Archive for the ‘Bone Marrow Stem Cells’ Category
Being bionic: the future of regenerative medicine – Toronto Star
Six decades ago, two researchers at the Ontario Cancer Institute at Princess Margaret Hospital made a startling discovery. James Till and Ernest McCulloch had found transplantable stem cells, special building block cells that have the ability to grow into any kind of human tissue.
Till and McCulloch were studying the effects of radiation at the time, but their work set off an explosion of research aimed at harnessing stem cells to treat all kinds of diseases and conditions. Subsequent breakthroughs in stem cell therapy have been used to treat more than 42,000 patients for hemophilia, restore sight to blind mice and even help a 78-year-old man regrow the end of a sliced-off fingertip. And researchers are still unlocking what might be possible.
The potential of regenerative medicine is astounding, says Michael May, president of the Centre for Commercialization of Regenerative Medicine (CCRM), a Toronto non-profit that helps bring new stem cell therapies and other regenerative medicine technologies to market. Researchers are harnessing stem cells to repair, replace or regenerate human cells, tissues and organs with the aim of improving treatments for conditions ranging from diabetes to blindness to heart failure and cancer.
More recent advances most notably Shinya Yamanakas Nobel Prize-winning 2012 discovery that regular adult tissue cells can be reprogrammed to become stem cells again, therefore endowing them with the ability to become any type of cell in the body have also ushered in a new wave of regenerative medicine research and what May calls a global race to bring newly possible cell therapies to market.
As president of CCRM, Mays job is to help move some of that research from the laboratory into the real world. Over the last decade, his organization has helped 11 companies come to market with regenerative medicine technologies, such as Montreals ExCellThera, which provides new therapeutic options for patients who suffer from myeloid leukemia and lack a traditional bone marrow donor.
While the last decade was defined by research and technological breakthroughs, May says the next decade will be all about lowering manufacturing costs and tackling patient access bottlenecks. Last November, CCRM announced that it would partner with McMaster Innovation Park in Hamilton to create Canadas first commercial-scale factory for making cells, which will be able to produce billions of cells enough to treat thousands of patients per week.
Weve just scratched the surface of whats possible in regenerative medicine, May says. He envisions a time when well eventually use these techniques not just to cure and fix human bodies, but also make them better. Now we can make cells, we can design them by genetically engineering them to do things that they naturally do, but that can be more than nature designed, says May. He says the editing of human traits in this way could eventually augment human abilities to such an extent that theyre unrecognizable.
Biomaterials are another technology that could transform regenerative medicine. Before joining CCRM, May himself helped found a Toronto biomaterials startup called Rimon Therapeutics, which developed a smart dressing for chronic wounds that used special polymers to support the bodys natural healing process. Similar advanced biomaterials could eventually be used in combination with cell therapies to not just fight aging and degeneration, but to also prevent it entirely, and even improve upon the human bodys natural baseline health.
Fifty years from now if theres some sort of blindness, well have a lens on the eye that will automatically focus and react or change as the eye ages, he says.
Nick Zarzycki is a freelancer who writes about technology for MaRS. Torstar, the parent company of the Toronto Star, has partnered with MaRS to highlight innovation in Canadian companies.
Disclaimer This content was produced as part of a partnership and therefore it may not meet the standards of impartial or independent journalism.
Originally posted here:
Being bionic: the future of regenerative medicine - Toronto Star
‘Natural Killer Cells’ and Other Promising Cancer Treatments – Barron’s
Text size
Last weekends online meeting of the American Association for Cancer Research gave a glimpse at the newest ideas for fighting cancer. Among the most exciting were treatments that engineer natural cells into cancer-targeting torpedoes.
Engineered-cell treatments from Affimed (ticker: AFMD), Fate Therapeutics (FATE), and Rubius Therapeutics (RUBY) drew attention from Wall Street analysts.
The German company Affimed reported exciting results in a four-patient test of its AFM13 antibodies in patients with the blood cancer lymphoma. When administered with a kind of immune cell known as a natural killer cell, Affimeds antibody binds the NK cells to a target found on many cancer cells.
Before treatment started at the end of last year, all four lymphoma patients had been very sick. One had even been consigned to hospice.
The cancer receded in all four patients after treatment, with complete responses in two of them. The patient who had been sent to hospice is now eligible for a bone-marrow transplant. Side effects werent a problem.
They had all failed multiple lines of treatmentup to 14 lines of therapy, said Katy Rezvani, a professor at the University of Texas MD Anderson Cancer Center who is leading the study, on a Thursday morning conference call. The fact that we are seeing responses as it is, I think, is just incredible.
Dose levels of the Affimed-primed killer cells were kept deliberately low in the first administrations of the treatment. Higher doses may show deeper response and greater persistence of the natural killer cells, notes BMO Capital Markets analyst Do Kim in a Thursday note. Affimed is testing other antibodies in Phase 1 studies that target solid tumors.
Excitement over the lymphoma study results lifted Affimed stock from about $7.70 to $10.70 since last week. In recent trading, the shares were down 9.3%, at $9.38, after the development-stage company reported a slightly higher-than-expected loss of 0.50 euros a share (about 60 cents) for the 2020 year. BMOs Kim rates Affimed at Outperform, with a $15 price target.
One promising feature of natural-killer-cell treatments is that the cells can be obtained from donors and stored on the shelf. Current treatments with other engineered immune cells must harvest a patients own cells, then modify and grow them for re-administration. Another pioneer in developing NK cell therapies is Fate Therapeutics, and the company provided several updates at the AACR meeting on its treatments.
Fates stock enjoyed a remarkable run in the past year, soaring from $19 to a January 2021 peak of $119, before settling back to a recent $84.87. That puts an $8 billion market cap on a company thats yet to report revenue. But Fate has 10 clinical trials in Phase 1 for its NK cell technology, which takes undifferentiated stem cells (stored on the shelf) and transforms them into NK cells targeting a variety of solid and blood tumors.
At AACR, Fate focused on its laboratory studies that show the flexibility of its NK cell technology. In planned meetings later this year, it will review its human trials against various cancers. The stocks gain has some analysts rating it Neutral. Among them is H.C. Wainwrights Robert Burns, who wrote in January about the excitement that followed Fates report that its treatment had reversed the cancer in a patient whose lymphoma had resisted seven other kinds of therapy.
Burns may have a Neutral rating on Fates stock, but he thinks it could rise to $108 as the company reports more clinical trial results this year. Thats a better than 25% upside.
One more engineered cell therapy discussed at AACR was the unusual approach of Rubius Therapeutics, which turns off-the-shelf red blood cells into therapies that stimulate an immune system attack on cancer. Researchers detailed results first reported in March, from a Phase 1 trial against several different cancers. The treatment reversed cancers in one patient with metastatic melanoma and another with metastatic anal cancer, while stabilizing the disease in six other patients.
Rubius will escalate doses in the Phase 1 study, while proceeding with other trials that target different kinds of cancer or combine its treatment with other cancer therapies. Guggenheims Michael Schmidt projects that Rubius could start to see revenue from its unique approach in 2024, and rates the stock a Buy. He argues that its stock, now trading at $23.86, is worth at least $30.
Write to Bill Alpert at william.alpert@barrons.com
Read more:
'Natural Killer Cells' and Other Promising Cancer Treatments - Barron's
While ElsaLys continues to work on the filing of marketing approval in Europe and the US for inolimomab, the company confirms the renew of its cohort…
Get inside Wall Street with StreetInsider Premium. Claim your 1-week free trial here.
While ElsaLys continues to work on the filing of marketing approval in Europe and the U.S. for inolimomab, the company confirms the renew of its cohort ATU in France and compassionate use programs submissions in several other countries
Lyon, FRANCE, April 15, 2020, ElsaLys Biotech confirmed that The French National Agency for the Medicines and Health Products Safety (ANSM) has renewed the Temporary Authorisation for Use (ATU) so-called cohort ATU (cATU) for inolimomab (LEUKOTAC) on December 24, 2020.
This renewed authorization includes the implementation of a reinforced monitoring (defined in the Protocol for Therapeutic Use) of the efficacy and safety data obtained in patients treated within the framework of this cATU.
Inolimomab is available to hematologists and physicians treating blood disorders and to hospital pharmacists for the treatment of acute cortico-resistant or corticosteroid-dependent graft-versus-host disease in adults and pediatric patients over 28 days of age. The indication should be discussed during a multidisciplinary consultation meeting. Inolimomab treatment can only be considered if the patient cannot be included in an ongoing clinical trial.
During its first year of administration under cATU and despite the pandemic, around 30 patients in France have been treated with inolimomab as it is considered a reliable treatment of this high-risk patient population.The number of patients included in the cohort ATU in France since December 2019 reflects a real medical need. This is the reason why ElsaLys is working on expanding compassionate use programs for inolimomab in a number of European countries. Several early access applications will be submitted.
" Inolimomab is already being administered in France before marketing autorisation in Europe and hopefully soon in other countries through compassionate use programs as it is considered a reliable treatment of this high-risk patient population with acute cortico-resistant or corticosteroid-dependent graft-versus-host disease. said Dr. Christine GUILLEN, CEO and co-founder of ElsaLys Biotech. " Data on clinical benefit and safety profile we expect to collect through these compassionate use programs will support our work on the filing of marketing authorization applications (MAA) in Europe and in the U.S.
About inolimomab
Inolimomab is an anti-IL-2 R monoclonal antibody active as an immunotherapy product for the treatment of steroid-refractory acute GvHD.
In acute GvHD, activated T cell lymphocytes from the allografts donor recognize and attack recipient tissues. T cell lymphocyte activation and proliferation is governed by the key IL-2/IL-2 receptor (IL-2 R) pathway.
By recognizing the subunit of the IL-2 Receptor complex (IL-2 R) which is upregulated on T cells upon activation, inolimomab blocks the binding of the cytokine IL-2 on IL-2 R thereby inhibiting IL-2 signalling and donor T cell proliferation.
The efficacy of inolimomab in aGvHD relies on its specific potent immunosuppression on T cell lymphocytes through the blocking of the IL-2/IL-2 R pathway triggering the disease.
Inolimomab received Orphan Drug Designation in Europe (March 2001) and in the U.S. (October 2002).
About steroid-resistant aGvHD
Formerly called bone marrow transplant, Hematopoietic Stem Cell Transplantation (HSCT) is the last therapeutic option for patients with certain blood cancers or severe immunodeficiency. In practice, the treatment is designed to replace the diseased blood cells of the patient with the hematopoietic stem cells of a matching donor (allograft).
Once grafted, these stem cells will produce new healthy and functional blood cells, including white blood cells that will allow patients to bridge their immune deficiency or to eliminate surviving cancer cells.
If this technique has made considerable progress in 60 years, half of transplant recipients are still victims of complications: side effects of conditioning treatments, immunosuppressive treatments before allograft (that aims to prevent transplant rejection), long-term susceptibility to infections and GvHD. In the latter case, the donors over-active T-cells turn against the patients tissues: mucous membranes, skin, gastro-intestinal tract, liver and lungs. The acute form appears just after the transplant, the chronic form occurring several months later (preceded or not by an acute GvHD episode).
Affecting between 30 to 50% of patients, GvHD is the main complication of hematopoietic stem cell transplantation. To halt this disease, physicians use corticosteroids. The fact remains that some 30 to 50% of aGvHD patients are refractory or dependent to the steroid treatment. To date limited therapeutic options are available for these patients with no standard treatment approved so far in Europe and only one in the US.
About ElsaLys Biotech
ElsaLys Biotech is a specialty pharmaceutical company, part of the Mediolanum Farmaceutici Spa group, focused on innovative medicines to address haemato-oncology related life-threatening and rare diseases.
Following strategic acquisitions and targeted developments, ElsaLys is establishing an immunotherapeutic portfolio focused on niche specialty pharmaceuticals to answer unmet medical needs.
Our commitment is to offer essential drugs meeting Public Health needs.
Founded in 2013, ElsaLys Biotech is located in the heart of the European cluster Lyon Biopole, in Lyon, France.
Stay in touch with ElsaLys Biotech and receive directly our press releases by filling our contact form on https://www.elsalysbiotech.com
And follow us on Twitter @ElsalysBiotech and on linkedin.com/company/elsalys-biotech/
Contacts
Read this article:
While ElsaLys continues to work on the filing of marketing approval in Europe and the US for inolimomab, the company confirms the renew of its cohort...
Mouth Sores from Chemo: Symptoms, Causes, and Treatments – Healthline
While youre receiving treatment for cancer, some of the drugs you take can cause painful sores to develop inside your mouth. You can also get them if youve had a bone marrow (stem cell) transplant as part of your cancer care.
Although they often heal on their own, these mouth sores can make it uncomfortable to eat and talk. Well discuss what you can do to relieve the pain and prevent them from getting worse.
Mouth sores can be a common side effect of cancer treatment. The condition, known as stomatitis or mucositis, is an inflammation of the tissues inside your mouth.
Whitish, ulcer-like sores can form on your cheeks, gums, lips, tongue, or on the roof or floor of your mouth. Even if you dont develop mouth ulcers, you may have patches that feel inflamed and painful, as if theyve been burned.
Anyone who is receiving chemotherapy, radiation therapy, or a bone marrow (stem cell) transplant can develop mouth sores as a side effect of these treatments.
If you have dry mouth or gum disease, or if your teeth and gums are not well taken care of, you may be at a higher risk of getting mouth sores during your treatment. Women and people who smoke or drink alcohol are also at a higher risk, according to the Oral Cancer Foundation.
If youre receiving chemotherapy, the sores could begin forming anywhere from 5 days to 2 weeks after your treatment. Depending on the specific cause, the sores could go away on their own in a few weeks, or they could last longer.
Its important to find ways to manage your pain and to watch for signs of an infection. Cancer-related mouth sores can lead to weight loss, dehydration, and other serious complications.
Cancer cells can grow very quickly. The aim of cancer treatment is to stop or slow down that growth. The cells in the mucous membranes lining your mouth are also fast-growing cells, so cancer treatments affect them, too.
Cancer treatments also keep the cells in your mouth from being able to repair themselves efficiently when theyre damaged.
Radiation therapy can also damage the glands in your mouth that make saliva. A dry mouth is more susceptible to infections that cause mouth sores.
Chemotherapy and radiation can both change the microbiome in your mouth, upsetting the balance between good and bad bacteria. The growth of harmful bacteria in your mouth can also lead to mouth sores.
Sometimes cancer treatments suppress your immune system, which may make it more likely that youll get a bacterial, viral, or fungal infection that causes mouth sores. An older infection (such as the herpes simplex virus) can also suddenly flare up again.
If youve had a bone marrow (stem cell) transplant, sores may be a sign that youve developed a condition known as graft-versus-host disease (GVHD).
When this happens, the cells in your body are attacking the transplanted cells as though they were an unhealthy invader. According to research published in Journal of Clinical and Experimental Dentistry, short-term (acute) GVHD occurs in 50 to 70 percent of stem cell transplant cases and longer-term (chronic) GVHD is seen in 30 to 50 percent of cases.
The form of GVHD that causes mouth sores is usually mild, and doctors often treat it with corticosteroid medications.
Its important to talk with your doctor if you develop mouth sores after a stem cell transplant, as some kinds of GVHD can turn serious if left untreated.
There is a good chance that youll experience mouth sores at some point during your cancer treatment. Researchers estimate that 20 to 40 percent of those who have chemotherapy and 80 percent of those who have high-dose chemotherapy will develop mucositis afterward.
Still, there are steps you and your cancer care team can take to lower your risk, reduce the severity of the sores, and promote faster healing.
About a month before your cancer treatment begins, schedule an appointment with your dentist to make sure your teeth and gums are healthy. If you have cavities, broken teeth, or gum disease, its important to come up with a dental treatment plan to take care of these conditions so they dont lead to infections later, when your immune system may be vulnerable.
If you wear braces or dentures, ask your dentist to check the fit and remove any part of the device you dont need during your treatment.
Its very important to maintain good oral hygiene practices throughout your treatment to lower your risk of infection. Brush and floss gently but regularly, avoiding any painful areas. You can also ask your dentist whether a mouth rinse with fluoride is advisable in your case.
For certain kinds of chemotherapy (bolus 5fluorouracil chemotherapy and some high-dose therapies), your healthcare team may give you ice chips to chew for 30 minutes before your treatment. This type of cold therapy can lower your risk of getting mouth sores later.
During treatment of some blood cancers, doctors may give you injections of palifermin, also known as human keratinocyte growth factor-1 (KGF-1), to prevent mouth sores.
If youre scheduled to receive high-dose chemotherapy or radiotherapy, your cancer care team may prepare your mouth using low-level laser therapy beforehand to keep you from getting mouth sores.
For people who have radiation therapy for head and neck cancers, doctors may prescribe this medicated mouthwash to minimize mouth sores.
The length of time your mouth sores may last depends on the specific cancer treatment youve had. Here are some estimates broken down by treatment:
You may notice symptoms anywhere between a few days and a few weeks after your cancer treatment. Heres what you may see and feel as mucositis develops:
You may notice that the sores become slightly crusty as they heal. Its important to keep track of your symptoms and let your oncologist know if the sores arent healing on their own.
Contact your doctor right away if you:
Untreated mouth sores can lead to malnutrition, dehydration, and life-threatening infections.
There are a few different ways that you can help mouth sores heal and avoid prolonger pain or an infection.
While the sores are healing, its very important to keep the inside of your mouth clean to prevent an infection from developing.
The National Cancer Institute recommends that you gently clean your teeth every 4 hours and just before you go to sleep at night. Here are a few tips to consider:
If the pain from mouth sores is interfering with your ability to eat and drink, your doctor may treat the condition with a opioid mouthwash or one containing doxepin or lidocaine.
To ease discomfort and keep your mouth from feeling dry, you may want to try rinsing with a mild saltwater or baking soda solution. Heres how to make each of them:
Your cancer care team may recommend that you use a lubricating liquid (artificial saliva) to moisten the inside of your mouth if dryness is a problem. These liquids are usually gel-like. They coat your mouth with a thin film to help ease discomfort and promote healing.
Some people have found it useful to rinse with a blend of medications called the magic mouthwash. Formulas for this mouthwash vary, but most of them include a combination of medications to treat different symptoms, including:
Magic or miracle mouthwash solutions usually have to be prescribed by a doctor and prepared by a pharmacist, although some people mix up an over-the-counter version at home.
There isnt enough research to say for sure whether magic mouthwash works. If you think youd like to try it, talk with your oncologist or a healthcare professional about whether its a good idea for you.
Here are a few more things you can try at home that may help ease pain from mouth sores:
Mouth sores are one of the most common side effects of cancer treatment. Shortly after chemotherapy, radiation, or transplant treatments, painful, ulcer-like sores can form on the inside of your mouth.
These sores may go away on their own. If they dont, its important to seek medical treatment for them because they can lead to very serious complications.
Before you start cancer treatments, visit a dentist to make sure your teeth and gums are healthy. Keeping up good dental hygiene practices during and after cancer treatment will help limit mouth sores.
If the sores are keeping you from eating and drinking, talk with your oncologist about medications could relieve the pain and speed up the healing process, so you can enjoy a better quality of life during treatment.
Its really important to keep track of any sores in your mouth so you can reach out to your healthcare team if they dont improve. Sores that deepen or worsen can lead to serious even life-threatening complications.
More:
Mouth Sores from Chemo: Symptoms, Causes, and Treatments - Healthline
Meet the women hoping to recruit more stem cells donors from Black communities – CTV News
SASKATOON -- An effort to increase stem cell donors within Black communities across Canada is being driven by a group of women whove had difficulty finding full genetic matches themselves.
Genetic matches are crucial for patients in need of stem cell transplants, such as those with leukemia and lymphoma, and matches are more commonly found within their own racial, ethnic and ancestral groups.
But the new Black Donors Save Lives campaign notes that fewer than two per cent of those in the Canadian Blood Services stem cell donor registry are Black.
And that decreases their chance of finding a match, campaign lead Sylvia Okonofua told CTVNews.ca in a phone interview. It becomes a numbers game for Black people on the stem cell waiting list, where its like finding a needle in a hay stack for them.
The recent University of Regina biochemistry graduate, with sights on becoming a hematologist, timed the virtual campaign to kick off during Black History Month.
It was overall frustrating to know that a patient from my community is so much less likely than other patients to be helped, she told CTVNews.ca. When you see that your people have a really, really low chance of being helped out, it takes you aback.
Okonofua noted part of the campaign uses TikToks, shareable infographics, and even an original song to get the message out and reach a wide audience.
And she said part of the outreach involves having Black stem cell recipients talk about their experiences with the health-care system and speak to the historical mistrust the Black community has towards the medical community.
She founded her campus chapter of Stem Cell Club, a non-profit organization with chapters across Canada which recruits Canadians as potential stem cell donors.
Registration for Black Donors Save Lives can be done online, where participants between the ages of 17 to 35 can fill out a questionnaire and have a swab kit mailed to their address. After they swab the inside of their cheeks and send the sample back, if there is a person in need, 90 per cent of donors will be asked to donate stem cells very similar to the way a person would be giving blood.
But a big difference is the donor is given a growth hormone a week before donation in order to increase the number of stem cells, as well as the process taking four to six hours.
Alternatively, one out of 10 donors will be asked if theyd like to donate stem cells via bone marrow surgery, which can take place over a day.
In 2017, Reve Agyepong experienced firsthand the lack of Black stem cell donors, to treat her sickle cell disease, which involve red blood cells becoming misshapen, which can block blood vessels and lead to damage to bones, brain, kidneys, and lungs, and can ultimately be fatal.
But Agyepong, who was born in Edmonton to Ghanaian parents, was fortunate to receive a stem cell transplant from her sister.
It is such a blessing to have a match within your own family because the percentages are just so low, she told CTVNews.ca by email. I am so fortunate to have found a match in my family or else transplant would have been off the table for me.
In fact, only one in four patients who need a stem cell transplant are able to find a matched donor within their family, with Black patients being less than half as likely as white patients to find a unrelated person they match with on a donor registry, according to the campaign.
For Jamaican-Canadian Dorothy Vernon-Brown, who helped inspire this months campaign, the current efforts are deeply personal. In 2013, she was diagnosed with acute myeloid leukaemia and was heartbroken to discover there were no stem cell matches in Canada's registry or internationally.
She ultimately received stem cells from her sister, who was a half-match, and has been spreading information to Black Canadians ever since, through her own advocacy group, Donor Drive for Dorothy.
Stem cell transplantation is a miracle for patients, and I wish people knew how easy it is to be a stem donor, she recounted on a Twitter thread for another stem cell awareness campaign. You could give someone an opportunity like my sister gave me, to be around and live the life I want. People want to live, so if that gift is in your hands, I appeal to you to see it as something significant to do in your life.
Okonofua and Vernon-Browns efforts are being aided by Dr. Warren Fingrut, a hematologist whos the director of the aforementioned Stem Cell Club.
He told CTVNews.ca in an email hes seen firsthand far too many patients from ethnic and racial minority groups in situations where they dont have fully-matched donors and are forced to seek other treatments.
I find this heart wrenching and I am very motivated to work to address this, Fingrut said.
That led to him founding his non-profit a decade ago, which has gone on to recruit more than 20,000 Canadians as stem cell donors, with more than 55 per cent being non-white. But in cases such as Vernon-Brown and others, those figures need to be much higher.
We started running national campaigns last year, focused on the recruitment of diverse peoples as donors, as well as males who are also preferred by transplant physicians (all else being equal) as they are associated with better outcomes for patients, Fingrut explained.
The campaign is also being done in partnership with several other groups, including the Katelyn Bedard Bone Marrow Association, Black Physicians of Canada, Black Medical Students Association of Canada and the National Black Law Students Association of Canada.
This campaign is one example of an initiative in the health-care sector, which seeks to address racial disparity impacting the care of Black patients, he wrote, noting Black people face many such disparities in access to care, and we want to see others in the health-care sector working with Black Canadians to tackle these issues and address them, in collaboration with Black communities.
Okonofua hopes next Black History Month, theyll be able to have in-person swabbing events in places of worship, community hubs, and cultural gatherings to show how easy it is.
Fingrut said this the first time his group has specifically engaged with one racial group and hopes to expand it to other ethnic and racial communities including South Asians, Indigenous peoples, and those of mixed ancestry in the near future.
Read the rest here:
Meet the women hoping to recruit more stem cells donors from Black communities - CTV News
The Untapped Potential of Cell and Gene Therapy – AJMC.com Managed Markets Network
We can absolutely cut the number of cancer deaths down so that one day in our lifetimes it can be a rare thing for people to die of cancer, said Patrick Hwu, MD, president and CEO of Moffitt Cancer Center in Florida and among gene therapys pioneers. It still may happen here and there, but itll be kind of like people dying of pneumonia. Its like, He died of pneumonia? Thats kind of weird. I think cancer can be the same way.
The excitement returned in spades in 2017 when the FDA signed off on a gene-therapy drug for the first time, approving the chimeric antigen receptor (CAR) T-cell treatment tisagenlecleucel (Kymriah; Novartis) for the treatment of B-cell precursor acute lymphoblastic leukemia. At last, scientists had devised a way to reprogram a persons own T cells to attack tumor cells.
Were entering a new frontier, said Scott Gottlieb, MD, then the FDA Commissioner, in announcing the groundbreaking approval.
Gottlieb wasnt exaggerating. The growth in CAR T-cell treatments is exploding. Although only a handful of cell and gene therapies are on the market, FDA officials predicted in 2019 that the agency will receive more than 200 investigational new drug applications per year for cell and gene therapies, and that by 2025, it expects to have accelerated to 10 to 20 cell and gene therapy approvals per year.1
Essentially, you can kill any cancer cell that has an antigen that is recognized by the immune cell, Hwu said. The key to curing every single cancer, which is our goal, is to have receptors that can recognize the tumor but dont recognize the normal cells. Receptors recognizing and then attacking normal cells is what can cause toxicity.
Cell therapy involves cultivating or modifying immune cells outside the body before injecting them into the patient. Cells may be autologous (self-provided) or allogeneic (donor-provided); they include hematopoietic stem cells and adult and embryonic stem cells. Gene therapy modifies or manipulates cell expression. There is considerable overlap between the 2 disciplines.
Juliette Hordeaux, PhD, senior director of translational research for the University of Pennsylvanias gene therapy program, is cautious about the FDAs predictions, saying shed be thrilled with 5 cell and/or gene therapy approvals annually.
For monogenic diseases, there are only a certain number of mutations, and then well plateau until we reach a stage where we can go after more common diseases, Hordeaux said.
Safety has been the main brake around adeno-associated virus vector (AAV) gene therapy, added Hordeaux, whose hospitals program has the institutional memory of both Jesse Gelsingers tragic death during a 1999 gene therapy trial as well as breakthroughs by Carl June, MD, and others in CAR T-cell therapy.
Sometimes there are unexpected toxicity [events] in trials.I think figuring out ways to make gene therapy safer is going to be the next goal for the field before we can even envision many more drugs approved.
In total, 3 CAR T-cell therapies are now on the market, all targeting the CD19 antigen. Tisagenlecleucel was the first. Gilead Sciences received approval in October 2017 for axicabtagene ciloleucel (axi-cel; Yescarta), a CAR T-cell therapy for adults with large B-cell non-Hodgkin lymphoma. Kite Pharma, a subsidiary of Gilead, received an accelerated approval in July 2020 for brexucabtagene autoleucel (Tecartus) for adults with relapsed or refractory mantle cell lymphoma.
On February 5, 2021, the FDA approved another CD19-directed therapy for relapsed/refractory large B-cell lymphoma, lisocabtagene maraleucel (liso-cel; JCAR017; Bristol Myers Squibb). The original approval date was missed due to a delay in inspecting a manufacturing facility (see related article).
Idecabtagene vicleucel (ide-cel; bb2121; Bristol Myers Squibb) is under priority FDA review, with a decision expected by March 31, 2021. The biologics license application seeks approval for ide-cel, a B-cell maturation antigendirected CAR therapy, to treat adult patients with multiple myeloma who have received at least 3 prior therapies.2
The number of clinical trials evaluating CAR T-cell therapies has risen sharply since 2015, when investigators counted a total of 78 studies registered on the ClinicalTrials.gov website. In June 2020, the site listed 671 trials, including 357 registered in China, 256 in the United States, and 58 in other countries.3
Natural killer (NK) cells are the research focus of Dean Lee, MD, PhD, a physician in the Division of Hematology and Oncology at Nationwide Childrens Hospital. He developed a method for consistent, robust expansion of highly active clinical-grade NK cells that enables repeated delivery of large cell doses for improved efficacy. This finding led to several first-in-human clinical trials evaluating adoptive immunotherapy with expanded NK cells under an FDA Investigational New Drug application. He is developing both genetic and nongenetic methods to improve tumor targeting and tissue homing of NK cells. His eff orts are geared toward pediatric sarcomas.
The biggest emphasis over the past 20 to 25 years has been cell therapy for cancer, talking about trying to transfer a specific part of the immune system for cells, said Lee, who is also director of the Cellular Therapy and Cancer Immunology Program at Nationwide Childrens Hospital, at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital, and at the Richard J. Solove Research Institute.
The Pivot Toward Treating COVID-19 and Other Diseases
However, Lee said, NKs have wider potential. This is kind of a natural swing back. Now that we know we can grow them, we can reengineer them against infectious disease targets and use them in that [space], he said.
Lee is part of a coronavirus disease 2019 (COVID-19) clinical trial, partnering with Kiadis, for off-the-shelf K-NK cells using Kiadis proprietary platforms. Such treatment would be a postexposure preemptive therapy for treating COVID-19. Lee said the pivot toward treating COVID-19 with cell therapy was because some of the very early reports on immune responses to coronavirus, both original [SARS-CoV-2] and the new [mutation], seem to implicate that those who did poorly [overall] had poorly functioning NK cells.
The revolutionary gene editing tool CRISPR is making its initial impact in clinical trials outside the cancer area. Its developers, Jennifer Doudna, PhD, and Emmanuelle Charpentier, PhD, won the Nobel Prize in Chemistry 2020.
For patients with sickle cell disease (SCD), CRISPR was used to reengineer bone marrow cells to produce fetal hemoglobin, with the hope that the protein would turn deformed red blood cells into healthy ones. National Public Radio did a story on one patient who, so far, thanks to CRISPR, has been liberated from the attacks of SCD that typically have sent her to the hospital, as well from the need for blood transfusions.4
Its a miracle, you know? the patient, Victoria Gray of Forest, Mississippi, told NPR.
She was among 10 patients with SCD or transfusion-dependent beta-thalassemia treated with promising results, as reported by the New England Journal of Medicine.5 Two different groups, one based in Nashville, which treated Gray,5 and another based at Dana-Farber Cancer Institute in Boston,6 have reported on this technology.
Stephen Gottschalk, MD, chair of the department of bone marrow transplantation and cellular therapy at St Jude Childrens Research Hospital, said, Theres a lot of activity to really explore these therapies with diseases that are much more common than cancer.
Animal models use T cells to reverse cardiac fibrosis, for instance, Gottschalk said. Using T cells to reverse pathologies associated with senescence, such as conditions associated with inflammatory clots, are also being studied.
Hordeaux said she foresees AAV being used more widely to transmit neurons to attack neurodegenerative diseases.
The neurons are easily transduced by AAV naturally, she said. AAV naturally goes into neurons very efficiently, and neurons are long lived. Once we inject genetic matter, its good for life, because you dont renew neurons.
Logistical Issues
Speed is of the essence, as delays in producing therapies can be the difference between life and death, but the approval process takes time. The process of working out all kinks in manufacturing also remains a challenge. Rapid production is difficult, too, because of the necessary customization of doses and the need to ensure a safe and effective transfer of cells from the patient to the manufacturing center and back into the patient.7
Other factors that can slow down launches include insurance coverage, site certification, staff training, reimbursement, and patient identification. The question of how to reimburse has not been definitively answered; at this point, insurers are being asked to issue 6- or even 7-figure payments for treatments and therapies that may not work.8
CAR T, I think, will become part of the standard of care, Gottschalk said. The question is how to best get that accomplished. To address the tribulations of some autologous products, a lot of groups are working with off -the-shelf products to get around some of the manufacturing bottlenecks. I believe those issues will be solved in the long run.
References
1. Statement from FDA Commissioner Scott Gottlieb, MD, and Peter Marks, MD, PhD, director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies. News release. FDA website. January 15, 2019. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics. Accessed January 13, 2021.
2. Bristol Myers Squibb provides regulatory update on lisocabtagene maraleucel (liso-cel). News release. Bristol Myers Squibb; November 16, 2020. Accessed January 11, 2021. https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Provides-Regulatory-Update-on-Lisocabtagene-Maraleucel-liso-cel/default.aspx
3. Wei J, Guo Y, Wang Y. et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol. Published online September 30, 2020. doi:10.1038/s41423-020-00555-x
4. Stein R. CRISPR for sickle cell diseases shows promise in early test. Public Radio East. November 19, 2019. Accessed January 11, 2021. https://www.publicradioeast.org/post/crisprsickle-cell-disease-shows-promise-early-test
5. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and -Thalassemia. N Engl J Med. Published online December 5, 2020. DOI: 10.1056/NEJMoa2031054
6. Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. Published online December 5, 2020. doi:10.1056/NEJMoa2029392
7. Yednak C. The gene therapy race. PwC. February 5, 2020. Accessed January 11, 2021. https://www.pwc.com/us/en/industries/healthindustries/library/gene-therapy-race.html
8. Gene therapies require advanced capabilities to succeed after approval. PwC website. Accessed January 11, 2021. https://www.pwc.com/us/en/industries/health-industries/library/commercializing-gene-therapies.html
See the rest here:
The Untapped Potential of Cell and Gene Therapy - AJMC.com Managed Markets Network
Polycythemia vera life expectancy: With treatment and more – Medical News Today
In people with polycythemia vera (PV), the bone marrow produces too many blood cells. This overproduction can lead to complications, such as abnormal blood clotting, unusual bleeding, and an enlarged spleen.
In rare cases, scar tissue may replace the bone marrow. When this happens, the bone marrow can no longer produce enough healthy blood cells. Experts refer to this condition, which is a type of chronic leukemia, as myelofibrosis (MF). It can sometimes lead to acute myeloid leukemia, though this is rare.
People with PV have a shorter-than-average life expectancy. Some of the possible complications of the disease can be life threatening.
Getting treatment can help reduce the risk of certain complications from PV, including blood clots. As a result, a person will likely lead a longer and healthier life with this disease if they receive treatment.
According to an article in Blood Cancer Journal, the median survival time for people with PV is 14 years after diagnosis. The authors take this survival time from a study in which half of the participants were still alive 14 years after diagnosis.
Younger people tend to live for longer with the disease. Research suggests that the median survival time for those under 60 years of age is 24 years following diagnosis.
Multiple factors affect the outlook and life expectancy of people with PV, including:
Blood clots are the most common cause of death in people with PV. When blood clots form in blood vessels, they can block the flow of blood to vital organs. This can lead to life threatening complications, such as stroke, heart attack, and venous thrombosis.
Treatment for PV can help relieve symptoms and lower the risk of blood clots. In this way, it also reduces a persons risk of life threatening complications.
In most cases, healthcare providers prescribe regular blood draws to treat PV. Blood draws reduce the number of blood cells in the body, which may help improve blood flow.
Healthcare providers may also prescribe low dose aspirin to help prevent the formation of blood clots. Additionally, they may prescribe other medications, such as hydroxyurea (Hydrea) or busulfan (Myleran).
If a person develops MF as a complication of PV, their healthcare provider may prescribe one or more of the following treatments:
These treatments may help improve symptoms, increase life expectancy, or both.
For example, scientists have found that stem cell transplants may help improve long-term survival in people with MF. However, this treatment comes with a high risk of life threatening side effects. It is especially risky for older adults and people with other health conditions. As a result, healthcare providers often avoid prescribing this treatment.
Some studies have found that treatment with JAK inhibitors may also improve survival rates in people with MF. However, when scientists reviewed the available evidence on Jakafi and Inrebic, they found that the quality of evidence on survival rates is limited. More research is necessary to confirm how these treatments affect life expectancy.
Early research involving people with PV found that the median survival time for those who did not receive treatment was less than 2 years after diagnosis. This research took place before the medical community recognized blood draws as a treatment option, and it reflects the high risk of blood clots in people not receiving treatment.
People with PV who do not receive treatment are more likely to develop blood clots. According to the Leukemia & Lymphoma Society, 4060% of people with untreated PV may develop blood clots within 10 years of diagnosis.
Scientists have not yet developed a cure for PV. However, healthcare providers may prescribe blood draws, medications, or other treatments to help manage symptoms, reduce the risk of complications, and increase life expectancy in people with this disease.
Researchers are also continuing to develop and test potential new treatments for PV, such as the anticancer drug imatinib mesylate (Gleevec) and novel types of JAK inhibitors.
In some cases, a persons healthcare provider may encourage them to take part in a clinical trial. In this type of study, participants receive an experimental treatment. People interested in learning more about the potential benefits and risks of taking part in a clinical trial can talk with their healthcare provider or the researchers running the study.
When a person receives a diagnosis of PV, getting treatment is important. Treatment may help minimize symptoms, lower the risk of complications, and improve life expectancy.
A persons recommended treatment plan for PV will depend on many factors, including their age, overall health, and whether they have developed certain complications.
People with PV who wish to learn more about their treatment options and outlook should talk with their healthcare provider.
See original here:
Polycythemia vera life expectancy: With treatment and more - Medical News Today
Novartis and Gates Foundation Team Up To Deliver Affordable Sickle Cell Gene Therapy – BioSpace
Taljat David/Shutterstock
Novartis and the Bill & Melinda Gates Foundation have partnered on a single-dose, in vivo gene therapy for sickle cell disease (SCD). The Foundation will offer funding for development of the therapy.
Existing gene therapy approaches to sickle cell disease are difficult to deliver at scale and there are obstacles to reaching the vast majority of those affected by this debilitating disease, said Jay Bradner, a hematologist and president of the Novartis Institutes for BioMedical Research (NIBR). This is a challenge that calls for collective action, and we are thrilled to have the support of the Bill & Melinda Gates Foundation in addressing this global unmet medical need.
The announcement comes only a day after bluebird bio announced that it has placed its Phase I/II and Phase III trial of LentiGlobin gene therapy for sickle cell disease (SCD) on temporary suspension. The cause is a Suspected Unexpected Serious Adverse Reaction (SUSAR) of acute myeloid leukemia (AML).
HGB-206 is the companys ongoing Phase I/II trial of LentiGlobin for SCD. It includes three cohorts, A, B and C. In Group C, a refined manufacturing process designed to increase vector copy number was used.
Group C also received LentiGlobin for SCD manufactured from hematopoietic (blood) stem cells (HSCs) collected from peripheral blood after mobilization with plerixafor, instead of by way of bone marrow harvest, which was the method used in Groups A and B.
HGB-210 is their ongoing Phase III single-arm open-label trial. It is evaluating efficacy and safety of LentiGlobin for SCD in patients between two years and 50 years of age with sickle cell disease.
Which underlines that even though gene therapy is making headway, it is still a cutting-edge technology.
SCD is a hereditary blood disease that affects millions of people globally, with more than 300,000 born with it each year. It primarily affects people of African descent, and sub-Saharan Africa bears about 80% of the disease burden. It affects the structure of red blood cells, causing a distinct sickle shape, which decreases the ability of red blood cells to transport oxygen efficiently.
Gene therapies might help end the threat of diseases like sickle cell, but only if we can make them far more affordable and practical for low-resource settings, said Trevor Mundel, president of Global Health at the Gates Foundation. Whats exciting about this project is that it brings ambitious science to bear on that challenge. Its about treating the needs of people in lower-income countries as a driver of scientific and medical progress, not an afterthought. It also holds the promise of applying lessons learned to help develop potentially curative options for other debilitating diseases affecting low-income populations, such as HIV.
Novartis also announced today that the U.S. Food and Drug Administration (FDA) approved the expanded indication for Entresto (sacubitril/valsartan) to decrease the risk of cardiovascular death and hospitalization for heart failure in adults with chronic heart failure. The biggest benefit was for patients with left ventricular ejection fraction (LVEF) below normal.
The expansion was based on data in the PARAGON-HF Phase III trial.
This approval is a significant advancement, providing a treatment to many patients who were not eligible for treatment before because their ejection fraction was above the region we normally considered reduced, said Scott Solomon, professor of Medicine at Harvard Medical School and Brigham and Womens Hospital, and PARAGON-HF Executive Committee co-chair. We can now offer a treatment to a wider range of patients who have an LVEF below normal.
Featured Jobs on BioSpace
View post:
Novartis and Gates Foundation Team Up To Deliver Affordable Sickle Cell Gene Therapy - BioSpace
Heartbreak for family of cancer-stricken four-year-old as stem cell donor falls ill at last minute – Press and Journal
A desperate family is facing a nervous wait after a stem cell donor finally found to give their four-year-old daughter a new chance at life fell ill.
Little Adeline Davidson has been waiting more than two years for the procedure to treat a rare form of blood cancer, and several arrangements with donors have fallen through during that time.
The Alness youngster had been due to go under the knife in Glasgow this week after it appeared that the search for a match had eventually come to an end.
But the family encountered yet another setback as the procedure was cancelled when the stem cell donor fell ill.
Adelines parents Steph, 26, and Jordan, 28, say their daughters transplant now hangs in the balance as they face an agonising wait to find out what is wrong with the donor.
They say the plans could be thrown into disarray with top level talks and a possible world-first procedure required if tests show that the illness is Covid-related.
The family will only be able to find out the nature of the donors condition after he is operated on and the cells removed.
If the donor has coronavirus, a team of international surgeons will assemble to debate whether it would be safe for Adeline to undergo the transplant.
Mrs Davidson said: We have been waiting more than two whole years for our ill child to get a bone marrow transplant.
The hospital have told me that the donor has to donate, and then they release the information on the cause of his illness.
If it is Covid, that would mean they would have to ask international doctors and surgeons if they could go ahead.
They have never given a child thats Covid-negative marrow from someone who is Covid-positive.
If they decide not to proceed, we are back to looking for someone else to begin the search again, which is just a crazy, horrible thought. I dont even want to think about it.
Mrs Davidson added that she would consider going ahead even if the cells have come from someone with coronavirus.
She said: I think we have to go with the doctors word, but Id be so frightened.
We wouldnt have another choice though, unfortunately.
If they, as professionals, believe doing it would outweigh the risks, we would just have to believe that too.
Over the last two years, Adeline has endured around 85 blood transfusions, one anaphylactic shock and emergency helicopter and ambulance transfers to hospital.
Mrs Davidosn added: There is potential for even worse news but we just hope that it isnt Covid he has.
If it isnt Covid, then everything moves along as it was meant to be.
We are aware that on the register there was no-one else, so we were lucky this guy popped up.
If all goes well, Adeline will receive her transplant in four weeks.
The latest setback comes almost two years to the day since her transplant journey began.
In December, the family were dealt a devastating blow as health officials postponed her procedure, scheduled to take place in January, due to Brexit complications.
The four-year-old requires a specific type off marrow, processed by a centre outwith the UK, which is then brought to the country by road.
Life-saving transplant for Highland youngster postponed due to delays caused by Brexit
Early last year, the family were forced to turn to the register and launch a public appeal in search for multiple new donors due to an array of complications.
Mrs Davidson praised Adelines resilience but admits it breaks her heart to not be able to see her daughter progress onto school in August.
She said: The first year I was so positive lets get on with it, this needs done and I never thought why us?
I just thought we have so much to be grateful for and thankful for.
However, the whole of the second year, Im just thinking is someone messing with us because thats what it feels like.
She added: Adelines been so good. She hardly complains and I just think its because she has no idea whats shes missing, which is sort of a good thing but sad.
She is lucky thats shes an outgoing kid. She is behind, she has not socialised and although she is switched on, shes probably not as far on as her peers.
Even now, she should have been staring primary one in August this year but shes not even been to nursery. Its hellish.
See more here:
Heartbreak for family of cancer-stricken four-year-old as stem cell donor falls ill at last minute - Press and Journal
Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells – DocWire News
This article was originally published here
Front Immunol. 2021 Jan 21;11:594572. doi: 10.3389/fimmu.2020.594572. eCollection 2020.
ABSTRACT
Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis (PTB) now infects more than half of the world population. The efficient transmission strategy of the pathogen includes first remaining dormant inside the infected host, next undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then transmit via aerosol to the community. In this review, we are exploring recent findings on the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may underlie the mechanisms of PPTBL development. We suggest that pathogens interaction with the stem cell niche may be relevant in potential inflammation induced PPTBL reactivation, which need significant research attention for the future development of novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19 pandemic world. Finally, we put forward potential animal models to study the stem cell basis of Mtb dormancy and reactivation.
PMID:33584661 | PMC:PMC7873989 | DOI:10.3389/fimmu.2020.594572
Gergis Explains the Differences Between Acute and Chronic GVHD – Targeted Oncology
Usama Gergis, MD, MBA Professor of Oncology Director, Bone Marrow Transplant and Immune Cellular Therapy Sidney Kimmel Cancer Center Thomas Jefferson University Hospital Philadelphia, PA, reviewed that difference in acute and chronic graft-versus-host disease (GVHD) and the treatment available for each.
Targeted OncologyTM: How would you treat a patient with GvHD in the second line?
GERGIS: If you [have a patient with] second-line acute GVHD, your answer should be ruxolitinib [Jakafi] because its the only drug that has been tried in phase 3 trials. If you get a [case of] chronic GVHD, your answer should be ibrutinib [Imbruvica].
What is the efficacy of peripheral blood stem cells (PBSC) versus bone marrow from unrelated donors in patients with acute and chronic GvHD?
[Results from] a phase 3 study of bone marrow versus stem cells for unrelated donors [showed] the acute GVHD population [cumulative incidence] was the same between both.1 For the chronic population, the bone marrow did better [PBSC 53% vs bone marrow 41%; P = .01]. This was published almost 8 years ago, [and it] was reported almost 10 years ago, but we still use stem cells.
This has not changed practices, and the reasons are, number 1, there was more primary graft failure on the bone marrow than the PBSC, and number 2, its pretty involved to do bone marrow harvest, although I have done it for 15 years, at least a few every month.
The benefit of bone marrow versus PBSCand this benefit was only studied in unrelated donors, not in matched related donorswas seen across all organs affected with chronic GVHD except lungs, [gut, and serosa].2 So, there was no real benefit in the lungs.
Can you explain the difference between acute and chronic GvHD?
Chronic GVHD is more complicated and involved than acute GVHD. In acute, you have the skin, gastrointestinal organs, and the liver [that may be affected]. Thats it. In chronic, all the patients other organs can be affected. The patients weight can be affected. [Chronic GVHD is] more debilitating over a long time and [can] go unrecognized for a while. [If a patient is] experiencing acute GVHD, you see them twice a week, whereas if the patient has chronic GVHD, you probably see them once a month. So you can see a very stark change in your patients within that month if they lose 10% of their body weight and they already lost a lot of weight in the period right after [transplantation], so that can be obvious to you.
[In my institution], we have the GVHD clinic where we [grade the patient based on] studying the degree of fibrosis, how many organs are affected, the patients range of motion, and the degrees in range of motion. We do frequent pulmonary function tests and various [other] testing. By looking at all the affected organs, you reach a grade, and that can be mild, moderate, or severe [chronic GVHD].
How do you treat moderate-to-severe chronic GVHD at initial presentation and in the second line?
First-line treatment for chronic GVHD are steroids. For second line, there are many agents [to consider]. Ive tried most of them. I like photopheresis because its not pharmacological, but its pretty involved. Your patient will need a permanent catheter, and they will need to come to the transplant center twice a week, and you see a response after a long time. It takes an average of 50 photopheresis sessions for a response. But the beauty of photopheresis [is that] you could try it with other agents, so its not mutually exclusive. You could use it with ruxolitinib, ibrutinib, or any other agents.
The answer will be ibrutinib [for chronic GVHD], and thats based on the [results of a] phase 2 clinical trial that treated 42 patients with steroid-refractory chronic GVHD, and the efficacy was 69% [best overall response rate], and 31% complete response rate.3
What do you think of these poll results?
Everybody agrees on giving ibrutinib. When I gave this talk a couple months ago, lenalidomide [Revlimid] was not included in the poll. I added it because [recently], a nice study in Blood came out from the National Institutes of Health where they tried lenalidomide at a small dose, 2 mg, in steroid-refractory chronic GVHD. Its a large trial; I think its about 100 patients. Theyve seen responses that are comparable with ibrutinib....I treated a patient for multiple myeloma; he received a transplant for multiple myeloma, and now, 6 months later, he has chronic GVHD and some clonal plasma cells. So for him, I was comforted to know the results of the lenalidomide trial.
How does ruxolitinib play a role in this setting?
Ruxolitinib was reported in the REACH3 trial [NCT03112603] with very good responses in chronic GVHD.4 I think it probably will get approved for that indication. Looking at this study about 2 years ago, nothing was studied well in this indication, and ibrutinib was approved.
REACH3 was a large trial, almost 300 patients, and everybody was randomized to ruxolitinib 10 mg twice a day versus best available treatment. They looked at everybody about 6 months later for response.
What should physicians keep in mind when treating?
Chronic GvHD is pretty involved. Your patients will need a multidisciplinary approach. You need to pay attention to their bones. In the first 100 days post transplant, the average bone aging is 17 years.
So although were trying to treat acute GVHD, viruses, and prevent relapses, [by putting] your patients on some steroids, you are aging your patients bones by 17 years only in the first 100 days. No matter what you do, give your patients vitamin D, calcium, and Fosamax [alendronate sodium].
Follow this link:
Gergis Explains the Differences Between Acute and Chronic GVHD - Targeted Oncology
Types of leukemia: Prevalence, treatment options, and prognosis – Medical News Today
Leukemia is a type of cancer that affects the blood and bone marrow, where blood cells are formed. All types of leukemia cause rapid, uncontrolled growth of abnormal bone marrow and blood cells.
The main differences between the types include how fast the disease progresses and the types of cells it affects.
There are four main types of leukemia, which we describe in detail below:
Lymphocytic leukemia affects the lymphocytes, a type of white blood cell. Myeloid leukemia can affect the white blood cells, red blood cells, and platelets.
According to the National Cancer Institute, roughly 1.5% of people in the United States will receive a leukemia diagnosis at some point.
In this article, explore the four main types, their symptoms, the treatment options available, and the outlook.
The full name of this type of cancer is acute lymphocytic leukemia, and acute means that it grows quickly. Lymphocytic means that it forms in underdeveloped white blood cells called lymphocytes.
The disease starts in the bone marrow, which produces stem cells that develop into red and white blood cells and platelets.
In a healthy person, the bone marrow does not release these cells until they are fully developed. In someone with ALL, the bone marrow releases large quantities of underdeveloped white blood cells.
There are several subtypes of ALL, and the subtype may influence the best course of treatment and the prognosis.
One subtype is B-cell ALL. This begins in the B lymphocytes, and it is the most common form of ALL in children.
Another subtype is T-cell ALL. It can cause the thymus, a small organ at the front of the windpipe, to become enlarged, which can lead to breathing difficulties.
Overall, because ALL progresses quickly, swift medical intervention is key.
As research from 2020 acknowledges, healthcare providers still do not know what causes ALL. It may occur due to genetic factors or exposure to:
Although genetic factors may play a role, ALL is not a familial disease.
Learn more about ALL here.
ALL is the most common form of leukemia in children.
The risk of developing it is highest in children under 5 years old. The prevalence slowly rises again in adults over 50.
ALL symptoms can be nonspecific difficult to distinguish from those of other illnesses.
They may include:
In a person with AML, the bone marrow makes abnormal versions of platelets, red blood cells, and white blood cells called myeloblasts.
The full name of this disease is acute myeloid leukemia, and acute refers to the fact that it is fast-growing.
It forms in one of the following types of bone marrow cell:
Doctors classify AML by subtype, depending on:
AML can be difficult to treat and requires prompt medical attention.
Learn more about AML here.
The most common risk factor is myelodysplastic syndrome, a form of blood cancer that keeps the body from producing enough healthy blood cells.
Other factors that increase the risk of developing AML include:
Most people who develop AML are over 45. It is one of the most common types of leukemia in adults, though it is still rare, compared with other cancers.
It is also the second most common form of leukemia in children.
Symptoms of AML can vary and may include:
CLL is the most common form of leukemia among adults in the U.S. and other Western countries.
There are two types. One progresses slowly, and it causes the body to have high levels of characteristic lymphocytes, but only slightly low levels of healthy red blood cells, platelets, and neutrophils.
The other type progresses more quickly and causes a significant reduction in levels of all healthy blood cells.
In someone with CLL, the lymphocytes often look fully formed but are less able to fight infection than healthy white blood cells. The lymphocytes tend to build up very slowly, so a person might have CLL for a long time before experiencing symptoms.
Learn more about CLL here.
Genetic factors are the most likely cause. Others might include:
CLL is rare in children. It typically develops in adults aged 70 or over. However, it can affect people as young as 30.
CLL typically causes no early symptoms. When symptoms are present, they may include:
Also, 5090% of people with CLL have swollen lymph nodes.
CML is a slow-growing type of leukemia that develops in the bone marrow.
The full name of CML is chronic myeloid leukemia. As the American Cancer Society explain, a genetic change takes place in the early forms of the myeloid cells, and this eventually results in CML cells.
These leukemia cells then grow, divide, and enter the blood.
CML occurs due to a rearrangement of genetic material between the chromosomes 9 and 22.
This rearrangement fuses a part of the ABL1 gene from chromosome 9 with the BCR gene from chromosome 22, called the Philadelphia chromosome. The result of this fusion is called BCR-ABL1.
BCR-ABL1 produces a protein that promotes cell division and stops apoptosis, the process of cell death, which typically removes unneeded or damaged cells.
The cells keep dividing and do not self-destruct, resulting in an overproduction of abnormal cells and a lack of healthy blood cells.
This occurs during the persons lifetime and is not inherited.
CML typically affects adults. People aged 65 and older make up almost half of those who receive a CML diagnosis.
The symptoms of CML are unclear, but they may include:
The symptoms may vary, depending on the type of leukemia. Overall, a person should get in touch with a doctor if they experience:
Learn more about the symptoms of leukemia here.
Treatment for ALL typically involves three basic phases: induction, consolidation, and maintenance. We describe these in detail below.
Treatment for AML involves the first two phases. The induction phase may include treatment with the chemotherapy drugs cytarabine (Cytosar-U) and daunorubicin (Cerubidine) or idarubicin (Idamycin). The doctor may also recommend targeted drugs.
The goal of this phase is to kill the leukemia cells, causing the cancer to go into remission, using chemotherapy.
The doctor may recommend:
People having chemotherapy may need to see their doctors frequently and spend time in the hospital, due to the risk of serious infections and complications.
This phase of the treatment lasts for about 1 month.
Even if the treatment so far has led to remission, cancer cells may be hiding in the body, so more treatment is necessary.
The consolidation phase may involve taking high doses of chemotherapy. A doctor may also recommend targeted drugs or stem cell transplants.
This phase, consisting of ongoing chemotherapy treatments, usually lasts for 2 years.
Since CLL tends to progress slowly, and its treatment can have unpleasant side effects, some people with this condition go through a phase of watchful waiting before starting the treatment.
For a person with CML, the focus is often on providing the right treatment for the phase of the illness. To do this, a doctor considers how quickly the leukemia cells are building up and the extent of the symptoms. Stem cell transplants can be effective, but further treatment is necessary.
Overall, the initial treatment tends to include monoclonal antibodies, targeted drugs, and chemotherapy.
If the only concern is an enlarged spleen or swollen lymph nodes, the person may receive radiation or surgery.
If there are high numbers of CLL cells, the doctor may suggest leukapheresis, a treatment that lowers the persons blood count. This is only effective for a short time, but it allows the chemotherapy to start working.
For people with high-risk disease, doctors may recommend stem cell transplants.
A persons prognosis depends on the type of leukemia.
Learn more about survival rates for people with leukemia here.
About 8090% of adults with ALL experience complete remission for a while during treatment. And with treatment, most children recover from the disease.
Relapses are common in adults, so the overall cure rate is 40%. However, factors specific to each person play a role.
The older a person is when they receive an AML diagnosis, the more difficult it is to treat.
More than 25% of adults who achieve remission live for 3 years or more after treatment for AML.
A person may live for a long time with CLL.
Treatments can help keep the symptoms under control and prevent the disease from spreading. However, there is no cure.
Stem cell transplants can cure CML. However, this treatment is very invasive and is not suitable for most people with CML.
The United Kingdoms National Health Service estimate that 70% of males and 75% of females live for at least 5 years after receiving a CML diagnosis.
The earlier a person receives the diagnosis, the better their outlook.
Leukemia is a type of cancer that affects the blood and bone marrow. It can affect people of all ages.
There are four main types of leukemia. They differ based on how quickly they progress and the types of cells they affect.
Treatments for all types of leukemia continue to improve, helping people live longer and more fully with this condition.
Continue reading here:
Types of leukemia: Prevalence, treatment options, and prognosis - Medical News Today
Be The Match encourages people of color to join bone marrow registry – KING5.com
Black patients in need of bone marrow or blood stem cell treatments have a decreased chance of matching with a donor. The Seattle branch hopes to change that.
Seattles Be The Match Collection Center opened up less than a year ago and is celebrating its 100th blood cell donation with an important message: More bone marrow donors of color are needed.
The nonprofit donation center is a part of the National Marrow Donor Program and increases the capacity to collect blood cells in the Pacific Northwest. Seattles Clinical Manager Hannah Erskine said this month is an important time to focus on the donation gap.
In the midst of Black History Month, its important to note that we frankly dont have enough Black and African American donors on the registry, said Erskin.
Only 4% of approximately 22 million donors on the registry are African American, lowering the chances that a Black patient can find a bone marrow donor who is a genetic match.
According to Be The Match data, the likelihood of finding a matched adult donor is only around 23% for an African American or Black patient, versus a 77% match rate for a white patient.
These matched bone marrow or blood stem cell transplants can help cure blood cancers like leukemia and lymphoma, as well as other blood conditions, such as sickle cell disease. Be The Match has coordinated more than 100,000 transplants.
Erskine said registering is a simple mouth swab that will be mailed to potential donors. They will be contacted if they are a match with a patient.
Being a matching blood stem cell donor can potentially save a life. The first step in changing the trend is to join the registry at http://www.bethematch.org.
Continue reading here:
Be The Match encourages people of color to join bone marrow registry - KING5.com
Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper – KSU | The Sentinel…
Transparency Market Research (TMR) has published a new report titled, Cord Blood Banking Services Market Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20192027. According to the report, the globalcord blood banking services marketwas valued atUS$ 25.8 Mnin2018and is projected to expand at a CAGR of10.9%from2019to2027.
Overview
Request Brochure for Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1741
High Incidence of genetic disorders and rise in hematopoietic stem cell transplantation rates to Drive Market
Request for Analysis of COVID19 Impact on Cord Blood Banking Services Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1741
Private Cord Blood Bank Segment to Dominate Market
Buy Cord Blood Banking Services Market Report
https://www.transparencymarketresearch.com/checkout.php?rep_id=1741<ype=S
North America to Dominate Global Market
Competitive Landscape
Contact
Transparency Market Research,
90 State Street, Suite 700,
Albany, NY 12207
Tel: +1-518-618-1030
USA Canada Toll Free: 866-552-3453
Website: https://www.transparencymarketresearch.com/
Go here to read the rest:
Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper - KSU | The Sentinel...
Jasper Therapeutics Announces Launch of New Clinical Trial with National Heart, Lung, and Blood Institute to Evaluate JSP191 in Sickle Cell Disease -…
REDWOOD CITY, Calif.--(BUSINESS WIRE)--Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, today announced the launch of a Phase 1/2 clinical trial to evaluate JSP191, Jaspers first-in-class anti-CD117 monoclonal antibody, as a targeted, non-toxic conditioning regimen prior to allogeneic transplant for sickle cell disease (SCD). Jasper Therapeutics and the National Heart, Lung, and Blood Institute (NHLBI) have entered into a clinical trial agreement in which NHLBI will serve as the Investigational New Drug (IND) sponsor for this study.
SCD is a lifelong inherited blood disorder that affects hemoglobin, a protein in red blood cells that delivers oxygen to tissues and organs throughout the body. Approximately 300,000 infants are born with SCD annually worldwide, and the number of cases is expected to significantly increase. Currently, hematopoietic stem cell transplantation (HSCT) is the only cure available for SCD.
"This clinical trial agreement with the NHLBI expands the development of JSP191 for transplant conditioning and could bring curative transplants to more patients in need," said Kevin N. Heller, M.D., Executive Vice President, Research and Development, of Jasper Therapeutics. "We look forward to collaborating with the NHLBI and learning more about the potential for JSP191 in patients living with sickle cell disease."
About JSP191
JSP191 (formerly AMG 191) is a first-in-class humanized monoclonal antibody in clinical development as a conditioning agent that clears hematopoietic stem cells from the bone marrow. JSP191 binds to human CD117, a receptor for stem cell factor (SCF) that is expressed on the surface of hematopoietic stem and progenitor cells. The interaction of SCF and CD117 is required for stem cells to survive. JSP191 blocks SCF from binding to CD117 and disrupts critical survival signals in stem cells leading to cell death. This creates space in the bone marrow for engraftment of donor or gene-corrected transplanted stem cells.
Preclinical studies have shown that JSP191, as a single agent, safely depletes normal and diseased hematopoietic stem cells, including in animal models of severe combined immunodeficiency (SCID), myelodysplastic syndromes (MDS), and sickle cell disease (SCD). Treatment with JSP191 creates the space needed for transplanted normal donor or gene-corrected hematopoietic stem cells to successfully engraft in the host bone marrow. To date, JSP191 has been evaluated in more than 90 healthy volunteers and patients.
JSP191 is currently being evaluated in two separate Jasper Therapeutics-sponsored clinical studies in hematopoietic cell transplant. The first clinical study is evaluating JSP191 as a sole conditioning agent in a Phase 1/2 dose-escalation and expansion trial to achieve donor stem cell engraftment in patients undergoing hematopoietic cell transplant for SCID. Blood stem cell transplantation offers the only potentially curative therapy for SCID. JSP191 is also being evaluated in combination with another conditioning regimen in a Phase 1 study in patients with MDS or acute myeloid leukemia (AML) who are receiving hematopoietic cell transplant. For more information about the design of these clinical trials, visit http://www.clinicaltrials.gov (NCT02963064 and NCT04429191).
Additional studies are planned to advance JSP191 as a conditioning agent for patients with other rare and ultra-rare monogenic disorders and autoimmune diseases.
About Jasper Therapeutics
Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This first-in-class conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies. For more information, please visit us at jaspertherapeutics.com.
View original post here:
Jasper Therapeutics Announces Launch of New Clinical Trial with National Heart, Lung, and Blood Institute to Evaluate JSP191 in Sickle Cell Disease -...
Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive
Apamistamab (Iomab-B) conditioning treatment with targeted radioimmunotherapy to the bone marrow resulted in high rates of successful allogeneic hematopoietic stem cell transplants in patients with active, relapsed, or refractory acute myeloid leukemia (AML), according to interim results from the phase 3 SIERRA trial, which were presented virtually at the 2021 Transplant and Cellular Therapies Meetings.1
In these patients with relapsed or refractory AML, we observed high rates of allogeneic stem cell transplant with curative intent [in] 88% of patients on the Iomab-B arm, 18% of patients who were randomized to the conventional care arm achieved complete remission and received standard of care allo-transplant, and an overall rate of 79% of allo-transplant in all enrolled patients, Boglarka Gyurkocza, MD, said in a virtual presentation.
Investigators sought to prove with this study that targeted radiation to the marrow with apamistamab, a radioactive iodine (131I)labeled anti-CD45 antibody, could enable the successful engraftment of patients despite active disease in the marrow. Safety and robust efficacy had previously been demonstrated with the agent in 271 patients treated in 9 different phase 1 and 2 clinical trials.
The SIERRA trial is looking to enroll 150 patients, and the trial is already over 75% enrolled. Recently, an independent data monitoring committee recommended that the trial continue to the planned full enrollment based on a positive pre-planned ad-hoc analysis.2
In the study, patients with active, relapsed, refractory AML are randomized 1:1 to receive either apamistamab conditioning therapy and allogeneic HCT or conventional care. In the control arm, patients who do not achieve a complete remission (CR) by day 42 are allowed to cross over to receive Iomab-B, and those who do have a CR undergo HCT or receive standard-of-care therapy of the physicians choice.
Durable CR (dCR) rate is the primary end point of the study, characterized as complete response at 6 months after initial CR, and the secondary end point is overall survival (OS) rate at 1 year.
Patients are eligible for enrollment if they have marrow blast count 5% or the presence of peripheral blasts, age 55 years, a Karnofsky score 70, and related/unrelated donor matching at human leukocyte antigen (HLA)-A, HLA-B, HLA-C, and DRB-1. Active, relapsed, or refractory AML was defined for the sake of the trial as primary induction failure after 2 cycles of therapy including chemotherapy or 2 cycles of venetoclax (Venclexta) with a hypomethylating agent or low-dose cytarabine, first early relapse after first CR of less than 6 months, relapse refractory to salvage chemotherapy regimen, or second or subsequent relapse. Secondary or treatment-related AML was also allowed.
In the SIERRA trial, patient-specific dosimetry was used to generate an individualized therapeutic dose to target marrow and spare non-hematopoietic organs. Patients in the investigational arm received a dosimetric dose of apamistamab ( 20 mCi) approximately 19 days prior to HCT followed by a therapeutic dose of apamistamab, which is individually calculated for each patient based on an upper limit of 24 Gy to the liver. After, patients remain on radiation isolation for several days before receiving fludarabine conditioning therapy (30 mg/m2/day for 3 days) and finally low-dose total body irradiation (200 cGy) prior to HCT.
Among the first 75% of enrolled patients (n = 113), patients in the apamistamab arm (n = 56) had a median age of 63 years (range, 55-77), 35% had intermediate risk and 61% had adverse risk, the median
percent of marrow blasts at baseline was 29% (range, 4%-95%), and had received a median of 3 prior treatment regimens (range, 1-7). At randomization, 56% were in primary induction failure, 16% were in first early relapse, 15% had relapsed or refractory disease, and 13% were in their second or later relapse.
In the conventional care arm, the median age was 65 years (range, 55-77), 32% had intermediate risk and 63% had adverse risk, median marrow blasts was 20% (range, 5%-97%), and had received a median of 3 prior regimens (range, 1-6). At randomization, 49% were in primary induction failure, 21% were in first early relapse, 21% had relapsed or refractory disease, and 8.8% were in their second or later relapse. Patients who crossed over to receive apamistamab (n = 30) had similar baseline characteristics.
Forty-nine patients in the apamistamab-randomized arm were able to go on and undergo allogeneic HCT compared with 10 patients in the conventional care arm. In the investigational arm, a median of 646 mCi (range, 3541027) of apamistamab was infused at a dose of 14.7 Gy (range, 4.6-32) to the marrow. The median infused CD34-positive cell count was 5.6 x 106/Kg (range, 1.8-208). Forty-five patients received peripheral blood stem cells (PBSCs), 3 received marrow grafts, 17 had related donors, and 31 had unrelated.
Individualized therapy of Iomab-B provided myeloablative doses of radiation to the marrow, Gyurkocza, a medical oncologist at Memorial Sloan Kettering Cancer Center, commented.
These patients had a median of 30 days (range, 23-60) to HCT after randomization and 14 days (range, 9-22) to neutrophil engraftment, with no graft failure reported. Patients also had 18 days (range, 4-39) until platelet engraftment.
We also observed 100% neutrophil and platelet engraftment in patients who received Iomab-B conditioning, despite a heavy leukemia burden, Gyurkocza said.
In patients in the conventional arm who went on to HCT, conditioning regimens for HCT consisted of fludarabine/melphalan in 2, fludarabine/melphalan/total body irradiation in 1, busulfan/fludarabine in 1, cyclophosphamide/fludarabine/total body irradiation in 2, and 4 had no data on conditioning regimens available. Eight of these patients had PBSCs, 2 had marrow, 3 had related donors, 6 had unrelated, and 1 was unreported.
Median days to HCT was 67 (range, 52-104) with 17 days (range, 13-83) to neutrophil engraftment and 22 days (range, 8-35) to platelet engraftment. There was 1 graft failure.
Among the patients who crossed over to receive apamistamab before HCT, the median infused dose was 592 mCi (range, 313-1013) with 15.5 Gy (range, 6.3-42) to the marrow. The median infused CD34-positive cell count was 5.1 x 106/Kg (range, 1.8-16.1). Twenty-eight patients had PBSCs, 2 had marrow, 10 had related donors, and 20 had unrelated.
Patients had a median of 62 days (range, 36-100) to HCT, 14 days (range, 10-37) to neutrophil engraftment, and 19 days (range, 1-38) to platelet engraftment. No graft failure was reported in this group.
Read the original here:
Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML - OncLive
Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell – STAT
Novartis and the Bill and Melinda Gates Foundation are joining forces to discover and develop a gene therapy to cure sickle cell disease with a one-step, one-time treatment that is affordable and simple enough to treat patients anywhere in the world, especially in sub-Saharan Africa where resources may be scarce but disease prevalence is high.
The three-year collaboration, announced Wednesday, has initial funding of $7.28 million.
Current gene therapy approaches being developed for sickle cell disease are complex, enormously expensive, and bespoke, crafting treatments for individual patients one at a time. The collaboration aims to instead create an off-the-shelf treatment that bypasses many of the steps of current approaches, in which cells are removed and processed outside the body before being returned to patients.
advertisement
Sickle cells cause is understood. The people it affects are known. But its cure has been elusive, Jay Bradner, president of the Novartis Institutes for BioMedical Research, told STAT.
We understand perfectly the disease pathway and the patient, but we dont know what it would take to have a single-administration, in vivo gene therapy for sickle cell disease that you could deploy in a low-resource setting with the requisite safety and data to support its use, he said. Im a hematologist and can assure you that in my experience in the clinic, it was extremely frustrating to understand a disease so perfectly but have so little to offer.
advertisement
Sickle cell disease is a life-threatening inherited blood disorder that affects millions around the world, with about 80% of affected people in sub-Saharan Africa and more than 100,000 in the U.S. The mutation that causes the disease emerged in Africa, where it protects against malaria. While most patients with sickle cell share African ancestry, those with ancestry from South America, Central America, and India, as well as Italy and Turkey, can also have the hereditary disease.
The genetic mutation does its damage by changing the structure of hemoglobin, hampering the ability of red blood cells to carry oxygen and damaging blood vessels when the misshapen cells get stuck and block blood flow. Patients frequently suffer painful crises that can be fatal if not promptly treated with fluids, medication, and oxygen. Longer term, organs starved of oxygen eventually give out. In the U.S., that pain and suffering is amplified when systemic and individual instances of racism deny Black people the care they need.
Delivering gene therapy for other diseases has been costly and difficult even in the best financed, most sophisticated medical settings. Challenges include removing patients cells so they can be altered in a lab, manufacturing the new cells in high volume, reinfusing them, and managing sometimes severe responses to the corrected cells. Patients also are given chemotherapy to clear space in their bone marrow for the new cells.
Ideally, many of those steps could be skipped if there were an off-the-shelf gene therapy. That means, among other challenges, inventing a way to eliminate the step where each patients cells are manipulated outside the body and given back the in vivo part of the plan to correct the genetic mutation.
Thats not the only obstacle. For a sickle cell therapy to be successful, Bradner said, it must be delivered only to its targets, which are blood stem cells. The genetic material carrying corrected DNA must be safely transferred so it does not become randomly inserted into the genome and create the risk of cancer, a possibility that halted a Bluebird Bio clinical trial on Tuesday. The payload itself mustnt cause such problems as the cytokine storm of immune overreaction. And the intended response has to be both durable and corrective.
In a way, the gene delivery is the easy part because we know that expressing a normal hemoglobin, correcting the mutated hemoglobin, or reengineering the switches that once turned off normal fetal hemoglobin to turn it back on, all can work, Bradner said. The payload is less a concern to me than the safe, specific, and durable delivery of that payload.
For each of these four challenges delivery, gene transfer, tolerability, durability there could be a bespoke technical solution, Bradner said. The goal is to create an ensemble form of gene therapy.
Novartis has an existing sickle-cell project using CRISPR with the genome-editing company Intellia, now in early human trials, whose lessons may inform this new project. CRISPR may not be the method used; all choices are still on the table, Bradner said.
Vertex Pharmaceuticals has seen encouraging early signs with its candidate therapy developed with CRISPR Therapeutics. Other companies, including Beam Therapeutics, have also embarked on gene therapy development.
The Novartis-Gates collaboration is different in its ambition to create a cure that does not rely on an expensive, complicated framework. Novartis has worked with the Gates Foundation on making malaria treatment accessible in Africa. And in October 2019, the Gates Foundation and the National Institutes of Health said together they would invest at least $200 million over the next four years to develop gene-based cures for sickle cell disease and HIV that would be affordable and available in the resource-poor countries hit hardest by the two diseases, particularly in Africa.
Gene therapies might help end the threat of diseases like sickle cell, but only if we can make them far more affordable and practical for low-resource settings, Trevor Mundel, president of global health at the Gates Foundation, said in a statement about the Novartis collaboration. Its about treating the needs of people in lower-income countries as a driver of scientific and medical progress, not an afterthought.
Asked which is the harder problem to solve: one-time, in vivo gene therapy, or making it accessible around the world, David Williams, chief of hematology/oncology at Boston Childrens Hospital, said: Both are going to be difficult to solve. The first will likely occur before the therapy is practically accessible to the large number of patients suffering the disease around the world.
Williams is also working with the Gates Foundation, as well as the Koch Institute for Integrative Cancer Research at MIT, Dana-Farber Cancer Institute, and Massachusetts General Hospital, on another approach in which a single injection of a reagent changes the DNA of blood stem cells. But there are obstacles to overcome there, too, that may be solved by advances in both the technology to modify genes and the biological understanding of blood cells.
Bradner expects further funding to come to reach patients around the world, once the science progresses more.
There is no plug-and-play solution for this project in the way that mRNA vaccines were perfectly set up for SARS-CoV-2. We have no such technology to immediately redeploy here, he said. Were going to have to reimagine what it means to be a gene therapy for this project.
Here is the original post:
Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell - STAT
Bone marrow transplant shows signs of curing brave little boy with one in a million condition – Shields Gazette
One-year-old Max Gardner was diagnosed with aplastic anaemia, in October 2020, a serious condition in which the bone marrow and stem cells do not produce enough blood cells.
After Max developed significant bruises and a rash over his body, parents, Connor Gardner and Rachel Nicholson, from Hebburn, were referred to South Tyneside District Hospital, where their brave little boy underwent tests.
Doctors initially believed that Max had an immune disorder but after he was admitted to the Royal Victoria Infirmary (RVI) further tests helped to diagnose him with aplastic anaemia.
The family was told that the condition could be fatal if not treated properly.
Doctors said Max needed to have a bone marrow transplant, which has the potential to cure him.
Dad Connor, 29, and mum Rachel, 27, were both tested to see if they would be a bone marrow match and the pair were overjoyed when Rachel was found to be a 9/10 match.
Max started chemotherapy on January 7 at the RVI and mum Rachel donated stem cells on January 13 at Newcastles Freeman Hospital.
The following day, January 14, Max underwent the transplant at the RVI.
The family is now waiting for the results of a Chimerism Test which will tell them for definite whether the stem cells have worked but signs are already looking positive.
Delighted dad, Connor, said: "His neutrophils [a type of white blood cell that protect us from infections] have been more than 0.50 for three days in a row, which means that he is essentially engrafted, which means that his body is accepting the transplant.
"So it is working, but we still have to wait for the test results."
Doctors say there is no doubt that it has worked with the way the numbers have gone up but they have to officially do it like that to make sure, Connor continued.
"But there is no reason why it shouldnt have [doctors] say.
"He has done really well to get to this stage, he has absolutely sailed through it, everyone is surprised with how well he has done.
This the best outcome we could have hoped for.
But it hasnt been plain sailing for the family, who have also had to face additional challenges during the treatment.
Parents Connor and Rachael initially were not allowed to visit Max at the same time due to Covid rules, however the hospital has now eased the restriction in their case.
The family also became sick with Norovirus in the run-up to the transplant, causing concern over whether it would have to be pushed back.
Thankfully, the transplant went ahead as planned and the family made a good recovery, although Max still needs help with his eating.
Max will now have to remain in hospital for a while longer as he recovers from the transplant.
Connor added: We can feel that we are nearly at the end of it.
"His neutrophils are the highest they have ever been since he became poorly so we feel like we are coming to the end.
The family are sharing Maxs journey to health on Instagram under the name @maxinamillionaajourney and hope his story will encourage people to sign up to the Anthony Nolan register to become a potential donor and help others like Max.
You can subscribe to this website and enjoy unlimited access to local news, information and puzzles online.
With a digital subscription, you can read more than 5 articles, see fewer ads, enjoy faster load times, and get access to exclusive newsletters and content.
Simply click Subscribe in the menu.
See the article here:
Bone marrow transplant shows signs of curing brave little boy with one in a million condition - Shields Gazette
After 13 years of trials and tribulations RTP firm G1 wins first FDA approval for cancer drug – WRAL Tech Wire
RESEARCH TRIANGLE PARK After 13 years as a clinical-stage oncology company,G1 Therapeuticsof Research Triangle Park transformed into a commercial-stage company overnight upon the approval of its first drug by the U.S. Food and Drug Administration.
The FDA on Feb. 12 approved G1s trilaciclib, to be marketed as Cosela, for protecting bone marrow from chemotherapy damage in adult patients with extensive-stage small cell lung cancer (ES-SCLC).
Cosela will help change the chemotherapy experience for people who are battling ES-SCLC, said Jack Bailey, the companys chief executive officer. G1 is proud to deliver Cosela to patients and their families as the first and only therapy to help protect against chemotherapy-induced myelosuppression.
Myelosuppression, or damage to the bone marrow, is the most serious and life-threatening side effect of chemotherapy. Chemotherapy-induced myelosuppression reduces the bodys essential supply of white blood cells, red blood cells and platelets, and can lead to increased risks of infection, severe anemia and bleeding.
RTP drug firm G1 secures FDA approval for treatment to prevent chemo damage to bone marrow
These complications impact patients quality of life and may also result in chemotherapy dose reductions and delays, said Jeffrey Crawford,M.D., Geller Professorfor Research in Cancer in theDepartment of MedicineandDuke Cancer Institute. In clinical trials, the addition of trilaciclib to extensive-stage small cell lung cancer chemotherapy treatment regimens reduced myelosuppression and improved clinical outcomes.The good news is that these benefits of trilaciclib will now be available for our patients in clinical practice.
Cosela is expected to be commercially available through G1s specialty distributor partner network in early March, the company said.
G1 is committed to helping patients with in theU.S.gain access to treatment with Cosela through access and affordability programs. Patients and healthcare can call the companys support center at 833-418-6663 for information.
Cosela is intended to be given as a 30-minute infusion four hours prior to chemotherapy treatments containing platinum/etoposide or topotecan. About 90 percent of all patients with ES-SCLC receive at least one of these chemotherapy regimens during their treatment, according to G1.
The approval of Cosela is based on data from three randomized, placebo-controlled trials. Data showed that patients receiving Cosela before the start of chemotherapy had less neutropenia, an abnormally low number of neutrophils, white blood cells that fight bacterial and fungal infection.
Data also showed a positive impact on red blood cell transfusions and other myeloprotective measures.
Chemotherapy is the most effective and widely used approach to treating people diagnosed with extensive-stage small cell lung cancer, Bailey said. However, standard-of-care chemotherapy regimens are highly myelosuppressive and can lead to costly hospitalizations and rescue interventions.
To date, oncologists have relied on rescue therapy, a mix of growth factor agents, antibiotics and red blood cell transfusions, to restore bone marrow after it has been damaged by chemotherapy.
By contrast, trilaciclib provides the first proactive approach to myelosuppression through a unique mechanism of action that helps protect the bone marrow from damage by chemotherapy, Crawford said.
Cosela helps protect bone marrow cells from chemotherapy damage by inhibiting cyclin- dependent kinase 4 and 6, two enzymes involved in cancer cell growth. Inhibiting these enzymes temporarily stops hematopoietic stem cells and progenitor cells in the bone marrow from dividing, making them resistant to damage from chemotherapy drugs that target dividing cells.
Bonnie J. Addario, lung cancer survivor, co-founder and board chair of theGo2 Foundation for Lung Cancer, said many people with extensive-stage small cell lung cancerrely on chemotherapy to extend their lives and alleviate their symptoms.
Unfortunately, the vast majority will experience chemotherapy-induced side effects, resulting in dose delays and reductions, and increased utilization of healthcare services, she said.
G1 shares our organizations goal to improve the quality of life of those diagnosed with lung cancer and to transform survivorship among people living with this insidious disease. We are thrilled to see new advancements that can help improve the lives of those living with small cell lung cancer.
About 30,000 small cell lung cancer patients are treated inthe United Statesannually. SCLC, one of the two main types of lung cancer, accounts for about 10 to 15 percent of all lung cancers but is the more aggressive disease, tending to grow and spread faster than the other type, non-small cell lung cancer.
InJune 2020, G1 announced a three-yearco-promotion agreementwithBoehringer Ingelheimfor Cosela in small cell lung cancer in theU.S.andPuerto Rico. G1 will lead marketing, market access and medical engagement initiatives for Cosela whileBoehringer Ingelheimsoncology commercial team will lead sales force engagement initiatives.
G1 will book revenue and retain development and commercialization rights to Cosela and payBoehringer Ingelheima promotional fee based on net sales.
The three-year agreement does not extend to additional indications that G1 is evaluating for trilaciclib: breast, colorectal, bladder and non-small cell lung cancers.
G1 is a 2008 spin-out of the University of North Carolina at Chapel Hill.
The company raised $108 million in an initial public offering of stock in 2017 after receiving more than $95 million in three rounds of venture capital funding. The North Carolina Biotechnology Center provided two early-stage loans totaling $500,000.
G1s stock is traded on the Nasdaq Global Select Market under the ticker symbol GTHX.
(C) N.C. Biotech Center
Global Hematological Cancers Therapeutics Market Is Expected to Reach USD 82.40 billion by 2028 : Fior Markets – GlobeNewswire
Newark, NJ, Feb. 11, 2021 (GLOBE NEWSWIRE) -- As per the report published by Fior Markets, theglobal haematological cancer therapeutics market is expected to grow from USD 37.88 billion in 2020 and to reach USD 82.40 billion by 2028, growing at a CAGR of 10.2% during the forecast period 2021-2028.
The global hematological cancers therapeutics market is witnessing significant growth in recent years. This growth is attributed to the increased government spending and infrastructure development rate across the globe, increasing blood cancer incidences, and increasing investment in research and development. Other factors propelling the market growth include inventions of novel drugs and growing investment in research and development.
The haematological cancer is a class of cancer that affects one marrow, blood, and lymph nodes. It is mostly caused due to a long exposure of toxic substances like genetic predisposition, ionized radiation and chemical agents, improper assessment, viral infections, and other risks associated with other diseases with decreased immunity. Further, the bone marrow's stem cells develop into red blood cells, white blood cells, or platelets.
The global haematological cancer therapeutics market is expected to witness significant growth, owing to the increasing awareness about the possibility of early diagnosis, rising diagnostics rate, and advancements in biotechnology and pharmaceutical industries. The factors restraining the market growth are lack of awareness among people, high cost of medications, and haematological therapeutics' side effects.
DOWNLOAD FREE SAMPLE REPORT AThttps://www.fiormarkets.com/report-detail/419209/request-sample
The key players operating in the global haematological cancer therapeutics market are Johnson & Johnson, Roche, Mindray Medical, Karyopharm Therapeutics, AbbVie, Abbott Laboratories, Celgene, Novartis, Bio-Rad Laboratories, HemoCue AB, Sysmex, and Siemens AG. To gain a significant market share in the global haematological cancer therapeutics market, the key players are now focusing on adopting strategies such as product innovations, mergers & acquisitions, recent developments, joint ventures, collaborations, and partnerships.
Pharmacological therapies segment dominated the market growth and held the largest share of 23.76% in the year 2020On the basis of type, the global haematological cancers therapeutics market is segmented into anaemia treatment, pharmacological therapies, steam cell transplantation, thrombosis treatment, surgery and radiation therapy, neutropenia treatment, and others. Pharmacological therapies segment dominated the market growth and held the largest share of 23.76% in the year 2020. This growth is attributed to the growing pharmaceutical sector, increasing research and developments, and rising cancer prevalence.
Hospitals segment dominated the market and held the largest share of 36.65% in the year 2020On the basis of end-user, the global hematological cancer therapeutics market is segmented into clinical laboratories, hospitals, academic and research institutes, and others. The hospitals segment dominated the market and held the largest share of 36.65% in the year 2020. This growth is attributed to the government and private bodies reimbursement and increased government spending on the hospital infrastructures.
Browse full report with TOC athttps://www.fiormarkets.com/report/hematological-cancers-therapeutics-market-by-type-anemia-treatment-419209.html
Regional Segment of Hematological Cancer Therapeutics Market
On the basis of geography, the global haematological cancer therapeutics market is classified into North America, Europe, Asia-Pacific, Middle East & Africa, and South America. Asia-Pacific region held the largest share of 39.68% in the year 2020. This growth is attributed to the increased government hospital expenditure, growing investment in research and development, and increasing awareness about cancer treatments. China holds the largest market share in the region due to investments by key pharmaceutical players to develop new drugs. North America is expected to witness significant growth, owing to the high prevalence of blood cancer patients and rising healthcare infrastructure.
Request for Customization:https://www.fiormarkets.com/enquiry/request-customization/419209
About the report:The global haematological cancer therapeutics market is analyzed on the basis of value (USD billion). All the segments have been analyzed on global, regional and country basis. The study includes the analysis of more than 30 countries for each segment. The report offers in-depth analysis of driving factors, opportunities, restraints, and challenges for gaining the key insights of the market. The study includes porters five forces model, attractiveness analysis, raw material analysis, and competitors position grid analysis.
For Instant Purchase:https://www.fiormarkets.com/checkout.html?reportid=419209&type=single
Customization of the Report:
The report can be customized as per client requirements. For further queries, you can contact us onsales@fiormarkets.comor +1-201-465-4211. Our executives will be pleased to understand your requirements and offer you the best-suited reports.
About Fior Markets
Fior Markets is a futuristic market intelligence company, helping customers flourish their business strategies and make better decisions using actionable intelligence. With transparent information pool, we meet clients objectives, commitments on high standard and targeting possible prospects for SWOT analysis and market research reports. Fior Markets deploys a wide range of regional and global market intelligence research reports including industries like technology, pharmaceutical, consumer goods, food and beverages, chemicals, media, materials and many others. Our Strategic Intelligence capabilities are purposely planned to boost your business extension and elucidate the vigor of diverse industry. We hold distinguished units of highly expert analysts and consultants according to their respective domains. The global market research reports we provide involve both qualitative and quantitative analysis of current market scenario as per the geographical regions segregated and comprehensive performance in different regions with global approach. In addition, our syndicated research reports offer a packaged guide to keep companies abreast of the upcoming major restyle in their domains. Fior Markets facilitates clients with research analysis that are customized to their exact requirements, specifications and challenges, whether it is comprehensive desk research, survey work, composition of multiple methods, in-detailed interviewing or competitive intelligence. Our research experts are experienced in matching the exact personnel and methodology to your business need.
Contact Us
Avinash DHead of Business DevelopmentPhone:+1-201-465-4211Email:sales@fiormarkets.comWeb:www.fiormarkets.com
To Read Top Industries Reports, Visit our Affiliated Website: https://www.marketquest.biz
Related Reports
Endocrine Testing Market - https://www.fiormarkets.com/report/endocrine-testing-market-by-technology-immunoassay-tandem-mass-418823.htmlEpigenetics Drugs & Diagnostic Technologies Market - https://www.fiormarkets.com/report/epigenetics-drugs-diagnostic-technologies-market-by-product-418825.htmlBlood Glucose Monitoring Systems Market - https://www.fiormarkets.com/report/blood-glucose-monitoring-systems-market-by-product-continuous-418818.htmlCapillary and Venous Blood Sampling Devices Market - https://www.fiormarkets.com/report/capillary-and-venous-blood-sampling-devices-market-by-418819.html
Stem cells efficacy confirmed in treating ototoxic hearing loss – Korea Biomedical Review
Researchers at the Catholic University of Korea St. Marys Hospital have recently proved the efficacy of bone marrow-derived stem cells to treat ototoxicity hearing loss, the hospital said Thursday.
The team, led by Professor Park Kyoung-ho of the Department of Otolaryngology, conducted an experiment on animal models with ototoxic sensorineural hearing, or sudden hearing loss.
They utilized Catholic MASTER cells, bone marrow stem cells developed by the Catholic Institute of Cell Therapy, to compare the stem cell injection group with the controlled group.
The result showed that animals started to recover their hearing after three weeks. Five weeks later, they recovered normal hearing at 8000Hz, 16000Hz and 32000Hz frequency.
Ototoxic hearing loss is caused when a person ingests chemicals or certain medications that adversely affect the inner ear functions. Major symptoms related to the illness are dizziness, false hearing, and hearing loss, which permanently defects hearing functions. Elders with such symptoms should have medical consultations as they are a high-risk group, the hospital said.
We have proved the efficacy of our bone marrow stem cells in recovering hearing, said Professor Park, who doubles as the director of the Stem Cell Institute. Through the results, we expect to provide new treatment opportunities for patients with hearing loss.
The test results were published in the Korean Journal of Otorhinolaryngology-Head and Neck Surgery.
Go here to read the rest:
Stem cells efficacy confirmed in treating ototoxic hearing loss - Korea Biomedical Review
Understanding bone marrow transplant: The guidelines and the protocols – The New Indian Express
The outbreak of the Covidpandemic has made many patients reluctantto undergotreatments. While their apprehension seems to overpower them, doctors need to ensure thatstrict guidelines and protocols which assure the best quality service are followed.
Among elective surgeries andtransplants, bone marrow transplant cases have increased substantially in the past few months. Adhering to guidelines for pre-transplant evaluation and the management of a common complication, graft versus host disease (GVHD)is essential.
With the diversity of practice and expertise, the following guidelines will provide a pivotal tool for learning about the rapidly updated therapy landscape in Hematopoietic stem cell transplantation (HSCT).
The guidelines intended to provide a systematic approach for transplantation and help streamline clinical practices and educate new generations of physicians-in-training. Additionally, guidelines can help to evaluate a potential transplant recipient anddetermine if the patient is an eligible candidate for the procedure.
Types and selection of transplantation:
Selection of the type of transplantation for a patient depends on factors such as the type of malignancy, availability of a suitable donor, age of the recipient, the ability to collect a tumor-free autograft, the stage, the malignancy's susceptibility to the GVM effect, and status of disease -- bone marrow involvement, the bulk of disease, chemosensitivity to conventional chemotherapy. This method is particularly applicable for Autologous or Allogeneic Transplantation where one can have a sibling donor or a matched unrelated donor. In the case of a matched unrelated donor, ensure that the collection is adequate and stem cells are available well in time especially if they are imported from countries in Europe.
A haploidentical transplant is another type of transplant that uses healthy, blood-forming cells from a half-matched donor to replace the unhealthy ones. The ideal donor in this case is a family member.
That said, for bone marrow transplant blood products are the backbone and it is important to ensure to have adequate supply before you begin with the transplant.
What are the guidelines and protocols that can be adopted in current times?
Some measures for consideration are: Minimize face-to-face visits including monitoring and consider shifting to telehealth where feasible. Some adaptive community measures like the hospital in the home services, community practices for blood collection, imaging, and support services. For radiation oncology treatment, consider reducing fractions when supported by evidence Consider alternative and less resource-intensive treatment regimes. Minimize unnecessary visitors to cancer centers, for instance, limiting to only patients and their essential caregivers based on frailty and language needs Screen for possible symptoms of COVID-19 and triage patients for admission. If necessary, the admission has to be directed to oncology/hematology departments rather than emergency departments. Immunocompromised patients are likely to have atypical presentations of COVID-19 For suspected checkpoint inhibitor-related pneumonitis prioritizes COVID-19 testing for an early decision regarding corticosteroid therapy.
These are some guidelines that you should heed during a bone marrow transplant. While it is imperative to be updated about the guidelines, timely intervention can reduce the other possible complications during the process.
(The author is the Director, Medical Oncology and Hemato Oncology, atFortis Cancer Institute, Bangalore)
Original post:
Understanding bone marrow transplant: The guidelines and the protocols - The New Indian Express
‘Whatever it takes’: Stem cell drive underway to find bone marrow match for girl on Alta. First Nation – CTV Edmonton
EDMONTON -- A little girl with leukemia in northern Alberta is in desperate need of a bone marrow transplant.
Friends and family of 10-year-old Ameilia Powder have set up a stem cell drive to find a match.
"Asking for help is probably one of the most difficult things to do when you're in this situation and really opening your story up to everyone is really hard. but at the end of the day Ameilia needs a bone marrow match," Ameilia's grandmother Jaime Harpe said. "I'll do whatever it takes to get her that match."
Ameilia was diagnosed in March 2020 and went through five months of treatment at the Stollery Children's Hospital before returning home to Fort McKay First Nation in August.
The cancer returned late last month and this time, a bone marrow transplant is the only option to save her life.
"All people have to do is go blood.ca/stemcells and they can register online, and a kit gets sent to you in the mail," organizer Amanda Main said. "You just swab your cheek, pop it back in and you get entered in the data base, that's all you have to do."
Potential matches need to be between the ages of 17 and 35.
A GoFundMe page has already raised more than $11,000.
Novel Bone Marrow ‘Ingredient’ To Help Arthritic Horses The Horse – TheHorse.com
Regenerative therapies such as stem cells and platelet-rich plasma already play an important role in managing osteoarthritis (OA). Nonetheless, veterinarians have found that response to even these therapies is less than ideal in many cases, prompting researchers to continuously seek novel therapies for this all-too-common musculoskeletal disorder. One of the newest to be unveiled is called bone marrow mononuclear cell (BMNC) therapy. One researcher who presented at the 2020 American Association of Equine Practitioners Convention, held virtually, reported that the equine industry is in critical need for therapies that resolve joint inflammation but preserve tissue healing, and BMNC appears a promising candidate.
Much more than stem cells classically sought for cartilage healing, bone marrow is rich in macrophage progenitor cells, explained James B. Everett, DVM, MS, previously of the Virginia-Maryland College of Veterinary Medicine, who now works at the Equine Surgical Center at ThorSport Farm,in Murfreesboro, Tennessee. Macrophages are a type of white blood cell that play a role in tissue repair and cartilage integrity, and produce the anti-inflammatory mediators, including interleukin-10 (IL-10).
Everett said macrophages in the synovial (joint) membrane are essential for joint health, clearing aggressors, secreting key molecules required for optimal joint function, and forming a shield that protects tissues undergoing repair, similar to a wound scab. However, when the amount of tissue damage overwhelms these housekeeping functions, macrophages stimulate inflammation as a means of recruiting more cells, especially more macrophages, to cope with increased demands for repair.
If this response is efficiently accomplished, macrophages then produce, among other things, high concentrations of IL-10 and resolve the inflammatory process, returning the joint to a healthy state, he said.
Everett emphasized that not all inflammation is bad. This acute inflammation is essential to establish a resolving response, and anti-inflammatory therapies can negatively interfere.
As presented by Everetts colleague Bruno Menarim, DVM, PhD, in a separate session, studies show that BMNCs promote the endogenous resolution of experimentally induced inflammation. To see if these promising features translated to naturally occurring inflammation in live horses, Everetts research team studied 19 horses, dividing them into three treatment groups:
The selected horses were diagnosed with OA in a single joint, and the team injected those joints once with the saline, triamcinolone, or BMNCs. The BMNCs were autologous, meaning veterinarians collected them from each patients own bone marrow aspirate. They processed the aspirate in-house, and the isolated mononuclear cells, composed predominantly of macrophages, were ready to inject into the affected joint within three hours of aspiration.
We found that while objectively assessed lameness (via Lameness Locator) decreased in all three groups, it was only significant in the BMNC-treated horses, said Everett. Further, the treatment was well-tolerated with no adverse events appreciated in this study.
He said that using BMNCs can help reduce the need for chronic use of non-steroidal anti-inflammatory drugs and corticosteroids, which produces potentially harmful consequences. Further, BMNCs preserve the production of molecules such as interleukins and cytokines that are essential for restoring joint homeostasis. Corticosteroids often inhibit these molecules.
The researchers noted that these results support a larger clinical trial using BMNCs in clinical cases of equine OA.
Originally posted here:
Novel Bone Marrow 'Ingredient' To Help Arthritic Horses The Horse - TheHorse.com
World Cancer Day 2021: DKMS Announces The Milestone Of Giving 90,000 Blood Cancer Patients Worldwide A Second Chance At Life – PR Newswire India
- DKMS-BMST continues to urge Indians to step up to be a potential lifesaver!
BENGALURU, India, Feb. 4, 2021 /PRNewswire/ -- February 4th is marked as World Cancer day every year. This day is observed to spread awareness about the disease and its increasing burden. In line with the theme for this year "Create a futurewithout cancer. The time to act isnow", DKMS BMST Foundation India, a non-profit organization with a mission to provide a second chance at life to blood cancer and blood disorder patients in India makes an appeal to people to come forward and register as potential blood stem cell donors.
On World Cancer Day 2021, DKMS is also celebrating a milestone of providing more than 90,000 blood cancer patients across 57 countries with a second chance at life, since it was founded almost 30 years ago in 1991. DKMS is an international non-profit organization that helps provide patients with lifesaving blood stem cell transplants. DKMS has presence in India, Germany, USA, Poland, UK, Chile, and South Africa.
Patrick Paul, CEO, DKMS BMST Foundation India, says, "DKMS is proud to be the world's leading donor center, accounting for nearly 30% of the total donor pool. While, this is a global milestone, when it comes to India, the fact is that the Indian donors are highly underrepresented in the global database. This is why it becomes difficult for doctors to find a matching blood stem cell donor for Indian patients. While DKMS has registered over 10.5 million donors and has provided over 90,000 patients with a second chance at life globally, it is critical to highlight that only over 43,000 Indian donors are part of this donor pool."
In India, every year, over one lakh people are diagnosed with a form of blood cancer and it remains one of the leading causes of cancer-related deaths among children. Most people are unaware that a life-threatening disease like blood cancer can be treated and in most of the cases, a stem cell transplant is the patient's only chance for survival. For instance, 15-year-old Maheer from Gujarat, India, is one of the blood cancer survivors who had received a lifesaving blood stem cell donation in 2012. He was able to find his matching blood stem cell donor, Dr. Sita, who hails from Germany. Today, he leads a normal, healthy and happy life. He is in grade 9 and loves to travel, read and swim.
Today, more than 37 million potential unrelated donors are listed worldwide with stem cell donor centers and registries, of which only 0.03% are Indians. Currently, in India, the biggest challenge is the lack of awareness about blood stem cell transplant and the importance of registering as a potential blood stem cell donor. The entire procedure is safe and secure. Once the blood stem cells are collected from a donor, they are infused into the patient through a transplant process which then moves through the bloodstream and settles in the bone marrow. These new blood stem cells begin to increase in numbers and produce red blood cells, white blood cells, and platelets, resulting in the replacement of the patient's diseased cells and that's how a blood cancer patient gets a second chance at life. This situation can only be improved by recruiting many more potential stem cell donors from India.
This World Cancer Day, one can take a pledge to become a potential lifesaver. Registration takes only 5 minutes. If one between 18 and 50 years and in good health, the first step to register as a blood stem cell donor by ordering the home swab kit at http://www.dkms-bmst.org/register.
SOURCE DKMS BMST Foundation India