Archive for the ‘Bone Marrow Stem Cells’ Category
Bone marrow recipient comes face-to-face with CT donor for the first time – WTNH.com
BRIDGEPORT, Conn. (WTNH) The Gift of Life Marrow Registry organized the meeting Thursday between a bone marrow donor from Connecticut and the recipient whose life was saved by the donation.
Jennie Bunce, 25, of Redding donated her marrow. According to a representative for Gift of Life, Bunce was studying physical therapy and joined Gift of Life through a sorority event at North Carolinas High Point University in 2016.
I never win or get picked for anything, but it just felt like the right thing to do, Bunce told Gift of Life. Im just incredibly happy and grateful to be part of something so special. Its similar to holding the door open for someone or helping a friend in a time of need.
Across the country in Mesa, Arizona, father-of-6, Mark Roser, 33, was battling Acute Lymphoblastic Leukemia. He found out about the diagnosis after he broke a hip in 2018 and had continued weakness. Roser was told he needed a bone marrow transplant to survive.
The hardest part was knowing, no matter how hard I worked, that what I did would not be a deciding factor in my ability to receive this gift, said Roser.
The match was made by Gift of Life in about six months, and the transplant took place in Phoenix.
She is a hero to all the people in my life, said Roser.
She gave me life, she gave my children a future with their dad, she gave my wife a chance to hold her husband, to have someone hold her back. She allowed me to go to work, to play, to see things from a different perspective. I am grateful for every moment I have, and its because of her.
According to Gift a Life, medical privacy laws dictate that recipients and donors must remain anonymous and wait at least a year before meeting.
The two came face-to-face for the first time Thursday in Bridgeport at the Boca Oyster Bar.
Since its start in 1991, the Gift of Life Registry 349,000 individuals who have donated blood stem cells or bone marrow to save a life. The program has facilitated 16,800 matches and over 3,500 transplants.
To learn more about the organization and/or how to donate: https://www.giftoflife.org/.
Read the original post:
Bone marrow recipient comes face-to-face with CT donor for the first time - WTNH.com
Stem Cell Banking Market was valued at $1986 million in 2016 – Markets Gazette
A fresh report titled Stem Cell Banking Market has been presented by KD market insights. It evaluates the key market trends, advantages, and factors that are pushing the overall growth of the market. The report also analyzes the different segments along with major geographies that have more demand for Stem Cell Banking Market. The competition analysis is also a major part of the report.
The global stem cell banking market was valued at $1,986 million in 2016, and is estimated to reach $6,956 million by 2023, registering a CAGR of 19.5% from 2017 to 2023. Stem cell banking is a process where the stem cell care isolated from different sources such as umbilical cord and bone marrow that is stored and preserved for future use. These cells can be cryo-frozen and stored for decades. Private and public banks are different types of banks available to store stem cells.
Request for Sample @ https://www.kdmarketinsights.com/sample/3947
Increase in R&D activities in regards with applications of stem cells and increase in prevalence of fatal chronic diseases majorly drive the growth of the global stem cell banking market. Moreover, the large number of births occurring globally and growth in GDP & disposable income help increase the number of stem cell units stored, which would help fuel the market growth. However, legal and ethical issues related to stem cell collections and high processing & storage cost are projected to hamper the market growth. The initiative taken by organizations and companies to spread awareness in regards with the benefits of stem cells and untapped market in the developing regions help to open new avenues for the growth of stem cell banking market in the near future.
The global stem cell banking market is segmented based on cell type, bank type, service type, utilization, and region. Based on cell type, the market is classified into umbilical cord stem cells, adult stem cells, and embryonic stem cells. Depending on bank type, it is bifurcated into public and private. By service type, it is categorized into collection & transportation, processing, analysis, and storage. By utilization, it is classified into used and unused. Based on region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.
KEY MARKET BENEFITS
This report offers a detailed quantitative analysis of the current market trends from 2016 to 2023 to identify the prevailing opportunities.
The market estimations provided in this report are based on comprehensive analysis of the key developments in the industry.
In-depth analysis based on geography facilitates in analyzing the regional market to assist in strategic business planning.
The development strategies adopted by key manufacturers are enlisted in the report to understand the competitive scenario of the market.
KEY MARKET SEGMENTS
By Cell Type
Umbilical Cord Stem Cell
Cord Blood
Cord Tissue
Placenta
Adult Stem Cell
Embryonic Stem Cell
By Bank Type
Public
Private
By Service Type
Collection & Transportation
Processing
Analysis
Storage
By Utilization
Used
Unused
By Region
North America
U.S.
Canada
Mexico
Europe
Germany
UK
France
Spain
Italy
Rest of Europe
Asia-Pacific
Japan
China
Singapore
India
South Korea
Rest of Asia-Pacific
LAMEA
Brazil
Saudi Arabia
South Africa
Rest of LAMEA
KEY PLAYERS PROFILED
Cord Blood Registry
ViaCord
Cryo-Cell
China Cord Blood Corporation
Cryo-Save
New York Cord Blood Program
CordVida
Americord
CryoHoldco
Vita34
Browse Full Report With TOC@ https://www.kdmarketinsights.com/product/stem-cell-banking-market-amr
Table of Content
CHAPTER 1: INTRODUCTION
1.1. Report description1.2. Key benefits for stakeholders1.3. Key market segments1.4. Research methodology
1.4.1. Secondary research1.4.2. Primary research1.4.3. Analyst tools and models
CHAPTER 2: EXECUTIVE SUMMARY
2.1. CXO perspective
CHAPTER 3: MARKET OVERVIEW
3.1. Market definition and scope3.2. Key findings
3.2.1. Top investment pockets3.2.2. Top winning strategies
3.3. Porters five forces analysis3.4. Top Player Positioning3.5. Market dynamics
3.5.1. Drivers
3.5.1.1. Large number of newborns3.5.1.2. Increase in R&D activities for application of stem cells3.5.1.3. Increase in prevalence of fatal chronic diseases3.5.1.4. Growth in GDP and disposable income
3.5.2. Restraints
3.5.2.1. Legal and ethical issues during collection of stem cells3.5.2.2. High processing and storage cost3.5.2.3. Lack of acceptance and awareness
3.5.3. Opportunities
3.5.3.1. Initiatives to spread awareness3.5.3.2. Untapped market in developing regions
CHAPTER 4: STEM CELL BANKING MARKET, BY CELL TYPE
4.1. Overview
4.1.1. Market size and forecast
4.2. Umbilical Cord Stem Cells
4.2.1. Key market trends and growth opportunities4.2.2. Market size and forecast4.2.3. Market analysis, by country4.2.4. Cord Blood
4.2.4.1. Market size and forecast
4.2.5. Cord Tissue
4.2.5.1. Market size and forecast
4.2.6. Placenta
4.2.6.1. Market size and forecast
4.3. Adult stem cells
4.3.1. Key market trends and growth opportunities4.3.2. Market size and forecast4.3.3. Market analysis, by country
4.4. Embryonic stem cells
4.4.1. Key market trends and opportunities4.4.2. Market size and forecast4.4.3. Market analysis, by country
Continue
Check for Discount @https://www.kdmarketinsights.com/discount/3947
About KD Market Insights
KD Market Insights offers a comprehensive database of syndicated research studies, customized reports, and consulting services. These reports are created to help in making smart, instant and crucial decisions based on extensive and in-depth quantitative information, supported by extensive analysis and industry insights.
Original post:
Stem Cell Banking Market was valued at $1986 million in 2016 - Markets Gazette
Benefit of CD19-Targeted CAR-T Therapy in Patients With Transformed Waldenstrm Macroglobulinemia – Cancer Therapy Advisor
A case study published in Leukemia and Lymphoma described a patient with a diagnosis of Waldenstrm Macroglobulinemia (WM) that had subsequently undergone histological transformation to refractory high grade B-cell lymphoma and was successfully treated with CD19-targeted chimeric antigen receptor (CAR)-T cell therapy.1
WMis a type of B-cell non-Hodgkin lymphoma(NHL), typically characterized by overproduction of monoclonal immunoglobulinM, as well as infiltration of malignant lymphoplasmacytic cells into the bonemarrow.
Although considered incurable, WM often follows an indolent course andsome patients can be asymptomatic for long periods. Rarely, the diseasetransforms into a more aggressive form of NHL that has been associated with apoor prognosis.
The patient described in the case studywas a 71-year-old man who was first diagnosed with WM in 1998. The patient wasmonitored without undergoing active treatment for a period of 12 years, atwhich time he developed anemia and splenomegaly. At that time, he underwenttreatment with 6 cycles of fludarabine and rituximab and achieved a partial response totreatment. Following a worsening of symptoms 4 years later, the patient wastreated with 6 cycles of bendamustine and rituximab.
Biopsyof an enlarged cervical lymph node performed at that time revealed high-gradeB-cell lymphoma that was clonally related to the previously seenlymphoplasmacytic infiltrate, consistent with transformation.
Thepatient subsequently achieved a complete response to 6 cycles of rituximab,cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) plus ibrutinibfollowed by 6 months of ibrutinib maintenance therapy that lasted for 18months.
Salvagetherapy included 2 cycles of rituximab, dexamethasone, cytarabine, cisplatin(R-DHAP) followed by 1 cycle of rituximab plus high-dose cytarabine, followedby autologous stem cell transplantation several months later.
Asthe patients disease was considered to be chemorefractory based on subsequent imagingand pathological analyses, he was treated with axicabtagene ciloleucel, aCD19-targeted CAR-T cell therapy currently approved for the treatment of adultpatients with relapsed or refractory large B-cell lymphoma, including high gradeB-cell lymphoma, after 2 or more lines of systemic therapy.2
Althoughthe patient experienced pancytopenia, grade 1 cytokine release syndrome, andgrade 1 neurotoxicity following CAR-T therapy, he achieved a complete response1 month following treatment.
Notably,there was no evidence of either underlying WM or transformed disease at 6 and 12months follow-up.
Thestudy authors noted that longer term follow up in this patient will beinformative, as late relapses have occurred even in patients who achieve a deepresponse after transplant. CAR-T cell therapy may be an effective treatment forrelapsed or refractory WM that has not yet undergone histologicaltransformation, as CD19 is almost universally expressed on lymphoplasmacyticlymphoma cells. The researchers concluded that further analysis of this iswarranted in the context of clinical trials.
References
See the rest here:
Benefit of CD19-Targeted CAR-T Therapy in Patients With Transformed Waldenstrm Macroglobulinemia - Cancer Therapy Advisor
WindMIL Therapeutics and University of California, Irvine Announce Collaboration to Collect Bone Marrow from Patients with Gliomas to Develop Marrow…
BALTIMOREand PHILADELPHIA and IRVINE, Calif., Oct. 15, 2019 (GLOBE NEWSWIRE) -- WindMIL Therapeutics and the University of California, Irvine (UCI) today announced that the first patients have been identified in an investigator-sponsored study for the collection of bone marrow from patients with gliomas. The study will evaluate generating marrow infiltrating lymphocytes (MILs) for these patients through WindMILs proprietary cellular activation and expansion process. The study is being conducted at UCI.
Patients suffering with glioblastoma are in great need of new, promising treatments that might advance the current standard of care, said Daniela A. Bota, MD, PhD, director of theUCI Health Comprehensive Brain Tumor Program,seniorassociate dean for clinical research, UCI School of Medicine and clinical director, UCI Sue & Bill Gross Stem Cell ResearchCenter. The University of California, Irvine is excited toplay a key role in research that may lead to a clinical trial that enlists the immune system in novel ways to fight this terrible disease.
Gliomas are the most common of the malignant brain tumors. Glioblastoma, the most common glioma, has a five-year survival of less than 5 percent. Additional treatment options are urgently needed for these patients. Adoptive immunotherapy is a possible approach for gliomas and the use of MILs, a cell therapy that is naturally tumor-specific, is one such treatment option.
The bone marrow is a unique niche in the immune system to which antigen-experienced memory T cells traffic and are then maintained. WindMIL has developed a proprietary process to select, activate and expand these memory T cells into MILs. Because memory T cells in bone marrow occur as a result of the immune systems recognition of tumor antigens, MILs are specifically suited for adoptive cellular immunotherapy and are able to directly eradicate or facilitate eradication of each patients unique cancer. WindMIL is currently studying MILs in multiple myeloma, non-small cell lung cancer and squamous cell carcinoma of the head and neck, and plans to expand into other solid tumors.
WindMIL is looking forward to working with the University of California, Irvine on this exciting project and is optimistic that MILs may offer the potential to help patients with these hard-to-treat diseases, said Monil Shah, PharmD, MBA, Chief Development Officer at WindMIL.
About WindMIL Therapeutics
WindMIL Therapeutics is a clinical-stage company developing a novel class of autologous cell therapies based on marrow infiltrating lymphocytes (MILs) for cancer immunotherapy. As the leader in cellular therapeutics emanating from bone marrow, WindMIL translates novel insights in bone marrow immunology into potentially life-saving cancer immunotherapeutics for patients. WindMIL believes that Cell Source Matters and the companys proprietary process to extract, activate and expand these cells offers unique immunotherapeutic advantages, including inherent poly-antigen specificity, high cytotoxic potential and long persistence. For more information, please visit: http://www.windmiltx.com.
About UCI Health
UCI Healthcomprises the clinical enterprise of the University of California, Irvine. Patients can access UCI Health at primary and specialty care offices across Orange County and at its main campus, UCI Medical Center in Orange, California. The 417-bed acute care hospital provides tertiary and quaternary care, ambulatory and specialty medical clinics and behavioral health and rehabilitation services. UCI Medical Center features Orange Countys only National Cancer Institute-designated comprehensive cancer center, high-risk perinatal/neonatal program and American College of Surgeons-verified Level I adult and Level II pediatric trauma center and regional burn center. UCI Health serves a region of nearly 4 million people in Orange County, western Riverside County and southeast Los Angeles County. Follow us onFacebookandTwitter.
About the University of California, Irvine
Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. Its located in one of the worlds safest and most economically vibrant communities and is Orange Countys second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visitwww.uci.edu.
Story continues
Go here to see the original:
WindMIL Therapeutics and University of California, Irvine Announce Collaboration to Collect Bone Marrow from Patients with Gliomas to Develop Marrow...
Light the Night Oct. 19 – Westlock News
Organizers of this years Light the Night, which is held in support of blood cancer research, hope members of the community can join them Oct. 19 as they take to the Rotary Trail to raise awareness and funds for the eradication of various blood cancers.
Leukemia, lymphoma, Hodgkins lymphoma and myeloma can all be beat, but for every inspirational tale of perseverance and survival, there are even more about those who could not hang on long enough and died as a result of the fast moving diseases that affect blood cells, bone marrow and lymph nodes to name a few.
I lost my niece to leukemia 11 years ago, she was 19, said Westlock organizer Joanne Rimmer, with tears in her eyes as fresh as the day she lost her niece.
I had positive thoughts the whole time, I thought she was going to get over it and everything was going to be back to normal and it didnt work out. I didnt want other families to go through that, so I thought it was a good thing to help raise money.
It has been 11 years and Im still crying. Its one way we can do something to say we really miss her.
Rimmer also has a close friend who was able to survive leukemia after a donation of stem cells from her brother saved her life. She also has another friend in Manitoba who is currently fighting off leukemia, with some success. These are her reasons for lighting up the night, so called because participants often hold lanterns of different colours that denote how thatindividual has been affected.
White lanterns are carried by survivors, gold is in remembrance and red is in support, which together makes for quite a sea of colour moving through the town.
Rimmer, who has been taking part in the event in one form or another for 11 years and helping to organize the Westlock event for the last six years is a proponent of having a bare-bones event with little flash or overhead to make sure as much money as possible is donated to the Leukemia and Lymphoma Society of Canada.
Any sponsors or potential contributors are asked to donate directly to the cause instead of providing other supports, which are appreciated, but ultimately unneeded.
I want every dollar that gets raised to actually go towards what were actually raising money for. I dont want to waste it on silly things.
Rimmer is urging those who want to participate to start collecting sponsors, and to register at http://www.lightthenight.ca. Participants should meet at the Rotary Spirit Centre after 6:30 p.m. Oct. 19 for the walk that will begin at 7 p.m., winding it way east on the Rotary Trail to the healthcare centre, then eventually on to the pool. All are welcome to join, from babies in strollers to their great-great parents, said Rimmer, who also noted the event will take place rain or shine.
Read this article:
Light the Night Oct. 19 - Westlock News
Gaucher Might Be LInked to Rare Types of Blood Cancer, Report Suggests – Gaucher Disease News
Gaucher disease can predispose patients to rare types of blood cancer, and doctors should be vigilant for the development of these malignancies, a case report suggests.
The study, A case of bony lytic lesions in a patient with Gaucher disease, was published in the journal Clinical Case Reports.
The most common symptoms of Gaucher disease are reduced platelet count, enlarged liver and spleen, and lesions in the bones. This disease also has been associated with an increased risk ofblood disorders.
Researchers in Canada reported the case of a 57-year-old man who developed a rare type of blood cancer cell probably related to Gaucher disease, as he had Gaucher cells cells that accumulate abnormal amounts of a fat molecule (glucocerebroside) characteristic of the condition in his bone marrow.
The man had a scalp lesion that did not heal and progressively increased in size. Doctors performed a biopsy and discovered it was caused by a plasmacytoma, a rare form of blood cancer in which myeloma cells form a tumor in the bones or soft tissues.
At the time of biopsy, the patient had mild anemia, low levels of platelets, and a family of blood proteins called gamma globulins characteristic of myeloma. His kidney function and calcium levels were normal.
Further tests showed that the man had several bony lytic lesions spots of bone damage caused by cancerous myeloma cells and abone marrow biopsy showed infiltration of both plasma cells and Gaucher cells. That led to a diagnosis of plasma cell myeloma probably associated with Gaucher disease.
Gaucher cells infiltrating the bone marrow may mask the extent of abnormal plasma cell infiltrates, and immunohistochemical staining [a method that identifies abnormal cells in biopsies] can be invaluable in identifying the true burden of plasma cells for appropriate classification of suspected plasma cell neoplasia, the researchers said.
The investigators also noted that the man had a history of abnormal spleen size and reduced blood cell count. A bone marrow biopsy performed years earlier showed the presence of possible Gaucher cells.
Gaucher disease should be considered in the differential diagnosis of unexplained hepatomegaly [abnormal liver size], splenomegaly [abnormal spleen size], or cytopenias [reduced blood cell count], the investigators said. They added that further research of the previous symptoms might have allowed diagnosing Gaucher disease before the cancer appeared.
The patient received a combination of chemotherapy, cyclophosphamide, and Velcade (bortezomib), followed by high doses of melphalan and autologous stem cell transplantation. He tolerated the transplant well and was discharged with the recommendation of long-term follow-up.
Alejandra has a PhD in Genetics from So Paulo State University (UNESP) and is currently working as a scientific writer, editor, and translator. As a writer for BioNews, she is fulfilling her passion for making scientific data easily available and understandable to the general public. Aside from her work with BioNews, she also works as a language editor for non-English speaking authors and is an author of science books for kids.
Total Posts: 20
Ins Martins holds a BSc in Cell and Molecular Biology from Universidade Nova de Lisboa and is currently finishing her PhD in Biomedical Sciences at Universidade de Lisboa. Her work has been focused on blood vessels and their role in both hematopoiesis and cancer development.
View post:
Gaucher Might Be LInked to Rare Types of Blood Cancer, Report Suggests - Gaucher Disease News
Stem cell therapy helped Owen Franks but there’s still plenty to prove – Stuff.co.nz
Stem cell therapy, which All Blacks prop Owen Franks used to help fix a damaged shoulder, is raising hopes of a whole range of medical breakthroughs.
But there's a way to go before the medical establishment is convinced.
In late 2017, US Food and Drug Administration (FDA) Commissioner ScottGottliebhad this to say:"We're at the beginning of a paradigm change in medicine with the promise of being able to facilitate regeneration of parts of the human body, where cells and tissues can be engineered to grow healthy, functional organs to replace diseased ones; new genes can be introduced into the body to combat disease; and adult stem cells can generate replacements for cells that are lost to injury or disease."
REGEN CELLULAR
Dr Hassan Mubark takes blood from All Blacks prop Owen Franks.
Yet, as an indication of how far there is still to go, the FDA has also warnedpeople in the USagainst "unscrupulous providers" offering stem cell products that were unapproved and unproven.
READ MORE:*Rugby World Cup 2019: All Black Owen Franks thrown a stem cell lifeline*Owen Franks hits back at critics following omission from Rugby World Cup squad*Stem cell therapy for All Black Israel Dagg as he hits comeback trail with Crusaders*Experimental stem cell treatment shows results for Waikato woman with MSA Cerebella*Stem cell clinics accused of taking advantage of patients*Reported stem cell treatment could give hope to Michael Schumacher
"Researchers hope stem cells will one day be effective in the treatment of many medical conditions and diseases," it said, thenadded: "Stem cells have been called everything from cure-alls to miracle treatments. But don't believe the hype."
Looking at just the area of deteriorating joints, it's easy to see how stem cell therapies, if they deliver on the promise,could make life much better for many people with osteoarthritis who are in pain and have restricted movement.
Last week, Otago University researchers predictedthe number of knee replacement surgeries needed for osteoarthritis would increase from around 5000 a year in 2013 to abut9000 in 2038.
AP
Former Formula One champion Michael Schumacher received devastating head injuries in a ski accident six years ago. Last month it was reported he has undergone stem cell treatment in Paris.
Osteoarthritis is the area where ReGen Cellular,the clinic where Franks had the therapy, has done most of its work in the past two to three years, although ithas recently expanded its services to include a range of diagnosed auto-immune conditions, among them rheumatoid arthritis, multiple sclerosis, and type 1 diabetes.
ReGensaid 55 per cent of its patients were aged over 60, 35 per cent were 40-60 and 10 per cent were sports-based.
Theclinic usesPure Expanded Stem Cell (PESC) therapy, which involves taking 40 grams - about a teaspoon - of fat from around a patient's stomach. Mesenchymal stem cells (MSCs)in that sample are then multiplied in the clinic's Queenstown laboratory for about eight weeks. At the end of that process 100 million to 200 million cells have been produced.
Otago University
Otago University, Christchurch regenerative medicine research team have invented a bio-ink - a gel-like substance mixed with human stem cells - to be used with a bio-printer to make human body parts. Video shows the printer using bio-ink to make a body part.
For the treatment of osteoarthritis, between 50m and 100m stem cells are injected into larger joints, with 25m to 50m into smaller joints. ReGen said the therapy provided immediate pain reduction and increased mobility. MRI scans showed cartilage could and did regenerate.
ReGendescribedMSCs as the cells that "wake up damaged or lazy cells". Slightly more technically, Nature.com said MSCs wereadult stem cells present in multiple tissues, including the umbilical cord, bone marrow and fat.MSCscan self-renew by dividing and can differentiate into multiple tissues including bone, cartilage, muscle and fat cells, and connective tissue.
ReGen director of patient care Marcelle Noble said the clinic believed its treatments, if offered early enough, would save the public health system hundreds of millions of dollars through lessened replacement surgeries, and would save ACC millions of dollars in lengthy rehabilitation programmes.
The treatment for two knees was half the price of one knee replacement surgery within the public health system, she said. ReGen advertises osteoarthritis treatment for a single joint at $12,500 and for two joints at $15,000.
GETTY IMAGES
Former All Black Israel Dagg had stem cell therapy for an injured knee, but in the end had to give the game away because of the injury.
So far mainstream funding hadnot been offered for the therapy, Noble said. But the clinic had a "big breakthrough" earlier this year when two insurers in New Zealand accepted patients'PESC therapy claims. In July, ACC accepted consultation by ReGen's chief medical officer Dr Hassan Mubark.
ReGen only had data for the past five years on the success of its therapy, but the fact patients were returning to have other areas of their body treated was an indication of how people feltthe therapy was improving their quality of life, Noble said.
Globally, "massive" R&D spending was going into stem cell research. More therapies would become available and stem cell treatment would become "commonplace".
At any one time ReGen had 50-75 patients' cells growing in its incubators, Noble said. Of the patients treated, 40 per cent hadailments in therknees, 30 per cent in their hips, 20 per cent in their shoulders. The final 10 per cent were for sports and other issues, including problems with tendons, muscles, cartilage tears, fingers, elbows, ankles and hands.
SUPPLIED
Dr Ron Lopert undergoing part of the PESC treatment.
The first patient to undertake ReGen's PESC therapy was retired GP Dr Ron Lopert, who lives in Tauranga.
For five to 10 years, he had beengetting aches and pains in his hips after playing sport, and the problem was becoming more noticeable, he said. In 2013 he had an x-ray that showed he had moderate to severe osteoarthritis in both hips,more severein his right hip.
He stopped playing all sports and started researching different forms of treatment. Ideally, he wanted to be able to get some of his own cartilage back and reverse the osteoarthritis. It seemedPESCshould do that.
In 2015, aged 61, he had the therapy, with stem cells being injected into each hip joint.Within weeks henoticed an improvement in the range of motion and a decrease in pain, Lopert said.Some of that was just the anti-inflammatory component of stem cell injection, but he thought he also received a longer term benefit from cartilage regeneration.
SUPPLIED
Dr Lopert on his recent travels. He says he has much less hip pain.
He put the success of the procedure at75 per centin terms of symptoms and function, and100 per cent when it came to avoiding invasive surgery."I opted for a much more natural treatment where my own tissue is regenerating, instead of a metal prosthesis," Lopert said.
He was not sure all the improvement came from the stem cell treatment. As well as avoiding overuse of the joints, which meant he hadn't returned to playing sport, he had also switched to an anti-inflammatory diet.
His left hip continued to have hardly any symptomsbut he had started noticing the "odd twinge now and then" in his right hip.
"The vast majority of days it's fine provided I'm just walking and doing ordinary things. On the odd occasion I might carry something heavy, then I would notice it the next day and it (right hip) would stay painfulintermittentlyfor the next couple of days," Lopert said.
Sean Gallup
In this picture from February, German Chancellor Angela Merkel looks through a microscope at brain organoids grown from stem cells.
Some of his stem cells had been retained after the treatment, and he was booked in for a follow-up injection for his right hip at the end of October.
He expected the therapy would become a "go to" treatment, and would become an early intervention for osteoarthritis. But more independent research was needed to confirm the success of the treatment. "The evidence is slowly building up but there needs to be more before the Government will accept it," Lopert said.
In his case, he thought there had been cartilage regeneration in his hips, but that was based on his symptoms. "It would have been nice had I had MRI scans before and after the injection for objective evidence," he said.
From the perspective of the medical establishment, the New Zealand Orthopaedic Association said it supported a position statement on stem cell therapy produced by the Royal Australian College of Surgeons.
That paper, approved in mid-2018,noted stem cell therapy was a "rapidly advancing" area, but many proposed stem cell therapies were experimental and not yet proven. It did not support surgeons administering stem cell therapy outside of an ethically approved registered clinical trial.
"Whilst there may be scope for innovative treatment in the future, currently, the clinical effectiveness and safety of stem cell therapies remain scientifically unproven," RACS said.
In this country, an ACC spokesperson said ACC did not have an official position on stem cell therapy for the treatment of injuries. An internationally standardised evidence-based healthcare approach was used to help ACC decide how it covered injuries and funded treatments.
Dr HassanMubark, ReGen's chief medical officer, was a healthcare provider contracted to ACC in the specialty of rheumatology, and ACC had funded consultation fees with Mubark, the spokesperson said. Those consultations were for diagnostic and treatment planning purposes and did not need prior approval from ACC.
ACC had to consider legislative criteria when deciding whether to fund any particular treatment. There would be many reasons why ACC might decide to fund a client to see a rheumatologist for an opinion on the diagnosis and possible management of their condition. That would not commit ACC to funding any proposed treatment but would provide the client and ACC with information to help decision-making.
Follow this link:
Stem cell therapy helped Owen Franks but there's still plenty to prove - Stuff.co.nz
Global Cell Therapy Technologies, Companies & Markets During the Forecast Period, 2018-2028 – ResearchAndMarkets.com – Business Wire
DUBLIN--(BUSINESS WIRE)--The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.
This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. The role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.
Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.
Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.
Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.
Regulatory and ethical issues involving cell therapy are important and are discussed. The current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.
The cell-based markets was analyzed for 2018 and projected to 2028. The markets are analyzed according to therapeutic categories, technologies, and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer, and cardiovascular disorders. Skin and soft tissue repair, as well as diabetes mellitus, will be other major markets.
The report contains information on the following:
Key Topics Covered:
Part I: Technologies, Ethics & Regulations
Executive Summary
1. Introduction to Cell Therapy
2. Cell Therapy Technologies
3. Stem Cells
4. Clinical Applications of Cell Therapy
5. Cell Therapy for Cardiovascular Disorders
6. Cell Therapy for Cancer.
7. Cell Therapy for Neurological Disorders
8. Ethical, Legal and Political Aspects of Cell therapy
9. Safety and Regulatory Aspects of Cell Therapy
Part II: Markets, Companies & Academic Institutions
10. Markets and Future Prospects for Cell Therapy
11. Companies Involved in Cell Therapy
12. Academic Institutions
13. References
For more information about this report visit https://www.researchandmarkets.com/r/9q5tz1
See more here:
Global Cell Therapy Technologies, Companies & Markets During the Forecast Period, 2018-2028 - ResearchAndMarkets.com - Business Wire
Drexel on the Road: Stem cell study for osteoarthritis – WKRG News 5
PENSACOLA, Fla. (WKRG) Osteoarthritis affects millions of people in the US. Symptoms range from minor pain to crippling pain that compromises quality of life. A groundbreaking study is underway at four prestigious research facilities in the United States. One of those is right here on the Gulf Coast. Tonight, Drexel Gilbert is on the road in Gulf Breeze.
Lori Jamison is a Pensacola native who, as a teenager, played basketball at Pine Forest High School. Today, she suffers from osteoarthritis in her knee. She believes its a result of basketball injuries.
I get stiffness, it interferes with my mobility. Sometimes its like a sharp needle going down your leg. When I go to the movie theater, I have to sit on the back row so I can stretch it out, Jamison said. She is participating in a clinical trial at Andrews Research and Education Foundation in Gulf Breeze.
The research is studying stem cell treatment for osteoarthritis in the knee. AREF is one of only four facilities in the country participating in the study. The others are Emory Orthopedics & Spine Center, Duke University and Sanford Health. Researchers hope it leads to FDA approval for the treatment. If that happens, it could be life-changing for patients.
Hopefully reduce their pain if not actually get rid of their pain. That is our goal. We want to delay, if not prevent, total knee replacement, said Dr. Josh Hackel, who is the primary investigator for the Andrews phase of the study. Were comparing three different stem cell sources. Bone marrow from their pelvis, adipose- thats tissue from their belly fat- and the third is umbilical cord tissue donated from pregnant mothers.
The bone marrow and belly fat stem cells are harvested from the study participants, under local anesthesia. The stem cells are later implanted into the knee joint using ultrasound guidance to implant the cells into the knee joint.
Jamison has already undergone stem cell harvesting.
It was very easy, very convenient, no downtime after the procedure was done, Jamison said
This $13 million clinical trial is being funded entirely by a grant from Bernie Marcus, founder of the Marcus Foundation and co-founder of Home Depot. Osteoarthritis is an issue that is close to the philanthropists heart because his mother was left disabled by the illness at a young age.
There will be around 120 participants at each of the four sites. There are plenty of openings. If youd like to be considered for the study, call AREF at 850-916-8591.
Read the rest here:
Drexel on the Road: Stem cell study for osteoarthritis - WKRG News 5
BEYOND LOCAL: Expert recommends ‘path of cautious optimism’ about the future of stem cell treatment – ElliotLakeToday.com
This article, written byKatharine Sedivy-Haley, University of British Columbia, originally appeared on The Conversation and is republished here with permission:
When I was applying to graduate school in 2012, it felt like stem cells were about to revolutionize medicine.
Stem cells have the ability to renew themselves, and mature into specialized cells like heart or brain cells. This allows them to multiply and repair damage.
If stem cell genes are edited to fix defects causing diseases like anemia or immune deficiency, healthy cells can theoretically be reintroduced into a patient, thereby eliminating or preventing a disease. If these stem cells are taken or made from the patient themselves, they are a perfect genetic match for that individual, which means their body will not reject the tissue transplant.
Because of this potential, I was excited that my PhD project at the University of British Columbia gave me the opportunity to work with stem cells.
However, stem cell hype has led some to pay thousands of dollars on advertised stem cell treatments that promise to cure ailments from arthritis to Parkinsons disease. These treatments often dont help and may harm patients.
Despite the potential for stem cells to improve medicine, there are many challenges as they move from lab to clinic. In general, stem cell treatment requires we have a good understanding of stem cell types and how they mature. We also need stem cell culturing methods that will reliably produce large quantities of pure cells. And we need to figure out the correct cell dose and deliver it to the right part of the body.
Embryonic, 'induced and pluripotent
Stem cells come in multiple types. Embryonic stem cells come from embryos which makes them controversial to obtain.
A newly discovered stem cell type is the induced pluripotent stem cell. These cells are created by collecting adult cells, such as skin cells, and reprogramming them by inserting control genes which activate or induce a state similar to embryonic stem cells. This embryo-like state of having the versatile potential to turn into any adult cell type, is called being pluripotent.
However, induced pluripotent and embryonic stem cells can form tumours. Induced pluripotent stem cells carry a particularly high risk of harmful mutation and cancer because of their genetic instability and changes introduced during reprogramming.
Genetic damage could be avoided by using younger tissues such as umbilical cord blood, avoiding tissues that might contain pre-existing mutations (like sun-damaged skin cells), and using better methods for reprogramming.
Stem cells used to test drugs
For now, safety concerns mean pluripotent cells have barely made it to the clinic, but they have been used to test drugs.
For drug research, it is valuable yet often difficult to get research samples with specific disease-causing mutations; for example, brain cells from people with amyotrophic lateral sclerosis (ALS).
Researchers can, however, take a skin cell sample from a patient, create an induced pluripotent stem-cell line with their mutation and then make neurons out of those stem cells. This provides a renewable source of cells affected by the disease.
This approach could also be used for personalized medicine, testing how a particular patient will respond to different drugs for conditions like heart disease.
Vision loss from fat stem cells
Stem cells can also be found in adults. While embryonic stem cells can turn into any cell in the body, aside from rare newly discovered exceptions, adult stem cells mostly turn into a subset of mature adult cells.
For example, hematopoietic stem cells in blood and bone marrow can turn into any blood cell and are widely used in treating certain cancers and blood disorders.
A major challenge with adult stem cells is getting the right kind of stem cell in useful quantities. This is particularly difficult with eye and nerve cells. Most research is done with accessible stem cell types, like stem cells from fat.
Fat stem cells are also used in stem cell clinics without proper oversight or safety testing. Three patients experienced severe vision loss after having these cells injected into their eyes. There is little evidence that fat stem cells can turn into retinal cells.
Clinical complications
Currently, stem cell based treatments are still mostly experimental, and while some results are encouraging, several clinical trials have failed.
In the brain, despite progress in developing treatment for genetic disorders and spinal cord injury, treatments for stroke have been unsuccessful. Results might depend on method of stem cell delivery, timing of treatment and age and health of the patient. Frustratingly, older and sicker tissues may be more resistant to treatment.
For eye conditions, a treatment using adult stem cells to treat corneal injuries has recently been approved. A treatment for macular degeneration using cells derived from induced pluripotent stem cells is in progress, though it had to be redesigned due to concerns about cancer-causing mutations.
A path of cautious optimism
While scientists have good reason to be interested in stem cells, miracle cures are not right around the corner. There are many questions about how to implement treatments to provide benefit safely.
In some cases, advertised stem cell treatments may not actually use stem cells. Recent research suggests mesenchymal stem cells, which are commonly isolated from fat, are really a mixture of cells. These cells have regenerative properties, but may or may not include actual stem cells. Calling something a stem cell treatment is great marketing, but without regulation patients dont know what theyre getting.
Members of the public (and grad students) are advised to moderate their excitement in favour of cautious optimism.
Katharine Sedivy-Haley, PhD Candidate in Microbiology and Immunology, University of British Columbia
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Fred Hutch scientist on how gold nanoparticles could bring CRISPR to the developing world – GeekWire
Jennifer Adair, a senior scientist at Fred Hutch, speaks at the 2019 GeekWire Summit. (GeekWire Photo / Kevin Lisota)
Genetically editing cells using CRISPR could be the answer to curing genetic disorders such as sickle cell anemia. But in order for the technology to be available for people in countries like Nigeria where around a quarter of the population carries the sickle cell trait the technology will need to become substantially cheaper and less invasive.
Thats where gold nanoparticles come in.
Scientists at the Fred Hutchinson Cancer Research Center are devising an approach that vastly simplifies how CRISPR is applied. Their goal is to create a safe process for gene editing that takes place entirely within the body of a patient.
In order to edit human stem cells using CRISPR today, scientists have to follow a process that involves removing the cells from a patients bone marrow, electrocuting those cells, and modifying them with engineered virus particles.
The process gets even more invasive from there. We actually have to treat these patients with chemotherapy, radiation or other agents in order for these cells that were genetically manipulated to be taken up, Jennifer Adair, a senior scientist at Fred Hutch, said during a talk at the 2019 GeekWire Summit.
The researchers think theyve figured out the first step, which is delivering CRISPR to blood stem cells inside the body. Theyre doing that using gold nanoparticles that are about a billionth the size of a grain of table salt and able to smuggle in RNA, DNA and a protein.
Weve been able to show that not only can we make these, but they passively deliver all of those components to blood stem cells, then we do get genetic editing. And weve been able to go on to show that we can correct the sickle cell defect using this approach, said Adair.
The nanoparticles are big enough to carry the CRISPR payload but small enough to infiltrate cell membranes. Gold is a useful medium since it isnt harmful to humans.
The Fred Hutch team published their work with gold nanoparticles earlier this year in the journal Nature Materials. The system safely edited 10 to 20 percent of the target cells, which the researchers hope will increase as the method is refined.
In an ideal world, clinicians would be able to deliver gene therapy through a syringe, a process that might be accomplished in a single office visit. Adair previously published research on agene therapy in a box concept, a table-top device that could provide gene therapy treatments without the need for expensive medical infrastructure.
We need to develop technologies that make gene editing simpler, more affordable and more accessible to patients around the world, Adair said.
Go here to read the rest:
Fred Hutch scientist on how gold nanoparticles could bring CRISPR to the developing world - GeekWire
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Weekly Spy
Stem Cell Therapy Market is expected to reach 202.77 billion by 2026 from 12.25 billion in 2017 at CAGR of 42.02%.(Detailed analysis of the market CAGR is provided in the report) stands for use of stem cells to treat or prevent disease or condition.
Bone marrow transplant and some therapies derived from umbilical cord blood are mainly used in stem cell therapy. Advancement, in order to establish new sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions, are increased in recent years. Stem Cell Therapy Market Researchers are making efforts to discover novel methods to create human stem cells. This will increase the demand as well as supply for stem cell production and potential investigation in disease management. Increasing investment & research grants for developing safe and effective stem cell therapy products, the growing patient base for target diseases, concentrated product pipelines, increasing approval of the new clinical trials, rapid technological advancement in genomics, and the rising awareness about the stem cell are expected to drive the growth of the Stem Cell Therapy solutions market during the forecast period.
REQUEST FOR FREE SAMPLE REPORT: https://www.maximizemarketresearch.com/request-sample/522
However, improper infrastructure, insufficient storage systems, nascent technology in underdeveloped economies, Ethical issues related to an embryonic stem cell, low patient acceptance rate, Difficulty in the preservation of stem cell are expected to restrain the market growth. North America is expected to be the largest growing region by 2026; the reason behind that is extensive funding by Government. However, Emerging countries like India, china, Korea have low growth rate as compared to Developed regions in 2017 but increase in awareness about stem cell therapy will lead the Asia Pacific to generate a significant level of revenue by 2026.Key Highlights of Stem Cell Therapy Market report
Detailed quantitative analysis of the current and future trends from 2017 to 2026, which helps to identify the prevailing market opportunities.Comprehensive analysis of factors instrumental in changing the market scenario, rising prospective opportunities, market shares, core competencies in terms of market development, growth strategies and identification of key companies that can influence this market on a global and regional scale.Assessment of Market definition along with the identification of key drivers, restraints opportunities and challenges for this market during the forecast period.Complete analysis of micro-markets with respect to individual growth trends, prospects, and contributions to the overall Stem Cell Therapy Solutions market.Stem Cell Therapy market analysis and comprehensive segmentation with respect to the Application, End users, Treatment, and geography to assist in strategic business planning.Stem Cell Therapy market analysis and forecast for five major geographies-North America, Europe, Asia Pacific, Middle East & Africa, Latin America, and their key regions.For company profiles, 2017 has been considered as the base year. In cases, wherein information was unavailable for the base year, the years prior to it have been considered.
Research Methodology:
The market is estimated by triangulation of data points obtained from various sources and feeding them into a simulation model created individually for each market. The data points are obtained from paid and unpaid sources along with paid primary interviews with key opinion leaders (KOLs) in the market. KOLs from both, demand and supply side were considered while conducting interviews to get an unbiased idea of the market. This exercise was done at a country level to get a fair idea of the market in countries considered for this study. Later this country-specific data was accumulated to come up with regional numbers and then arrive at a global market value for the stem cell therapy market.
Key Players in the Stem Cell Therapy Market are:
Chiesi Farmaceutici S.P.A Are:Gamida CellReNeuron Group, plcOsiris Therapeutics, Inc.Stem Cells, Inc.Vericel Corporation.Mesoblast, Ltd.
Key Target Audience:
Stem Cell Associations and OrganizationsGovernment Research Boards and OrganizationsResearch and consulting firmsStem Cell Therapy Market InvestorsHealthcare Service Providers (including Hospitals and Diagnostic Centers)Stem Cell Therapeutic Product Manufacturing OrganizationsResearch LabsClinical research organizations (CROs)Stem Cell Therapy Marketing PlayersPharmaceutical Product Manufacturing Companies
DO INQUIRY BEFORE PURCHASING REPORT HERE: https://www.maximizemarketresearch.com/inquiry-before-buying/522
Scope of the Stem Cell Therapy Market Report:
Stem Cell Therapy market research report categorizes the Stem Cell Therapy market based on Application, End users, Treatment, and geography (region wise). Market size by value is estimated and forecasted with the revenues of leading companies operating in the Stem Cell Therapy market with key developments in companies and market trends.Stem Cell Therapy Market, By Treatments:
Allogeneic Stem Cell TherapyAutologous Stem Cell Therapy
Stem Cell Therapy Market, By End Users:HospitalsAmbulatory Surgical CentersStem Cell Therapy Market, By Application:OncologyCentral Nervous System DiseasesEye DiseasesMusculoskeletal DiseasesWound & InjuriesMetabolic DisordersCardiovascular DisordersImmune System DisordersStem Cell Therapy Market, By Geography:
North AmericaEuropeAsia PacificMiddle East & AfricaLatin America
Available Customization:
With the given market data, Maximize Market Research offers customization of report and scope of the report as per the requirement
Regional Analysis:
Breakdown of the North America stem cell therapy marketBreakdown of the Europe stem cell therapy marketBreakdown of the Asia Pacific stem cell therapy marketBreakdown of the Middle East & Africa stem cell therapy marketBreakdown of the Latin America stem cell therapy market
MAJOR TOC OF THE REPORT
Chapter One: Stem Cell Therapy Market Overview
Chapter Two: Manufacturers Profiles
Chapter Three: Global Stem Cell Therapy Market Competition, by Players
Chapter Four: Global Stem Cell Therapy Market Size by Regions
Chapter Five: North America Stem Cell Therapy Revenue by Countries
Chapter Six: Europe Stem Cell Therapy Revenue by Countries
Chapter Seven: Asia-Pacific Stem Cell Therapy Revenue by Countries
Chapter Eight: South America Stem Cell Therapy Revenue by Countries
Chapter Nine: Middle East and Africa Revenue Stem Cell Therapy by Countries
Chapter Ten: Global Stem Cell Therapy Market Segment by Type
Chapter Eleven: Global Stem Cell Therapy Market Segment by Application
Chapter Twelve: Global Stem Cell Therapy Market Size Forecast (2019-2026)
Browse Full Report with Facts and Figures of Stem Cell Therapy Market Report at: https://www.maximizemarketresearch.com/market-report/stem-cell-therapy-market/522/
About Us:
Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.
Contact info:
Name: Lumawant Godage
Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.
Email: sales@maximizemarketresearch.com
Contact: +919607065656/ +919607195908
Website: http://www.maximizemarketresearch.com
Here is the original post:
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 - Weekly Spy
The Connection Deeper Than Blood – Jewish Link of New Jersey
By JLNJ Staff | October 10, 2019
(Courtesy of Ezer Mizion) Flying 35,000 feet above the Atlantic Ocean is not an easy job! But Ofer had already spent 17 years as a fighter pilot in the IDF defending the State of Israel. In 2003 he left the reserves and joined El-Al full time. Most people dont realize that being a pilot is a very dangerous profession. When you know it is dangerous you are safe but when you think it is easy, when youre a cowboy, you are unsafe! A pilots job is to always be alert in case something happens. Ofer always remained alert with hundreds of travelers under his wing, quite literally!
But after 16 years of flying for El-Al, Ofer started to feel fatigued. It became difficult for me to walk up with steps to the plane from the tarmac. I thought I was starting to get old or out of shape. But the truth was far more devastating: after routine blood tests, Ofer was diagnosed with leukemia!
I was immediately rushed to the hospital. When I arrived they couldnt even find bone marrow inside my body for a biopsy. I had very little bone marrow left in my body.
Ofer started to think about his future. He thought, Will I ever be able to fly again? Will I be able to see my children again? Will I get to meet my grandchildren?
It was a very difficult time in my life. I was very lucky to have the best doctors in Israel. Shortly after Jan 1, 2017, Ofer was told that Ezer Mizion had a perfect bone marrow match for him! He was thrilled, but still very hesitant. I knew I was not yet out of the woods. I was on a new medication and I was starting to feel better. I did not know if I wanted to risk a transplant with possible complications. Ofer decided to take a vacation to Moscow. He had always traveled the world and Moscow was one place he had never visited but had always wanted to see. The doctors told me if I get even a small virus I can forget about the whole transplant. I put my faith in God and said, if it is meant to be, then I will return and have the transplant.
On Feb. 28, Ofer landed back in Tel Aviv, and March 1 started his preparations for a transplant.
Pushing through all the negative thoughts, Ofer decided to fight. He was absolutely determined to overcome this illness and would go to any lengths to get better.
A short six weeks later Ofer was released from the hospital and returned to his family.
David Bugoslavski was in the middle of his military service on Mt. Hermon when he received a call from Ezer Mizion that he is a perfect match for a cancer patient. Ironically, David wasnt supposed to have his phone on him while he was in the middle of active duty. Yet, as he explains, fate thought otherwise. He knew that Ezer Mizion needed him, and while he did not know Ofer personally, he jumped at the opportunity to save the pilots life.
Thanks to Davids transplant, Ofer is alive today. While the recovery process is slow and there has been some turbulence along the way, Ofer has his life back. One of Ofers dreams had always been to fly a Boeing Dreamliner. Unfortunately, due to his medical history, this dream will never come to fruition in his capacity as a pilot but he still loves to travel the world, even if hes sitting in the back of the plane.
David was able to jump on a once-in-a-lifetime opportunity to save a life. Ofer was able to be the recipient of a special and unique kindness, having his life literally saved by someone else. As Ofer explained so beautifully, David: without you, I wouldnt be here... For me, you are part of the family.
Ezer Mizions bone marrow registry has close to 1 million registrants, with over 550,000 of them IDF soldiers. At Ezer Mizion, no matter who you are or where you come from, your life matters. Ofer and David are just one example of the lifesaving mission of Ezer Mizion taking flight. At Ezer Mizion, unconditional love is not just a term thrown around, but a philosophy that is in the very DNA of the organization. As Dr. Bracha Zisser, director and founder of Ezer Mizions National Bone Marrow Registry says, We have created a true connection of blood between two people who did not know each other at all up to that point. A connection that would not have happened without the unconditional immediate enlistment of David or, as Ofer called him, my angel.
Join Ezer Mizion on November 9 at Congregation Keter Torah in Teaneck at 7:30 p.m. for an Evening of Heroes: a beautiful musical Havdalah by Shulem Lemmer, meet real IDF heroes who have saved lives by donating their stem cells, and a fireside chat with Bret Stephens and Nachum Segal. Learn more about Ezer Mizion and RSVP for the Evening of Hereos by going to http://www.eveningofheroes.com, or contact Ryan Hyman, national director of development, at [emailprotected] or 718-853-8400 ext.109.
Read more from the original source:
The Connection Deeper Than Blood - Jewish Link of New Jersey
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen – World Socialist Web Site
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen By Benjamin Mateus 10 October 2019
In the course of a lifetime, the human heart will beat more than three billion times. We will have taken more than 670 million breaths before we reach the end of our lives. Yet, these critical events remain unconscious and imperceptible in everyday life, unless we exert ourselves, such as running up several flights of stairs. We quickly tire, stop to take deep breaths and become flushed.
With the deepening comprehension by medical science of how our bodies work, we have come to better understand the fundamental importance of oxygen to life. Every living organism relies on it in one form or another. However, how cells and tissues can monitor and respond to oxygen levels remained difficult to elucidate. It has only been late in the 20th century with advances in cellular biology and scientific instrumentation that these processes have finally been explained.
On Monday, the 2019 Nobel Prize in Physiology or Medicine was awarded jointly to three individuals: William G. Kaelin, Jr., Sir Peter J. Ratcliffe, and Gregg L. Semenza. Specifically, their discoveries helped elucidate the mechanisms for lifes most basic physiologic processes.
They were able to discover how oxygen levels directly affect cellular metabolism, which ultimately controls physiological functions. More importantly, their findings have significant implications for the treatments of conditions as varied as chronic low blood counts, kidney disease, patients with heart attacks or stroke and cancers. One of the hallmarks of cancer is its ability to generate new blood vessels to help sustain its growth. It also uses these oxygen cellular mechanisms to survive in low oxygen environments.
Dr. William G. Kaelin Jr. is a professor of medicine at Harvard University and the Dana-Farber Cancer Institute. The main focus of his work is on studying how mutations in what are called tumor suppressor genes lead to cancer development. Tumor suppressor genes are special segments of the DNA whose function is to check the integrity of the DNA before allowing a copy of itself to be made and undergo cell division, which prevents cells from propagating errors. Cellular mechanisms are then recruited to fix these errors or drive the cell to destroy itself if the damage is too severe or irreparable.
His interest in a rare genetic disorder called Von Hippel-Lindau disease (VHL) led him to discover that cancer cells that lacked the VHL gene expressed abnormally high levels of hypoxia-regulated genes. The protein called the Hypoxia-Inducible Factor (HIF) complex was first discovered in 1995 by Gregg L. Semenza, a co-recipient of the Nobel Prize. This complex is nearly ubiquitous to all oxygen-breathing species.
The function of the HIF complex in a condition of low oxygen concentration is to keep cells from dividing and growing, placing them in a state of rest. However, it also signals the formation of blood vessels, which is important in wound healing as well as promoting the growth of blood vessels in developing embryos. In cancer cells, the HIF complex helps stimulate a process called angiogenesis, the formation of new blood vessels, which allows the cancer cells to access nutrition and process their metabolic waste, aiding in their growth. When the VHL gene is reintroduced back into the cancer cells, the activity of the hypoxia-regulated genes returns to normal.
Dr. Gregg L. Semenza is the founding director of the vascular program at the Johns Hopkins Institute for Cell Engineering. He completed his residency in pediatrics at Duke University Hospital and followed this with a postdoctoral fellowship at Johns Hopkins. His research in biologic adaptations to low oxygen levels led him to study how the production of erythropoietin (EPO) was controlled by oxygen. EPO is a hormone secreted by our kidneys in response to anemia. The secretion of EPO signals our bone marrow to produce more red blood cells.
His cellular and mouse model studies identified a specific DNA segment located next to the EPO gene that seemed to mediate the production of EPO under conditions of low oxygen concentration. He called this DNA segment HIF.
Sir Peter J. Ratcliffe, a physician and scientist, trained as a nephrologist, was head of the Nuffield Department of Clinical Medicine at the University of Oxford until 2016, when he became Clinical Research Director at the Francis Crick Institute. Through his research on the cellular mechanisms of EPO and its interaction between the kidneys and red cell production, he found that these mechanisms for cellular detection of hypoxia, a state of low oxygen concentration, were also present in several other organs such as the spleen and brain. Virtually all tissues could sense oxygen in their micro-environment, and they could be modified to give them oxygen-sensing capabilities.
Dr. Kaelins findings had shown that the protein made by the VHL gene was somehow involved in controlling the response to low oxygen concentrations. Dr. Ratcliffe and his group made the connection through their discovery that the protein made by the VHL gene physically interacts with HIF complex, marking it for degradation at normal oxygen levels.
In 2001, both groups published similar findings that demonstrated cells under normal oxygen levels will attach a small molecular tag to the HIF complex that allows the VHL protein to recognize and bind HIF, marking it for degradation by enzymes. If the oxygen concentration is low, the HIF complex is protected from destruction. It begins to accumulate in the nucleus where it binds to a specific section of the DNA called hypoxia-regulating genes, which sets into motion the necessary mechanisms to respond to the low oxygen concentration.
The ability to sense oxygen plays a vital role in health and various disease states. Patients who suffer from chronic kidney failure also suffer from severe anemia because their ability to produce EPO is limited. This hormone is necessary for the stem cells in our bone marrow to produce red blood cells. Understanding how cancer cells utilize oxygen-sensing mechanisms has led to a variety of treatments that targets these pathways. The ability to elucidate these mechanisms offers insight into directions scientists and researchers can take to design or create novel treatments.
The WSWS recently published its 75,000th article. Become a monthly donor today and keep up this vital work. It only takes a minute. Thank you.
View original post here:
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen - World Socialist Web Site
Novartis completes certification of initial sites in Quebec for first approved Canadian CAR-T therapy, Kymriah (tisagenlecleucel)(i) – Canada NewsWire
DORVAL, QC, Oct. 9, 2019 /CNW/ - Novartis Pharmaceuticals Canada Inc. is pleased to announce that sites in Quebec have been certified in accordance with applicable requirements to treat eligible patients with Kymriah (tisagenlecleucel), the first chimeric antigen receptor T cell (CAR-T) therapy that received regulatory approval in Canada. Patients with relapsed/refractory (r/r) pediatric and young adult B-cell acute lymphoblastic leukemia (ALL) and adult r/r diffuse large B-cell lymphoma (DLBCL) may be eligible to be treated with Kymriah at one of the initially certified Canadian treatment sites. This news coincides with the Quebec government announcement that Kymriah is now reimbursed for eligible patients under the Rgie de l'assurance maladie du Qubec (RAMQ)ii.
Eligible patients in Quebec are now able to access Kymriah from the Centre hospitalier universitaire (CHU) Sainte-Justine and Maisonneuve-Rosemont Hospital (HMR) in Montreal.
"Novartis feels it is important to acknowledge the collaborative effort by all stakeholders involved to ensure Canadians have access to the first approved CAR-T therapy for patients with B-cell ALL and DLBCL who historically have poor outcomes. With treatment centers certified in Quebec, this allows patients with these two life-threatening cancers the opportunity to be treated with CAR-T therapy," said Daniel Hbert, Medical Director, Novartis Pharmaceuticals Canada Inc. "Novartis is committed to bringing additional qualified treatment centers from other parts of the country into the network to give Canadians the opportunity to be treated closer to home."
Due to the sophisticated and individualized nature of Kymriah, treatment sites that are part of the network are required to be FACT-accredited (Foundation for the Accreditation of Cellular Therapy), qualified to perform intravenous infusion of stem cells collected from the bone marrow of a donor, also referred to as allogeneic hematopoietic stem cell transplantation (alloSCT) and have experience with cell therapies, leukemia and lymphoma to facilitate safe and seamless delivery of Kymriah to eligible patients.
"We are thrilled with this news because we will now be able to treat patients at our institution with the knowledge that their therapy will be publicly funded. We see this as a significant step forward. The young patients we see who have refractory or relapsed B-cell ALL are desperately in need of a new treatment option. Kymriah brings hope to patients who are literally in a fight for their life." said Dr. Henrique Bittencourt, hematologist at the CHU Sainte-Justine in Montreal and Associate Professor, Department of Pediatrics, Universit de Montral.
"The expertise at HMR has raised the profile of our organization, which is a major Quebec, Canadian and worldwide pole for health innovation. Thanks to the dedicated work of our care, research and teaching teams, patients can now access this new treatment with demonstrated effectiveness and impact on quality of life," said Sylvain Lemieux, President and CEO, Centre intgr universitaire de sant et de services sociaux (CIUSSS) de l'Est-de-l'le-de-Montral.
About Kymriah Kymriah (tisagenlecleucel), a CD19-directed genetically modified autologous T-cell immunocellular therapy, is approved to treat two life-threatening cancers that have limited treatment options and historically poor outcomes, demonstrating the critical need for new therapies for these patients.
Kymriah is approved by Health Canada for use in pediatric and young adult patients 3 to 25 years of age with B-cell acute lymphoblastic leukemia (ALL) who are refractory, have relapsed after allogenic stem cell transplant (SCT) or are otherwise ineligible for SCT, or have experienced second or later relapse; and for the treatment of adult patients with relapsed or refractory (r/r) large B-cell lymphoma after two or more lines of systemic therapy including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, high grade B-cell lymphoma and DLBCL arising from follicular lymphomai.
Kymriah is a one-time treatment that uses a patient's own T cells to fight and kill cancer cells. Bringing this innovative therapy to Canadian patients requires collaboration among many health system stakeholders.
Kymriah (tisagenlecleucel) Important Safety InformationThe full prescribing information for Kymriah can be found at: http://www.novartis.ca
Novartis Leadership in Cell and Gene TherapyNovartis is at the forefront of investigational immunocellular therapy and was the first pharmaceutical company to significantly invest in CAR-T research, work with pioneers in CAR-T and initiate global CAR-T trials. Kymriah, the first approved CAR-T cell therapy in Canada, is the cornerstone of this strategy. Active research programs are underway targeting other hematologic malignancies and solid tumors, and include efforts focused on next generation CAR-Ts that involve simplified manufacturing schemes and gene edited cells.
About Novartis in CanadaNovartis Pharmaceuticals Canada Inc., a leader in the healthcare field, is committed to the discovery, development and marketing of innovative products to improve the well-being of all Canadians. In 2018, the company invested $52 million in research and development in Canada. Located in Dorval, Quebec, Novartis Pharmaceuticals Canada Inc. employs approximately 1,000 people in Canada and is an affiliate of Novartis AG, which provides innovative healthcare solutions that address the evolving needs of patients and societies. For further information, please consult http://www.novartis.ca.
About NovartisNovartis is reimagining medicine to improve and extend people's lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the world's top companies investing in research and development. Novartis products reach more than 750 million people globally and we are finding innovative ways to expand access to our latest treatments. About 108,000 people of more than 140 nationalities work at Novartis around the world. Find out more at http://www.novartis.com.
Kymriah is a registered trademark.
References_____________________________________________i Novartis Pharmaceuticals Canada Inc., Kymriah Product Monograph. January 7, 2019.ii Quebec Ministry of Health and Social Services press release. October 8, 2019. Available at: https://www.newswire.ca/fr/news-releases/la-therapie-car-t-cell-maintenant-disponible-au-quebec-821953237.html
SOURCE Novartis Pharmaceuticals Canada Inc.
For further information: Novartis Media Relations, Daphne Weatherby, Novartis Corporate Communications, +1 514 633 7873, E-mail: camlph.communications@novartis.com
New Viral Vector for Sickle Cell Gene Therapy Likely to Be More Effective, NIH Study Says – Sickle Cell Anemia News
A newly designed viral vector the vehicle that delivers a gene therapyto a patients cells for use insickle cell anemia is more efficient than earlier vectors at introducing healthy copies of genes into stem cells and can be produced in greater amounts, studies in animal models show.
The study Development of a forward-orientated therapeutic lentiviral vector for hemoglobin disorders was published in the journal Nature Communications.
Hemoglobin is the protein in red blood cells that binds oxygen, allowing oxygen to be transported around the body. Mutations in the HBBgene, which encodes a component of hemoglobin, causessickle cell.
Gene therapies involve either altering the mutated gene or introducing a healthy version of that gene to the body. Still under development for sickle cell, an estimated 27 patients have undergone experimental gene therapy. One strategy involves removing hematopoietic stem cells (which function to produce blood cells) from a patients bone marrow. A healthy copy of the HBB gene is then introduced into the cells using a modified, harmless virus known as a viral vector. The cells are then transplanted back into the patient where they will produce healthy red blood cells.
Traditionally, viral vectors for sickle cell have been designed in a way known as reverse structural orientation. This means that the HBB gene is translated or read from right to left, like reading an English sentence backwards. The reverse structural orientation design ensures that a key section of the gene (known as intron 2), which is necessary for the production of high levels of the HBB gene, is retained during viral vector preparation.
However, this design makes preparing the viral vectors more difficult, and decreases the efficiency of introducing the gene into the stem cells.
Researchersat the National Institutes of Healthdesigned a new viral vector, one in which the HBB gene is forward orientated and read from left to right. Genes essential for the virus were inserted into intron 2, meaning that only vectors that retained intron 2 would be produced (a type of positive selection).
Our new vector is an important breakthrough in the field of gene therapy for sickle cell disease, John Tisdale, MD, chief of the Cellular and Molecular Therapeutic Branch at the National Heart, Lung, and Blood Institute (NHLBI) and the studys senior author, said in a press release.
Its the new kid on the block and represents a substantial improvement in our ability to produce high capacity, high efficiency vectors for treating this devastating disorder, he added.
The researchers compared the new vectors to traditional reverse-orientated vectors in mouse and monkey models. The new vectors were four to 10 times more efficient at introducing the healthy HBBgene into the stem cells, and could carry up to six times more HBB genes compared to the conventional vectors.
Furthermore, the new vectors remained incorporated into the cells of monkeys up to four years after a transplant. These vectors could also be produced in greater amounts, which may lessen the time and costs required for large-scale vector production.
The researchers hope that these characteristics will make gene therapy for sickle cell disease more effective and increase its use. The new vector design still needs to be tested in clinical trials in patients.
Our lab has been working on improving beta-globin vectors for almost a decade and finally decided to try something radically different and it worked, Tisdale said.
These findings bring us closer to a curative gene therapy approach for hemoglobin disorders, he added.
Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.
Total Posts: 94
Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.
Read the original here:
New Viral Vector for Sickle Cell Gene Therapy Likely to Be More Effective, NIH Study Says - Sickle Cell Anemia News
Penny Lancaster is reduced to tears as she gives bone marrow donor Ronnie Musselwhite, 5, The Suns Young H – The Sun
PENNY Lancaster was reduced to tears as she handed five-year-old Ronnie Musselwhite the Young Hero gong at The Suns Who Cares Wins health awards last night.
Spurs fan Ronnie bravely offered to give his older sister Ebonie a bone marrow transplant last year.
Eight-year-old Ebonie had leukaemia and it was her only hope.
Mum Christine Jenkins, 40, said: Ronnies stem cells worked perfectly. They did what they were supposed to do but the leukaemia came back somewhere new.
Ebonie, of Crawley, West Sussex, nominated her younger brother before her death in June.
Rod Stewarts partner Penny chatted with Ronnie about his love of football and Spurs.
She said: To say I am humbled to be here is an understatement. Sometimes you think life has turned a corner on you, but then someone else turns up to give you some inspiration.
"The courage this little man has shown is absolutely incredible. Hes only five years old, hes lost a sister.
"He was incredibly shy to stand up in front of everyone to collect his award, but he again was so brave.
Christine said: We want Ronnie to know that what he did still worked, was still brave, even though he lost his sister.
PM Boris Johnson was also at the awards held at The Suns London HQ near The Shard and paid tribute to our NHS heroes.
He presented an award to a pair of quick-thinking hospital porters who saved the life of a seven-week-old baby boy.
Nick Evans, 48, and Ruth Lowe, 47, sprang into action after Logan Clifford stopped breathing.
His parents, Sarah and Mike were visiting a relative at the Princess Royal Hospital in Telford, Shrops, when they noticed Logans lips had turned blue.
Sarahs screams alerted Ruth, who shouted for Nick. He grabbed Logan and performed CPR as he ran half a mile down the corridor to A&E.
Nick continued CPR until the resuscitation team took over and the porters stayed by Logans parents side until they knew he was going to be OK. Sarah, 30, has called the two porters my heroes.
As he handed the pair the Ultimate Lifesaver trophy, the PM said: The NHS is revered around the world, and in no small part due to the heroes working in it every day.
He added: My experience of the NHS is like everybody else in the NHS - one of admiration and love.
"It is the most extraordinary institution in the world. If our country was an omelette then the NHS is the egg white that holds the great British cake together.
Virgin Radio DJ Chris Evans presented the Best Nurse gong to Liz Monaghan, 53. She set up the widely praised Purple Rose initiative, which aims to improve the care for patients and their loved ones in the last days of their life.
Liz, who works at the Florence Nightingale Hospice, based at the Stoke Mandeville Hospital in Aylesbury, Bucks, said: Im a little embarrassed to have won. Im a small part of a big team.
DJ Chris said: Youve got to prepare yourself for nights like this because otherwise they hit you like an express train.
Who Cares Wins Awards: The winners
BEST HEALTH CHARITY
Winner: Matt Hampson Foundation
Former English rugby union player Matt Hampson set up a charity to help others after being left paralysed in a scrum in 2005.
Other nominees: Superhero Foundation and Team Domenica
BEST NEONATAL SPECIALIST
Winner: Professor Kypros Nicolaides
Professor Nicolaides performed pioneering keyhole surgeon on Sherrie Sharps unborn son Jaxon. By extraordinary coincidence, as a young surgeon, he also operated on Sherries mother when she was in the womb.
Other nominees: Dr Vesna Pavasovic and Professor Massimo Caputo
UNSUNG HERO
Winner: Therapeutic Care Volunteers at South Tees NHS Foundation Trust
30 therapeutic care volunteers, who all have a learning or physical disability, give up their time to support patients with spinal injuries at The James Cook University Hospital in Middlesbrough. They include Ify Nwokoro.
Other nominees: Ben Slack and Rob Allen
GROUNDBREAKING PIONEER
Winner: Guys and St Thomas London Auditory Brainstem Implant (ABI) Service
Leia Armitage, eight, was born with a rare form of deafness and was never expected to speak. But she now can thanks to pioneering brain surgery and speech therapy carried out by Guys and St Thomas London Auditory Brainstem Implant (ABI) Service.
Other nominees: Dr Helen Spencer and Girish Vajramani
BEST DOCTOR
Winner: Dr Matthew Boulter
Dr Boulter served in Afghanistan, teaches wild trauma to army medics and his surgery became the first in Cornwall to be given veteran friendly accreditation.
Other nominees: Margaret France and Dr Bijay Sinha
BEST MIDWIFE
Winner: Jane Parke
Jane helped deliver the youngest surviving twin boys in Britain when they were born at 22 weeks last year. She flew 190 miles with their mum Jennie Powell to a specialist neonatal unit.
Other nominees: Charlotte Day and Nagmeh Teymourian
ULTIMATE LIFESAVER
Winner: Ruth Lowe and Nick Evans
Porters Ruth and Nick saved the life of Sarah and Mike Cliffords seven-week-old baby Logan. He stopped breathing as they walked through the main entrance of The Princess Royal Hospital in Telford to visit a sick relative.
Other nominees: Dr Mark Forrest and Mike Merrett
BEST NURSE
Winner: Liz Monaghan
Liz is the Matron of the Florence Nightingale Hospice in Aylesbury, Bucks, and came up with the idea for the widely praised Purple Rose initiative to improve the care for patients in the last days of their lives.
Other nominees: Margaret Ballard and Carlton DeCosta
MENTAL HEALTH HERO
Winner: Ben West
Ben lost his brother Sam, 15, to suicide last year and since his death, has campaigned tirelessly to raise awareness for mental health.
Other nominees: Beth Gregan and Catherine Benfield
YOUNG HERO
Winner: Ronnie Musselwhite
Ronnie offered to help his sister Ebonie by giving her a bone marrow transplant when she was diagnosed with a rare form of leukaemia. Ebonie nominated her brother for his bravery before she died in June.
Other nominees: Bella Field and Kaitlyn Wright
I only walked ten metres into the room tonight and I already nearly burst into tears three times.
TV star Christine Lampard gave the Best Neonatal Specialist award to Prof Kypros Nicolaides, 66.
He was nominated by Sherrie Sharp, 29, of Horsham, West Sussex, for saving the life of her unborn baby son and her own.
After scans revealed Jaxson had spina bifida, Sherrie was offered a termination. But she contacted Prof Nicolaides, a surgeon at Kings College Hospital, London.
He had saved her life 30 years earlier when she developed a rare blood disorder in her mums womb.
He agreed to perform ground-breaking surgery on Jaxson while he was in Sherries womb.
Prof Nicolaides said: I was delighted to be able to help. Sherrie said: He has saved so many generations of my family. Hes our guardian angel.
The Who Cares Wins Awards were set up in 2017 by The Sun to honour the nations heroic doctors, nurses, midwives, other NHS staff and volunteers.
The Duchess of York presented an award to the parents of Natasha Ednan-Laperouse, 15, who died of an allergic reaction to a sandwich from Pret.
The duchess said: Can I just say to The Sun, I think youre incredible. Every minute Im sitting there and thinking Im so lucky. The NHS, The Sun and all of you, this is what makes Britain so great.
Lorraine Kelly, who presented the awards, said: Earlier on this year my dad was very sick and we honestly thought we were going to lose him.
"It was really difficult and it was only because of the efforts of the NHS hes still here. Its fantastic.
Who Cares Wins Awards: The winners
BEST HEALTH CHARITY
Nominees: Superhero Foundation
Team Domenica
Winner: Matt Hampson Foundation
Former English rugby union player Matt Hampson set up a charity to help others after being left paralysed in a scrum in 2005.
BEST NEONATAL SPECIALIST
Nominees: Dr Vesna Pavasovic
Professor Massimo Caputo
Winner: Professor Kypros Nicolaides
Professor Nicolaides performed pioneering keyhole surgeon on Sherrie Sharps unborn son Jaxon. By extraordinary coincidence, as a young surgeon, he also operated on Sherries mother when she was in the womb.
UNSUNG HERO
Nominees: Ben Slack
Rob Allen
Winner: Therapeutic Care Volunteers at South Tees NHS Foundation Trust
30 therapeutic care volunteers, who all have a learning or physical disability, give up their time to support patients with spinal injuries at The James Cook University Hospital in Middlesbrough. They include Ify Nwokoro.
GROUNDBREAKING PIONEER
Nominees: Dr Helen Spencer
Girish Vajramani
Winner: Guys and St Thomas London Auditory Brainstem Implant (ABI) Service
Leia Armitage, eight, was born with a rare form of deafness and was never expected to speak. But she now can thanks to pioneering brain surgery and speech therapy carried out by Guys and St Thomas London Auditory Brainstem Implant (ABI) Service.
BEST DOCTOR
Nominees: Margaret France
Dr Bijay Sinha
Winner: Dr Matthew Boulter
Global Cell Therapy Technologies Market Industry Analysis and Forecast (2018-2026) – Weekly Spy
Global Cell Therapy Technologies Market was valued US$ 12 billion in 2018 and is expected to reach US$ 35 billion by 2026, at CAGR of 12.14 %during forecast period.
The objective of the report is to present comprehensive assessment projections with a suitable set of assumptions and methodology. The report helps in understanding Global Cell Therapy Technologies Market dynamics, structure by identifying and analyzing the market segments and projecting the global market size. Further, the report also focuses on the competitive analysis of key players by product, price, financial position, growth strategies, and regional presence. To understand the market dynamics and by region, the report has covered the PEST analysis by region and key economies across the globe, which are supposed to have an impact on market in forecast period. PORTERs analysis, and SVOR analysis of the market as well as detailed SWOT analysis of key players has been done to analyze their strategies. The report will to address all questions of shareholders to prioritize the efforts and investment in the near future to the emerging segment in the Global Cell Therapy Technologies Market.
REQUEST FOR FREE SAMPLE REPORT: https://www.maximizemarketresearch.com/market-report/global-cell-therapy-technologies-market/31531/#requestforsample
Global Cell Therapy Technologies Market: OverviewCell therapy is a transplantation of live human cells to replace or repair damaged tissue and/or cells. With the help of new technologies, limitless imagination, and innovative products, many different types of cells may be used as part of a therapy or treatment for different types of diseases and conditions. Celltherapy technologies plays key role in the practice of medicine such as old fashioned bone marrow transplants is replaced by Hematopoietic stem cell transplantation, capacity of cells in drug discovery. Cell therapy overlap with different therapies like, gene therapy, tissue engineering, cancer vaccines, regenerative medicine, and drug delivery. Establishment of cell banking facilities and production, storage, and characterization of cells are increasing volumetric capabilities of the cell therapy market globally. Initiation of constructive guidelines for cell therapy manufacturing and proven effectiveness of products, these are primary growth stimulants of the market.
Global Cell Therapy Technologies Market: Drivers and RestraintsThe growth of cell therapy technologies market is highly driven by, increasing demand for clinical trials on oncology-oriented cell-based therapy, demand for advanced cell therapy instruments is increasing, owing to its affordability and sustainability, government and private organization , investing more funds in cell-based research therapy for life-style diseases such as diabetes, decrease in prices of stem cell therapies are leading to increased tendency of buyers towards cell therapy, existing companies are collaborating with research institute in order to best fit into regulatory model for cell therapies.Moreover, Healthcare practitioners uses stem cells obtained from bone marrow or blood for treatment of patients with cancer, blood disorders, and immune-related disorders and Development in cell banking facilities and resultant expansion of production, storage, and characterization of cells, these factors will drive the market of cell therapy technologies during forecast period.
On the other hand, the high cost of cell-based research and some ethical issue & legally controversial, are expected to hamper market growth of Cell Therapy Technologies during the forecast period
AJune 2016, there were around 351 companies across the U.S. that were engaged in advertising unauthorized stem cell treatments at their clinics. Such clinics boosted the revenue in this market.in August 2017, the U.S. FDA announced increased enforcement of regulations and oversight of clinics involved in practicing unapproved stem cell therapies. This might hamper the revenue generation during the forecast period; nevertheless, it will allow safe and effective use of stem cell therapies.
Global Cell Therapy Technologies Market: Segmentation AnalysisOn the basis of product, the consumables segment had largest market share in 2018 and is expected to drive the cell therapy instruments market during forecast period at XX % CAGR owing to the huge demand for consumables in cell-based experiments and cancer research and increasing number of new product launches and consumables are essential for every step of cell processing. This is further expected to drive their adoption in the market. These factors will boost the market of Cell Therapy Technologies Market in upcoming years.
On the basis of process, the cell processing had largest market share in 2018 and is expected to grow at the highest CAGR during the forecast period owing to in cell processing stage,a use of cell therapy instruments and media at highest rate, mainly in culture media processing. This is a major factor will drive the market share during forecast period.
Global Cell Therapy Technologies Market: Regional AnalysisNorth America to held largest market share of the cell therapy technologies in 2018 and expected to grow at highest CAGR during forecast period owing to increasing R&D programs in the pharmaceutical and biotechnology industries. North America followed by Europe, Asia Pacific and Rest of the world (Row).
Do Inquiry Before Purchasing Report Here: https://www.maximizemarketresearch.com/market-report/global-cell-therapy-technologies-market/31531/#inquiry
Scope of Global Cell Therapy Technologies Market
Global Cell Therapy Technologies Market, by Product
Consumables Equipment Systems & SoftwareGlobal Cell Therapy Technologies Market, by Cell Type
Human Cells Animal CellsGlobal Cell Therapy Technologies Market, by Process Stages
Cell Processing Cell Preservation, Distribution, and Handling Process Monitoring and Quality ControlGlobal Cell Therapy Technologies Market, by End Users
Life Science Research Companies Research InstitutesGlobal Cell Therapy Technologies Market, by Region
North America Europe Asia Pacific Middle East & Africa South AmericaKey players operating in the Global Cell Therapy Technologies Market
Beckman Coulter, Inc. Becton Dickinson and Company GE Healthcare Lonza Merck KGaA MiltenyiBiotec STEMCELL Technologies, Inc. Terumo BCT, Inc. Thermo Fisher Scientific, Inc. Sartorius AG
MAJOR TOC OF THE REPORT
Chapter One: Cell Therapy Technologies Market Overview
Chapter Two: Manufacturers Profiles
Chapter Three: Global Cell Therapy Technologies Market Competition, by Players
Chapter Four: Global Cell Therapy Technologies Market Size by Regions
Chapter Five: North America Cell Therapy Technologies Revenue by Countries
Chapter Six: Europe Cell Therapy Technologies Revenue by Countries
Chapter Seven: Asia-Pacific Cell Therapy Technologies Revenue by Countries
Chapter Eight: South America Cell Therapy Technologies Revenue by Countries
Chapter Nine: Middle East and Africa Revenue Cell Therapy Technologies by Countries
Chapter Ten: Global Cell Therapy Technologies Market Segment by Type
Chapter Eleven: Global Cell Therapy Technologies Market Segment by Application
Chapter Twelve: Global Cell Therapy Technologies Market Size Forecast (2019-2026)
Browse Full Report with Facts and Figures of Cell Therapy Technologies Market Report at: https://www.maximizemarketresearch.com/market-report/global-cell-therapy-technologies-market/31531/
About Us:
Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.
Contact info:
Name: Lumawant Godage
Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.
Email: sales@maximizemarketresearch.com
Contact: +919607065656/ +919607195908
Website: http://www.maximizemarketresearch.com
Follow this link:
Global Cell Therapy Technologies Market Industry Analysis and Forecast (2018-2026) - Weekly Spy
Stem Cells Market to Gain Huge Traction Owing to Arrival of New-Fangled Treatments for Long-Lasting Sicknesses Till 2025 | Million Insights – P&T…
FELTON, California, Oct. 7, 2019 /PRNewswire/ -- The global Stem Cell Market was valued at US$ 8.65 billion in 2018 and is estimated to grow at an 8.8% CAGR and will touch the value of US$ 15.63 Billion by the completion of the year 2025.
During the previous insufficient years, stem cells therapy has been attaining grip all over the world. A substantial growth in the number of clinical use of stem cells and the arrival of new-fangled treatments for long-lasting sicknesses are projected to boost the development of the global stem cells market during the following insufficient years. Moreover, the growing investment by community along with private groups for research actions are expected to increase the general development of the market during the nearby future.
Classification:
The global stem cell market can be classified by Therapy, Technology, Application, Product End User, and Region. By Therapy it can be classified as Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy. The subdivision of Autologous Stem Cell therapy was the leading sector by means of generation of income in 2018. It is credited to big scale ingestion of these products owing to associative high compatibility. Furthermore, growing methodical evaluations and meta-analysis revisions on reviewing the efficiency of autologous cell therapy on treatment of lower limb illnesses will more offer thrust to the market.
By Technology it can be classified as Expansion and Sub-Culture, Cryopreservation, Cell Production, Cell Acquisition. The subdivision of Cell Acquisition technology is the elementary main step that has caused supremacy of this section. It is likely to uphold this position during the course of the forecast period, due to increasing alertness about the importance of stem cells. Bone marrow is the maximum utilized technology for cell acquisition due to the comparatively quicker manufacture of new cells from bone marrow. Additionally, cells that initiate from bone marrow are extra concentrated as equated to additional origin places.
Get Sample PDFand read more details about the "Stem Cells Market" Report 2025.
By Application it can be classified as Drug Discovery and Development, Regenerative Medicine. The subdivision of Regenerative Medicine is witnessed to grasp the prospective for creating early-intervention treatments to treat degenerative illnesses and painful injury. Additionally, obtainability of regenerative medicine through a widespread variety of clinical areas is motivating the development of the section.
By Product it can be classified as Very Small Embryonic like Stem Cells, Human Embryonic, Induced Pluripotent Stem Cells, and Adult Stem Cells. The subdivision of Adult Stem Cell detained the biggest share of the market which was prized US$ 7.38 billion in 2018. It is projected to carry on leading for the duration of the forecast. This is credited to the low-slung hazards of pollution associated to sub-culturing, negligible necessity of labor force for production and compatibility with humanoid figure. By End User it can be classified as Service Companies, Cell and Tissues Banks, Tools and Reagent Companies, Therapeutic Companies.
Regional Lookout:
By Region, the global stem cells industry can be classified as North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. Asia Pacific is expected to record speedy CAGR for the duration of the forecast. The nations such as Singapore, Australia, and Japan are mainly capitalizing in the R&D projects. This is set to motivate the development of the region. Economies from Asia Pacific are likely to be at the front position of speedily developing cell industry. Issues similar to advantageous controlling strategies together with openings for commercialization increase the provincial growth. Controlling alterations relating to regenerative medication in Japan have fascinated worldwide companies to capitalize in the Japanese market.
North America is expected to carry on holding the foremost market share during the period of forecast, due to the hard work from government and private segments operational in the direction of formation of distinct business models in Canada and the U.S.A.
Companies:
The companies are opting for multidisciplinary commercial growth and multi-sector team work to safeguard incessant source of great quality pluripotent and distinguished cells. This is set to step up the rivalry, motivating the continuous necessity to present innovative products.
Some of the important companies for stem cell market are Promethera Biosciences, Human Longevity Inc., Cytori Therapeutics, BIOTIME, INC., STEM CELL Technologies Inc., Mesoblast, Cynata, Advanced Cell Technology Inc., Osiris Therapeutics Inc., and Celgene Corporation.
Browse 190 page research report with TOC on "Global Stem Cells Market" at: https://www.millioninsights.com/industry-reports/stem-cells-market
Market Segment:
Browse reports of similar category available with Million Insights:
About Million Insights:
Million Insights, is a distributor of market research reports, published by premium publishers only. We have a comprehensive market place that will enable you to compare data points, before you make a purchase. Enabling informed buying is our motto and we strive hard to ensure that our clients get to browse through multiple samples, prior to an investment. Service flexibility & the fastest response time are two pillars, on which our business model is founded. Our market research report store, includes in-depth reports, from across various industry verticals, such as healthcare, technology, chemicals, food & beverages, consumer goods, material science & automotive.
Contact:
Ryan ManuelResearch Support Specialist, USAMillion InsightsPhone: 1-408-610-2300Toll Free: 1-866-831-4085Email: sales@millioninsights.comWeb: https://www.millioninsights.com/Blog: http://www.millioninsights.blogspot.com/
See the rest here:
Stem Cells Market to Gain Huge Traction Owing to Arrival of New-Fangled Treatments for Long-Lasting Sicknesses Till 2025 | Million Insights - P&T...
BrainStorm Announces Notice of US Patent Allowance for NurOwn Cellular Therapeutic Technology Platform – Yahoo Finance
NEW YORK, Oct. 07, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics Inc.(NASDAQ: BCLI), a leading developer of adult stem cell therapeutics for neurodegenerative diseases, today announced that the United States Patent and Trademark Office (USPTO) has issued a Notice of Allowance for BrainStorm's new US Patent Application, number: 15/113,105, titled: Method of Qualifying Cells'.
The allowed claims cover a pharmaceutical composition for MSC-NTF cells secreting neurotrophic factors (NurOwn) comprising a culture medium as a carrier and an isolated population of differentiated bone marrow-derived MSCs that secrete neurotrophic factors.
Patent families protecting NurOwn have previously issued in the United States, Japan, Europe, Hong-Kong and Israel.
"This allowance further expands the patent protection of the NurOwn Cellular Therapeutic Technology Platform and enables us to accelerate clinical development for new neurodegenerative indications, commented BrainStorm President and CEO,Chaim Lebovits.
About NurOwn
NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm is currently conducting a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.
About BrainStorm Cell Therapeutics Inc.
BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm is currently enrolling a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019. For more information, visit the company's website at http://www.brainstorm-cell.com
Safe-Harbor Statements
Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.
Story continues
It’s in the blood – Lab News
Blood, of course, plays a crucial role in keeping our bodies alive and functioning.
Red blood cells carry oxygen from our lungs to our muscles. White blood cells are the first responders of our immune systems, detecting infections and foreign agents and triggering the immune response needed to deal with the problem. Plasma, the liquid part of blood, transports not only the cells but also proteins, such as antibodies, and hormones, such as insulin, to every part of the body. It is a beautifully complex system that is the key to our bodies functioning correctly.
Parasites, viruses and bacteria all use the circulatory system to spread around the body. When cancer metastasises and spreads to other parts of the body, it is through tumour cells circulating within the bloodstream. There are also myriad blood cancers, such as leukaemias and lymphomas, and blood disorders, such as sickle cell anaemia, not to mention autoimmune diseases like diabetes or lupus. Sepsis, also known as blood poisoning, is a deadly overreaction to an infection which also has its roots in blood.
Magnetic blood filtration is a tool which enables the physical removal of specific substances from the bloodstream
Most of these diseases are treated with drugs or chemotherapies, some with great success, others, much less. There are also various methods of physically extracting different components from the blood by circulating a patients blood outside of the body through whats known as an extracorporeal circuit. Dialysis, for example, removes excess toxins from the blood, acting as a substitute for kidneys when they fail. Plasmapheresis and leukapheresis are methods of removing harmful antibodies from the plasma or white blood cells from the blood. Similar techniques are also used to harvest stem cells from the blood, which can then be used in cancer therapies (known as stem cell transplantation), if the donor and patient are a match.?
?Magnetic blood filtration
Despite these methods, millions of people still die every year from blood-borne diseases. At MediSieve a small, London-based start-up company we are using nanotechnology to develop a new technology which we think can transform our ability to tackle these conditions. Magnetic blood filtration (MBF) is a tool which enables the physical removal of specific substances from the bloodstream. It is similar to other extracorporeal procedures like dialysis, but instead of removing every component of a particular size or weight, MBF removes highly specific targets to address the specific medical issue, thereby removing only the substance that doctors want to remove. Alongside this high specificity, various targets, both big and small, can be removed simultaneously, raising the prospect of removing for example specific cells and harmful antibodies in a single procedure.
To achieve this, we use magnetic nanoparticles coated with binding moieties, such as antibodies, which bind specifically to the desired targets in the blood. These particles are infused into the blood within the extracorporeal circuit, binding to their targets. The blood then flows through a magnetic filter which captures the magnetic particles and the targets bound to them, while the rest of the blood flows back into the patient. Several different particles can be used in the same procedure in order to capture different components. Using this method, anything for which there is a specific antibody or other binding moiety can theoretically be removed directly from the bloodstream. I think that in the long-term the technology could be used to remove specific cells, antibodies, bacteria, viruses, toxins, drug molecules and inflammatory cytokines, the drivers of immune conditions such as sepsis.
The MediSieve Filter is a disposable, single-use device in which the magnetic particles and their targets are captured. It is inserted into the MediSieve Magnet, a reusable medical device which activates the filter. (The technology ???) Both can be incorporated into a variety of existing extracorporeal systems and integrate with standard blood pumps and tubing sets.
We are currently developing treatments for malaria, sepsis and leukaemia. The Filter and Magnet have completed pre-clinical testing and are now ready for clinical trials, which we hope to start shortly. Magnetic particles for various clinical targets are currently being developed and validated in the laboratory, with promising results. Animal trials for these are expected to start in 2020.
Malaria
Our potential treatment for malaria is the closest to market because malaria infected cells, uniquely, have naturally occurring magnetic properties is it therefore possible to remove them from the blood using the MediSieve Filter without the infusion of any magnetic particles. The magnetic properties arise from a core aspect of the malaria parasites lifecycle. After infecting a red blood cell, the parasite consumes the protein part of haemoglobin, leaving behind an iron-based waste-product known as haemozoin, which is stored inside the cell. Haemozoin is paramagnetic, thereby giving infected cells their unique magnetic properties.
MBF could be used in highly severe malaria cases in which the patient is hospitalised and at high risk of death. Currently, these patients receive intravenous drugs such as artesunate which can achieve parasite clearance in 36-48 hours; parasite clearance rate is the key indicator of patient recovery, and it can take up to eight doses of IV drugs to achieve complete clearance. Mortality in these cases can be as high as 20%.?
Using MBF alongside the first dose of IV drugs could drastically accelerate parasite clearance rate. We claim that, depending on the patient size and initial level of infection, this approach can remove over 90% of red blood cells containing haemozoin in just two hours. Because they have higher quantities of haemozoin, MBF is better at removing later stage infected cells, whereas drugs are much more effective against earlier stage cells, so they should be complimentary.
MBF has the additional benefit of removing free circulating haemozoin, also known as the malaria toxin, which should also improve the treatment for the patient since drugs can cause the large-scale release of haemozoin as infected cells die.
According to the WHO, in 2017 there were 219 million cases of malaria and 435,000 deaths, mostly children. While overall malaria cases and deaths have been trending downwards in recent years, the number of hospitalised patients is increasing as healthcare infrastructure improves in malaria endemic countries and more patients gain access to hospitals. In the future, MBF could be adapted for use in mobile clinics to reach harder to access areas.
While ourinitial target is severe malaria patients, I also believe MBF could be a valuable tool in the fight against drug-resistant malaria strains, which have been emerging in SE Asia and are causing great concern if drug resistance spreads to Africa, the effect could be catastrophic. It can also be used to treat patients for whom drugs cannot be used, such as pregnant women.
Sepsis
Sepsis is one of the leading causes of death in the developed world with more than 1.9M cases in Europe and the US and published mortality rates of 29% - 50%. Sepsis is a complex syndrome in which bacteria or other pathogens create a dysregulated immune response which can escalate to organ failure and death. The immune response creates an overproduction of pro-inflammatory cytokines, while cell damage over time creates damage-associated molecular patterns (DAMPs) that sustain the syndrome. ?
Our approach to sepsis, which we call SepSieve, uses a cocktail of different particles to remove a number of targets from a patients bloodstream: specific pro-inflammatory cytokines (IL-1, IL-6 and IL-18), DAMPs (HMGB-1), endotoxins (LPS), and gram-negative bacteria. This multi-modal approach tackles the disease from two key angles: Removing the pathogens and endotoxins that trigger the immune response and reducing magnitude of the immune response and preventing the cascade towards septic shock.
Like in malaria, SepSieve would be used alongside existing frontline treatments, specifically antibiotics. While antibiotics are critical for treatment of sepsis, the bacterial cell death they cause releases LPS which accelerates the dysregulated immune response MBF could remove the LPS to prevent the condition from worsening. The main benefit of MBF in sepsis is therefore not so-much the removal of bacteria itself (which is tackled by antibiotics and in any case is not present exclusively in the bloodstream), but rather the removal of all the other components driving the disease.
Gram-negative bacteria such as E. coli account for approximately 50% of sepsis patients, but thanks to the removal of other substances, particularly HMGB-1 and the inflammatory cytokines, I think the combined approach could benefit all sepsis patients. Since magnetic filtration is a purely physical method, it can also target and remove pathogens which are resistant to antibiotics, which again are a huge concern with increasing occurrences of resistant infections in hospitals.
Like in malaria, wwe plan to apply sepsis treatment to hospitalised patients and specifically those in Intensive Care Units. These are the most severe cases and those who stand to benefit the most from the treatment. The idea is to intervene early to prevent the sepsis cascade, in which the disease escalates eventually causing organ failure and death.
In fact, we managed to secure grants worth a total of 1.56M from Innovate UK, the UKs government grant funding body, and the UK National Institute of Health Research to develop and validate our sepsis particles. Currently being tested in human blood models in the companys laboratories, we plan to start animal trials in 2020 which, if successful, will be followed by clinical trials in 2021.
Leukaemia
One of the advantages of the particles we develop to remove pro-inflammatory cytokines for sepsis is that they can also be used in other diseases. This includes auto-immune diseases and cytokine storms such as cytokine release syndrome (CRS), a common side-effect of newer leukaemia treatments known as CAR T-cell therapies.?
In CAR-T therapies, T-cells, a type of white blood cell, are modified to attack cancer cells in a patients bone marrow. Taken either directly from the patient or from a matching donor, the modified cells are infused into the patient in order to directly attack the cancer. Results of clinical trials have been mixed, but these cell therapies are seen as a huge leap forward for leukaemia treatment.?
The problem is that the infused T-cells trigger massive immune reactions within the patient. Indeed, that is the intention the immune reaction is intended to kill the cancer cells but it can easily escalate into the condition called CRS. The result is similar to sepsis an immune over-reaction which attacks the patient and can be fatal. Immune mediators can be used to calm this reaction, but they then prevent the infused CAR-T cells from having their effect, eliminating the therapeutic benefit of the treatment.
Our proposal is to use MBF in CRS patients to remove cytokines from the bloodstream. This should calm the immune reaction, alleviating patient suffering and eliminating the risk of death. But since MBF only removes cytokines from the bloodstream, it shouldnt affect the immune effect of the CAR-T cells in the bone marrow, so the therapeutic benefit should be maintained. In addition, MBF can be stopped at will, so it can be used to control the immune response by maintaining the correct balance of cytokines this is of course not possible with immune mediators which are infused into the patient.
A further benefit that MBF can provide in leukaemia patients is the removal of leukaemia cells from the bloodstream leukaemia patients commonly have very high white blood cell counts due to circulating leukaemia cells. These cause a number of issues such as a reduction in immune function, making patients more vulnerable to infection. They can also prevent certain chemotherapies from working effectively, since they block the drug from targeting cancer cells in the bone marrow. High white blood cell counts also increase the risk of side-effects during treatment, since the sudden death of such a large numbers of cells causes debris to circulate in the blood, putting strain on the body and causing immune reactions like CRS; this is known as Tumour Lysis Syndrome. ?
We are currently focussing development on their sepsis particles, but plan to trial their cytokine particles in CRS at the same time as they are trialled in sepsis, since the pre-clinical validation for each disease is the same. The particles to remove white blood cells, however, are at an earlier stage and will be developed further down the line.
Our ambitions for MBF are certainly large. In the long-term we want to revolutionise the way in which blood-borne diseases are treated. Going far beyond malaria, sepsis and leukaemia, we want to develop treatments for all blood-borne diseases if its in the blood, and doctors want it out, we want to be able to take it out.
My vision is that hospitals all around the world will have Magnetic Blood Filtration Units which will address a huge variety of patients. Only time will tell if this can be achieved, or even if our technology will work at all after all, there have, as of yet, been no clinical trials.
However, the ability to remove specific substances from blood would clearly be of benefit to huge numbers of patients. It is something that we cannot do today, but we certainly should want to be able to do tomorrow. Whether it is MediSieve who gets us there or not remains to be seen.
Author:
Dr George Frodsham is CEO and founder of MediSieve
See original here:
It's in the blood - Lab News
Brown Belt and Dad Needs Help Tapping Rare Cancer in Rematch – Jiu-Jitsu Times
Whats more savage than submitting an extremely rare, aggressive form of cancer? Beating it a second time, which is what one brown belt and his jiu-jitsu community are currently hellbent on doing. Steve Springer, a father, husband, and one of those relentlessly positive mat rats who lights up the gym, just made the 1100 mile trek from New Orleans to Sloan Kettering to face Alk-positive Anaplastic Large Cell Lymphoma (ALCL)again. But this time around his black belt coach, Charles Haymon of New State Fitness, needs help making sure Steve and his family can keep the mortgage paid and food on the table while Dad undergoes a radical treatment far from home.
Springer is currently prepping for an Autologous Stem Cell Transplant. The GoFundMe page for the grappler explains just how serious a match this one is going to be:
Unlike traditional donor transplants, this process will harvest Steves own stem cells from his bone marrow. He will then be given a high dose of chemotherapy that will kill his stem cells and almost every white blood cell in his body. The harvested stem cells can then be transplanted back into his body, allowing for new blood cell production.
This is a high risk, and incredibly tough procedure for Steve and his family. Killing off his immune system will leave him at risk of a life threatening infection. A very sick Steve will lose all of his hair (again), and need to be isolated. Linda will have to be with him 24 hours a day, seven days a week, supporting him and keeping records for the transplant team. The hardest part may be that Steve will have to be separated from his 3-year-old son Tommy for the 2-3 months hes going through all this.
This process will continue into 2020. Steve could be immunocompromised for at least a year after the transplant. He will still need medications and follow up visits with his doctors in New York. Even after all this, there is no guarantee that the cancer will not come back, but this is Steves best hope.
Springer first took on cancer in 2017, completing six rounds of chemo before successfully hitting remission. But this past June a new lump was found, setting off another cascade of nightmare medical bills. For the last four months, Springer has been undergoing treatment while continuing to train, tapping out some black belts who didnt even know their opponent was fighting two battles at once.
Anyone who knows Steve knows he is one of the best of us, says Professor Haymon. Always cheerful and positive, he loves building others up. Steve is usually the last person to leave the mat, whether hes helping out teammates, or getting tips from the upper belts who gravitate towards his positive energy.
Heres the link to donate again in case you missed it above.
Also? Steve would love the chance to train with Danaher and the Death Squad at Renzo Gracies while hes up in NYCbecause who doesnt think about training when theyre in the middle of a life or death battle with rare cancerso if youre someone with gym connections, do the right thing a get this guy a spot on those famous blue mats.
See more here:
Brown Belt and Dad Needs Help Tapping Rare Cancer in Rematch - Jiu-Jitsu Times
Bone Marrow Aspirate Concentrates Market is Anticipated to Register a Stable CAGR of over 5.0% from 2017 to 2025 – Space Market Research
The global Bone Marrow Aspirate Concentrates Market was valued around US$ 130.0 Mn in 2016 is anticipated to register a stable CAGR of over 5.0% during forecast period of 2017 to 2025, according to a new report published by Transparency Market Research (TMR) titled Bone Marrow Aspirate Concentrates Market Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20172025.
Growth of the global bone marrow aspirate concentrates market is driven by increased prevalence of and incidences of orthopedic diseases, and sports injuries, along with high growth of the cosmetic surgery industry and increasing applications of the BMAC products in the cosmetic and orthopedic surgeries. The bone marrow aspirate concentrates market in Asia Pacific is expanding with a high potential to grow registering a CAGR above 6.0% on the backdrop of unmet clinical needs, rising geriatric population, large patient pool, favorable government regulations, development in health care sector, and increased focus on research and developmental activities.
Increase in incidences of Osteoarthritis on the backdrop of rising geriatric population to drive market growth
According to a collaborative survey conducted by the United Nations and the World Health Organization, 1.2 billion people in China are suffering from OA, of which more than 55% are aged 60 years or above. On the backdrop of such a huge patient base, there has been several developments in the field orthopedic surgery.
Bone marrow-derived stem cell treatment is considered a promising and advanced therapy. It reduces the injury healing time in orthopedic diseases to five to six weeks from four to six months in case of surgery. Reduction in the healing time is a factor likely to propel the Bone Marrow Aspirate Concentrates market during the forecast period. However, pain associated with the treatment, lack of product approval, and preference for alternative treatments are negatively affecting the market growth. Moreover, high investments in R&D and clinical trials, slow approval processes entailing sunken costs, and marginal returns on investment (RoI) for stakeholders are primary concerns faced by manufacturer further hampering growth of the market.
To garner compelling insights on the forecast analysis of Global Bone Marrow Aspirate Concentrates Market, Request a PDF Sample Here
Rise in the Number of BMAC Assisted Procedures to Boost Growth of Bone Marrow Aspirate Concentrates Accessories Segment
The product type segment is fragmented into bone marrow aspirate concentrates systems and bone marrow aspirate concentrates accessories. The bone marrow aspirate concentrates accessories segment is anticipated to carry major share of the market on the backdrop of rise in number of BMAC assisted procedures.
Cell therapies have been used extensively over the past decade for a variety of medical applications to restore cellular function and enhance quality of life. Owing to the differentiation property, stem cells are being used for repair and regeneration of bone. Moreover, increase in awareness about hygiene and risk of cross-contamination in developing countries such as Brazil, China and India are expected to increase the use of single-use Jamshidi needles for bone marrow stem cell procedures. This is likely to fuel the growth of the accessories segment in the near future.
Semi-consolidated Market with 3-4 key Players Operating in the BMAC Systems Market Segment
Key players covered in this report are Terumo Corporation (Terumo BCT), Ranfac Corp., Arthrex, Inc., Globus Medical, Inc., Cesca Therapeutics Inc., MK Alliance Inc. (TotipotentSC), and Zimmer Biomet Holdings, Inc. Companies operating in the global market for bone marrow aspirate concentrates are focusing on in-licensing and collaboration agreements to put new products in the developing markets like Asia Pacific, and Latin America. For instance, in August 2017, Cesca Therapeutics Inc. announced a distribution agreement with Boyalife WSN Ltd., a China based company. Through this agreement, Boyalife WSN Ltd. will distribute Cescas innovative biobanking and point-of-care solutions in China, India, Singapore, and the Philippines. As India and China represent two of the fastest growing economies in the world, successful penetration of these regions can generate more market opportunity to the companies.
Improved Gene Therapy in Sickle Cell Disease – Technology Networks
Researchers at the National Institutes of Health (NIH) have developed a new and improved viral vector--a virus-based vehicle that delivers therapeutic genes--for use in gene therapy for sickle cell disease. In advanced lab tests using animal models, the new vector was up to 10 times more efficient at incorporating corrective genes into bone marrow stem cells than the conventional vectors currently used, and it had a carrying capacity of up to six times higher, the researchers report.
The development of the vector could make gene therapy for sickle cell disease much more effective and pave the way for wider use of it as a curative approach for the painful, life-threatening blood disorder. Sickle cell disease affects about 100,000 people in the United States and millions worldwide.
"Our new vector is an important breakthrough in the field of gene therapy for sickle cell disease," said study senior author John Tisdale, M.D., chief of the Cellular and Molecular Therapeutic Branch at the National Heart, Lung, and Blood Institute (NHLBI). "It's the new kid on the block and represents a substantial improvement in our ability to produce high capacity, high efficiency vectors for treating this devastating disorder."
Researchers have used virus-based vehicles for years in gene therapy experiments, where they have been very effective at delivering therapeutic genes to bone marrow stem cells in the lab before returning them to the body. But there's always room for improvement in their design in order to optimize effectiveness, Tisdale noted. He compared the new virus-based vehicle to a new and improved car that is also far easier and cheaper for the factory to produce.
The study was supported by the NHLBI and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), both part of the NIH. It was published online today in Nature Communications.
Sickle cell disease is an inherited blood disorder caused by a mutation, or misspelling, in the beta-globin gene (or -globin gene). This mutation causes hemoglobin, the main ingredient of blood cells, to produce sickle-shaped cells that can stick to the walls of blood vessels, causing blockage, pain, anemia, organ damage, and early death. With gene therapy, doctors modify the patient's bone marrow hematopoietic (blood-producing) stem cells in the lab by adding a normal copy of the beta-globin gene through the use of a viral vector. They then reinfuse the modified stem cells into the patient to produce normal, disc-shaped red blood cells.
For the past 30 years, researchers have been designing these beta-globin vectors in a reverse structural orientation, meaning the therapeutic genes incorporated into the virus are translated, or "read," from right to left by the viral vector-making machinery--much like reading an English sentence backwards. The reason for the reverse orientation is the sensitive expression of a key molecular component of the vector called intron 2. This segment is required for high-level beta-globin gene expression but gets clipped out during the normal vector preparation process if it is left in the natural, forward direction. Gene therapy trials using reverse-oriented vectors for sickle cell disease and beta-thalassemia have largely been encouraging, the researchers said, but this complicated gene translation process has made vector preparation and gene-transfer efficiency more difficult.
About 10 years ago, Tisdale and Naoya Uchida, M.D., Ph.D., a staff scientist in his lab, searched for an improved delivery vehicle--like designing a better car--and decided to undertake a radical redesign of the beta-globin vector. They came up with a unique work-around design that left intron 2 intact and created the new forward-oriented beta-globin vector. In contrast to the old vector, the gene sequence, or "message," of the new beta-globin vector is read from left to right--like reading a normal sentence--making the gene translation approach less complicated, Tisdale explained.
The researchers tested the new vectors in mice and monkeys and compared the results to reverse-oriented vectors. They found that the new vectors could transfer a much higher viral load--up to six times more therapeutic beta-globin genes than the conventional vectors--and had four to 10 times higher transduction efficiency, a measure of the ability to incorporate corrective genes into repopulating bone marrow cells. The new vectors also showed a capacity for longevity, remaining in place four years after transplantation. Researchers also found that they could be produced in much higher amounts than the conventional vectors, potentially saving time and lowering costs associated with large-scale vector production.
"Our lab has been working on improving beta-globin vectors for almost a decade...and finally decided to try something radically different--and it worked," Tisdale said. "These findings bring us closer to a curative gene therapy approach for hemoglobin disorders."
Reference: Uchida et al. 2019.Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nature Communications. DOI: https://doi.org/10.1038/s41467-019-12456-3.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Read the rest here:
Improved Gene Therapy in Sickle Cell Disease - Technology Networks
Exploring the Latest in CRISPR and Stem Cell Research – Technology Networks
Since the gene-editing potential of CRISPR systems was realized in 2013, they have been utilized in laboratories across the world for a wide variety of applications. When this gene-editing power is harnessed with the proliferative potential of stem cells, scientists level up their understanding of cell biology, human genetics and the future potential of medicine.
Thus far, the feasibility to edit stem cells using CRISPR technology has been demonstrated in two key areas: modeling and investigating human cell states and human diseases, and regenerative medicine.1 However, this has not been without challenges.
In this article, we explore some of the latest research in these spaces and the approaches that scientists are adopting to overcome these challenges. Deciphering cell-specific gene expression using CRISPRi in iPSC-derived neurons
Deploying CRISPR technology in iPSCs has been notoriously challenging, as Martin Kampmann, of the Kampmann lab at the University of California San Francisco, says: "CRISPR introduces DNA breaks, which can be toxic for iPSCs, since these cells have a highly active DNA damage response." To overcome the issue of toxicity, as a postdoc in the lab of Professor Jonathan Weissman, Kampmann co-invented a tool known as CRISPR interference (CRISPRi), where the DNA cutting ability of CRISPR/Cas9 is disabled.2 The "dead" Cas9 (or, dCas9) is still recruited to DNA as directed by a single guide RNA. It can therefore operate as a recruitment platform to target protein domains of interest to specific places in the genome.
CRISPRi permits gene repression at the transcription level, as opposed to RNAi which controls genes at the mRNA level. This allows researchers to repress certain genes within stem cells and decipher their function. Kampmann explains: "For CRISPRi, we target a transcriptional repressor domain (the KRAB domain) to the transcription start site of genes to repress their expression. This knockdown approach is highly effective and lacks the notorious off-target effects of RNAi-based gene knockdown."In a study published just last month, Kampmann's laboratory adopted a CRISPRi-based platform to conduct genetic screens in human neurons derived from iPSCs: "CRISPR-based genetic screens can reveal mechanisms by which these mutations cause cellular defects, and uncover cellular pathways we can target to correct those defects. Such pathways are potential therapeutic targets."3"We expressed the CRISPRi machinery (dCas9-KRAB) from a safe-harbor locus in the genome, where it is not silenced during neuronal differentiation. We also developed a CRISPRi construct with degrons, stability of which is controlled by small molecules. This way, we can induce CRISPRi knockdown of genes of interest at different times during neuronal differentiation."
Image: iPSC-derived neurons. Credit: Kampmann Lab, UCSF.Previous CRISPR-based screens have focused on cancer cell lines or stem cells rather than healthy human cells, thus limiting potential insights into the cell-type-specific roles of human genes. The researchers opted to screen in iPSC-derived neurons as genomic screens have revealed mechanisms of selective vulnerability in neurodegenerative diseases, and convergent mechanisms in neuropsychiatric disorders.
The large-scale CRISPRi screen uncovered genes that were essential for both neurons and iPSCs yet caused different transcriptomic phenotypes when knocked down. "For me, one of the most exciting findings was the broadly expressed genes that we think of as housekeeping genes had different functions in iPSCs versus neurons. This may explain why mutations in housekeeping genes can affect different cell types and tissues in the body in very different ways," says Kampmann. For example, knockdown of the E1 ubiquitin activating enzyme, UBA1, resulted in neuron-specific induction of a large number of genes, including endoplasmic reticulum chaperone HSPA5 and HSP90B1.
These results suggest that comprised UBA1 triggers a proteotoxic stress response in neurons but not iPSCs aligning with the suggested role of UBA1 in several neurodegenerative diseases. The authors note: "Parallel genetic screens across the full gamut of human cell types may systematically uncover context-specific roles of human genes, leading to a deeper mechanistic understanding of how they control human biology and disease."
Video credit: UCSF.
Developing and testing cell-based therapies for human disease using CRISPR
Several laboratories across the globe are in an apparent race to develop the first clinically relevant, efficacious and safe cell-based therapy utilizing CRISPR gene-editing technology.
Whilst a plethora of literature demonstrates the efficacy of CRISPR in editing the genome of mammalian cells in vitro, for in vivo application, particularly in humans, rigorous long-term testing of safety outcomes is required. This month, researchers from the laboratory of Hongkui Deng, a Professor at Peking University in Beijing, published a paper in The New England Journal of Medicine.4 The paper outlined their world-first study in which they transplanted allogenic CRISPR-edited stem cells into a human patient with HIV.
The rationale for the study stems back to the "Berlin patient", referring to Timothy Ray Brown who is one of very few individuals in the world that has been cured of HIV. Brown received a bone marrow transplant from an individual that carries a mutant form of the CCR5 gene. Under normal conditions, the CCR5 gene encodes a receptor on the surface of white blood cells. This receptor effectively provides a passageway for the HIV to enter cells. In individuals with two copies of the CCR5 mutation, the receptor is distorted and restricts strains of HIV from entering cells.
Deng and colleagues used CRISPR to genetically edit donor hematopoietic stem and progenitor cells (HSPCs) to carry either a CCR5 insertion or deletion. They were able to achieve this with an efficiency of 17.8%, indicated by genetic sequencing. The CRISPR-edited HSPCs were then transplanted into an HIV patient who also had leukaemia and required a bone-marrow transplant, with the goal being to eradicate HIV.
"The study was designed to assess the safety and feasibility of the transplantation of CRISPRCas9modified HSPCs into HIV-1positive patients with hematologic cancer," Deng says. He continues: "The success of genome editing in human hematopoietic stem and progenitor cells was evaluated in three aspects including editing persistence, specificity and efficiency in long-term engrafting HSPCs." Long-term monitoring of the HIV patient found that, 19 months after transplantation, the CRISPR-edited stem cells were alive however, they only comprised five to eight percent of total stem cells. Thus, the patient is still infected with HIV.
Despite the seemingly low efficiency in long-term survival, the researchers were encouraged by the results from the safety assessment aspect of the study: "Previously reported hematopoietic stem and progenitor cells-based gene therapies were less effective because of random integration of exogenous DNA into the genome, which sometimes induced acute immune responses or neoplasia," Deng says. "The apparent absence of clinical adverse events from gene editing and off-target effects in this study provides preliminary support for the safety of this gene-editing approach."
"To further clarify the anti-HIV effect of CCR5-ablated HSPCs, it will be essential to increase the gene-editing efficiency of our CRISPRCas9 system and improve the transplantation protocol," says Deng.
The marrying of CRISPR gene-editing and stem cell research isn't just bolstering therapeutic developments in HIV. An ongoing clinical trial is evaluating the safety and efficacy of autologous CRISPR-Cas9 modified CD34+ HSPCs for the treatment of transfusion-dependent -thalassemia, a genetic blood disorder that causes hemoglobin deficiency.
The therapeutic approach known as CTX001 involves extracting a patients HSPCs and using CRISPR-Cas9 to modify the cells at the erythroid lineage-specific enhancer of the BCL11A gene. The genetically modified cells are then infused back into the patient's body, where they produce large numbers of red blood cells that contain fetal hemoglobin. Currently no results are available, but reports confirm that participants have been recruited on to the trial.
A bright future
Our understanding of cell biology and diseased states has been majorly enhanced by the combined use of CRISPR technology and stem cells. Whilst this article has focused on current study examples, Zhang et al.'s recent review provides a comprehensive view of the field and insights provided by earlier studies.5
In such review, the authors comment "Undoubtedly, the CRISPR/Cas9 genome-editing system has revolutionarily changed the fundamental and translational stem cell research." Solutions are still required to resolve the notorious off-target effects of CRISPR technology, to improve the editing efficiency as outlined by Deng and to exploit novel delivery strategies that are safe for clinical stem cell studies. Nonetheless, the future looks bright for CRISPR and stemcell-based research. In their review published this month, Bukhari and Mller say, "We expect CRISPR technology to be increasingly used in iPSC-derived organoids: protein function(subcellular localization, cell type specific expression, cleavage, and degradation) can be studied in developing as well as adult organoids under their native conditions."
References:
1. Jehuda, Shemer and Binah. 2018. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9. Stem Cell Reviews and Reports. DOI: 10.1007/s12015-018-9811-3.
2. Qi et al. 2013. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell. DOI: 10.1016/j.cell.2013.02.022
3. Tian et al. 2019. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron. https://doi.org/10.1016/j.neuron.2019.07.014.
4. Xu et al. 2019. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. The New England Journal of Medicine. DOI: 10.1056/NEJMoa1817426.
5. Zhang et al. 2019. CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy Nucleic Acids. DOI: 10.1016/j.omtn.
Read more from the original source:
Exploring the Latest in CRISPR and Stem Cell Research - Technology Networks