, was running out of options after being diagnosed with aplastic anemia, a blood disorder similar to leukaemia, in 2016.

Usual treatments were failing and James was undergoing a blood transfusion every week while battling constant infections.

James, from Burnage in Manchester, feared his luck was out and despaired at the pain his death could cause his eight-year-old son Harrison.

But in a stunning stroke of fortune, his saviour was only the other side of the M62; Liverpool Council admin worker Leah McDougall.

The 29-year-old mum, from Bootle , had taken the time to sign up to the register of potential stem cell donors on her lunch break at a pop-up stall, organised by blood cancer charity DKMS, the previous year.

James, who despite his Manc heritage is an avid Liverpool FC fan, told staff at he charity that he would be up for meeting his donor, who could have been anyone from a number of European countries using the register.

James, along with his wife Andrea and young Harrison, got the chance to meet Leah for the first time at a DKMS charity gala in London on Wednesday last week (November 6).

James, who says he finally feels like himself after a long period of illness, told the ECHO: "I was just getting chest infections and water infections all the time.

"I am quite a healthy person, and I was in good shape and I knew I should not be getting ill all the time."

He said after a few weeks of tests his was invited to take a bone marrow biopsy and was told the devastating news on his 40th birthday.

The disease meant James's bone marrow was not producing enough white blood cells, but doctors told him a treatment called anti-thymocite globulin (ATG) had "75% chance" of success.

However when that failed, fear and doubt began to creep in for James.

He said: "We are always saying I would get through this, we were thinking I would get better. But I started to think it's not happening, it's not going to be for me, this.

"I thought, I have been good in life, I need some luck. We were having a really hard time. My son was four or five then, and it was hard for him having a dad going from playing football with him to being in hospital."

Eventually doctors revealed the only option was for James to have a bone marrow transplant.

The O'Donnells went through further disappointment when tests on his three siblings revealed none were a match, so the waiting game to find a suitable donor began.

But on a March day in 2017, he got a call to say: "We have got a perfect match, a 10 out of 10."

The operation was a success and after four weeks doctors told James the new bone marrow cells were taking effect.

He said: "We were so lucky to find a donor only about 25 miles away. Some people never find one and we had one on our doorstep."

The powerful emotion of meeting Leah last week is summed up by James: "It was the second best moment of my life after my son being born.

"What she has done means that I can see my son growing up and that he has a father."

Leah did not hesitate to agree to help a total stranger when she was asked by DKMS.

Describing the moment she met James and his family, she told the ECHO: "We were both speechless. When I walked on stage we were just hugging each other for ages.

"It is weird, we felt like we had known each other for years, I felt like I had known him my whole life.

"It just takes five minutes out of your time to sign up to the register; that's like going to the kitchen to make a drink.

"You just think about the impact it is going to have on someone, it is saving someone's life. I feel lucky to have been able to give something back."

James says his family and Leah are planning to meet up again, possibly at a Liverpool FC game.

He said: "Without her, I wouldn't have a future."

DKMS has urged anyone aged 17-55, and in general good health, to sign up to the register here .

Dr Manos Niklolousis, Haematologist at University Hospital Birmingham NHS Foundation Trust, said:"Blood stem cells can be used to treat a wide range of blood cancers and blood disorders and we urgently need more people to come forward as donors.

"Currently, only 2% of the UK population are registered so matching donors with patients isnt easy within a growing multicultural population.

"Many of those in need are unable to find a sibling match and so rely on the generosity of strangers, and a blood stem cell transplant can be some patients only hope of survival.

"As a doctor who treats people with blood cancer or disorders, it is upsetting to know that some patients could have been saved if only more potential donors were registered and available to donate. I look forward to the day when there will be a donor for every patient in need."

View original post here:
Tearful dad meets woman who saved his life and gave him future with his son - Liverpool Echo

Gary Pesselt: Vitality Healthcare is it worth the cost? – The Union of Grass Valley

Another seminar is again advertised in The Union. I first thought it might help my wife with neuropathy until I did some extensive research.

First off, Medicare does not cover stem cell injections. Bone marrow stem cell injections range from $2,000 to $5,000 or more. Read Consumer Research report at: https://www.consumerreports.org/medical-treatments-procedures/trouble-with-stem-cell-therapy.

Stem cell treatments are widely accepted only for two broad medical indications: to help treat a handful of blood disorders including leukemia and some forms of anemia and in some cases to help burn victims. Ask questions. Any doctor who offers stem cell therapy should be able to explain where the cells will come from, what will be done to them before theyre injected into your body, and how, exactly, they will resolve your illness or injury. He or she should also be able to offer you proof of safety and efficacy, even for experimental treatments. Dont rely on patient testimonials.

Stem cells survive much longer than ordinary cells, increasing the chance that they might accumulate genetic mutations. It might take only a few mutations for one cell to lose control over its self-renewal and growth and become the source of cancer. Please do your own research.

Gary Pesselt

Grass Valley

See more here:
Gary Pesselt: Vitality Healthcare is it worth the cost? - The Union of Grass Valley

Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 – Zebvo

Myelofibrosis or osteomyelofibrosis is a myeloproliferative disorder which is characterized by proliferation of abnormal clone of hematopoietic stem cells. Myelofibrosis is a rare type of chronic leukemia which affects the blood forming function of the bone marrow tissue. National Institute of Health (NIH) has listed it as a rare disease as the prevalence of myelofibrosis in UK is as low as 0.5 cases per 100,000 population. The cause of myelofibrosis is the genetic mutation in bone marrow stem cells. The disorder is found to occur mainly in the people of age 50 or more and shows no symptoms at an early stage. The common symptoms associated with myelofibrosis include weakness, fatigue, anemia, splenomegaly (spleen enlargement) and gout. However, the disease progresses very slowly and 10% of the patients eventually develop acute myeloid leukemia. Treatment options for myelofibrosis are mainly to prevent the complications associated with low blood count and splenomegaly.

To Remain Ahead Of Your Competitors, Request for a Sample Here @https://www.persistencemarketresearch.com/samples/11341

The global market for myelofibrosis treatment is expected to grow moderately due to low incidence of a disease. However, increasing incidence of genetic disorders, lifestyle up-gradation and rise in smoking population are the factors which can boost the growth of global myelofibrosis treatment market. The high cost of therapy will the growth of global myelofibrosis treatment market.

The global market for myelofibrosis treatment is segmented on basis of treatment type, end user and geography:

As myelofibrosis is considered as non-curable disease treatment options mainly depend on visible symptoms of a disease. Primary stages of the myelofibrosis are treated with supportive therapies such as chemotherapy and radiation therapy. However, there are serious unmet needs in myelofibrosis treatment market due to lack of disease modifying agents. Approval of JAK1/JAK2 inhibitor Ruxolitinib in 2011 is considered as a breakthrough in myelofibrosis treatment. Stem cell transplantation for the treatment of myelofibrosis also holds tremendous potential for market growth but high cost of therapy is foreseen to limits the growth of the segment.

On the basis of treatment type, the global myelofibrosis treatment market has been segmented into blood transfusion, chemotherapy, androgen therapy and stem cell or bone marrow transplantation. Chemotherapy segment is expected to contribute major share due to easy availability of chemotherapeutic agents. Ruxolitinib is the only chemotherapeutic agent approved by the USFDA specifically for the treatment of myelofibrosis, which will drive the global myelofibrosis treatment market over the forecast period.

Geographically, global myelofibrosis treatment market is segmented into five regions viz. North America, Latin America, Europe, Asia Pacific and Middle East & Africa. Northe America is anticipated to lead the global myelofibrosis treatment market due to comparatively high prevalence of the disease in the region.

For Critical Insights On Keyword Market, Request For Customization Here @https://www.persistencemarketresearch.com/request-customization/11341

Some of the key market players in the global myelofibrosis treatment market are Incyte Corporation, Novartis AG, Celgene Corporation, Mylan Pharmaceuticals Ulc., Bristol-Myers Squibb Company, Eli Lilly and Company, Taro Pharmaceuticals Inc., AllCells LLC, Lonza Group Ltd., ATCC Inc. and others.

See more here:
Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 - Zebvo

Archives