Archive for the ‘Cardiac Stem Cells’ Category
NASA to send equipment to International Space Station to research Improving Shoes, Showers, 3D Printing – Clarksville Online
Houston, TX A variety of science investigations, along with supplies and equipment, launch to the International Space Station on the 20th SpaceX commercial resupply services mission.
The Dragon cargo spacecraft is scheduled to leave Earth March 2nd from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Its cargo includes research on particle foam manufacturing, water droplet formation, the human intestine and other cutting-edge investigations.
Airbus workers unpack the Bartolomeo platform at NASAs Kennedy Space Center in Florida in preparation for its launch to the International Space Station. The platform, manufactured by Airbus Defence and Space, hosts multiple external payloads in low-Earth orbit. (NASA)
The space station, now in its 20th year of continuous human presence, provides opportunities for research by government agencies, private industry, and academic and research institutions.
Such research supports Artemis, NASAs missions to the Moon and Mars, and leads to new technologies, medical treatments and products that improve life on Earth.
Particle foam molding is a manufacturing process that blows thousands of pellets into a mold where they fuse together. The shoe company Adidas uses this process to make performance midsoles, the layer between the sole of a shoe and the insole under your foot, for its products.
The BOOST Orbital Operations on Spheroid Tesellation (Adidas BOOST) investigation looks at how multiple types of pellets behave in this molding process. Using one type of pellet creates a foam with the same properties throughout the sole component. Using multiple pellet types can allow engineers to change mechanical properties and optimize shoe performance and comfort. Removing gravity from the process enables a closer look at pellet motion and location during the process.
Results of this investigation could demonstrate the benefits of microgravity research for manufacturing methods, contributing to increased commercial use of the space station. New processes for particle foam molding could benefit a variety of other industries, including packaging and cushioning materials.
The Bartolomeo facility, created by ESA (European Space Agency) and Airbus, attaches to the exterior of the European Columbus Module. Designed to provide new scientific opportunities on the outside of the space station for commercial and institutional users, the facility offers unobstructed views both toward Earth and into space.
Airbus is collaborating with the United Nations Office of Outer Space Affairs to offer UN Member States the opportunity to fly a payload on Bartolomeo. Developing countries are particularly encouraged to participate, and the mission is devoted to addressing the UNs Sustainable Development Goals. Bartolomeo is named for the younger brother of Christopher Columbus.
Droplet Formation Studies in Microgravity (Droplet Formation Study) evaluates water droplet formation and water flow of Delta Faucets H2Okinetic showerhead technology. Reduced flow rates in shower devices conserve water, but also can reduce their effectiveness.
That can cause people to take longer showers, undermining the goal of using less water. Gravitys full effects on the formation of water droplets are unknown, and research in microgravity could help improve the technology, creating better performance and improved user experience while conserving water and energy.
Insight gained from this investigation also has potential applications in various uses of fluids on spacecraft, from human consumption of liquids to waste management and use of fluids for cooling and as propellants.
Human intestine cells forming microvilli inside Emulates Intestine-Chip. (Emulate)
Organ-Chips as a Platform for Studying Effects of Space on Human Enteric Physiology (Gut on Chip) examines the effect of microgravity and other space-related stress factors on biotechnology company Emulates human innervated Intestine-Chip (hiIC). This Organ-Chip device enables the study of organ physiology and diseases in a laboratory setting. It allows for automated maintenance, including imaging, sampling, and storage on orbit and data downlink for molecular analysis on Earth.
A better understanding of how microgravity and other potential space travel stressors affect intestine immune cells and susceptibility to infection could help protect astronaut health on future long-term missions. It also could help identify the mechanisms that underlie development of intestinal diseases and possible targets for therapies to treat them on Earth.
Self-assembly and self-replication of materials and devices could enable 3D printing of replacement parts and repair facilities on future long-duration space voyages. Better design and assembly of structures in microgravity also could benefit a variety of fields on Earth, from medicine to electronics.
Called self-assembled colloidal structures, these are vital to the design of advanced optical materials, but control of particle density and behavior is especially important for their use in 3D printing. Microgravity provides insight into the relationships among particle shape, crystal symmetry, density and other characteristics.
Functional structures based on colloids could lead to new devices for chemical energy, communication, and photonics.
The Multi-use Variable-g Platform (MVP) used for the MVP Cell-03 experiment, shown with the MVP door removed and two carousels inside. (Techshot Inc.)
Generation of Cardiomyocytes From Human Induced Pluripotent Stem Cell-derived Cardiac Progenitors Expanded in Microgravity (MVP Cell-03) examines whether microgravity increases the production of heart cells from human-induced pluripotent stem cells (hiPSCs).
HiPSCs are adult cells genetically reprogrammed back into an embryonic-like pluripotent state, which means they can give rise to several different types of cells. This makes them capable of providing an unlimited source of human cells for research or therapeutic purposes.
For MVP Cell-03, scientists induce the stem cells to generate heart precursor cells, then culture those cells on the space station for analysis and comparison with cultures grown on Earth.
These heart cells or cardiomyocytes (CMs) could help treat cardiac abnormalities caused by spaceflight. In addition, scientists could use them to replenish cells damaged or lost due to cardiac disease on Earth and for cell therapy, disease modeling and drug development. Human cardiac tissues damaged by disease cannot repair themselves, and loss of CMs contributes to eventual heart failure and death.
These are just a few of the hundreds of investigations currently aboard the orbiting laboratory. For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. Follow the ISS National Lab for information on its sponsored investigations. For opportunities to see the space station pass over your town, check out Spot the Station.
Related Stories
Here are all the science projects that SpaceX will deliver to the ISS – Digital Trends
In a couple of weeks, SpaceX will be launching a Dragon cargo spacecraft bound for the International Space Station (ISS), carrying not only supplies for the astronauts but also a range of scientific equipment and research technology. The cargo includes tools for researching everything from growing human heart cells to making more comfortable sneakers.
One of the largest additions to the ISS will be the Bartolomeo facility, a European Space Agency project to provide more room for scientific experiments by attaching to the outside of the space station. Potential uses for the extended space include Earth observation, robotics, material science, and astrophysics, according to NASA.
Other projects include one by Adidas to test out its molding process in which thousands of pellets are blown together until they fuse, creating a midsole for shoes to make them more cushioned for high-performance athletes. Theres also a study into how water droplets form in low gravity which could help reduce the amount of water used by showers here on Earth, assisting the important project of water conservation. And theres a project to test improvements in 3D printing which could be used to print spare parts and repair tools for future space voyages.
Finally, there are also two biomedical experiments being taken to the ISS. One will look at how microgravity affects biotechnology like the Organ Chip which simulates the responses of human tissue on a small chip. And the other will investigate whether it is possible to grow human heart cells from stem cells in microgravity. The researchers believe the development of these heart cells could eventually be used to treat cardiac problems here on Earth, especially among children as their cardiac issues are particularly hard to treat.
The mission is scheduled to launch at 10:45 p.m. PT on Sunday, March 1, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. This will be the 20th mission as part of NASAs Commercial Resupply Services contract, in which private companies like SpaceX and Boeing take over some duties for delivering supplies to the ISS.
In the future, SpaceX will be taking a larger part in ISS operations as well. It will be delivering astronauts to and from the space station as part of NASAs Commercial Crew program, using its Crew Dragon capsule. The first manned Crew Dragon mission is targeted for May 7.
Link:
Here are all the science projects that SpaceX will deliver to the ISS - Digital Trends
A New Path for Cardiac Stem Cells – hopkinsmedicine.org
By the time Bill Beatty made it to the Emergency Department in Howard County, he was already several hours into a major heart attack. His physicians performed a series of emergency treatments that included an intra-aortic balloon pump, but the 57-year-old engineers blood pressure remained dangerously low. The cardiologist called for a helicopter to transfer him to Johns Hopkins.
It was fortuitous timing: Beatty was an ideal candidate for a clinical trial and soon received an infusion of stem cells derived from his own heart tissue, making him the second patient in the world to undergo the procedure.
Of all the attempts to harness the promise of stem cell therapy, few have garnered more hope than the bid to repair damaged hearts. Previous trials with other stem cells have shown conflicting results. But this new trial, conducted jointly with cardiologist Eduardo Marbn at Cedars-Sinai Medical Center in Los Angeles, is the first time stem cells come from the patients own heart.
Cardiologist Jeffrey Brinker, M.D., a member of the Hopkins team, thinks the new protocol could be a game-changer. That's based partly on recent animal studies in which scientists at both institutions isolated stem cells from the injured animals hearts and infused them back into the hearts of those same animals. The stem cells formed new heart muscle and blood vessel cells. In fact, says Brinker, the new cells have a pre-determined cardiac fate. Even in the culture dish, he says, theyre a beating mass of cells.
Whats more, according to Gary Gerstenblith, M.D., J.D., the animals in these studies showed a significant decrease in relative infarct size, shrinking by about 25 percent. Based on those and earlier findings, investigators were cleared by the FDA and Hopkins Institutional Review Board to move forward with a human trial.
In Beattys case, Hopkins heart failure chief extracted a small sample of heart tissue and shipped it to Cedars Sinai, where stem cells were isolated, cultured and expanded to large numbers. Hopkins cardiologist Peter Johnston, M.D., says cardiac tissue is robust in its ability to generate stem cells, typically yielding several million transplantable cells within two months.
When ready, the cells were returned to Baltimore and infused back into Beatty through a balloon catheter placed in his damaged artery, ensuring target-specific delivery. Then the watching and waiting began. For the Hopkins team, Beattys infarct size will be tracked by imaging chief Joao Lima, M.D., M.B.A.,and his associates using MRI scans.
Now back home and still struggling with episodes of compromised stamina and shortness of breath, Beatty says his Hopkins cardiologists were fairly cautious in their prognosis, but hell be happy for any improvement.
Nurse coordinator Elayne Breton says Beatty is scheduled for follow-up visits at six months and 12 months, when they hope to find an improvement in his hearts function. But at least one member of the Hopkins team was willing acknowledge a certain optimism. The excitement here, says Brinker, is huge.
The trial is expected to be completed within one to two years.
--by Ramsey Flynn
Read more here:
A New Path for Cardiac Stem Cells - hopkinsmedicine.org
34 years with a new heart and counting – MDJOnline.com
Whenever Harry Wuest has a doctors appointment in northern Atlantas hospital cluster dubbed Pill Hill, he makes sure to stop by the office of Dr. Douglas Doug Murphy for a quick chat.
And Murphy, unless hes tied up in the operating room, always takes a few minutes to say hello to his former patient. Remember when ... ? is how the conversation typically starts, and its always tinged with laughter, often joyful, sometimes bittersweet.
Its a reunion of two men who shaped a piece of Georgias medical history.
Almost 35 years ago, Murphy opened the chest of Wuest and sewed in a new heart, giving him a second shot at life. Wuest was the third heart transplant patient at Emory University Hospital.
Tall, lanky, with short curly hair and a quiet demeanor, Wuest is the longest-surviving heart transplant recipient in Georgia and one of the longest-surviving in the world. The 75-year-old accountant still plays golf twice a week and only recently went from working full-time to part-time. My heart is doing just fine, he says.
Murphy is now the chief of cardiothoracic surgery at Emory Saint Josephs Hospital and still in the operating room almost every day. He has moved on to become the worlds leading expert in robotically assisted heart surgery.
Harry Wuest is originally from Long Island, New York. After a stint in the Air Force, he moved to Florida to work and go to school. He wanted to become a physical education teacher. Then, in 1973, he fell ill. It started with some pain on his left side. He didnt think much of it, but when he got increasingly winded and fatigued, he went to see a doctor.
Several months and numerous specialists later, he received the diagnosis: Cardiomyopathy, a disease of the heart muscle that can make the heart become enlarged, thick and rigid, preventing it from pumping enough blood through the body.
They didnt know how I got it, says Wuest, sitting back in a brown leather armchair in the dark, wood-paneled living room of his Stone Mountain home. Maybe it was a virus. And back then, there wasnt much they could do to treat it, except bed rest.
For the next 12 years, Wuest lived life as best as he could. He got a degree in accounting from the University of Central Florida and worked for a real estate developer. There were good days, but there were more bad days. He was often too weak to do anything, and his heart was getting bigger and bigger.
Emorys first transplant surgeon
The first successful human-to-human heart transplant was performed in Cape Town, South Africa, in 1967 a medical breakthrough that catapulted the surgeon, Dr. Christiaan Barnard, onto the cover of Life magazine and to overnight celebrity status.
This highly publicized event was followed by a brief surge in the procedure around the world, but overall, heart transplants had a rocky start. Most patients died shortly after the surgery, mainly due to organ rejection. Back then, immunosuppressive drugs, which can counteract rejection, were still in their infancy. Many hospitals stopped doing heart transplants in the 1970s.
That changed with the discovery of a highly effective immunosuppressive agent. Cyclosporine got FDA approval in 1983 and altered the world of organ transplants.
It was shortly thereafter when Emory University Hospital decided to launch a heart transplant program, but none of the senior surgeons wanted to do it. Even with the new drug, it was a risky surgery, and mortality was still high.
Its an all-or-nothing operation, Murphy says, as he sits down in his small office overlooking the grayish hospital compound. Hes wearing light blue scrubs from an early morning surgery. At 70, he still has boyish looks, with a lean build and an air of laid-back confidence. If you have a number of bad outcomes initially, it can be detrimental to your career as a surgeon, he says.
But Murphy didnt really have a choice. He remembers that during a meeting of Emorys cardiac surgeons in 1984, he was paged to check on a patient. When he returned, the physicians congratulated him on being appointed the head of the new heart transplant program. He was the youngest in the group and had been recruited from Harvards Massachusetts General Hospital just three years before.
Yeah, thats how I became Emorys first transplant surgeon, says Murphy.
He flew to California to shadow his colleagues at Stanford University Hospital, where most heart transplants were performed at the time. Back home at Emory, he put together a team and rigorously rehearsed the operation. The first transplant patient arrived in April 1985. The surgery was successful, as was the second operation less than a month later.
Around the same time, Harry Wuest wound up in a hospital in Orlando. He needed a transplant, but none of the medical centers in Florida offered the procedure. One of his doctors recommended Emory, and Wuest agreed. I knew I was dying. I could feel it. He was flown to Atlanta by air ambulance and spent several weeks in Emorys cardiac care unit until the evening of May 23, when Murphy walked into his room and said, Weve got a heart.
I could finally breathe again
The heart, as the patient later learned, came from a 19-year-old sophomore at Georgia Tech who had been killed in a car crash.
Organ transplants are a meticulously choreographed endeavor, where timing, coordination and logistics are key. While Murphy and his eight-member team were preparing for the surgery, Wuest was getting ready to say farewell to his family his wife and three teenage sons, and to thank the staff in the cardiac ward.
I was afraid, he recalls, especially of the anesthesia. It scared the heck out of me. He pauses during the reminiscence, choking briefly. I didnt know if I was going to wake up again.
The surgery took six hours. Transplants usually happen at night because the procurement team, the surgeons who retrieve different organs from the donor, only start working when regularly scheduled patients are out of the operating room.
Despite the cultural mystique surrounding the heart as the seat of life, Murphy says that during a transplant surgery, its not like the big spirit comes down to the operating room. Its very technical. As the team follows a precise routine, emotions are kept outside the door. We dont have time for that. Emotions come later.
Waking up from the anesthesia, Wuests first coherent memory was of Murphy entering the room and saying to a nurse, Lets turn on the TV, so Harry can watch some sports.
Wuest spent the next nine days in the ICU, and three more weeks in the hospital ward. In the beginning, he could barely stand up or walk, because he had been bedridden weeks before the surgery and had lost a lot of muscle. But his strength came back quickly. I could finally breathe again, he says. Before the surgery, he felt like he was sucking in air through a tiny straw. I cannot tell you what an amazing feeling that was to suddenly breathe so easily.
Joane Goodroe was the head nurse at Emorys cardiovascular post-op floor back then. When she first met Wuest before the surgery, she recalls him lying in bed and being very, very sick. When she and the other nurses finally saw him stand up and move around, he was a whole different person.
In the early days of Emorys heart transplant program, physicians, nurses and patients were a particularly close-knit group, remembers Goodroe, whos been a nurse for 42 years and now runs a health care consulting firm. There were a lot of firsts for all of us, and we all learned from each other, she said.
Wuest developed friendships with four other early transplant patients at Emory, and he has outlived them all.
When he left the hospital, equipped with a new heart and a fresh hunger for life, Wuest made some radical changes. He decided not to return to Florida but stay in Atlanta. Thats where he felt he got the best care, and where he had found a personal support network. And he got a divorce. Four months after the operation, he went back to working full-time: first in temporary jobs and eventually for a property management company.
After having been sick for 12 years, I was just so excited to be able to work for eight hours a day, he recalls. That was a big, big deal for me.
At 50, he went back to school to get his CPA license. He also found new love.
Martha was a head nurse in the open-heart unit and later ran the cardiac registry at Saint Josephs Hospital. Thats where Wuest received his follow-up care and where they met in 1987. Wuest says for him it was love at first sight, but it took another five years until she finally agreed to go out with him. Six months later, they were married.
Harry Wuest and his wife, Martha. She was a head nurse in the open-heart unit and later ran the cardiac registry at Saint Josephs Hospital. Thats where Wuest received his follow-up care and where they met in 1987. Wuest says for him it was love at first sight, but it took another five years until she finally agreed to go out with him. Six months later, they were married.
Having worked in the transplant office, I saw the good and the bad, Martha Wuest says. A petite woman with short, perfectly groomed silver hair, she sits up very straight on the couch, her small hands folded in her lap. Not every transplant patient did as well as Harry. And I had a lot of fear in the beginning. Now he may well outlive her, she says with a smile and a wink.
Wuests surgeon, meanwhile, went on to fight his own battles. Two and a half years into the program, Murphy was still the only transplant surgeon at Emory and on call to operate whenever a heart became available. Frustrated and exhausted, he quit his position at Emory and signed up with Saint Josephs (which at the time was not part of the Emory system) and started a heart transplant program there.
At St. Josephs, Murphy continued transplanting hearts until 2005. In total, he did more than 200 such surgeries.
Being a heart transplant surgeon is a grueling profession, he says, and very much a younger surgeons subspecialty.
He then shifted his focus and became a pioneer in robotically assisted heart surgery. He has done more than 3,000 operations with the robot, mostly mitral valve repairs and replacements more than any other cardiac surgeon in the world.
Heart transplants "remain the gold standard"
Since Murphy sewed a new heart into Wuest 35 years ago, there has been major progress in the field of heart transplants, but it has been uneven.
There is improved medication to prevent rejection of the donor heart, as well as new methods of preserving and transporting donor hearts.
Yet patients requiring late-stage heart failure therapy, including transplantation, still exceed the number of donor hearts available. In 2019, 3,551 hearts were transplanted in the United States, according to the national Organ Procurement and Transplantation Network. But 700,000 people suffer from advanced heart failure, says the American Heart Association.
New technologies and continued research are providing hope to many of these patients. There has been significant progress in the development of partial artificial hearts, known as Left Ventricular Assist Devices, or LVADs. They can be used as bridge devices, to keep patients alive until donor hearts are available, or as destination therapy, maintaining patients for the remainder of their lives.
Also, total artificial hearts have come a long way since the first artificial pump was implanted in a patient in 1969. The technology is promising, says Dr. Mani Daneshmand, the director of Emorys Heart & Lung Transplantation Program. But its not perfect.
Long-term research continues into xenotransplantation, which involves transplanting animal cells, tissues and organs into human recipients.
Regenerative stem cell therapy is an experimental concept where stem cell injections stimulate the heart to replace the rigid scar tissue with tissue that resumes contraction, allowing for the damaged heart to heal itself after a heart attack or other cardiac disease. Certain stem cell therapies have shown to reverse the damage to the heart by 30 to 50 percent, says Dr. Joshua Hare, a heart transplant surgeon and the director of the Interdisciplinary Stem Cell Institute at the University of Miamis Miller School of Medicine.
All of these ideas have potential, says Daneshmand. But none of them are ready to replace a human donor heart. A heart transplant remains the gold standard, because you cant accommodate the same success with a machine right now, he says.
Efforts around expanding the donor pool are really the best way to address this problem, while we wait for technology to catch up, he adds.
Besides Emory, other health care systems in Georgia that currently have a heart transplant program are Piedmont Healthcare, Childrens Healthcare of Atlanta and Augusta University Health.
Organ rejection remains a major issue, and long-term survival rates have not improved dramatically over the past 35 years. The 10-year survival is currently around 55 percent of patients, which makes long-term survivors like Harry Wuest rare in the world of heart transplants.
The United Network of Organ Sharing, or UNOS, which allocates donor hearts in the United States, doesnt have comprehensive data prior to 1987. An informal survey of the 20 highest-volume hospitals for heart transplants in the 1980s found only a scattering of long-term survivors.
In for the long haul
Being one of the longest-living heart transplant recipients is something that Wuest sees as a responsibility to other transplant patients, but also to the donors family, which hes never met. If you as a transplant recipient reject that heart, thats like a second loss for that family.
Part of this responsibility is living a full and active life. Both he and Martha have three children from their previous marriages and combined they have 15 grandchildren. Most of their families live in Florida, so they travel back and forth frequently. Wuest still works as a CPA during tax season, and he does advocacy for the Georgia Transplant Foundation. In addition to golf, he enjoys lifting weights and riding his bike.
Hes had some health scares over the years. In 2013, he was diagnosed with stage 1 kidney cancer, which is in remission. Also, he crossed paths with his former surgeon, and not just socially. In 2014, Murphy replaced a damaged tricuspid valve in Wuests new heart. That operation went well, too.
Murphy says there are several reasons why Wuest has survived so long. Obviously, his new heart was a very good match. But a patient can have the best heart and the best care and the best medicines and still die a few months or years after the transplantation, the surgeon says. Attitude plays a key role.
Wuest was psychologically stable and never suffered from depression or anxiety, Murphy says. Hes a numbers guy. He knew the transplant was his only chance, and he was set to pursue it.
Wuest attributes his longevity to a good strong heart from his donor; good genetics; great doctors and nurses; and a life that he loves. Im just happy to be here, he says.
Quoting his former surgeon and friend, he adds: Doug always said, Having a transplant is like running a marathon. And Im in for the long haul.
More here:
34 years with a new heart and counting - MDJOnline.com
Improving shoes, showers, 3D printing: research launching to the Space Station – Space Daily
Houston TX (SPX) Feb 21, 2020A variety of science investigations, along with supplies and equipment, launch to the International Space Station on the 20th SpaceX commercial resupply services mission. The Dragon cargo spacecraft is scheduled to leave Earth March 2 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Its cargo includes research on particle foam manufacturing, water droplet formation, the human intestine and other cutting-edge investigations.
The space station, now in its 20th year of continuous human presence, provides opportunities for research by government agencies, private industry, and academic and research institutions. Such research supports Artemis, NASA's missions to the Moon and Mars, and leads to new technologies, medical treatments and products that improve life on Earth.
High-tech shoes from spaceParticle foam molding is a manufacturing process that blows thousands of pellets into a mold where they fuse together. The shoe company Adidas uses this process to make performance midsoles, the layer between the sole of a shoe and the insole under your foot, for its products.
The BOOST Orbital Operations on Spheroid Tesellation (Adidas BOOST) investigation looks at how multiple types of pellets behave in this molding process. Using one type of pellet creates a foam with the same properties throughout the sole component. Using multiple pellet types can allow engineers to change mechanical properties and optimize shoe performance and comfort. Removing gravity from the process enables a closer look at pellet motion and location during the process.
Results of this investigation could demonstrate the benefits of microgravity research for manufacturing methods, contributing to increased commercial use of the space station. New processes for particle foam molding could benefit a variety of other industries, including packaging and cushioning materials.
New facility outside the space stationThe Bartolomeo facility, created by ESA (European Space Agency) and Airbus, attaches to the exterior of the European Columbus Module. Designed to provide new scientific opportunities on the outside of the space station for commercial and institutional users, the facility offers unobstructed views both toward Earth and into space. Experiments hosted in Bartolomeo receive comprehensive mission services, including technical support in preparing the payload, launch and installation, operations and data transfer and optional return to Earth. Potential applications include Earth observation, robotics, material science and astrophysics.
Airbus is collaborating with the United Nations Office of Outer Space Affairs to offer UN Member States the opportunity to fly a payload on Bartolomeo. Developing countries are particularly encouraged to participate, and the mission is devoted to addressing the UN's Sustainable Development Goals. Bartolomeo is named for the younger brother of Christopher Columbus.
Conserving water in the showerDroplet Formation Studies in Microgravity (Droplet Formation Study) evaluates water droplet formation and water flow of Delta Faucet's H2Okinetic showerhead technology. Reduced flow rates in shower devices conserve water, but also can reduce their effectiveness. That can cause people to take longer showers, undermining the goal of using less water. Gravity's full effects on the formation of water droplets are unknown, and research in microgravity could help improve the technology, creating better performance and improved user experience while conserving water and energy.
Insight gained from this investigation also has potential applications in various uses of fluids on spacecraft, from human consumption of liquids to waste management and use of fluids for cooling and as propellants.
Studying the human intestine on a chipOrgan-Chips as a Platform for Studying Effects of Space on Human Enteric Physiology (Gut on Chip) examines the effect of microgravity and other space-related stress factors on biotechnology company Emulate's human innervated Intestine-Chip (hiIC). This Organ-Chip device enables the study of organ physiology and diseases in a laboratory setting. It allows for automated maintenance, including imaging, sampling, and storage on orbit and data downlink for molecular analysis on Earth.
A better understanding of how microgravity and other potential space travel stressors affect intestine immune cells and susceptibility to infection could help protect astronaut health on future long-term missions. It also could help identify the mechanisms that underlie development of intestinal diseases and possible targets for therapies to treat them on Earth.
Toward better 3D printingSelf-assembly and self-replication of materials and devices could enable 3D printing of replacement parts and repair facilities on future long-duration space voyages. Better design and assembly of structures in microgravity also could benefit a variety of fields on Earth, from medicine to electronics.
The Nonequilibrium Processing of Particle Suspensions with Thermal and Electrical Field Gradients (ACE-T-Ellipsoids) experiment designs and assembles complex three-dimensional colloids - small particles suspended within a fluid - and controls density and behavior of the particles with temperature. Called self-assembled colloidal structures, these are vital to the design of advanced optical materials, but control of particle density and behavior is especially important for their use in 3D printing. Microgravity provides insight into the relationships among particle shape, crystal symmetry, density and other characteristics.
Functional structures based on colloids could lead to new devices for chemical energy, communication, and photonics.
Growing human heart cellsGeneration of Cardiomyocytes From Human Induced Pluripotent Stem Cell-derived Cardiac Progenitors Expanded in Microgravity (MVP Cell-03) examines whether microgravity increases the production of heart cells from human-induced pluripotent stem cells (hiPSCs). HiPSCs are adult cells genetically reprogrammed back into an embryonic-like pluripotent state, which means they can give rise to several different types of cells. This makes them capable of providing an unlimited source of human cells for research or therapeutic purposes. For MVP Cell-03, scientists induce the stem cells to generate heart precursor cells, then culture those cells on the space station for analysis and comparison with cultures grown on Earth.
These heart cells or cardiomyocytes (CMs) could help treat cardiac abnormalities caused by spaceflight. In addition, scientists could use them to replenish cells damaged or lost due to cardiac disease on Earth and for cell therapy, disease modeling and drug development. Human cardiac tissues damaged by disease cannot repair themselves, and loss of CMs contributes to eventual heart failure and death.
Related LinksISS National LabSpace Tourism, Space Transport and Space Exploration News
With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.
Our news coverage takes time and effort to publish 365 days a year.
If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
Read more:
Improving shoes, showers, 3D printing: research launching to the Space Station - Space Daily
On the other hand – J-Wire Jewish Australian News Service
February 23, 2020 by Michael Kuttner
Read on for article
As we hurtle towards round three in our general elections the frenetic canvassing of voters by desperate political parties is in stark contrast to the switched-off interest shown by those targeted.
Thankfully the same cannot be said for the daily announcements of further advances in good news whether it is scientific, medical or social spheres. Israeli ingenuity continues to be a light unto the nations.
QUICKER RESULTS EQUALS QUICKER DIAGNOSIS
The Israeli innovation can test 100 saliva samples in 15 minutes as opposed to one blood test that takes an hour to confirm coronavirus.
Quick diagnosis can help prevent the spread ofcoronavirus by slashing the timeit takes to decide that patients need to be quarantined and treated.
The technology is already in use for diagnosing the Zika virus and is used at Israels Tel Hashomer Hospital in Ramat Gan by the Ministry of Healths central virology laboratory.
ANOTHER ADVANCE IN CARDIAC CARE
Researchers succeeded in producing 3D engineered cardiac tissues from chamber-specific heart cells derived from human stem cells. This medical development opens the door for creating personalized medications for cardiac patients and advances in new cardiac drug developments.
This research model simulates the most common irregular heartbeat (arrhythmia), called atrial fibrillation. It opens the door for testing the success of various drugs on individual patients to prevent or stop arrhythmia.
Because they were able to separate atrial and ventricular tissue models, researchers can discover which drugs improve atrial cell function without damaging ventricular cell function.
DEFEATING CYBER HACKERS
Researchers from Ben-Gurion University (BGU) presented at the Cybertech Global Tel Aviv conference the first all-optical stealth encryption technology. The innovation uses fibre-optic light transmissions to secure cloud computing and data centre network transmission.
The technology uses standard optical equipment to send data in a manner that cannot beintercepted by hackers, unlike conventional digital methods. Another aspect of the system is that data gets destroyed if a hacker tries to decode it.
Because an eavesdropper can neither read the data nor even detect the existence of the transmitted signal, the optical stealth transmission provides thehighest level of privacy and securityfor sensitive data applications.
The patented technology has multiple applications, including high-speed communication and sensitive transmission of financial, medical or social media-related information. According to the Senior Vice President, Exact Sciences & Engineering, BGN Technologies, An eavesdropper will require years to break the encryption key.
TWO THOUSAND YEARS LATER
Long after the Romans departed archeological discoveries continue to be made. Two thousand years later the descendants of the Jews they tried to ethnically cleanse, now restored in their homeland, walk again in the very places they were once exiled from.
RECLAIMING A LOST HERITAGE
One of the miracles one witnesses by living in Israel is meeting Jews long lost to their heritage somehow finding their way back to their Faith and People.
Whether it is the Bnei Menashe from India, tribes from Uganda, individuals from Kaifeng, China or Jews from Ethiopia the common theme is of a return to Zion.
Often overlooked but now becoming a frequent occurrence is the discovery by descendants of Conversos, those driven underground or forcibly converted by the Spanish and Portuguese Inquisition five hundred years ago, of their Jewish heritage.
Watch this moving video of one of the latest such personal dramas. We truly are living in amazing times when lost Jews from the four corners of the world are returning.
Visit J-Wire's main page for all the latest breaking news, gossip and what's on in your community.
Read more:
On the other hand - J-Wire Jewish Australian News Service
34 Years With A New Heart And Counting | 90.1 FM WABE – WABE 90.1 FM
Whenever Harry Wuest has a doctors appointment in northern Atlantas hospital cluster dubbed Pill Hill, he makes sure to stop by the office of Dr. Douglas Doug Murphy for a quick chat.
And Murphy, unless hes tied up in the operating room, always takes a few minutes to say hello to his former patient. Remember when . . . ? is how the conversation typically starts, and its always tinged with laughter, often joyful, sometimes bittersweet.
Its a reunion of two men who shaped a piece of Georgias medical history.
Almost 35 years ago, Murphy opened the chest of Wuest and sewed in a new heart, giving him a second shot at life. Wuest was the third heart transplant patient at Emory University Hospital.
Tall, lanky, with short curly hair and a quiet demeanor, Wuest is the longest-surviving heart transplant recipient in Georgia and one of the longest-surviving in the world. The 75-year-old accountant still plays golf twice a week and only recently went from working full-time to part-time.
My heart is doing just fine, he says.
Murphy is now the chief of cardiothoracic surgery at Emory Saint Josephs Hospital and still in the operating room almost every day. He has moved on to become the worlds leading expert in robotically assisted heart surgery.
***
Harry Wuest is originally from Long Island, N.Y. After a stint in the U.S. Air Force, he moved to Florida to work and go to school. He wanted to become a physical education teacher. Then, in 1973, he fell ill. It started with some pain on his left side. He didnt think much of it, but when he got increasingly winded and fatigued, he went to see a doctor.
Several months and numerous specialists later, he received the diagnosis: Cardiomyopathy, a disease of the heart muscle that can make the heart become enlarged, thick and rigid, preventing it from pumping enough blood through the body.
They didnt know how I got it, says Wuest, sitting back in a brown leather armchair in the dark, wood-paneled living room of his Stone Mountain home. Maybe it was a virus. And back then, there wasnt much they could do to treat it, except bed rest.
For the next 12 years, Wuest lived life as best as he could. He got a degree in accounting from the University of Central Florida and worked for a real estate developer. There were good days, but there were more bad days. He was often too weak to do anything, and his heart was getting bigger and bigger.
***
The first successful human-to-human heart transplant was performed in Cape Town, South Africa, in 1967 a medical breakthrough that catapulted the surgeon, Dr. Christiaan Barnard, onto the cover of Life magazine and to overnight celebrity status.
This highly publicized event was followed by a brief surge in the procedure around the world, but overall, heart transplants had a rocky start. Most patients died shortly after the surgery, mainly due to organ rejection. Back then, immunosuppressive drugs, which can counteract rejection, were still in their infancy. Many hospitals stopped doing heart transplants in the 1970s.
That changed with the discovery of a highly effective immunosuppressive agent. Cyclosporine got FDA approval in 1983 and altered the world of organ transplants.
It was shortly thereafter when Emory University Hospital decided to launch a heart transplant program, but none of the senior surgeons wanted to do it. Even with the new drug, it was a risky surgery, and mortality was still high.
Its an all-or-nothing operation, Murphy says, as he sits down in his small office overlooking the greyish hospital compound. Hes wearing light blue scrubs from an early morning surgery. At 70, he still has boyish looks, with a lean build and an air of laid-back confidence. If you have a number of bad outcomes initially, it can be detrimental to your career as a surgeon, he says.
But Murphy didnt really have a choice. He remembers that during a meeting of Emorys cardiac surgeons in 1984, he was paged to check on a patient. When he returned, the physicians congratulated him on being appointed the head of the new heart transplant program. He was the youngest in the group and had been recruited from Harvards Massachusetts General Hospital just three years before.
Yeah, thats how I became Emorys first transplant surgeon, says Murphy.
He flew to California to shadow his colleagues at Stanford University Hospital, where most heart transplants were performed at the time. Back home at Emory, he put together a team and rigorously rehearsed the operation. The first transplant patient arrived in April 1985. The surgery was successful, as was the second operation less than a month later.
Around the same time, Harry Wuest wound up in a hospital in Orlando. He needed a transplant, but none of the medical centers in Florida offered the procedure. One of his doctors recommended Emory, and Wuest agreed. I knew I was dying. I could feel it. He was flown to Atlanta by air ambulance and spent several weeks in Emorys cardiac care unit until the evening of May 23, when Murphy walked into his room and said, Weve got a heart.
***
The heart, as the patient later learned, came from a 19-year-old sophomore at Georgia Tech who had been killed in a car crash.
Organ transplants are a meticulously choreographed endeavor, where timing, coordination and logistics are key. While Murphy and his eight-member team were preparing for the surgery, Wuest was getting ready to say farewell to his family his wife and three teenage sons and to thank the staff in the cardiac ward.
I was afraid, he recalls, especially of the anesthesia. It scared the heck out of me. He pauses during the reminiscence, choking briefly. I didnt know if I was going to wake up again.
The surgery took six hours. Transplants usually happen at night because the procurement team, the surgeons who retrieve different organs from the donor, only start working when regularly scheduled patients are out of the operating room.
Despite the cultural mystique surrounding the heart as the seat of life, Murphy says that during a transplant surgery, its not like the big spirit comes down to the operating room. Its very technical. As the team follows a precise routine, emotions are kept outside the door. We dont have time for that. Emotions come later.
After waking up from the anesthesia, Wuests first coherent memory was of Murphy entering the room and saying to a nurse, Lets turn on the TV, so Harry can watch some sports.
Wuest spent the next nine days in the ICU and three more weeks in the hospital ward. In the beginning, he could barely stand up or walk, because he had been bedridden weeks before the surgery and had lost a lot of muscle. But his strength came back quickly. I could finally breathe again, he says. Before the surgery, he felt like he was sucking in air through a tiny straw. I cannot tell you what an amazing feeling that was to suddenly breathe so easily.
Joane Goodroe was the head nurse at Emorys cardiovascular post-op floor back then. When she first met Wuest before the surgery, she recalls him lying in bed and being very, very sick. When she and the other nurses finally saw him stand up and move around, he was a whole different person.
In the early days of Emorys heart transplant program, physicians, nurses and patients were a particularly close-knit group, remembers Goodroe, whos been a nurse for 42 years and now runs a health care consulting firm. There were a lot of firsts for all of us, and we all learned from each other, she said.
Wuest developed friendships with four other early transplant patients at Emory, and he has outlived them all.
When he left the hospital, equipped with a new heart and a fresh hunger for life, Wuest made some radical changes. He decided not to return to Florida but stay in Atlanta. Thats where he felt he got the best care, and where he had found a personal support network. And he got a divorce. Four months after the operation, he went back to working full-time: first in temporary jobs and eventually for a property management company.
After having been sick for 12 years, I was just so excited to be able to work for eight hours a day, he recalls. That was a big, big deal for me.
At 50, he went back to school to get his CPA license. He also found new love.
Martha was a head nurse in the open-heart unit and later ran the cardiac registry at Saint Josephs Hospital. Thats where Wuest received his follow-up care and where they met in 1987. Wuest says for him it was love at first sight, but it took another five years until she finally agreed to go out with him. Six months later, they were married.
Having worked in the transplant office, I saw the good and the bad, Martha Wuest says. A petite woman with short, perfectly groomed silver hair, she sits up very straight on the couch, her small hands folded in her lap.Not every transplant patient did as well as Harry. And I had a lot of fear in the beginning. Now he may well outlive her, she says with a smile and a wink.
Wuests surgeon, meanwhile, went on to fight his own battles. Two and a half years into the program, Murphy was still the only transplant surgeon at Emory and on call to operate whenever a heart became available. Frustrated and exhausted, he quit his position at Emory and signed up with Saint Josephs (which at the time was not part of the Emory system) and started a heart transplant program there.
At St. Joes, Murphy continued transplanting hearts until 2005. In total, he did more than 200 such surgeries.
Being a heart transplant surgeon is a grueling profession, he says, and very much a younger surgeons subspecialty.
He then shifted his focus and became a pioneer in robotically assisted heart surgery.He has done more than 3,000 operations with the robot, mostly mitral valve repairs and replacements more than any other cardiac surgeon in the world.
***
Since Murphy sewed a new heart into Wuest, 35 years ago, there has been major progress in the field of heart transplants,but it has been uneven.
Medications to suppress the immune system have improved, says Dr. Jeffrey Miller, a transplant surgeon and heart failure specialist at Emory. As a result, we are seeing fewer cases of rejections of the donor heart.
Also, there are new methods of preserving and transporting donor hearts.
Yet patients requiring late-stage heart failure therapy, including transplantation, still exceed the number of donor hearts available. In 2019, 3,551 hearts were transplanted in the United States, according to the national Organ Procurement and Transplantation Network. But 700,000 people suffer from advanced heart failure, says the American Heart Association.
New technologies and continued research are providing hope to many of these patients. There has been significant progress in the development of partial artificial hearts, known as Left Ventricular Assist Devices, or LVADs, says Miller.
These are implantable mechanical pumps that assist the failing heart. Patients are back out in society living normal lives while theyre waiting for their donor hearts, he explains.
LVADs are used not only as bridge devices but as destination therapy as well, maintaining certain patients for the remainder of their lives.
Also, total artificial hearts have come a long way since the first artificial pump was implanted in a patient in 1969.
Long-term research continues into xenotransplantation, which involves transplanting animal cells, tissues and organs into human recipients.
Regenerative stem cell therapy is an experimental concept where stem cell injections stimulate the heart to replace the rigid scar tissue with tissue that resumes contraction, allowing for the damaged heart to heal itself after a heart attack or other cardiac disease.
Certain stem cell therapies have shown toreverse the damage to the heart by 30 to 50 percent, says Dr. Joshua Hare, a heart transplant surgeon and the director of the Interdisciplinary Stem Cell Institute at the University of Miamis Miller School of Medicine.
All of these ideas have potential, says Miller. But they have a lot of work before were ready to use them as alternatives to heart transplantation. I dont think were talking about the next few years.
Besides Emory, other health care systems in Georgia that currently have a heart transplant program are Piedmont Healthcare, Childrens Healthcare of Atlanta and Augusta University Health.
Organ rejection remains a major issue, and long-term survival rates have not improved dramatically over the past 35 years. The 10-year survival is currently around 55 percent of patients, which makes long-term-survivors like Harry Wuest rare in the world of heart transplants.
The United Network of Organ Sharing, or UNOS, which allocates donor hearts in the United States, doesnt have comprehensive data prior to 1987. An informal survey of the 20 highest-volume hospitals for heart transplants in the 1980s found only a scattering of long-term survivors.
***
Being one of the longest-living heart transplant recipients is something that Wuest sees as a responsibility to other transplant patients, but also to the donors family, which hes never met. If you as a transplant recipient reject that heart, thats like a second loss for that family.
Part of this responsibility is living a full and active life. Both he and Martha have three children from their previous marriages, and combined they have 15 grandchildren. Most of their families live in Florida, so they travel back and forth frequently. Wuest still works as a CPA during tax season, and he does advocacy for the Georgia Transplant Foundation. In addition to golf, he enjoys lifting weights and riding his bike.
Hes had some health scares over the years. In 2013, he was diagnosed with stage 1 kidney cancer, which is in remission. Also, he crossed paths with his former surgeon, and not just socially. In 2014, Murphy replaced a damaged tricuspid valve in Wuests new heart. That operation went well, too.
Murphy says there are several reasons why Wuest has survived so long. Obviously, his new heart was a very good match. But a patient can have the best heart and the best care and the best medicines and still die a few months or years after the transplantation, the surgeon says. Attitude plays a key role.
Wuest was psychologically stable and never suffered from depression or anxiety, Murphy says. Hes a numbers guy. He knew the transplant was his only chance, and he was set to pursue it.
Wuest attributes his longevity to a good strong heart from his donor; good genetics; great doctors and nurses; and a life that he loves. Im just happy to be here, he says.
Quoting his former surgeon and friend, he adds: Doug always said, Having a transplant is like running a marathon. And Im in for the long haul.
Katja Ridderbusch is an Atlanta-based journalist who reports for news organizations in the U.S. and her native Germany. Her stories have appeared in Kaiser Health News, U.S. News & World Report and several NPR affiliates.
This is a slightly modified version of the article 34 Years with a New Heart, published by Georgia Health News on February 18, 2020.
Link:
34 Years With A New Heart And Counting | 90.1 FM WABE - WABE 90.1 FM
How low oxygen levels in the heart can cause arrhythmias – Futurity: Research News
Share this Article
You are free to share this article under the Attribution 4.0 International license.
New research reveals the underlying mechanism for a dangerous heart disorder in which low oxygen levels in the heart produce life-threatening arrhythmias.
The discovery, made with human heart muscle cells derived from pluripotent stem cells, offers new targets for therapies aimed at preventing sudden death from heart attack.
Our research shows that within seconds, at low levels of oxygen (hypoxia), a protein called small ubiquitin-like modifier (SUMO) is linked to the inside of the sodium channels which are responsible for starting each heartbeat, says Steve A. N. Goldstein, vice chancellor for health affairs at the University of California, Irvine and professor in the School of Medicine departments of pediatrics and physiology and biophysics.
And, while SUMOylated channels open as they should to start the heartbeat, they re-open when they should be closed. The result is abnormal sodium currents that predispose to dangerous cardiac rhythms.
Every heartbeat begins when sodium channels open and ions to rush into heart cellsthis starts the action potential that causes the heart muscle to contract. When functioning normally, the sodium channels close quickly after opening and stay closed. After that, potassium channels open, ions leave the heart cells, and the action potential ends in a timely fashion, so the muscle can relax in preparation for the next beat.
If sodium channels re-open and produce late sodium currents, as observed in this study with low oxygen levels, the action potential is prolonged and new electrical activity can begin before the heart has recovered risking dangerous, disorganized rhythms.
Fifteen years ago, the Goldstein group reported SUMO regulation of ion channels at the surface of cells. It was an unexpected finding because the SUMO pathway had been thought to operate solely to control gene expression in the nucleus.
This new research shows how rapid SUMOylation of cell surface cardiac sodium channels causes late sodium current in response to hypoxia, a challenge that confronts many people with heart disease, says Goldstein. Previously, the danger of late sodium current was recognized in patients with rare, inherited mutations of sodium channels that cause cardiac Long QT syndrome, and to result from a common polymorphism in the channel we identified in a subset of babies with sudden infant death syndrome (SIDS).
The information gained through the current study offers new targets for therapeutics to prevent late current and arrhythmia associated with heart attacks, chronic heart failure, and other life-threatening low oxygen cardiac conditions.
The National Institutes of Health funded the study, which appears in Cell Reports.
Source: UC Irvine
Read more from the original source:
How low oxygen levels in the heart can cause arrhythmias - Futurity: Research News
Could this patch help mend a broken heart? – Medical Design & Outsourcing
(Image from Trinity College Dublin)
Researchers in Ireland have developed a prototype patch that they say does the same job as crucial aspects of heart tissue.
The patch was designed to withstand the mechanical demands of heart tissue and mimic the electrical signaling properties that allow the heart to pump blood throughout the body. The researchers believe it brings medtech one step closer to a functional design that could mend a broken heart.
Cardiac patches lined with heart cells can be applied surgically to restore heart tissue in patients who have had damaged tissue removed after a heart attack and to repair congenital heart defects in infants and children. Ultimately, though, the goal is to create cell-free patches that can restore the synchronous beating of the heart cells, without impairing the heart muscle movement. The bioengineers report their work in the journal Advanced Functional Materials.
Researchers are continuously looking to develop new treatments which can include stem cell treatments, biomaterial gel injections and assistive devices, said senior author Michael Monaghan, an assistant professor at Trinity College Dublin, in a news release. Ours is one of few studies that looks at a traditional material, and through effective design allows us to mimic the direction-dependent mechanical movement of the heart, which can be sustained repeatably. This was achieved through a novel method called melt electrowriting and through close collaboration with the suppliers located nationally we were able to customize the process to fit our design needs.
This work was performed in the Trinity Centre for Biomedical Engineering, based in the Trinity Biomedical Sciences Institute in collaboration with Spraybase, a subsidiary of Avectas Ltd.
The mechanical demands of heart muscle cannot be met using polyester-based thermoplastic polymers, which are predominantly the approved options for biomedical applications, according to the researchers. However, the functionality of thermoplastic polymers could be leveraged by its structural geometry. They made a patch that could control the expansion of a material in multiple directions and tune this using an engineering design approach.
The patches were manufactured via melt electrowriting, a core technology of Spraybase, which the company says is reproducible, accurate and scalable. The patches were also coated with the polymer polypyrrole to provide electrical conductivity while maintaining cell compatibility. The patch withstood repeated stretching, which is a dominant concern for cardiac biomaterials, and showed good elasticity, to accurately mimic that key property of heart muscle.
Essentially, our material addresses a lot of requirements, Monaghan said. The bulk material is currently approved for medical device use, the design accommodates the movement of the pumping heart, and has been functionalized to accommodate signaling between isolated contractile tissues. This study currently reports the development of our method and design, but we are now looking forward to furthering the next generation of designs and materials with the eventual aim of applying this patch as a therapy for a heart attack.
Continue reading here:
Could this patch help mend a broken heart? - Medical Design & Outsourcing
Autologous Stem Cell And Non-Stem Cell Based Therapies Market 2020-2025 Booming || Leadinf Players Fibrocell, Genesis Biopharma, Georgia Health…
TheGlobalAutologous Stem Cell and Non-Stem Cell Based Therapies Marketis expected to reach USD113.04 billion by 2025, from USD 87.59 billion in 2017 growing at a CAGR of 3.7% during the forecast period of 2018 to 2025. The upcoming market report contains data for historic years 2015 & 2016, the base year of calculation is 2017 and the forecast period is 2018 to 2025.
For In depth Information Get Sample Copy of this Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh
Some of the major players operating in the global autologous stem cell and non-stem cell based therapies market areAntria (Cro), Bioheart, Brainstorm Cell Therapeutics, Cytori, Dendreon Corporation, Fibrocell, Genesis Biopharma, Georgia Health Sciences University, Neostem, Opexa Therapeutics, Orgenesis, Regenexx, Regeneus, Tengion, Tigenix, Virxsys and many more.
The data and information included in this Global Autologous Stem Cell And Non-Stem Cell Based Therapies business report helps businesses take sound decisions and plan about the advertising and sales promotion strategy more successfully. This Autologous Stem Cell And Non-Stem Cell Based Therapies market research report is generated by taking into account a range of objectives of market research that are vital for the clients success. This report also includes strategic profiling of key players in the market, systematic analysis of their core competencies, and draws a competitive landscape for the Healthcare industry. The Global Autologous Stem Cell And Non-Stem Cell Based Therapies business report includes market shares for global, Europe, North America, Asia Pacific and South America.
Market Definition:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
In autologous stem-cell transplantation persons own undifferentiated cells or stem cells are collected and transplanted back to the person after intensive therapy. These therapies are performed by means of hematopoietic stem cells, in some of the cases cardiac cells are used to fix the damages caused due to heart attacks. The autologous stem cell and non-stem cell based therapies are used in the treatment of various diseases such as neurodegenerative diseases, cardiovascular diseases, cancer and autoimmune diseases, infectious disease.
According to World Health Organization (WHO), cardiovascular disease (CVD) causes more than half of all deaths across the European Region. The disease leads to death or frequently it is caused by AIDS, tuberculosis and malaria combined in Europe. With the prevalence of cancer and diabetes in all age groups globally the need of steam cell based therapies is increasing, according to article published by the US National Library of Medicine National Institutes of Health, it was reported that around 382 million people had diabetes in 2013 and the number is growing at alarming rate which has increased the need to improve treatment and therapies regarding the diseases.
Browse Detailed TOC Herehttps://www.databridgemarketresearch.com/toc/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh
Market Segmentation:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
Competitive Analysis:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
The global autologous stem cell and non-stem cell based therapies market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of autologous stem cell and non-stem cell based therapies market for global, Europe, North America, Asia Pacific and South America.
Major Autologous Stem Cell and Non-Stem Cell Based Therapies Market Drivers and Restraints:
Introduction of novel autologous stem cell based therapies in regenerative medicine
Reduction in transplant associated risks
Prevalence of cancer and diabetes in all age groups
High cost of autologous cellular therapies
Lack of skilled professionals
Customization of the Report:
Key benefits of buying the Autologous Stem Cell And Non-Stem Cell Based Therapies Market Report:
This Autologous Stem Cell And Non-Stem Cell Based Therapies Market report will enable both of the sides in market be an established firm or a relative new entrant. It helps the established firms to know about the moves which are being performed by their competitors and also helps the new entrants by educating them about the market situations and the industry trends. This Autologous Stem Cell And Non-Stem Cell Based Therapies Market report is quite fruitful in helping to understand the market definition and all the aspects of the market including the CAGR value and key profiles.
Speak to Author of the report @https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market&raksh
About Data Bridge Market Research:
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475Mail:[emailprotected]
Here is the original post:
Autologous Stem Cell And Non-Stem Cell Based Therapies Market 2020-2025 Booming || Leadinf Players Fibrocell, Genesis Biopharma, Georgia Health...
MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical…
U.S. Department of Defense Researchers to Study Ability of siFi2 to Drive Axon Regeneration and Functional Recovery following Spinal Cord Injury
NEW YORK, Feb. 19, 2020 (GLOBE NEWSWIRE) -- MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has entered into a material transfer agreement (MTA) with the Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine. Under terms of the agreement, United States Department of Defense researchers will conduct a preclinical study of siFi2, MicroCures lead product candidate, in animal models of spinal cord injury. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma.
Researchers, led by Kimberly Byrnes, Ph.D. of Uniformed Services University of the Health Sciences, will evaluate the potential of siFi2 treatment to drive axon regeneration and functional recovery in a rat model of spinal cord injury. As part of this study, multiple siFi2 formulations will be evaluated in order to assist in the identification of a lead formulation to be advanced into clinical development.
MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).
Story continues
The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. siFi2 is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue or nerve. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.
The U.S. Department of Defense continues to be a valued and trusted partner for MicroCures as we work to advance research of siFi2 with the goal of ultimately delivering transformative treatments to patients with significant unmet medical needs, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. With a focus in the area of spinal cord injury, this MTA further demonstrates the broad applicability of our technology platform to a range of therapeutic indications. We look forward to collaborating with Dr. Byrnes and her team at Uniformed Services University of the Health Sciences to continue the advancement of this promising program.
Previously conducted research in a rat model of spinal cord injury has demonstrated that treatment with siFi2 allowed axon growth to occur through the inhibitory barriers that typically appear and prevent healing at the site of injury. Conversely, study results failed to demonstrate similar axon growth through these inhibitory barriers for animals administered a siRNA control treatment. Additional preclinical findings have demonstrated functional improvement in rats with spinal cord injury following treatment with siFi2. This was evidenced by significantly improved hind limb locomotor function in siFi2-treated animals as compared to control subjects at Day 5 (p < 0.05) and Day 7 (p < 0.01).
About MicroCures
MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to precisely control the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.
MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve repair/regeneration, spinal cord repair/regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.
For more information please visit: http://www.microcures.com
Contact:
Vida Strategic Partners (On behalf of MicroCures)
Stephanie Diaz (investors)415-675-7401sdiaz@vidasp.com
Tim Brons (media)415-675-7402tbrons@vidasp.com
View original post here:
MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical...
In Vitro Fertilization Market will Reach USD 36.39 Billion by 2026: Increasing Cases of Infertility Among Men to Positively Influence Growth, says…
Key Companies Covered in the IVF Market Research Report are Monash IVF, Ovation Fertility, Bloom IVF Centre, Shady Grove Fertility, Bangkok IVF center, Boston IVF, Pelargos IVF, RSMC, Group Ambroise Par Clinic and other key market players.
Pune, Feb. 20, 2020 (GLOBE NEWSWIRE) -- The global In Vitro Fertilization (IVF) Market size is prophesized to reach USD 36.39 billion by 2026, with a CAGR 10.1% by 2026. This is attributable to the increasing cases of infertility among people worldwide. This is more common in males than female partners. The market value was USD 16.89 billion in 2018. IVF is a fertilization process wherein sperm and eggs are retrieved as a sample and are combined manually in laboratories. Various studies show that almost half a million babies are born by this process or other assistant reproductive processes. Such factors are responsible for the in vitro fertilization market growth.
Fortune Business Insights latest report, titled, In Vitro Fertilization (IVF) Market Size, Share & Industry Analysis, By Type (Conventional IVF, and IVF with ICSI), By Procedure (Fresh Non-donor, Frozen Non-donor, Fresh Donor, and Frozen Donor), By End User (Hospitals, and Fertility Clinics) and Regional Forecasts, 2019-2026 provides a 360-degree overview of the market and its parameters. These include growth drivers, restraints, challenges, and opportunities. The report also provides detailed segmentation of the market with market figures such as base and forecast figure and the compound annual growth rates (CAGRs) as well. Besides this, the report provides interesting insights into the market, key industry developments, and other IVF market trends. The report is available for sale on the company website.
Nowadays, people are more inclined towards career goals rather than family planning, and therefore often tend to opt for late pregnancies. The increasing number of such cases is a major in vitro fertilizer market driver, as mentioned earlier, since complicated cases are often resolved by opting for IVF treatment. This is more common in nations such as the UK, Japan, and the U.S. Besides this, the rise in the number of male infertility is anticipated to increase the adoption of IVF treatment and thus accelerate the in vitro fertilization market size in the coming years. Besides this, government-supported reimbursement policies and awareness programs are aiding the overall in vitro fertilization market growth of the region.
Analysts at Fortune Business Insights said high expenses and risks related to the in vitro fertilization process (IVF) and Intracytoplasmic sperm injection (ICSI) may cause hindrance to the overall in vitro fertilization market revenue. Nevertheless, factors such as increasing obesity cases among people, infertility among men, the practice of sedentary lifestyle, and others are likely to create lucrative IVF market growth opportunities in the coming years.
Europe holds a dominant in vitro fertilization market share with a revenue of USD 7.57 billion generated in the year 2018. This is attributable to the rise in the prevalence of infertility and the increasing popularity of IVF treatment in the region. On the other side, the market in North America will witness steady growth on account of the high cost associated with ICSI and IVF treatment. As per the FertilityIQ data, 2017, in the U.S., the average expenditure of a patient undergoing a single IVF cycle is USD 22,000. Thus, patients in the U.S are travelling to other countries for IVF treatment citing lower costs.
Companies are Investing in Construction of New Fertility Centers for Revenue Generation
Boston IVF, Pelargos IVF, and Monash IVF are currently dominating the market. In vitro fertilization market manufacturers are developing new centers with efficient and high-quality treatment in remote locations for speeding their own revenue generation and making their mark in the market competition. This will ultimately accelerate the overall IVF market size.
Significant Industry Developments in In Vitro Fertilization Market:
May 2019 A new embryo screening test was developed by scientists at Monash IVF for reducing the risk of miscarriage at the time of IVF treatment.
July 2019 The opening of a new full-service IVF center at the Westshore office at Tampa, Florida, was announced by Shady Grove Fertility. The main objective behind the opening of this center is to offer affordable and high-quality fertility treatment options to the regional people.
List of key Companies Operating in the In Vitro Fertilization (IVF) Market include:
Have Any Query? Ask Our Experts: https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/in-vitro-fertilization-ivf-market-102189
Detailed Table of Content:
TOC Continued.!
Request for Customization: https://www.fortunebusinessinsights.com/enquiry/customization/in-vitro-fertilization-ivf-market-102189
Have a Look at Related Reports:
In-vitro Diagnostics (IVD) Market Size, Share & Industry Analysis, By Product Type (Instruments, Reagents & Consumables), By Technique (Immunodiagnostics, Clinical Chemistry, Molecular Diagnostics, Point of Care, Hematology and Others), By Application (Infectious Diseases, Cardiology, Oncology, Gastroenterology, Others), By End User (Clinical Laboratories, Hospitals, Physicians Offices, Others) and Regional Forecast, 2019 2026
Assisted Reproductive Technology (ART) Market Size, Share & Industry Analysis, By Technique (In-Vitro Fertilization (IVF), Artificial Insemination (AI-IUI), Frozen Embryo Transfer (FET), and Others), By Procedure (Fresh Donor, Fresh Non-donor, Frozen Donor, and Frozen Non-donor), By End User (Fertility Clinics, and Hospitals) and Regional Forecast, 2019-2026
Biomarkers Market Size, Share & Industry Analysis, By Indication (Oncology, Cardiology, Neurology, and Others), By End User (Pharmaceutical & Biotechnology Companies, Diagnostics & Research Laboratories, Hospitals & Specialty Clinics, and Others), and Regional Forecast, 2019-2026
Neuroendoscopy Devices Market Size, Share & Industry Analysis, By Product Type (Rigid Neuroendoscopes, Flexible Neuroendoscopes), By Application Type (Transnasal Neuroendoscopy, Intraventricular Neuroendoscopy, Transcranial Neuroendoscopy), By End User (Hospitals, Specialty Clinics, Others) and Regional Forecast, 2019-2026
Next-Generation Sequencing (NGS) Market Size, Share and Industry Analysis By Type (Products, Instruments & Software, Consumables, Services), By Application (Diagnostics, Research), By End User (Research Institutes, Healthcare Facilities & Diagnostic Centres, Pharmaceutical & Biotechnological Companies, Contract Research Organization) & Regional Forecast, 2019 2026
Regenerative Medicine Market Size, Share and Industry Analysis By Product (Cell Therapy, Gene Therapy, Tissue Engineering, Platelet Rich Plasma), By Application (Orthopaedics, Wound Care, Oncology), By Distribution Channel (Hospitals, Clinics) & Regional Forecast, 2019 2026
Genomics Market Size, Share and Industry Analysis By Type (Products, Services), Technology (Polymerase Chain Reaction, Next-generation Sequencing, Microarray, Sanger Sequencing), Application (Diagnostics, Research), End-User (Research Institutes, Healthcare Facilities & Diagnostic Centers, Pharmaceutical & Biotechnological Companies, Contract Research Organization (CROs)) & Regional Forecast, 2019 - 2026
Contract Research Organization (CRO) Services Market Size, Share and Industry Analysis By Service Type (Discovery, Pre-Clinical, Clinical, Laboratory Services), By Application (Oncology, Cardiology, Infectious Disease, Metabolic Disorders, Others), By End User (Pharmaceutical & Biotechnological Companies, Medical Device Companies, Academic & Research Institutes, Others), and Regional Forecast 2019-2026
Immunology Market Size, Share and Industry Analysis By Drug Class (Monoclonal antibody (mAb), Fusion Proteins, Immunosuppressant, Polyclonal antibody (pAb), Others), By Disease Indication (Rheumatoid Arthritis, Psoriatic Arthritis, Plaque Psoriasis, Ankylosing Spondylitis, Inflammatory Bowel Disease, Prophylaxis of Organ Rejection, Others), By Distribution Channel, and Regional Forecast 2019-2026
Immunodiagnostics Market Size, Share and Industry Analysis By Product Instruments, Reagents & Consumables), By Application (Oncology & Endocrinology, Hepatitis & Retrovirus, Cardiac Markers, Infectious Diseases), By End user (Clinical Laboratories, Hospitals, Physicians Offices), By End-user(Hospitals, Dental Clinics, Academic & Research Institutes) and Regional Forecast, 2019 2026
Orthobiologics Market Size, Share and Industry Analysis by Product Type (Viscosupplements, Bone Growth Stimulators, Demineralized Bone Matrix, Synthetic Bone Substitutes, Stem Cells, Allografts), By Application (Spinal Fusion, Maxillofacial & Dental, Soft Tissue Repair, Reconstructive & Fracture Surgery), By End User (Hospitals, Ambulatory Surgical Centers, Speciality Clinics), and Regional Forecast 2019-2026
About Us:
Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.
Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.
At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.
Contact Us:Fortune Business Insights Pvt. Ltd. 308, Supreme Headquarters, Survey No. 36, Baner, Pune-Bangalore Highway, Pune - 411045, Maharashtra, India.Phone:US :+1 424 253 0390UK : +44 2071 939123APAC : +91 744 740 1245Email: sales@fortunebusinessinsights.comFortune Business InsightsLinkedIn | Twitter | Blogs
Press Release: https://www.fortunebusinessinsights.com/press-release/in-vitro-fertilization-ivf-market-9606
See the rest here:
In Vitro Fertilization Market will Reach USD 36.39 Billion by 2026: Increasing Cases of Infertility Among Men to Positively Influence Growth, says...
Regenerative Medicine Market trends, leaders, segment analysis and forecast to 2030 described in a new market report – WhaTech Technology and Markets…
Technological innovations in the area of stem cell therapy and tissue engineering has led to rapid growth of the regenerative medicine market size.
Regenerative medicine is a comparatively new area of science that involves the restoration of damaged cells, tissues or organs by applying cell therapy, tissue engineering, immunotherapy or gene therapy techniques. On contrary to the present clinical therapeutics that act on slowing the disease progression or relieve symptoms, regenerative medication has a promising therapeutic approach of restoring the function and structure of damaged organs and tissues.
The global regenerative medicine market is expected to witness significant growth during the forecast period,due to the increase in the prevalence of chronic diseases, orthopaedic injuries, genetic disorders, growing aging population, increasing government funding along with the private funding in the research & development of regenerative medicines with the advancement in nanotechnology based drug delivery system, and moderate healthcare reforms. Currently, major breakthrough in the area is the development of tissue engineered trachea, transplantation of retinal pigment differentiated by stem cell based therapy to treat age-related macular degeneration.
However, recently research labs have started to focus on regenerating solid organs such as heart, kidney, lungs and other organs to curb the problems associated with organ transplantation.
The rise in number of regulatory approvals of regenerative medications is expected to further drive the regenerative medicine market during the forecast period. Moreover, there has been strategic partnership between many companies that has encouraged increased involvement of these companies in the global market.
Improvised drug delivery systems for regenerative medicines is also expected to contribute to the growth of the global market.
Download sample copy of this report at:www.psmarketresearch.com/market-ort-sample
The key factors which drive the growth of the global market include increase in the demand of orthopaedic surgeries, government healthcare reforms in certain countries such as the U.S. and Canada, aging population, rise in chronic diseases, increasing prevalence of bone and joint diseases, and innovations in nanotechnology that aids in drug delivery mechanism.
Globally, North America is the largest market for regenerative medicine followed by Europe. The largest regenerative medicine market size of North America is attributed to the high rate of incidence of cardiac disorders, autoimmune diseases, and increasing prevalence of cancer patients among the American population.
Additionally, the involvement of government organization for funding in the area of R&D of regenerative medicines, technological advancement and other policies are driving the growth of the North American market.
MARKET SEGMENTATION
By Type
By Therapy
Pre-AccessInquiry at:www.psmarketresearch.com/send-enine-market
By Application
This email address is being protected from spambots. You need JavaScript enabled to view it.
Follow this link:
Regenerative Medicine Market trends, leaders, segment analysis and forecast to 2030 described in a new market report - WhaTech Technology and Markets...
AVROBIO Presents Positive Initial Data for its Investigational Cystinosis Program and Plato TM Platform, as well as Positive Data Out to 32 Months for…
Early data trends from first patient dosed in the AVR-RD-04 investigational gene therapy program for cystinosis show improvements across multiple measures
Data from the Phase 1 and Phase 2 trials of AVR-RD-01 support potential long-term engraftment and durable, endogenous production of functional enzyme in patients with Fabry disease
First Phase 2 Fabry patient treated using plato gene therapy platform shows plasma enzyme activity at one month 4.0 times higher than mean activity of other Phase 2 patients treated using academic platform at same timepoint
Analyst and investor event will be webcast today, Feb. 10, 2020, at 7:00 p.m. ET, in conjunction with WORLDSymposiumTM
AVROBIO, Inc. (NASDAQ: AVRO), a leading clinical-stage gene therapy company with a mission to free people from a lifetime of genetic disease, today announced new initial data from the first patient dosed in the investigational gene therapy program for cystinosis, showing improvements in early measures at three months compared to baseline. The company also unveiled new clinical data showcasing a sustained biomarker response in patients for up to 32 months after receiving the companys investigational gene therapy for Fabry disease across metrics including vector copy number (VCN), substrate levels and enzyme activity. Additionally, the company reported on the clinical debut of its platoTM gene therapy platform. These data showed improved enzyme activity, transduction efficiency and VCN in drug product manufactured using plato compared with drug product produced using the academic platform, as well as higher in vivo enzyme activity at one month in the first patient treated with plato, as compared to other patients treated using the academic platform. All these data will be presented today, during the 16th Annual WORLDSymposiumTM in Orlando, Fla.
"We have now dosed 10 patients across three trials for two lysosomal disorders and were delighted with the data were seeing. We have followed six patients in our Fabry trial for more than a year and one for nearly three years, and they are consistently producing the functional enzyme that was missing as a consequence of their genetic disease, suggesting a potentially durable effect from a single dose," said Geoff MacKay, AVROBIOs president and CEO. "Furthermore, we believe that early data from the first clinical application of plato support our decision to invest heavily from AVROBIO's earliest days in this state-of-the-art gene therapy platform. We believe these data collectively indicate that were making exciting progress toward our goal of freeing patients and families from the life-limiting symptoms and relentless progression of lysosomal disorders."
Three-month data from first patient in investigational AVR-RD-04 trial in cystinosisAVROBIO reported initial data from the first patient dosed in the investigator-sponsored Phase 1/2 trial of the companys AVR-RD-04 investigational gene therapy for cystinosis, a progressive disease marked by the accumulation of cystine crystals in cellular organelles known as lysosomes. Patients with cystinosis accumulate the amino acid cystine, which can lead to crystal formation in the lysosomes of cells, causing debilitating symptoms including corneal damage, difficulty breathing and kidney failure, often leading to a shortened lifespan. The current standard of care for cystinosis, a burdensome treatment regimen that can amount to dozens of pills a day, may not prevent overall progression of the disease.
As of the safety data cut-off date of Jan. 27, 2020, which was approximately three months following administration of the investigational gene therapy to the first patient in the AVR-RD-04 program, there have been no reports of safety events attributed to the investigational drug product. In addition, no serious adverse events (SAEs) have been reported as of the safety data cut-off date. Adverse events did not suggest any unexpected safety signals or trends.
Three months following administration of AVR-RD-04, the first patient had a VCN of 2.0. VCN measures the average number of copies of the lentiviral-vector inserted transgene integrated into the genome of a cell and can be used to help assess the durability of a gene therapy. Initial data on another biomarker show that the patients average granulocyte cystine level -- one of the trials primary endpoints -- decreased from 7.8 nmol half cystine/mg protein two weeks after cysteamine discontinuation, to 1.5 at three months post-gene therapy.
The ongoing open-label, single-arm Phase 1/2 clinical trial evaluating the safety and efficacy of AVR-RD-04 is sponsored by AVROBIOs academic collaborators at the University of California San Diego (UCSD), led by Stephanie Cherqui, Ph.D. The trial is actively enrolling up to six participants at UCSD.
Interim data continue to support potential first line use of AVR-RD-01 in Fabry diseaseFour patients have been dosed in the Phase 2 trial (FAB-201), and five patients in the Phase 1 investigator-led trial of AVR-RD-01 in Fabry disease.
VCN data continue to be stable at 32 months following AVR-RD-01 treatment for the first patient in the Phase 1 trial, suggesting successful engraftment, which is critical to the long-term success of investigational ex vivo lentiviral gene therapies. The VCN data trend was generally consistent across the seven other Phase 1 and Phase 2 trial participants out six to 24 months.
The first three AVR-RD-01 Phase 2 patients entered the study with minimal endogenous enzyme activity. At nine, 12 and 18 months after dosing, data from these three patients indicate sustained increased leukocyte and plasma enzyme activity, suggesting that they are now producing an endogenous supply of functional alpha-galactosidase (AGA) enzyme. This enzyme is essential for breaking down globotriaosylceramide (Gb3) in cells; without it, a toxic metabolite, lyso-Gb3, may accumulate, potentially causing cardiac and kidney damage and other symptoms.
For two Phase 2 patients, data indicate that their decreased plasma lyso-Gb3 levels, a key biomarker for monitoring Fabry disease, have been sustained below their baseline at six and 18 months after dosing. The third Phase 2 patient, a cardiac variant who does not have classic Fabry disease, did not show a decrease in plasma lyso-Gb3 levels, as expected. Cardiac and kidney function measures in the Phase 2 trial remained within normal range for patients who had available 12-month data.
As previously reported, a kidney biopsy taken at 12 months post-treatment for the first patient in the Phase 2 trial showed an 87-percent reduction in Gb3 inclusions per peritubular capillary. The company believes this data point, the primary efficacy endpoint for the Phase 2 trial, supports the potential of AVR-RD-01 to reduce Gb3 levels in tissue, including in the kidney.
In the Phase 1 trial of AVR-RD-01, four of the five patients had their plasma lyso-Gb3 levels reduced between 26 and 47 percent compared to their pre-treatment baseline levels. Data from the other patient in the trial, who remains off enzyme replacement therapy (ERT), through month six showed an initial decline and at month 12 showed a 23-percent increase in lyso-Gb3 levels, as compared to pre-treatment levels. This patients lyso-Gb3 levels remain within the range for the Fabry disease patients on ERT observed in this study.
Overall, three of the five Phase 1 patients have discontinued ERT and all three remain off ERT for six, 14 and 15 months.
As of the safety data cut-off date of Nov. 26, 2019, there have been no safety events attributed to AVR-RD-01 drug product in either the Phase 1 or Phase 2 trial. Through the safety data cut-off date, four SAEs have been reported in the FAB-201 trial and two SAEs in the Phase 1 trial. The fourth Phase 2 patient, who was dosed after the safety data cut-off date, has reported an SAE, which was not attributed to AVR-RD-01 and which subsequently resolved. Across both studies, each of the SAEs has been consistent with the conditioning regimen, stem cell mobilization, underlying disease or pre-existing conditions. Pre-existing low anti-AGA antibody titers have been detected in four patients in the Phase 1 trial and a transient low titer was observed but not detectable in subsequent measures in one patient in the Phase 2 trial.
The Phase 1 trial is fully enrolled. AVROBIO continues to actively enroll the Phase 2 trial in Australia, Canada and the U.S. The FAB-201 trial is an ongoing open-label, single-arm Phase 2 clinical trial evaluating the efficacy and safety of AVR-RD-01 in eight to 12 treatment-nave patients with Fabry disease.
Successful clinical debut of platoTM gene therapy platformAVROBIO also shared preliminary results from the first two patients to receive busulfan conditioning. Conditioning is an essential step in ex vivo lentiviral gene therapy designed to clear space in the bone marrow for the cells carrying the therapeutic transgene to engraft. The conditioning regimen developed as part of AVROBIOs plato platform includes therapeutic dose monitoring to assess how rapidly the individual patient metabolizes busulfan so physicians can adjust the dose as needed, with a goal of minimizing side effects while maximizing the potential of durable engraftment.
AVROBIO is implementing its precision dosing conditioning regimen across its company-sponsored clinical trials as part of the plato platform. The fourth patient in AVROBIOs Phase 2 Fabry trial received a precision dosing conditioning regimen with busulfan as part of the plato platform, while the first patient in the investigator-led cystinosis trial received busulfan but not as part of the plato platform.
These two patients both had rapid neutrophil and platelet count recovery, with a trajectory that was similar to the patients who enrolled earlier in the Fabry trials and who received a melphalan conditioning regimen. Side effects, which included nausea, mucositis, fever, rash and hair loss, developed eight to 10 days after dosing with busulfan and then resolved quickly.
The company also reported preliminary data from the first drug product produced using the plato gene therapy platform, which was used to dose the fourth patient in the Phase 2 Fabry trial (FAB-201). Early data indicate that enzyme activity and transduction efficiency for the drug product used to dose the fourth patient were 2.2 times higher than the mean of the drug product used to dose the first three patients in FAB-201. VCN for the drug product used to dose the fourth patient was 1.8 times higher than the mean of the drug product for the first three patients dosed in FAB-201. The drug product for the first three patients in FAB-201 was manufactured using a manual process first developed by AVROBIOs academic collaborators. The automated manufacturing embedded in plato leverages optimized processes developed at AVROBIO.
At one month following administration of the plato-produced investigational gene therapy for the fourth patient in the Phase 2 Fabry trial, initial data show the patients plasma enzyme activity level to be 4.0 times higher than the mean activity level of the first three patients in the Phase 2 Fabry trial at the same timepoint.
The investigational drug product used to dose the first patient in the AVR-RD-04 program for cystinosis, which included a four-plasmid vector but not platos automated manufacturing process, also showed increased performance in line with the increased performance recorded for the drug product in the Fabry trial. The investigational drug product and VCN assay are different for each trial.
"We believe these data are an early, but exciting, validation of our decision to invest in technological innovation rather than build expensive bricks-and-mortar manufacturing facilities," said MacKay. "The plato platform gives us control over the production and scaling of our investigational gene therapies through an efficient, automated manufacturing system that is designed to be deployed in standard contracted sites around the world. The four-plasmid vector, conditioning regimen with precision dosing and other elements of plato are designed to optimize the safety, potency and durability of our investigational lentiviral gene therapies."
About AVROBIOs ex vivo approach to gene therapyOur investigational ex vivo gene therapies start with the patients own stem cells. In the manufacturing facility, a lentiviral vector is used to insert a therapeutic gene designed to enable the patient to produce a functional supply of the protein they lack. These cells are then infused back into the patient, where they are expected to engraft in the bone marrow and produce generations of daughter cells, each containing the therapeutic gene. This approach is designed to drive durable production of the functional protein throughout the patients body, including hard-to-reach tissues such as the brain, muscle and bone. It is a distinguishing feature of this type of gene therapy that the corrected cells are expected to cross the blood-brain barrier and thereby potentially address symptoms originating in the central nervous system.
Lentiviral vectors are differentiated from other delivery mechanisms because of their large cargo capacity and their ability to integrate the therapeutic gene directly into the patients chromosomes. This integration is designed to maintain the transgenes presence as the patients cells divide, which may improve the expected durability of the therapy and potentially enable dosing of pediatric patients, whose cells divide rapidly as they grow. Because the transgene is integrated ex vivo into patients stem cells, patients are not excluded from receiving the investigational therapy due to pre-existing antibodies to the viral vector.
Analyst and investor event and webcast informationAVROBIO will host an analyst and investor event today, Monday, Feb. 10, 2020, in conjunction with the WORLDSymposiumTM, an annual scientific meeting dedicated to lysosomal disorders, in Orlando, FL. The presentation at the event will be webcast beginning at 7:00 p.m. ET. The webcast and accompanying slides will be available under "Events and Presentations" in the Investors & Media section of the companys website at http://www.avrobio.com. An archived webcast recording of the event will be available on the website for approximately 30 days.
About AVROBIOOur mission is to free people from a lifetime of genetic disease with a single dose of gene therapy. We aim to halt or reverse disease throughout the body by driving durable expression of functional protein, even in hard-to-reach tissues and organs including the brain, muscle and bone. Our clinical-stage programs include Fabry disease, Gaucher disease and cystinosis and we also are advancing a program in Pompe disease. AVROBIO is powered by the plato gene therapy platform, our foundation designed to scale gene therapy worldwide. We are headquartered in Cambridge, Mass., with an office in Toronto, Ontario. For additional information, visit avrobio.com, and follow us on Twitter and LinkedIn.
Forward-Looking StatementsThis press release contains forward-looking statements, including statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words and phrases such as "aims," "anticipates," "believes," "could," "designed to," "estimates," "expects," "forecasts," "goal," "intends," "may," "plans," "possible," "potential," "seeks," "will," and variations of these words and phrases or similar expressions that are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements regarding our business strategy for and the potential therapeutic benefits of our prospective product candidates, the design, commencement, enrollment and timing of ongoing or planned clinical trials, clinical trial results, product approvals and regulatory pathways, and anticipated benefits of our gene therapy platform including potential impact on our commercialization activities, timing and likelihood of success. Any such statements in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Results in preclinical or early-stage clinical trials may not be indicative of results from later stage or larger scale clinical trials and do not ensure regulatory approval. You should not place undue reliance on these statements, or the scientific data presented.
Any forward-looking statements in this press release are based on AVROBIOs current expectations, estimates and projections about our industry as well as managements current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of AVROBIOs product candidates will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators, the risk that AVROBIO may not successfully recruit or enroll a sufficient number of patients for our clinical trials, the risk that AVROBIO may not realize the intended benefits of our gene therapy platform, including the features of our plato platform, the risk that our product candidates or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving AVROBIOs product candidates, the risk that we will be unable to obtain and maintain regulatory approval for our product candidates, the risk that the size and growth potential of the market for our product candidates will not materialize as expected, risks associated with our dependence on third-party suppliers and manufacturers, risks regarding the accuracy of our estimates of expenses and future revenue, risks relating to our capital requirements and needs for additional financing, and risks relating to our ability to obtain and maintain intellectual property protection for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIOs actual results to differ materially and adversely from those contained in the forward-looking statements, see the section entitled "Risk Factors" in AVROBIOs most recent Quarterly Report on Form 10-Q, as well as discussions of potential risks, uncertainties and other important factors in AVROBIOs subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law.
View source version on businesswire.com: https://www.businesswire.com/news/home/20200210005767/en/
Contacts
Investor Contact: Christopher F. BrinzeyWestwicke, an ICR Company339-970-2843chris.brinzey@westwicke.com
Media Contact: Tom DonovanTen Bridge Communications857-559-3397tom@tenbridgecommunications.com
AI is transforming healthcare as we know it: Arab Health 2020 – Euronews
The recent outbreak of the coronavirus has shown us that our global health system is only as strong as its weakest link.
The key to stemming the spread of such illnesses lies in bolstering connectivity and communication between health bodies and thats precisely the theme here at Arab Health 2020.
Artificial intelligence means medical bodies can link up their data and act quickly in a crisis.
"As emergency physicians and practitioners were often on the frontline. But Ill give you an example of how technology and AI may help outbreaks, not just Coronavirus, but for seasonal influenza," says Dr Jacques Kobersy, emergency medicine institute chair, Cleveland Hospital Abu Dhabi.
"When you have an organisation like WHO who are alerted to the fact that there is some new virus circulating, Artificial intelligence might give us the opportunity to flag that those unusual symptoms are occurring way before human clinicians and departments of health realize it. And help us get ahead of these sort of pandemics maybe a month or so ahead of time before they really fester."
55,000 attendees from 159 countries have touched down in Dubai to showcase and learn about the life-changing and groundbreaking technologies poised to transform healthcare as we know it.
Autonomous ambulances
Soon, AI could make autonomous ambulances that automatically arrive at a patients house as soon as somethings wrong.
"We call it a smart ambulance. The high-risk patient, they will start to wear wearable devices. Let's say something happened to that patient. These devices will start to send all the vital data to the system and the hospital. So the physician, he can monitor all the data and monitor the patient 24 hour," says Dr Rashid al Hashimi - youth council member, UAE ministry of health (mohap).
In the future, the ambulance will be auto-drive. So it will go directly to the patient. While they are moving all these signals will be green for them.
When the patient enters the ambulance, there will be some high-resolution cameras. They will detect the patient's face and will give all the data which is very important for the rescuers to help the patient.
While they are going to the hospital, there will be like a virtual doctor inside the ambulance.
AI implants
AI is already powering implants that can monitor patients vitals around the clock.
"We can put devices under the skin and telemonitor heart patients even at home. We have put this device on 30 patients," says Dr Noor al Muhairi, head of medical services, hospital dept (mohap).
"One of them was in London. And we saw that we have an abnormality in his heart. And we called them directly and told him, go to the nearest hospital and this saved him."
And unprecedented advancements in stem-cell research mean damaged heart cells can now be regrown.
"In treatment, we collaborated with Osaka University, where they have done a study on stem cells that have been generated to cardiac cells. You can bring stem cells to make the heart cells regenerate," says Dr Muhairi.
"So this is one of the latest technology in heart treatment and in collaboration with Japan, we are going to do a clinical study here in the Ministry of Health."
Analysing wounds
Meanwhile, image analysis of wounds using machine learning can now prevent amputations caused by diseases like diabetes.
"This machine is checking the healing process for the diabetic foot. It will give us the results within 30 seconds. We are just scanning for the wound.2
"There is information going back 15 years in this machine. So it will check with other types of wound and it will analyze for us exactly the problem. We can prevent amputations from the complication of diabetes," says Dr Halima el Shehhi, the emergency department unit manager at the ministry of health and prevention, UAE.
Whether it's artificial intelligence, new equipment, new abilities to analyze patients and treat them, things that we could only imagine a few years ago now have come to fruition.
Soon the days of treating illnesses after they occur will give way to an age of truly preventative healthcare.
Original post:
AI is transforming healthcare as we know it: Arab Health 2020 - Euronews
Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 – Jewish Life News
Regenerative Medicine Market: Snapshot
Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.
To know Untapped Opportunities in the MarketCLICK HERE NOW
Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.
There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.
Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.
Global Regenerative Medicine Market: Overview
The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.
Get Discount on Latest Report @CLICK HERE NOW
Global Regenerative Medicine Market: Key Trends
The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.
On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.
Global Regenerative Medicine Market: Market Potential
The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.
Global Regenerative Medicine Market: Regional Outlook
In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.
Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.
Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW
Global Regenerative Medicine Market: Competitive Analysis
The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.
Some of the key players operating in the regenerative medicine market across the globe are Vericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc. A large number of players are anticipated to enter the global market throughout the forecast period.
About TMR Research:
TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
View original post here:
Regenerative Medicine Market Analysis Trends, Growth Opportunities, Size, Type, Dynamic Demand and Drives with Forecast to 2025 - Jewish Life News
Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy…
BOTHELL, Wash. and TOKYO, Feb. 10, 2020 /PRNewswire/ --Seattle Genetics, Inc.(Nasdaq: SGEN) and Astellas Pharma Inc.(TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") today announced updated results from the phase 1b/2 clinical trial EV-103 in previously untreated patients with locally advanced or metastatic urothelial cancer who were ineligible for treatment with cisplatin-based chemotherapy. Forty-five patients were treated with the combination of PADCEV (enfortumab vedotin-ejfv) and pembrolizumab and were evaluated for safety and efficacy. After a median follow-up of 11.5 months, the study results continue to meet outcome measures for safety and demonstrate encouraging clinical activity for this platinum-free combination in a first-line setting. Updated results will be presented during an oral session on Friday, February 14 at the 2020 Genitourinary Cancers Symposium in San Francisco (Abstract #441). Initial results from the study were presented at the European Society of Medical Oncology Congress in September 2019.
PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.1,2
"Cisplatin-basedchemotherapy is the standard treatment for first-line advanced urothelial cancer; however, it isn't an option for many patients,"said Jonathan E. Rosenberg, M.D., Medical Oncologist and Chief, Genitourinary Medical Oncology Service at Memorial Sloan Kettering Cancer Center in New York."I'm encouraged by these interim results, including a median progression-free survival of a year for patients who received the platinum-free combination of PADCEV and pembrolizumab in the first-line setting."
In the study, 58 percent (26/45) of patients had a treatment-related adverse event greater than or equal to Grade 3: increase in lipase (18 percent; 8/45), rash (13 percent; 6/45), hyperglycemia (13 percent; 6/45) and peripheral neuropathy (4 percent; 2/45); these rates were similar to those observed with PADCEV monotherapy.3Eighteen percent (8/45) of patients had treatment-related immune-mediated adverse events of clinical interest greater than or equal to Grade 3 that required the use of systemic steroids (arthralgia, dermatitis bullous, pneumonitis, lipase increased, rash erythematous, rash maculo-papular, tubulointerstitial nephritis, myasthenia gravis). None of the adverse events of clinical interest were Grade 5 events. Six patients (13 percent) discontinued treatment due to treatment-related adverse events, most commonly peripheral sensory neuropathy. As previously reported, there was one death deemed to be treatment-related by the investigator attributed to multiple organ dysfunction syndrome.
The data demonstrated the combination of PADCEV plus pembrolizumab shrank tumors in the majority of patients, resulting in a confirmed objective response rate (ORR) of 73.3 percent (33/45; 95% Confidence Interval (CI): 58.1, 85.4) after a median follow-up of 11.5 months (range,0.7 to 19.2). Responses included 15.6 percent (7/45) of patients who had a complete response (CR)and 57.8 percent (26/45) of patients who had a partial response. Median duration of response has not yet been reached (range 1.2 to 12.9+ months). Eighteen (55%) of 33 responses were ongoing at the time of analysis, with 83.9% of responses lasting at least 6 months and 53.7% of responses lasting at least 12 months (Kaplan-Meier estimate).The median progression-free survival was 12.3 months (95% CI: 7.98, -) and the 12-month overall survival (OS) rate was 81.6 percent (95% CI: 62 to 91.8 percent); median OS has not been reached.
"These updated data are encouraging and provide support for the recently initiated phase 3 trial EV-302 that includes an arm evaluating PADCEV in this platinum-free combination in the first-line setting," said Roger Dansey, M.D., Chief Medical Officer at Seattle Genetics.
"These additional results support continued evaluation of PADCEV in combination with other agents and at earlier stages of treatment for patients withurothelial cancer," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head at Astellas.
About the EV-103 TrialEV-103 is an ongoing, multi-cohort, open-label, multicenter phase 1b/2 trial of PADCEV alone or in combination, evaluating safety, tolerability and efficacy in muscle invasive, locally advanced and first- and second-line metastatic urothelial cancer.
The dose-escalation cohort and expansion cohort A include locally advanced or metastatic urothelial cancer patients who are ineligible for cisplatin-based chemotherapy. Patients were dosed in a 21-day cycle, receiving an intravenous (IV) infusion of enfortumab vedotin on Days 1 and 8 and pembrolizumab on Day 1. At the time of this initial analysis, 45 patients (5 from the dose-escalation cohort and 40 from the dose-expansion cohort A) with locally advanced and/or metastatic urothelial cancer had been treated with enfortumab vedotin (1.25 mg/kg) plus pembrolizumab in the first-line setting.
The primary outcome measure of the cohorts included in this analysis is safety. Key secondary objectives related to efficacy include objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression free survival (PFS) and overall survival (OS). DoR,PFS and OS are not yet mature.
Additional cohorts in the EV-103 study will evaluate enfortumab vedotin:
More information about PADCEV clinical trials can be found at clinicaltrials.gov.
About Bladder and Urothelial CancerIt is estimated that approximately 81,000 people in the U.S. will be diagnosed with bladder cancer in 2020.5 Urothelial cancer accounts for 90 percent of all bladder cancers and can also be found in the renal pelvis, ureter and urethra.6 Globally, approximately 549,000 people were diagnosed with bladder cancer in 2018, and there were approximately 200,000 deaths worldwide.7
The recommended first-line treatment for patients with advanced urothelial cancer is a cisplatin-based chemotherapy. For patients who are ineligible for cisplatin, such as people with kidney impairment, a carboplatin-based regimen is recommended. However, fewer than half of patients respond to carboplatin-based regimens and outcomes are typically poorer compared to cisplatin-based regimens.8
About PADCEV PADCEV (enfortumabvedotin-ejfv) was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval may be contingent upon verification and description of clinical benefit in confirmatory trials.9
PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.2,9Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).9PADCEV is co-developed by Astellas and Seattle Genetics.
Important Safety Information
Warnings and Precautions
Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).
Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).
The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).
Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased, hemoglobin decreased, phosphate decreased, lipase increased, sodium decreased, glucose increased, urate increased, neutrophils decreased.
Drug Interactions
Specific Populations
For more information, please see the full Prescribing Information for PADCEV here.
About Seattle GeneticsSeattle Genetics, Inc. is a global biotechnology company that discovers, develops and commercializes transformative medicines targeting cancer to make a meaningful difference in people's lives. The company is headquartered in Bothell, Washington, and has offices in California, Switzerland and the European Union. For more information on our robust pipeline, visit https://www.seattlegenetics.comand follow @SeattleGenetics on Twitter.
About AstellasAstellas Pharma Inc., based in Tokyo, Japan, is a company dedicated to improving the health of people around the world through the provision of innovative and reliable pharmaceutical products. For more information, please visit our website at https://www.astellas.com/en.
About the Astellas and Seattle Genetics CollaborationSeattle Genetics and Astellas are co-developing enfortumab vedotin-ejfv under a collaboration that was entered into in 2007 and expanded in 2009. Under the collaboration, the companies are sharing costs and profits on a 50:50 basis worldwide.
Seattle Genetics Forward-Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the EV-103 and EV-302 clinical trials; clinical development plans relating to enfortumab vedotin; the therapeutic potential of enfortumab vedotin; and its possible safety, efficacy, and therapeutic uses, including in the first-line setting. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the possibility that ongoing and subsequent clinical trials of enfortumab vedotin may fail to establish sufficient efficacy; that adverse events or safety signals may occur and that adverse regulatory actions or other setbacks could occur as enfortumab vedotin advances in clinical trials even after promising results in earlier clinical trials. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption "Risk Factors" included in the company's Annual Report on Form 10-K for the year ended December 31, 2019 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.
Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.
Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.
1 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.2 Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.3 Rosenberg JE, O'Donnell PH, Balar AV, et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2019;37(29):2592-600.4 ClinicalTrials.gov. A Study of Enfortumab Vedotin Alone or With Other Therapies for Treatment of Urothelial Cancer (EV-103). https://clinicaltrials.gov/ct2/show/NCT03288545.5 American Cancer Society. Cancer Facts & Figures 2020. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf. Accessed 01-23-2020.6National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: bladder cancer. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 05-01-2019.7International Agency for Research on Cancer. Cancer Tomorrow: Bladder. http://gco.iarc.fr/tomorrow. 8 National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer. Version 4; July 10, 2019. https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf.9 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.
SOURCE Astellas
http://www.seattlegenetics.com
View original post here:
Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy...
AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure – BioSpace
RESEARCH TRIANGLE PARK, N.C. , Feb. 04, 2020 (GLOBE NEWSWIRE) -- Asklepios BioPharmaceutical (AskBio), a clinical-stage adeno-associated virus (AAV) gene therapy company, and its NanoCor Therapeutics subsidiary today announced that the first patient has been dosed in a Phase 1 clinical trial of NAN-101. NAN-101 is a gene therapy that aims to activate protein phosphatase inhibitor 1 (I-1c) to inhibit the activity of protein phosphatase 1 (PP1), a substance that plays an important role in the development of heart failure.
Congestive heart failure (CHF) is a condition in which the heart is unable to supply sufficient blood and oxygen to the body and can result from conditions that weaken the heart muscle, cause stiffening of the heart muscles, or increase oxygen demand by the body tissues beyond the hearts capability.
"Dosing the first patient using gene therapy to target I-1c to improve heart function is a tremendous milestone not only for the AskBio and NanoCor teams but, more importantly, for patients whose quality of life is negatively affected by CHF, said Jude Samulski, PhD, Chief Scientific Officer and co-founder of AskBio. We initially developed this gene therapy as treatment for late-stage Duchenne muscular dystrophy patients who typically die from cardiomyopathy. Following preclinical studies, we observed that heart function improved, which led us to investigate treatment for all types of heart failure.
Were excited to be involved in this novel approach for patients with Class III heart failure, said Timothy Henry, MD, FACC, MSCAI, Lindner Family Distinguished Chair in Clinical Research and Medical Director of The Carl and Edyth Lindner Center for Research at The Christ Hospital in Cincinnati, Ohio, and principal investigator for the study. These patients currently have no other options besides transplant and left ventricular assist devices (LVAD). Today, we started to explore the potential of gene therapy to change their outcomes.
Heart disease is the leading cause of death worldwide, with CHF affecting an estimated 1% of the Western world, including over six million Americans. There is no cure, and medications and surgical treatments only seek to relieve symptoms and slow further damage.
Research by many investigators around the world has been trying to understand what exactly goes wrong in the heart and weakens its pumping activity until it finally fails, said Evangelia (Litsa) Kranias, PhD, FAHA, Hanna Professor, Distinguished University Research Professor and Director of Cardiovascular Biology at the University of Cincinnati College of Medicine. The aim has been to identify potential therapeutic targets to restore function or prevent further deterioration of the failing heart. Along these lines, research on the role of I-1c started over two decades ago, and it moved from the lab bench to small and large animal models of heart failure. The therapeutic benefits at all levels were impressive. It is thrilling to see I-1c moving into clinical trials with the hope that it also improves heart function in patients with CHF.
About the NAN-101 Clinical Trial NAN-CS101 is a Phase 1 open-label, dose-escalation trial of NAN-101 in subjects with NYHA Class III heart failure. NAN-101 is administered directly to the heart via an intracoronary infusion by cardiac catheterization in a process similar to coronary angioplasty, commonly used to deliver treatments such as stem cells to patients with heart disease. The primary objective of the study is to assess the safety of NAN-101 for the treatment of NYHA Class III heart failure, as well as assess the impact of this treatment on patient health as measured by changes in exercise capacity, heart function and other factors including quality of life.
AskBio is actively enrolling patients with NYHA Class III heart failure to assess three doses of NAN-101. Please refer to clinicaltrials.gov for additional clinical trial information.
Would you like to receive our AskFirst patient engagement program newsletter? Sign up at https://www.askbio.com/patient-advocacy.
About The Christ Hospital Health Network The Christ Hospital Health Network is an acute care hospital located in Mt. Auburn with six ambulatory centers and dozens of offices conveniently located throughout the region. More than 1,200 talented physicians and 6,100 dedicated employees support the Network. Its mission is to improve the health of the community and to create patient value by providing exceptional outcomes, the finest experiences, all in an affordable way. The Network has been recognized by Forbes Magazine as the 24th best large employer in the nation in the magazines Americas 500 Best Large Employers listing and by National Consumer Research as the regions Most Preferred Hospital for more than 22 consecutive years. The Network is dedicated to transforming care by delivering integrated, personalized healthcare through its comprehensive, multi-specialty physician network. The Christ Hospital is among only eight percent of hospitals in the nation to be awarded Magnet recognition for nursing excellence and among the top five percent of hospitals in the country for patient satisfaction. For more than 125 years, The Christ Hospital has provided compassionate care to those it serves.
About AskBioFounded in 2001, Asklepios BioPharmaceutical, Inc. (AskBio) is a privately held, clinical-stage gene therapy company dedicated to improving the lives of children and adults with genetic disorders. AskBios gene therapy platform includes an industry-leading proprietary cell line manufacturing process called Pro10 and an extensive AAV capsid and promoter library. Based in Research Triangle Park, North Carolina, the company has generated hundreds of proprietary third-generation AAV capsids and promoters, several of which have entered clinical testing. An early innovator in the space, the company holds more than 500 patents in areas such as AAV production and chimeric and self-complementary capsids. AskBio maintains a portfolio of clinical programs across a range of neurodegenerative and neuromuscular indications with a current clinical pipeline that includes therapeutics for Pompe disease, limb-girdle muscular dystrophy type 2i/R9 and congestive heart failure, as well as out-licensed clinical indications for hemophilia (Chatham Therapeutics acquired by Takeda) and Duchenne muscular dystrophy (Bamboo Therapeutics acquired by Pfizer). For more information, visit https://www.askbio.com or follow us on LinkedIn.
See the original post:
AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure - BioSpace
Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight – DocWire News
This weeks Round-up looks to the future, as nanoparticles and stem cell-derived cardiac muscle cells get a closer look. More good news for lovers of yogurt, and a smelly but effective treatment for atherosclerosis as well.
Using stem cells extracted from the patients own blood and skin cells, this Japanese research team completed the first-in-human transplant of cardiac muscle cells derived from pluripotent stem cells. The team achieved this by reprogramming them, reverting them to their embryonic-like pluripotent initial state. I hope that (the transplant) will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Yoshiki Sawa, a professor in the Osaka University cardiovascular surgery unit, said in apress report.
Stem Cell-Derived Heart Muscle Transplanted Into Human for First Time: Researchers
Like something from a sci-fi horror novel, this team of researcher examined the role that nanoparticles that eat dead cells and stabilize atherosclerotic plaque may be able to play in the future of atherosclerosis treatment. We found we could stimulate the macrophages to selectively eat dead and dying cells these inflammatory cells are precursor cells toatherosclerosis that are part of the cause of heart attacks, one of the authors said in press release. We could deliver a small molecule inside the macrophages to tell them to begin eating again. The authors noted that after a single-cell RNA sequencing analysis, they observed that the prophagocytic nanotubes decreased inflammatory gene expression linked to cytokine and chemokine pathways in lesional macrophages, thereby treating the cell from the inside out.
Are Nanoparticles Potential Gamechangers for Treating Clogged Arteries?
In this large analysis of more than 120,000 individuals, the authors reported multivariable-adjusted hazard ratios (95% CI for all) for mortality were reduced in regular (more than four servings per week) consumers of yogurt, and there was an inverse relationship between regular consumption and cancer mortality as well as cardiovascular-related mortality in women. In our study, regular yogurt consumption was related to lower mortality risk among women, the authors wrote. Given that no clear doseresponse relation was apparent, this result must be interpreted with caution.
Yogurt Consumption Associated with Reduced Mortality Risk (Plus a Caveat)
This research teamlooked human microphages and compared them to dying cells in a dish. They observed that macrophages reclaim arginine and other amino acids when they eat dead cells, and then use an enzyme to convert arginine to putrescine. The putrescine, in return, activates a protein (Rac1) that causes the macrophage to eat more dead cells, suggesting to the authors that the problem of atherosclerosis may be, in part, a problem of putrescine. The findings, according to the accompanying press release, suggest that the compound could be use to potentially treat conditions with chronic inflammation, such as Alzheimers disease.
The Nose Knows: Pungent Compound Associated with Improvements in Atherosclerotic Plaque
Excerpt from:
Cardio Round-up: Nanoparticles and Stem Cells in the Spotlight - DocWire News
Heart Muscle Cells Made in the Lab Successfully Transplanted into Patient – Interesting Engineering
A team of researchers at Osaka University in Japan successfully transplanted cardiac muscle cells created from iPS into a patient, who is now recovering in the general ward of the hospital.
The team, led by Yoshiki Sawa, a professor in the university's cardiovascular surgery unit, created the cardiac muscle cells from iPS cells in a clinical trial to verify the safety and efficacy of this type of procedure. The researches want to transplant heart muscle cells into ten patients who have serious heart malfunctions because of ischemic cardiomyopathy over a three year period.
RELATED: RESEARCHERS ORGANIZE STEM CELLS BASED ON A COMPUTATIONAL MODEL
Instead of replacing the heart of patients, the researchers developed degradable sheets of heart muscle cells that were placed on the damaged areas of the heart.
To grow the heart muscle cells in the lab, the researchers turned to induced pluripotent stem cells otherwise known as iPS. Researchers are able to take those iPS cells and make them into any cell they want. In this case, it was heart muscle cells.If the clinical trials prove successful it could remove someday the need for heart transplants.
I hope that (the transplant) will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Sawa was quoted at a news conference reported the Japan Times.
As for the patient, the team plans to monitor him during the next year to ascertain how the heart muscle cells perform. According to the Japan Times, the researchers opted to conduct a clinical trial instead of a clinical study because they want approval from Japan's health ministry for clinical application as soon as possible.
The report noted that during the trial the researchers will look at risks, probabilities of cancer and the efficacy of transplanting 100 million cells for each patient that could include tumor cells.
Continued here:
Heart Muscle Cells Made in the Lab Successfully Transplanted into Patient - Interesting Engineering
Lab-grown heart cells implanted into human patient for the first time – New Atlas
In what is a world-first and potentially the dawn of a new medical technology to treat damaged hearts, scientists in Japan have succeeded in transplanting lab-grown heart cells into a human patient for the first time ever. The procedure is part of a cutting-edge clinical trial hoped to open up new avenues in regenerative medicine, with the treatment to be given to a further nine patients over the coming years.
The clinical trial harnesses the incredible potential of induced pluripotent stem cells (IPSCs), a Nobel Prize-winning technology developed at Kyoto University in 2006. These are created by first harvesting cells from donor tissues and returning them to their immature state by exposing them to a virus. From there, they can develop into essentially any cell type in the body.
Professor Yoshiki Sawa is a cardiac surgeon at Osaka University in Japan, who has been developing a technique to turn IPSCs into sheets of 100 million heart muscle cells, which can be grafted onto the heart to promote regeneration of damaged muscles. This was first tested on pigs and was shown to improve organ function, which led Japans health ministry to conditionally approve a research plan involving human subjects.
The first transplantation of these cells is a huge milestone for the researchers, with the operation taking place earlier this month and the patient now recovering in the general ward of the hospital. The sheets are biodegradable, and once implanted on the surface of the heart are designed to release growth factors that encourage new formation of healthy vessels and boost cardiac function.
The team will continue to monitor the first patient over the coming year, and over the next three years aims to carry out the procedure on a total of 10 patients suffering from ischemic cardiomyopathy, a condition caused by a heart attack or coronary disease that has left the muscles severely weakened.
I hope that [the transplant] will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Sawa said at a news conference on Tuesday, according to The Japan Times.
Source: The Japan Times
Excerpt from:
Lab-grown heart cells implanted into human patient for the first time - New Atlas
Space might be the perfect place to grow human organs – Popular Science
Three-dimensional printers have now assembled candy, clothing, and even mouse ovaries. But in the next decade, specialized bioprinters could begin to build functioning human organs in space. It turns out, the minimal gravity conditions in space may provide a more ideal environment for building organs than gravity-heavy Earth.
If successful, space-printed organs could help to shorten transplant waitlists and even eliminate organ rejection. Though they still have a long way to go, researchers at the International Space Station (ISS) hope to eventually assemble organs from adult human cells, including stem cells.
The medical field has only recently embraced 3D printing in general, particularly in biomedical fields like regenerative medicine and prosthetics. So far, these printers have produced early versions of blood vessels, bones, and different types of living tissue by churning out repeated layers of bioinka substance comprised of living human cells and other tissue thats meant to mimic the natural environment that surrounds growing organs.
Recently, researchers are finding that Earth might not be the best environment for growing freestanding organs. Because gravity is constantly pushing down on these delicate structures as they grow, researchers must surround the tissues in scaffolding, which can often debilitate the delicate veins and blood vessels and prevent the soon-to-be organs from growing and functioning properly. Within microgravity, however, soft tissues hold their shape naturally, without the need for surrounding supportan observation thats driven researchers to space.
And one manufacturing lab based in Indiana thinks its tech could play a key role in space. The 3D BioFabrication Facility (BFF) is a specialized 3D printer that uses bioink to build layers several times thinner than human hair. It cost about $7 million to build and employs the smallest print tips in existence.
The brainchild of spaceflight equipment developer Techshot and 3D printer manufacturer nScrypt, the BFF headed to the ISS in July 2019 aboard the SpaceX CRS-18.
Currently, the project focuses on building increasingly thick artificial cardiac tissue and delivering it back to Earth. Once the printed cardiac tissue reaches a certain thickness, it gets harder for researchers to ensure that a printed structures layers effectively grow into one another. Ultimately, though, theyd like the organs to arrive here fully formed.
Printed organs would eventually require vasculature and nerve endings to work properly, though that technology doesnt yet exist.
The next stagetesting heart patches under microscopes and within animalscould span over the next four years. As for whole organs, Techshot claims it plans to begin production after 2025. For now, the project is still in its infancy.
If you were to look at what we printed, it looks very modest, says Techshot vice president of corporate advancement Rich Boling. Its just a cuboid-type shape, this rectangular box. Were just trying to get cells to grow one layer into the next.
Cooking organs like pancakes
Compare the manufacturing process to cooking pancakes, Boling says. The space crew first creates a custom bioink pancake mix with the cells sent from Earth, which they load with syringe-like tools into the BFF.
Researchers then insert a cassette into the BFF containing a bioreactora system that mimics the normal bodily functions essential for growing healthy tissue, like providing nutrients and flushing out waste.
Approximately 200 miles below in Greenville, Indiana, Techshot engineers connect with ISS astronauts on a NASA-enabled secure digital pathway. The linkup allows Techshot to remotely command BFF functions like pump pressure, internal temperature, lighting, and print speed.
Next, the actual printing process occurs within the bioreactor and can take anywhere from moments to hours, depending on the shapes complexity. In the final production step, the cell-culturing ADvanced Space Experiment Processor (ADSEP) cooks the theoretical pancake; essentially, the ADSEP toughens up the printed tissue for its journey back to earth. This step could take anywhere from 12 to 45 days for different tissue types. When completed and hardened, the structure heads home.
The researchers have gone through three testing processes so far, each one getting more exact. This March, theyll begin the third round of experiments.
The bioprinter space race
The BFF lab is the sole team developing this specific type of microgravity bioprinter, Boling says. Theyre not the only ones looking to print human organs in space, though.
A Russian project has also entered the bioprinting space race, however their technique highly differs. Unlike the BFFs bioink layering method, Russian biotechnology laboratory 3D Bioprinting Solutions uses magnetic nanoparticles to produce tissue. An electromagnet creates a magnetic field in which levitating tissue forms the desired structuretechnology that appears ripped from the pages of a sci-fi novel.
After their bioprinter fell victim to an October 2018 spacecraft crash, 3D Bioprinting Solutions rebounded; the team now collaborates with US and Israeli researchers at the ISS. Last month, their crew created the first space-bioprinted bone tissue. Similar to the US project, 3D Bioprinting Solutions aims to manufacture functioning human tissues and organs for transplantation and general repair.
Just because we have the technology to do it, should we do it?
If the 3D BioFabrication Facility prospers in printing working human organs, theyd be subject to thorough regulation here on Earth. The US approval process is stringent for any drug, Rich Boling says, posing a challenge for this unprecedented invention. Techshot predicts at least 10 years for space-printed organs to achieve legal approval, though its an inexact estimate.
Along with regulatory acceptance, human tissue printed in microgravity may encounter societal pushback.
Each country maintains varying laws related to medical transplants. Yet as bioengineering advances into the the final frontier, the international scientific research community may need to shape new guidelines for collaboration among the stars.
As the commercialization of low-Earth orbit continues to ramp up in the next few years, it is certainly true that were going to have to take a very close look at the regulations that apply to that, says International Space Station U.S. National Laboratory interim chief scientist Michael Roberts. And some of those regulations are going to stray into questions related to ethics: Just because we have the technology to do it, should we do it?
Niki Vermeulen, a University of Edinburgh science technology and innovation studies lecturer, has researched the social implications of 3D bioprinting experiments. Like any Earth-bound project, she urges scientists not to get peoples hopes up too early in the process; individuals seeking organ transplants could read about the BFF online and think it could soon be ready to meet their needs.
The most important thing now, I think, is expectation management, Vermeulen says. Because its really quite difficult to do this, and of course we really dont know if its going to work. If it did, it would be amazing.
Another main issue is cost. Like other cutting-edge biotechnology innovations, the organs could also pose a major affordability challenge, she says. Techshot claims that a single space-printed organ could actually cost less than one from a human donor, since some people must pay for a lifetime of anti-rejection meds and/or multiple transplants. Theres currently no telling how long the BFF process would actually take, however, compared to the conventional donor route.
Plus, theres potential health risks for recipients: Techshot chief scientist Eugene Boland says cell manipulation always presents a possibility of genetic mutation. Modified stem cells can potentially cause cancer in recipients, for example.
The team is now working to define and minimize any dangers, he says. The BFF experiment adheres to the FDAs specific regulations for human cells, tissues, and cellular and tissue-based products.
Researchers on the ground now hope to perfect human cell manipulation: Over 100 US clinical trials presently test cultured autologous human cells, and several hundred test cultured stem cells with multiple origins.
What comes next
After the next round of printing tests this March, Techshot will share the bioprinter with companies and research institutions looking to print materials like cartilage, bone, and liver tissue. Theyre currently preparing the bioprinter for these additional uses, Boling says, which could advance health care as a whole.
To speed things up for space crews, Techshot is now building a cell factory that produces multiple cell types in orbit. This technology could cut down the number of cell deliveries between Earth and space.
The ISS has taken in plenty of commercial ventures in recent years, Michael Roberts says, and its getting crowded up there. Space-based experiments ramped up between 40 and 50 years ago, though until recently they mostly prioritized satellite communications and remote observation technology. Since then, satellites have shrunk from bus-sized to smaller than a shoebox.
Roberts has witnessed the scientific areas of interest broaden over the past decade to include medicine. Organizations like the National Institutes of Health are now looking to space to improve treatments, and everything from large pharmaceutical companies to small-scale startups want in.
Theyve got something stuck on every surface up there, he says.
As the ISS runs out of space and exterior attachment points, Roberts predicts that commercial ventures will build new facilities built for specific activities like manufacturing and plant growth. He sees it as a good opportunity for further innovation, since the ISS was originally designed for far more general purposes.
Space, as a whole, may start to look quite different from the first exploration age.
Baby boomers may remember glimpsing at a grainy, black-and-white moon landing five decades ago. Within the same lifetime, they could potentially observe the introduction of space-printed organs.
See more here:
Space might be the perfect place to grow human organs - Popular Science
El Paso researchers sending bioprinted mini hearts to ISS – 3DPMN
Biomedical researchers from Texas Tech University Health Sciences Center El Paso and the University of Texas at El Paso are working on a joint project to send miniature 3D bioprinted hearts to space. The research project, which has received backing from the National Science Foundation (NSF), seeks to understand how a microgravity environment affects the function of the human heart.
Bioprinting in space is a growing venture. The microgravity environment found aboard the International Space Station (ISS) provides a unique setting for bioprinted tissues and cellular structures to culture and grow. Bioprinting specialists like CELLINK and 3D Bioprinting Solutions are showcasing the potential of bioprinting in space, both for the advancement of bioprinting technologies and to understand the impact of zero-gravity on the human body.
The three-year research project conducted by the Texas-based research team falls into the latter category. The team, led by Munmun Chattopadhyay, Ph.D., TTUHSC El Paso faculty scientist, and Binata Joddar, Ph.D., UTEP biomedical engineer, wants to understand how the human heart is impacted by microgravity by testing bioprinted cardiac organoids aboard the ISS.
The cardiac organoids consist of heart-tissue structures measuring less than 1 mm in thickness which are bioprinted using human stem cells. The organoids will be sent to the ISS, where they will exposed to microgravity environments. This will provide vital insights into a condition commonly experienced by astronauts.
The condition in question is cardiac atrophy and it is caused by a weakening of heart tissue. The condition can lead to other problems, like fainting, irregular heartbeats and even heart failure. Because astronauts often suffer from cardiac atrophy after spending long stints in space, the researchers want to better understand the link.
Cardiac atrophy and a related condition, cardiac fibrosis, is a very big problem in our community, said Dr. Chattopadhyay. People suffering from diseases such as diabetes, muscular dystrophy and cancer, and conditions such as sepsis and congestive heart failure, often experience cardiac dysfunction and tissue damage.
The project, which officially started in September, is currently focused on research design. In this stage of the research, the team is developing bioprinted cardiac organoids and exploring different material compositions using cardiac cells to create heart-like tissue. The second stage of the research will be focused on preparing to launch to organoid to space. The final stage will consist of analyzing data collected during the organoids time in space, once they have returned to Earth.
Dr. Chattopadhyay expressed excitement about the ongoing research project, saying: Knowledge gathered from this study could be used to develop technologies and therapeutic strategies to better combat tissue atrophy experienced by astronauts, as well as open the doorforimproved treatmentsforpeople who suffer from serious heart issues due to illness.
The researchers also hope to engage the community with their research by offering a workshop for K-12 students about their experiments aboard the ISS. The team will also host a seminar for medical students, interns and residents about conducting research in space and on Earth.
Read more here:
El Paso researchers sending bioprinted mini hearts to ISS - 3DPMN
Ncardia and BlueRock Therapeutics Announce Collaboration Agreement and Licensing of Process Development Technologies for the Manufacture of…
Ncardia and BlueRock Therapeutics today announced an agreement covering process development technologies for the manufacture of induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Under the terms of the agreement, Bluerock gains access to Ncardias large-scale production processes and intellectual property for the production of iPSC-derived cardiomyocytes for therapeutic use.
This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200121005200/en/
"BlueRock is a leader in the field of cell therapy and our collaboration is a perfect match of mission and capabilities. This relationship allows us to utilize our experience in iPSC process development to help advance potential cell therapies for cardiac diseases," said Stefan Braam, CEO of Ncardia.
"There are hundreds of millions of people worldwide that suffer from degenerative cardiovascular disease where the root cause is the loss of healthy heart muscle cells, and where medical treatment options are limited. BlueRocks authentic cellular therapy is a novel approach that has the potential to transform the lives of patients, but will require the manufacture of our cell therapies at unprecedented scale. The Ncardia team has developed key technologies related to this scale-up challenge, and we are pleased to work with them as we advance BlueRocks novel CELL+GENE platform towards the clinic and those patients in need," said Emile Nuwaysir, President and CEO, BlueRock Therapeutics.
About BlueRock Therapeutics
BlueRock Therapeutics, a wholly owned and independently operated subsidiary of Bayer AG, is a leading engineered cell therapy company with a mission to develop regenerative medicines for intractable diseases. BlueRock Therapeutics CELL+GENE platform harnesses the power of cells for new medicines across neurology, cardiology and immunology indications. BlueRock Therapeutics cell differentiation technology recapitulates the cells developmental biology to produce authentic cell therapies, which are further engineered for additional function. Utilizing these cell therapies to replace damaged or degenerated tissue brings the potential to restore or regenerate lost function. BlueRocks culture is defined by scientific innovation, highest ethical standards and an urgency to bring transformative treatments to all who would benefit. For more information, visit http://www.bluerocktx.com.
About Ncardia
Ncardia believes that stem cell technology can deliver better therapies to patients faster. We bring cell manufacturing and process development expertise to cell therapy by designing and delivering human induced pluripotent stem cell (iPSC) solutions to specification. Our offerings extend from concept development to pre-clinical studies, including custom manufacturing of a range of cell types, as well as discovery services such as disease modelling, screening, and safety assays. For more information, visit http://www.ncardia.com.
View source version on businesswire.com: https://www.businesswire.com/news/home/20200121005200/en/
Contacts
BlueRock:media@bluerocktx.com
Ncardia:Steven Dublinmedia@ncardia.com
The Living Robots Made With Frog Cells Could Boost Our Health – Dual Dove
Theres a team of scientists who basically discovered live robots. You read that right. They found a new purpose for living cells, which they took from frog embryos, and they constructed new life forms. These life forms were named Xenobots, and they can move in small places and carry stuff, too. They also want to try to see if they are useful in medicine.
Apparently, they can heal themselves after theyre cut, which gives them a longer life span. They are not a species of animals, and they are not robots in a real way. As Joshua Bongard states, Its a new class of artifact: a living, programmable organism. He is a computer scientist at the University of Vermont.
A supercomputer developed these live robots at UVM. The idea behind this creation is not a new one. But it is the first time they actually improved it from scratch. The team was led by doctoral student Sam Kriegman, who used an evolutionary algorithm to develop thousands of designs for these new life forms.
They gave the program the basic rules about biophysics about the frog skin and the cardiac cells. They tested about a hundred algorithms to find the best design. Then, the team worked with microsurgeons to transfer the silicon designs into life. They took the stem cells from Xenopus lavevis, an African frog. Then the embryos were assembled in body forms, so the cells began to work.
Almost everything we see today is made out of steel, silicon, or plastic. While its true that the material is durable, it also creates human health problems. Bongard stated that the living tissues degrade quickly. Also, these living robots made with frog cells could help us live a healthier life. More research will be conducted.
Tanya is an expert in reddit and health subjects. She finds good stories where no one ever thinks to look.
Continued here:
The Living Robots Made With Frog Cells Could Boost Our Health - Dual Dove