Archive for the ‘Cardiac Stem Cells’ Category
Canine Stem Cell Therapy Market Industry Outlook, Size, Share, Growth Prospects, Key Opportunities, Trends and Forecast – Downey Magazine
A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry
Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.
A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.
Parent Indicators Healthcare Current expenditure on health, % of gross domestic product Current expenditure on health, per capita, US$ purchasing power parities (current prices, current PPPs) Annual growth rate of current expenditure on health, per capita, in real terms Out-of-pocket expenditure, % of current expenditure on health Out-of-pocket expenditure, per capita, US$ purchasing power parity (current prices, current PPPs) Physicians, Density per 1000 population (head counts) Nurses, Density per 1000 population (head counts) Total hospital beds, per 1000 population Curative (acute) care beds, per 1000 population Medical technology, Magnetic Resonance Imaging units, total, per million population Medical technology, Computed Tomography scanners, total, per million population
Research Methodology
Get Sample Copy of this report at https://www.xploremr.com/connectus/sample/2360
XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.
Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.
Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.
Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.
On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.
Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.
Get Discount on this report at https://www.xploremr.com/connectus/check-discount/2360
Standard Report Structure Executive Summary Market Definition Macro-economic analysis Parent Market Analysis Market Overview Forecast Factors Segmental Analysis and Forecast Regional Analysis Competition Analysis
Target Audience Production Companies Suppliers Channel Partners Marketing Authorities Subject Matter Experts Research Institutions Financial Institutions Market Consultants Government Authorities
Market Taxonomy
The global canine stem cell therapy market has been segmented into:
Product Type: Allogeneic Stem Cells Autologous Stem cells
Application: Arthritis Dysplasia Tendonitis Lameness Others
End User: Veterinary Hospitals Veterinary Clinics Veterinary Research Institutes
Region: North America Latin America Europe Asia Pacific Japan Middle East & Africa
Buy Full Report at https://www.xploremr.com/cart/2360/SL
Read the rest here:
Canine Stem Cell Therapy Market Industry Outlook, Size, Share, Growth Prospects, Key Opportunities, Trends and Forecast - Downey Magazine
Data from Exploratory Analysis Show Merck’s KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of…
KRAS mutations occur in approximately 20% of people with non-small cell lung cancer, and some previous studies have suggested that these mutations are associated with a poorer response to treatment, said Dr. Jonathan Cheng, vice president, oncology clinical research, Merck Research Laboratories. It was therefore encouraging to see in this exploratory analysis that KEYTRUDA monotherapy was associated with a survival benefit in certain patients with metastatic nonsquamous non-small cell lung cancer, regardless of KRAS mutational status.
The objective of the exploratory analysis was to assess the prevalence of KRAS mutations and their association with efficacy in the KEYNOTE-042 trial. Of the 1,274 untreated patients with metastatic nonsquamous NSCLC whose tumors expressed PD-L1 (TPS 1%) enrolled in KEYNOTE-042, 301 patients had KRAS evaluable data (n=232 without any KRAS mutation; n=69 with any KRAS mutation, including n=29 with the KRAS G12C mutation). Tissue tumor mutational burden (tTMB) and KRAS mutational status were determined by whole-exome sequencing (WES) of tumor tissue and matched normal DNA (blood). Patients were randomized 1:1 to receive KEYTRUDA 200 mg intravenously every three weeks (Q3W) (n=637) or investigators choice of chemotherapy (pemetrexed or paclitaxel) (n=637). Treatment continued until progression of disease or unacceptable toxicity. The primary endpoint was OS with a TPS of 50%, 20% and 1%, which were assessed sequentially. The secondary endpoints were PFS and ORR.
Findings from this exploratory analysis showed that KEYTRUDA monotherapy was associated with improved clinical outcomes, regardless of KRAS mutational status, in patients with metastatic nonsquamous NSCLC versus chemotherapy. In this analysis, KEYTRUDA reduced the risk of death by 58% (HR=0.42 [95% CI, 0.22-0.81]) in patients with any KRAS mutation and by 72% (HR=0.28 [95% CI, 0.09-0.86]) in patients with the KRAS G12C mutation compared to chemotherapy. The safety profile of KEYTRUDA was consistent with what has been seen in previously reported studies among patients with metastatic NSCLC.
Additional efficacy results from this exploratory analysis showed:
With Any KRAS Mutation
With KRAS G12CMutation
Without Any KRAS Mutation
KEYTRUDA Mono-therapy
(N = 30)
Chemo-therapy
(N = 39)
KEYTRUDA Mono-therapy(N = 12)
Chemo-therapy(N = 17)
KEYTRUDA Mono-therapy
(N = 127)
Chemo-therapy(N = 105)
OS, median, mo(95% CI)
28 (23-NR)
11 (7-25)
NR (23-NR)
8 (5-NR)
15 (12-24)
12 (11-18)
OS, HR(95% CI)
0.42 (0.22-0.81)
0.28 (0.09-0.86)
0.86 (0.63-1.18)
ORR, %(95% CI)
56.7
18.0
66.7
23.5
29.1
21.0
PFS, median, mo(95% CI)
12 (8-NR)
6 (4-9)
15 (10-NR)
6 (4-8)
6 (4-7)
6 (6-8)
PFS, HR(95% CI)
0.51 (0.29-0.87)
0.27 (0.10-0.71)
1.00 (0.75-1.34)
Data from an exploratory analysis of KEYNOTE-189 (Abstract #LBA5), which evaluated KRAS mutations and their association with efficacy outcomes for KEYTRUDA in combination with pemetrexed and platinum chemotherapy, were also presented in a mini-oral session today at the ESMO Immuno-Oncology Congress 2019. KEYNOTE-189 was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA).
About Lung Cancer
Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10 to 15% of all lung cancers. Lung cancer can also be characterized by the presence of different biomarkers, including PD-L1, KRAS, ALK, EGFR and ROS1. KRAS mutations occur in about 20% of NSCLC cases. Between 2008 and 2014, the five-year survival rate for patients diagnosed in the U.S. with advanced NSCLC was only 5%.
About KEYTRUDA (pembrolizumab) Injection, 100mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for the treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [CPS 10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR).
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grade 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
Read the original:
Data from Exploratory Analysis Show Merck's KEYTRUDA (pembrolizumab) Improved Overall Survival as Monotherapy for the First-Line Treatment of...
Cell Separation Technology Market Overview, Growth Forecast, Demand and Development Research Report to 2027 – VaporBlash
Transparency Market Research (TMR)has published a new report on the globalcell separation technology marketfor the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~US$ 5 Bnin 2018, and is projected to expand at a double-digit CAGR during the forecast period.
Overview
Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies researchers.
Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such asstem cellresearch and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.
Want to know the obstructions to your companys growth in future? Request a PDF sample here
North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.
Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy
Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), 2020, the mortality rate from chronic diseases is expected to reach73%, and in developing counties,70%deaths are estimated to be caused chronic diseases. Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.
To Obtain All-Inclusive Information On Forecast Analysis Of Global Market, Request A PDF Brochure Here.
Increase in Geriatric Population Boosting the Demand for Surgeries
The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.
According to the United Nations, the geriatric population aged above 60 is expected to double 2050 and triple 2100, an increase from962 millionin 2017 to2.1 billionin 2050 and3.1 billion2100.
Productive Partnerships in Microfluidics Likely to Boost the Cell Separation Technology Market
Technological advancements are prompting companies to innovate in microfluidics cell separation technology. Strategic partnerships and collaborations is an ongoing trend, which is boosting the innovation and development of microfluidics-based products. Governments and stakeholders look upon the potential in single cell separation technology and its analysis, which drives them to invest in the development ofmicrofluidics. Companies are striving to build a platform utilizing their expertise and experience to further offer enhanced solutions to end users.
Stem Cell Research to Account for a Prominent Share
Stem cell is a prominent cell therapy utilized in the development of regenerative medicine, which is employed in the replacement of tissues or organs, rather than treating them. Thus, stem cell accounted for a prominent share of the global market. The geriatric population is likely to increase at a rapid pace as compared to the adult population, 2030, which is likely to attract the use of stem cell therapy for treatment. Stem cells require considerably higher number of clinical trials, which is likely to drive the demand for cell separation technology, globally. Rising stem cell research is likely to attract government and private funding, which, in turn, is estimated to offer significant opportunity for stem cell therapies.
Biotechnology & Pharmaceuticals Companies to Dominate the Market
The number of biotechnology companies operating across the globe is rising, especially in developing countries. Pharmaceutical companies are likely to use cells separation techniques to develop drugs and continue contributing through innovation. Growing research in stem cell has prompted companies to own large separate units to boost the same. Thus, advancements in developing drugs and treatments, such as CAR-T through cell separation technologies, are likely to drive the segment.
As per research, 449 public biotech companies operate in the U.S., which is expected to boost the biotechnology & pharmaceutical companies segment. In developing countries such as China, China Food and Drug Administration(CFDA) reforms pave the way for innovation to further boost biotechnology & pharmaceutical companies in the country.
Global Cell Separation Technology Market: Prominent Regions
North America to Dominate Global Market, While Asia Pacific to Offer Significant Opportunity
In terms of region, the global cell separation technology market has been segmented into five major regions: North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. North America dominated the global market in 2018, followed Europe. North America accounted for a major share of the global cell separation technology market in 2018, owing to the development of cell separation advanced technologies, well-defined regulatory framework, and initiatives governments in the region to further encourage the research industry. The U.S. is a major investor in stem cell research, which accelerates the development of regenerative medicines for the treatment of various long-term illnesses.
The cell separation technology market in Asia Pacific is projected to expand at a high CAGR from 2019 to 2027. This can be attributed to an increase in healthcare expenditure and large patient population, especially in countries such as India and China. Rising medical tourism in the region and technological advancements are likely to drive the cell separation technology market in the region.
Launching Innovative Products, and Acquisitions & Collaborations Key Players Driving Global Cell Separation Technology Market
The global cell separation technology market is highly competitive in terms of number of players. Key players operating in the global cell separation technology market include Akadeum Life Sciences, STEMCELL Technologies, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotech, 10X Genomics, Thermo Fisher Scientific, Inc., Zeiss, GE Healthcare Life Sciences, PerkinElmer, Inc., and QIAGEN.
These players have adopted various strategies such as expanding their product portfolios launching new cell separation kits and devices, and participation in acquisitions, establishing strong distribution networks. Companies are expanding their geographic presence in order sustain in the global cell separation technology market. For instance, in May 2019, Akadeum Life Sciences launched seven new microbubble-based products at a conference. In July 2017, BD received the U.S. FDAs clearance for its BD FACS Lyric flow cytometer system, which is used in the diagnosis of immunological disorders.
Your Apple smartwatch may be the key to detecting heart issues before they happen – Massive Science
Many of us biologists conduct fieldwork in diverse places, from Alaska to the tropics, from aiming to understand how microbes are responding to climate change in the boreal soils to learning about life history strategies and co-evolutionary arms races of bats, their ectoparasitic flies, and the ectoparasitic fungi living on those flies.
The days before fieldwork tend to be hectic: make a checklist to make sure you have everything you need, think about a plan B (and a plan C, just in case), anticipate drawbacks and plan on how to address them, and the list goes on and on. The day comes. You make it to your field site, you collect the samples you want, obtain the data you need, everything works out just like planned, and you make it back to the lab safe, on time, and without going over your planned budget. This is how it should be, but it never really goes like that.
Fieldwork is one of the most exciting experiences about doing research. It is also, in many cases, high-risk. During fieldwork, many things can go wrong, and most of those things cannot be helped. We cannot control the appearances of massive puddles in the middle of the road, critically damaging our transportation vehicles. We cannot control the thunderstorm that makes our study organisms disappear when we finally arrive at a remote field site after hours of climbing a mud-covered mountain.
Sadly, this is not always the case for threats to our integrity as human beings, and we, as a scientific community, have done far too little to address this problem. People from underrepresented groups in the sciences such as people of color, women, and those who identify as LGBTQIA+ or gender nonconforming often are at higher risk of suffering abuse during fieldwork. This comes in the form of sexual harassment, sexual abuse, discrimination, and intimidation. Scientists who have experienced abuse often fear talking about it because they are traumatized and because they fear retaliation and backlash, especially if the perpetrators of abuse are colleagues or superiors advisers and people at higher career stage.
In Spring 2018, we carried out an anonymous survey to collect testimonies of what scientists, specifically from the LGBTQIA+ community, experience during fieldwork. The idea for such a survey sprouted from concerns that sexual orientation or gender identity may play an unwanted or unwarranted role in peoples professional career. Especially during fieldwork, when Diversity and Inclusion Offices from our university campuses are far away, LGBTQIA+ researchers are exposed to people who may not agree with their sexual orientation or who do not understand why he may want to be addressed as they.
Responses revealed experiences ranging from discrimination to situations that made researchers decide to no longer perform fieldwork outside of safe places. This adds a whole new level to fieldwork stress, namely having to evaluate sites for their tolerance towards LGBTQIA+. In one story from fieldwork, men voiced discomfort because an openly gay man would share a room with them while, simultaneously, women felt uncomfortable due to the possibility of having to share a room with someone from the opposite sex. Another survey respondent described that they were fearful to carry out fieldwork in places that are recognized for their homophobic culture. These experiences leave people feeling isolated and rejected.
We present a few strategies that we can instill in STEM fields to avoid cases like these:
1) INFORM PEOPLE ABOUT LGBTQIA+. Erase any misinformation that may exist. For example, a gay man is not a threat to the sexuality of cisgender males. Institutions can facilitate trainings on diversity and inclusiveness and provide information on the LGBTQIA+ community to eliminate negative stereotypes.
2) HAVE SUFFICIENT FUNDING AVAILABLE FOR FIELDWORK. Although sometimes it's unavoidable to share rooms due to limited budget or space, if there is the possibility to do so, provide individual lodging for people traveling to fieldwork or conferences. Especially for those who ask for it.
3) DEVELOP AN EMERGENCY PROTOCOL. As a lab, department, or institution, develop a protocol that scientists can follow as a response to experiencing a threat to their integrity. Protocols like this should be part of a broader departmental or university-wide mission statement about equity in field work. The bar has been set high by this example of a mission statement written by University of California Irvine professor Kathleen Treseder.
4) AVOID INTOLERANT AREAS. It is important to note that this does not only apply to countries like Niger and Tunisia where discriminatory laws expose LGBTQIA+ individuals to the risk of death penalty. It also applies close to home, in the USA, where there is an ongoing debate about public restrooms and which one transgender people and people who identify as gender-nonconforming should use.
5) IMPLEMENT A ZERO-TOLERANCE POLICY. Inform everyone in your lab, department and institution that there is a zero-tolerance policy regarding abuse. A code of conduct with expected versus unaccepted behavior and practices should always be made available through trainings and in field stations.
Read the original:
Your Apple smartwatch may be the key to detecting heart issues before they happen - Massive Science
AgeX Therapeutics Issues Year-End Letter to Shareholders – BioSpace
The letter follows.
Dear AgeX Stockholders,
In this, our first year as a public company, we have built a foundation for a revolutionary company in the fields of cell therapy and tissue regeneration. To date, conventional pharmaceutical approaches to the chronic degenerative conditions associated with aging have provided little benefit, often only offering relief from the symptoms of disease, rather than targeting underlying disease processes. Our belief is that this is about to change through harnessing the power of new cellular and molecular technologies. We aim to lead this coming revolution with our pioneering technologies which could generate and deliver new cells to patients through our cell therapy focus, and which may reverse the age of cells already in the body through our iTR platform. We believe that our new technologies will lead to true cell regeneration and replacement to potentially cure degenerative diseases by targeting aged or damaged cells, tissues and organs.
Over the last year, we have worked hard to achieve certain goals to set the fundamental basis to create shareholder value going forward:
To optimize shareholder value, we have undertaken a strategic review of our business opportunities, and we have four key take-away messages for the coming year and beyond:
UniverCyte would potentially be game-changing for the whole cell therapy industry by allowing the transplantation of non-self, donor cells into all patients without the need for powerful immunosuppressant drugs, which are associated with serious side effects, including infections and cancers, as well as kidney and liver toxicity. The UniverCyte platform aims to utilize a proprietary, novel, modified form of the powerful immunomodulatory molecule HLA-G, which in nature seems to be a dominant player in protecting a baby from destruction by the mother's immune system during pregnancy, the only known physiological state of immune tolerance toward foreign tissue in humans.
On the other hand, our pluripotent stem cell-based PureStem platform could potentially overcome numerous industry barriers. PureStem cells would have eight potential advantages compared to other adult stem cell- or pluripotent stem cell-based therapies, including lower manufacturing costs, industrial scalability, off-the-shelf usage, high purity, non-tumorgenicity, young age (so they are not prone to the disadvantages associated with older cells), aptitude for permanent cell engraftment, and potential to manufacture any human cell type.
We have two in-house product candidates, both targeting highly prevalent diseases of old age, with a high unmet medical need, and which are for multi-billion-dollar markets. Our lead internal program going forward will be AgeX-BAT1, which is brown fat cells for the treatment of type II diabetes. The last year has seen significant investment in cell therapy product candidates for diabetes by investors and large biotech. Earlier this year, we published a paper, Clonal Derivation of White and Brown Adipocyte Progenitor Cell Lines from Human Pluripotent Stem Cells, in the peer-reviewed scientific journal Stem Cell Research & Therapy, which showed that our PureStem platform generated highly pure, identifiable and scalable brown adipose cells, expressing active adipokines. Our second internal program will be AgeX-VASC1, composed of vascular endothelial progenitor cells for tissue ischemia, such as peripheral vascular disease and potentially cardiac and CNS ischaemia. Once we have a UniverCyte-modified pluripotent stem cell cGMP master cell bank, we will re-derive universal versions of AgeX-BAT1 and AgeX-VASC1 and then work to establish proof-of-concept in animal models.
We care deeply about our mission and the needs of our stockholders. We appreciate your support and the dedication of our scientists and employees as we forge a new future for medicine. We invite you to join us for the Annual Meeting of Stockholders on Monday, December 30, 2019. For those of you who cannot attend in person, our corporate update from that meeting will be webcast for your convenience.
Sincerely,
Michael D. West, Ph.D.
Gregory Bailey, M.D.
Chief Executive Officer
Chairman of the Board
About AgeX Therapeutics
AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing and commercializing innovative therapeutics for human aging. Its PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly-defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. AGEX-iTR1547 is an iTR-based formulation in preclinical development. HyStem is AgeXs delivery technology to stably engraft PureStem cell therapies in the body. AgeX is developing its core product pipeline for use in the clinic to extend human healthspan and is seeking opportunities to establish licensing and collaboration agreements around its broad IP estate and proprietary technology platforms.
For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.
Forward-Looking Statements
Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of AgeXs Annual Report on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.
View source version on businesswire.com: https://www.businesswire.com/news/home/20191209005356/en/
View original post here:
AgeX Therapeutics Issues Year-End Letter to Shareholders - BioSpace
The Ins and Outs of Organ Donation – The Wire
Organ donation involves removing a healthy organ from a donor and transplanting it into the body of a recipient who has a diseased organ that has failed irreversibly. The recipients survival often depends on getting an organ transplant.
There is a large need for organs by people affected with end-stage ailments, like diseases of the liver, lung, heart and kidney. A major obstacle to treating such people is that there arent enough donated organs around the world. In many countries, including in the West, the number of patients in the waiting list for organ transplants has progressively increased compared to the number of donor organs available.
And while the number of donors per million people is very low in many parts of the world, about 20-30 per million, its many times lower than this in India: less than 0.5 donor per million. Experts have estimated that a few lakh organs are required per year in India, although no more than 2-3% of this requirement is really met. The severe shortfall may need more effective propaganda, retrieval and use of donated organs.
There are also personal, religious and cultural barriers that make it hard for people to accept the idea of organ donation. Most religions dont appear to oppose organ donation, but people are often uncertain about these recommendations and so they are reluctant to donate. Judaism and Islam prohibit the desecration of corpses and stress on a complete body, timely rituals and burial within 24 hours after death. People may not prefer to donate organs of their near and dear after death, due to the mutilating effect of dissecting the body and removing its parts.
There are often logistical issues as well. Due to a lack of awareness of the donation procedure and its consequences, most people prefer receiving organs from live, instead of recently deceased, donors.
* * *
Organ donation came to be thanks to advances in surgical procedures that allowed doctors to replace a diseased or dying organ with a healthy foreign organ. These advances reflected the rise of the exchangeability of body parts. That is, clinicians began to view the body as a collection of organs and independent entities, such that they could be removed from one body and placed in another. By contrast, the older and more traditional view of the body regarded it as a complex, indivisible whole interacting with its environment. As the idea of exchangeability gained traction, organs became commodities with market value.
Also read:The Seamy Underbelly of Organ Transplantation in India
The advent of organ transplantation was a landmark in the history of medicine. Researchers had developed transplantation surgeries for small animals such as dogs, pigs and goats well before the 20th century. The organs in the human body that doctors most transplant are the kidney, heart and liver.
Murray and Merrill performed the first kidney transplant in the 1950s, from one monozygotic twin to another. Since the twins were genetically identical, they survived and lived for eight years after the procedure.
The first heart and liver transplants were undertaken in the mid-1960s. Christian Bernard, the famous South African surgeon, performed the first heart transplant in 1967, from a 25-year-old who was brain dead after an accident and to a 50-year-old man suffering from heart failure. In the same year, other doctors performed more than 100 heart transplants around the world, but the recipients in these transplants didnt live for more than a few days after. There were problems related to the health of the transplanted organs and the aftereffects of surgery.
An American surgeon named Thomas Starzl performed the first liver transplant in the mid-1960s. The first patient died immediately and after the surgery; a few more patients who received transplanted organs also died from infections and other illnesses within a few weeks.
Corneal grafts are a very well-known and effective form of organ or tissue donation. The cornea, which is the transparent structure on the front of the eye, consists of multiple layers of cells designed to be transparent. The cornea refracts light towards the eyes lens, located just behind it. Its relatively simpler to transplant cornea because it lacks blood vessels (i.e. since one doesnt need to restore blood vessels in the grafted tissue).
Another advantage is that the cornea is in a state of immune privilege: it is relatively protected from immune responses. So persons who undergo a corneal transplant dont need lifelong treatment with systemic drugs to suppress the immune system.
Corneal donation and transplantation have continuously evolved in theory and practice, and have a high rate of success. Franz Reisinger first attempted corneal grafts in the early 19th century, trying to transplant animal corneas into humans. He failed in repeated attempts. Reisinger also coined the term keratoplasty, which means surgery to the cornea.
Also read:Why Moral Exhortations Alone Will Not Boost Organ Donation in India
Only a few years later, Samuel Bigger, an Irish surgeon, treated a gazelle that had been blinded by a corneal scar by transplanting cornea from another gazelle.
A Viennese ophthalmologist named Edward Zirm performed the first successful corneal graft between two humans in the early 20th century.
* * *
One possible reason why organ transplants often dont have long-term success is the recipient. A person who is already sick due to a failed heart or liver is not likely to respond well to major surgery, and may have difficulty recovering from it. Similarly, an older patient may not be able to withstand the effects of surgery.
Another important factor is the recipients immune system, which could reject the donated organ. In 1979, doctors who just performed a liver transplant used a drug called cyclosporine to dampen the bodys immune response and thus spare the transplanted organ from attack. This occasion was a new step in the history of liver transplants. Cyclosporine improved the survival of over 70% of patients up to at least one year after surgery, and many patients survived for up to five yrs. Doctors have followed up with newer, better drugs to improve patients health outcomes since.
A third issue relates to an ethical question that researchers have flagged: a living donor has to undergo a major surgical procedure to donate an organ, and such procedures carry their own risks. Moreover, close relatives of a patient may be under pressure to agree to donate their organs, so they may not be necessarily free to decide for themselves. Another issue regards commercialisation: its very easy to provide monetary incentives to the poor and convince them to donate an organ in return. In such circumstances, the decision to donate an organ will not have been the result of free choice where it should be.
Such a market for kidneys is all too visible in India, where one finds advertisements for the sale of kidneys with hospitals involved in the business. Often, poor people are ready to donate their organs to make a lakh or two. Apart from theft and the black market for organs, monetary compensation for organs is legal in some parts of the world.
* * *
An alternative to overcome the shortage of organs for transplants is a xenotransplant: transplanting animal organs into humans. The principal animals that can potentially donate to humans are monkeys, since theyre most closely related to humans.
However, due to differences between the sizes of monkey and human organs, researchers have also considered pigs, whose organs are closer in dimensions as well as because pigs are easy to breed. Researchers are currently exploring these procedures in experiments.
Also read:Why Does Spain Lead the World in Organ Donation?
Another alternative for intact organs is stem cells, which scientists can grow in controlled environments, such as in a laboratory, and develop into miniature organs, or organoids. Using bioengineering techniques, they removed cells from an intact organ, such as a lung or trachea, such that the cells retain a skeleton of proteins and carbohydrates. Next, they populate these cells with stem cells and maintained them in a laboratory so that different types of cells grow inside the container. For example, scientists have grown multilayered corneas in a dish using a culture of stem cells and certain biomolecules.
Such advances in preserving and engineering tissues are help plug the gap between the demand for and supply of organs.
* * *
Its very important to preserve and properly store organs to ensure theyre in the best possible condition and retain their nature following transplantation. One particular concern here stems from the time and temperature of storage, which need to be carefully controlled to remain within specific limits depending on the organ and the type of death. Maintaining the right conditions ensures the organ remains viable after the recipient has received it. A heart may be stored for up to four hours, the lungs for up to six hours and the kidneys for longer periods, up to 18 hours.
A critical question to be addressed with regard to organ donation is the distinction between brain death and cardiac, or circulatory, death. A brain-dead patient will still have a functioning heart and may be on life support. However, brain-death means brain function has been completely and irreversibly lost.
For an organ donor, a criterion of either brain death or cardiac death may be taken under the definition of death. Indian law mentions two possibilities. One is in the Registration of Births and Deaths Act and the other, in the Transplantation of Human Organs and Tissues (THOT) Act. The former defines death as the permanent disappearance of all evidence of life at any time after live-birth has taken place. The THOT Act, on the other hand, defines a deceased person as one in whom permanent disappearance of all evidence of life occurs, by reason of brain stem death or in a cardiopulmonary sense, at any time after live-birth has taken place.
In many countries, both forms of death are considered acceptable for organ donation.
Chitra Kannabiranleads research on molecular genetics at the L.V. Prasad Eye Institute, Hyderabad.
Read the original:
The Ins and Outs of Organ Donation - The Wire
Autologous Stem Cell and Non-Stem Cell Based Therapies Market share, size, opportunities, producers, growth factors by 2026 – Health Opinion
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report 2018-2026includes a comprehensive analysis of the present Market. The report starts with the basic Autologous Stem Cell and Non-Stem Cell Based Therapies industry overview and then goes into each and every detail.
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report contains in depth information major manufacturers, opportunities, challenges, and industry trends and their impact on the market forecast. Autologous Stem Cell and Non-Stem Cell Based Therapies also provides data about the company and its operations. This report also provides information on the Pricing Strategy, Brand Strategy, Target Client, Distributors/Traders List offered by the company.
Description:
Autologous stem-cell transplantation (also known as autogeneic, autogenic, or autogenous stem-cell transplantation or auto-SCT) is the autologous transplantation of stem cellswhich is, transplantation in which the undifferentiated cells or stem cells (cells from which other types of cells develop) are taken from a person, accumulated, and given back to the same person later. Even though it is most often executed by means of hematopoietic stem cells (antecedent of cells that forms blood) in hematopoietic stem cell transplantation, in some cases cardiac cells are used productively to fix the damages due to heart attacks. Stem cell transplantation can be of two types Autologous stem-cell transplantation and allogenic stem cell transplantation. In the later, the recipient and the donor of stem cells are dissimilar people. In a good number of allogeneic transplants, the stem cells are taken from a donor whose cell type matches closely with the patients cell type.
Autologous Stem Cell and Non-Stem Cell Based Therapies Market competition by top manufacturers/players, with Autologous Stem Cell and Non-Stem Cell Based Therapies sales volume, Price (USD/Unit), Revenue (Million USD) and Market Share for each manufacturer/player; the top players including: NeoStem, Inc., Aastrom Biosciences, Fibrocell Science, Inc., Genzyme Corporation, BrainStorm Cell Therapeutics, Regeneus Ltd., and Dendreon Corporation.
Get Free Sample Copy Of This Report @ https://www.coherentmarketinsights.com/insight/request-sample/523
Important Features that are under offer & key highlights of the report:
What all regional segmentation covered? Can the specific country of interest be added?Currently, the research report gives special attention and focus on the following regions:North America (U.S., Canada, Mexico), Europe (Germany, U.K., France, Italy, Russia, Spain etc), South America (Brazil, Argentina etc) & Middle East & Africa (Saudi Arabia, South Africa etc)** One country of specific interest can be included at no added cost. For inclusion of more regional segment quote may vary.
What all companies are currently profiled in the report?The report Contain the Major Key Players currently profiled in this market.** List of companies mentioned may vary in the final report subject to Name Change / Merger etc.
Can we add or profiled new company as per our need?Yes, we can add or profile new company as per client need in the report. Final confirmation to be provided by the research team depending upon the difficulty of the survey.** Data availability will be confirmed by research in case of a privately held company. Up to 3 players can be added at no added cost.
Can the inclusion of additional Segmentation / Market breakdown is possible?Yes, the inclusion of additional segmentation / Market breakdown is possible to subject to data availability and difficulty of the survey. However, a detailed requirement needs to be shared with our research before giving final confirmation to the client.** Depending upon the requirement the deliverable time and quote will vary.
Get PDF Brochure of Research Report @ https://www.coherentmarketinsights.com/insight/request-pdf/523
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Dynamics in the world mainly, the worldwide 2018-2026 Autologous Stem Cell and Non-Stem Cell Based Therapies Market is analyzed across major global regions. CMI also provides customized specific regional and country-level reports for the following areas:
Region Segmentation:
North America (USA, Canada and Mexico)Europe (Germany, France, UK, Russia and Italy)Asia-Pacific (China, Japan, Korea, India and Southeast Asia)South America (Brazil, Argentina, Columbia etc.)Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)
Further in the report, the Autologous Stem Cell and Non-Stem Cell Based Therapies market is examined for Sales, Revenue, Price and Gross Margin. These points are analyzed for companies, types, and regions. In continuation with this data, the sale price is for various types, applications and region is also included. The Autologous Stem Cell and Non-Stem Cell Based Therapies industry consumption for major regions is given. Additionally, type wise and application wise figures are also provided in this report.
Quick Buy This Premium Report From Here: https://www.coherentmarketinsights.com/insight/buy-now/523
In this study, the years considered to estimate the market size of 2018-2026 Autologous Stem Cell and Non-Stem Cell Based Therapies Market are as follows:History Year: 2015-2017Base Year: 2017Estimated Year: 2018Forecast Year 2018 to 2026
PHATED to be: Yale researchers give shape to big data – Yale News
Scientists now have the ability to collect massive amounts of data on lifes most fundamental processes, such as the intricate choreography whereby a handful of embryonic stem cells give rise to trillions of specialized cells throughout the human body. But data doesnt always translate into knowledge unless the relationship of recorded data points can be presented in accurate, meaningful and visible ways.
The lab of Yales Smita Krishnaswamy, associate professor of genetics and computer science, has developed a new algorithm called PHATE that overcomes many of the shortcomings of existing data visualization tools, which are more susceptible to noise and distortion in the relationship of data points.
The panel above shows how PHATE visualizes the differentiation of human embryonic stem cells into neuronal cells, neural stem cells, cardiac cells, and endothelial cells, as compared to the visualizations created by three other technologies.A cleaner, more detailed representation is helpful, for example, for generating promising new hypotheses.
The researchers work is described Dec. 3 in the journal Nature Biotechnology.
See more here:
PHATED to be: Yale researchers give shape to big data - Yale News
CALQUENCE Significantly Prolonged the Time Patients Lived Without Disease Progression or Death in Previously Untreated Chronic Lymphocytic Leukemia -…
WILMINGTON, Del.--(BUSINESS WIRE)--AstraZeneca today presented results from the interim analysis of the Phase III ELEVATE TN trial, showing that CALQUENCE (acalabrutinib) combined with obinutuzumab or as monotherapy significantly improved progression-free survival (PFS) compared to chlorambucil plus obinutuzumab, a standard chemo-immunotherapy treatment, in patients with previously untreated chronic lymphocytic leukemia (CLL).
The Independent Review Committee (IRC)-assessed results were presented at the 2019 American Society of Hematology Annual Meeting and Exhibition in Orlando, US. At a median follow-up of 28.3 months, CALQUENCE in combination with obinutuzumab or as a monotherapy significantly reduced the risk of disease progression or death by 90% and 80%, respectively, vs. chlorambucil plus obinutuzumab.
In an exploratory analysis, CALQUENCE in combination or alone demonstrated consistent PFS improvements across most pre-specified subgroups of patients with high-risk disease characteristics, including the unmutated immunoglobulin heavy-chain variable gene (IGHV), del(11q) and complex karyotype. Overall, the safety and tolerability profile of CALQUENCE observed in the ELEVATE TN trial was consistent with its known profile.
Jos Baselga, Executive Vice President, Oncology R&D said: On the heels of approvals in the US, Australia and Canada, these full results provide further evidence that CALQUENCE, as a new treatment option for patients with chronic lymphocytic leukemia, demonstrates remarkable efficacy and a favorable tolerability profile. These results also provide, for the first time, post-hoc analysis data exploring the potential progression-free survival benefit of adding obinutuzumab to a BTK inhibitor versus BTK inhibitor monotherapy in a randomized trial.
Dr. Jeff Sharman, Director of Research at Willamette Valley Cancer Institute, Medical Director of Hematology Research for The US Oncology Network, and a lead author of the ELEVATE TN trial, said: In the detailed results from the ELEVATE TN trial comparing CALQUENCE to a commonly used chemo-immunotherapy treatment regimen, CALQUENCE demonstrated a clinically meaningful improvement in progression-free survival, while maintaining its known tolerability and safety profile. These are encouraging results for a patient population that is known to face multiple comorbidities, and where tolerability is a critical factor in their treatment.
Summary of key efficacy results as assessed by IRC from the ELEVATE TN trial at median follow-up of 28.3 months:
Efficacy measure
CALQUENCE plusobinutuzumab
N = 179
CALQUENCEmonotherapyN = 179
Chlorambucil plusobinutuzumabN = 177
PFS
Number of events (%)
14 (7.8)
26 (14.5)
93 (52.5)
Median (95% CI), months
NR(NE, NE)
NR(34.2, NE)
22.6(20.2, 27.6)
HR (95% CI)
0.10 (0.06, 0.17)
0.20 (0.13, 0.30)
-
p-value
<0.0001
<0.0001
-
Estimated PFS at 24 months, %
93
87
47
ORR
ORR, n (%)(95% CI)
168 (93.9)(89.3, 96.5)
153 (85.5)(79.6, 89.9)
139 (78.5)(71.9, 83.9)
p-value
<0.0001
=0.0763
-
OS
Number of events (%)
9 (5.0)
11 (6.1)
17 (9.6)
Median (95% CI), months
NR (NE, NE)
NR (NE, NE)
NR (NE, NE)
HR (95% CI)
0.47 (0.21, 1.06)
0.60 (0.28, 1.27)
-
p-value
=0.0577
=0.1556
-
CI, Confidence Interval; NR, Not Reached; NE, Not Evaluable; HR, Hazard Ratio; ORR, Overall Response Rate, OS, Overall Survival
Adverse events (AEs) led to treatment discontinuation in 11.2% of patients treated with CALQUENCE in combination with obinutuzumab and 8.9% of patients treated with CALQUENCE monotherapy versus 14.1% of patients treated with chlorambucil plus obinutuzumab.
With over two years of follow-up, 79% of patients in both the CALQUENCE-containing arms remain on CALQUENCE as a monotherapy. In the CALQUENCE combination arm (n=178), the most common AEs of any grade (30%) included headache (39.9%), diarrhea (38.8%) and neutropenia (31.5%). In the CALQUENCE monotherapy arm (n=179), the most common AEs of any grade (30%) included headache (36.9%) and diarrhea (34.6%). In the chlorambucil plus obinutuzumab arm (n=169), the most common AEs of any grade (30%) included neutropenia (45.0%), infusion-related reaction (39.6%) and nausea (31.4%).
Other AEs of clinical interest (%)1
CALQUENCE plusobinutuzumabN = 178
CALQUENCEmonotherapyN = 179
Chlorambucil plusobinutuzumabN = 169
Any
Grade 3
Any
Grade 3
Any
Grade 3
Atrial fibrillation
3.4%
0.6%
3.9%
0%
0.6%
0%
Major bleeding
2.8%
1.7%
1.7%
1.7%
1.2%
0%
Hypertension
7.3%
2.8%
4.5%
2.2%
3.6%
3.0%
Infection
69.1%
20.8%
65.4%
14.0%
43.8%
8.3%
SPM excluding NMSC
Stem Cell Therapy Market Size, Share, Trends, and Opportunity Analysis by 2017 – 2025 – The Market Expedition
Global Stem Cell Therapy Market Analysis
The recent report published by TMRR on the global Stem Cell Therapy market is an in-depth analysis of the overall prospects of the Stem Cell Therapy market in the upcoming years. The data collected from credible primary and secondary sources is accurately represented in the report backed up by relevant figures, graphs, and tables. The report includes a quantitative and qualitative analysis of the various aspects of the market by collecting data from the key participants in the Stem Cell Therapy market value chain.
The report reveals that the global Stem Cell Therapy market is set to grow at a CAGR of ~XX% over the forecast period (2019-2029) and surpass the value of ~US$XX by the end of 2029. The presented study also includes a thorough analysis of the micro and macroeconomic factors, regulatory framework, and current trends that are expected to influence the growth of the Stem Cell Therapy market during the assessment period.
Reports are available at cut-down rates for new customers! Offer expires soon!
Request For Discount On This Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1787&source=atm
Vital Information Enclosed in the Stem Cell Therapy Market Report:
Important Queries Addressed in the Report
Request Sample Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787&source=atm
Stem Cell Therapy Market Segmentation
The market study put forward by TMRR segments the global Stem Cell Therapy market to offer a microscopic understanding of the various aspects of the Stem Cell Therapy market. The Stem Cell Therapy market is segmented on the basis of region, product type, end-user, and more.
The study offers a Y-o-Y growth projection of each market segment and sub-segment over the stipulated timeframe of the study.
Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
Customize This Report @ https://www.tmrresearch.com/sample/sample?flag=CR&rep_id=1787&source=atm
Why Buy from TMRR?
Professor Recognized For Cardiac Regeneration Research – WPI News
Glenn Gaudette, William Smith Deans Professor of Biomedical Engineering at Worcester Polytechnic Institute (WPI), has been named a fellow of theNational Academy of Inventors(NAI), the organization announced today. Gaudette is the founding director of the WPI Myocardial Regeneration Lab, where he has pioneered the use of plants as scaffoldingfor heart regeneration.
The NAI Fellows Program highlights academic inventors who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society. Election to NAI Fellow is the highest professional distinction accorded solely to academic inventors.
I am honored and humbled to be selected as a Fellow of the NAI. This prestigious recognition is a reflection of amazing collaborators, fantastic students, risk-taking funding organizations and a supportive family that I have been fortunate to benefit from, said Gaudette. Today, significant engineering and science advancements require a focus on creating value for society, work that flourishes in an open and collaborative environment like the one I enjoy at WPI.
As director of the Myocardial Regeneration Lab, Gaudette focuses broadly on cardiovascular regeneration techniques, but more specifically on developing better ways to deliver cells to damaged myocardium as well as better techniques to analyze cardiac mechanics. He has authored over 75 publications, including a co-edited book on cardiovascular regeneration, has four issued patents, and founded a company based on the technology developed in his laboratory. His research, which is supported by the National Institutes of Health and the National Science Foundation, aims to develop a treatment for the millions of Americans suffering from myocardial infarction and other cardiovascular diseases.
As a member of the NAI 2019 Fellows, Gaudette joins 168 educators and researchers representing 136 universities and governmental and nonprofit research institutes worldwide. Collectively, they hold over 3,500 issued U.S. patents. Among the 2019 Fellows are six recipients of the U.S. National Medal of Technology & Innovation or U.S. National Medal of Science and four Nobel Laureates, as well as recipients of other honors and distinctions. Their collective body of research covers a range of scientific disciplines including neurobehavioral sciences, horticulture, photonics and nanomedicine.
To date, NAI Fellows hold more than 41,500 issued U.S. patents, which have generated over 11,000 licensed technologies and companies, and created more than 36 million jobs. In addition, over $1.6 trillion in revenue has been generated based on NAI Fellow discoveries.
On April 10, 2020, the 2019 NAI Fellows will be inducted at the Heard Museum in Phoenix, Arizona as part of the Ninth Annual NAI Meeting. Laura A. Peter, Deputy Under Secretary of Commerce for Intellectual Property and Deputy Director of the United States Patent and Trademark Office (USPTO),will provide the keynote address for the induction ceremony. At the ceremony, Fellows will be formally inducted by Peter and NAI President Paul R. Sanberg in recognition of their outstanding achievements.
In addition to being named an NAI Fellow, Gaudette is a Fellow of the American Institute for Medical and Biological Engineering. His teams research usingspinach leavesas scaffolds for growing human heart cells has been featured by media outlets throughout the world, including the BBC, theWashington Post,and Time.com. The work was named one of the top medical breakthroughs of the year byBoston Magazineand was the seventh most popular story of 2017 inNational Geographic. He has also worked on a novel technology using fibrin sutures to deliver stem cells to targeted areas of the body to repair diseased or damaged tissue, including cardiac muscle damaged by a heart attack.Outside the lab, Gaudette teaches biomedical engineering design and innovation, biomechanics and physiology. He promotes the development of the entrepreneurial mindset in his students through support provided by the Kern Family Foundationand serves as the director of the Value Creation Initiative at WPI.In 2015, he was named Faculty Member of the Year by the Kern Entrepreneurial Engineering Network (KEEN).
Go here to read the rest:
Professor Recognized For Cardiac Regeneration Research - WPI News
Stem cells may trigger immune repair to mend hearts – BioNews
2 December 2019
Stem cell therapies may become redundant in repairing cardiac function after a heart attack, suggests a new study in mice.
It showed how stem cell treatments can heal hearts by triggering an immune response which can be achieved by using a chemical instead.
'This work is paradigm-shifting because it demonstrates a mechanism to explain a perplexing phenomenon that has intrigued cardiologists as a result of decades of cardiac stem cell trials,' Dr Jonathan Epstein at the University of Pennsylvania's Perelman School of Medicine in Philadelphia told The Scientist.
Stem cell therapies to repair damaged heart tissue are currently being tested in human clinical trials. In these treatments, human stem cells are injected into the heart and this leads to an improvement in heart function. However, how this works is not fully understood.
One possibility is that the injected stem cells are incorporated into the heart tissue and repair the damage. However, the latest study, published in the journal Nature, suggests that this may not be the case. Instead, the study indicated that the repair is actually a result of triggering the innate immune response.
Researchers injected different types of stem cell or a chemical inducer (zymosan) of the innate immune response into an experimental mouse model of heart disease. They saw improvement in heart function that was similar in all cases, and showed that this repair occurs via activation of macrophage cells of the innate immune system.
'The innate immune response acutely altered cellular activity around the injured area of the heart so that it healed with a more optimised scar and improved contractile properties,' said Dr Jeffery Molkentin at the University of Cincinnati and Cincinnati Children's Hospital Medical Centre, Ohio, who led the study. 'The implications of our study are very straightforward and present important new evidence about an unsettled debate in the field of cardiovascular medicine.'
The work could open up new possibilities for optimising the treatments currently in development, as well as alternative new therapies.
'If there is a chemical off-the-shelf, it would be a much more feasible therapy [than stem cell transplants],'Dr Kory Lavine at Washington University in St Louis, Missouri, told Nature News.
Continue reading here:
Stem cells may trigger immune repair to mend hearts - BioNews
Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca – GlobeNewswire
VANCOUVER, British Columbia, Nov. 26, 2019 (GLOBE NEWSWIRE) -- Novoheart (Novoheart or the Company) (TSXV: NVH; FWB: 3NH), a global stem cell biotechnology company, is pleased to announce a collaboration with global biopharmaceutical company AstraZeneca, in an effort to develop the worlds first human-specific in vitro, functional model of heart failure with preserved ejection fraction (HFpEF), a common condition especially among the elderly and in women, with the reported prevalence approaching 10% in women over the age of 80 years.1
Heart failure (HF) is a global pandemic with an estimated 64.3 million cases worldwide in 2017, with an increasing trend in prevalence2. The annual global economic burden of HF is estimated at over US$100 billion3. Accounting for approximately 50% of HF cases, HFpEF in particular is a major and growing public health problem worldwide, with its pathological mechanisms and diverse etiology poorly understood. Due to these complexities, models of the disease available to date, including various animal models, have limited ability to mimic the clinical presentation of HFpEF4. Therefore, drug developers lack an effective tool for preclinical testing of drug candidates for efficacy, and as a result, clinical outcomes for HFpEF have not improved over the last decades, with no effective therapies available.
In collaboration with the Cardiovascular, Renal and Metabolism therapy area of AstraZeneca, the initial phase of the project aims to establish a new in vitro model, leveraging Novohearts proprietary 3-D human ventricular cardiac organoid chamber (hvCOC) technology, that reproduces key phenotypic characteristics of HFpEF. Also known as human heart-in-a-jar, the hvCOC is the only human engineered heart tissue available on the market to date that enables clinically informative assessment of human cardiac pump performance including ejection fraction and developed pressure. Unlike animal models, engineered hvCOCs can be fabricated with specific cellular and matrix compositions, and patient-specific human induced pluripotent stem cells (iPSCs), that allow control over their physical and mechanical properties to mimic those observed in HFpEF patient hearts. Together with Novohearts proprietary hardware and software, this aims to provide a unique assay for understanding the mechanisms of HFpEF, identification of new therapeutic targets, and assessment of novel therapeutics for treating HFpEF patients. Novoheart will exclusively own the intellectual property rights to the newly developed HFpEF hvCOC model.
We are delighted to partner with AstraZeneca, an organization which has long invested in cardiovascular research and is committed to bringing new therapeutic solutions to patients with heart failure, said Novoheart CSO, Dr. Kevin Costa. We look forward to co-developing this new HFpEF hvCOC model into a powerful new tool in the worldwide battle against heart failure.
Regina Fritsche Danielson, Senior Vice President, Head of Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, said, There are significant unmet treatment needs in patients with heart failure with preserved ejection fraction. By combining Novohearts proprietary hvCOC model with our expertise in heart failure, we aim to create the first in vitro model reproducing phenotypic characteristics of heart failure with preserved ejection fraction. This could bridge the gap between in vivo animal models and clinical trials to help accelerate the drug discovery process by providing human-specific preclinical data.
1 Heart Fail Clin. 2014; 10(3):377388.2 Lancet. 2018; 392:1789-1858.3 Int J Cardiol. 2014; 171(3):368-76.4 JACC Basic Transl Sci. 2017; 2(6):770-789.
About Novoheart:
Novoheart is a global stem cell biotechnology company pioneering an array of next-generation human heart tissue prototypes. It is the first company in the world to have engineered miniature living human heart pumps that can revolutionize drug discovery, helping to save time and money for developing new therapeutics. Also known as 'human heart-in-a-jar', Novohearts bio-artificial human heart constructs are created using state-of-the-art and proprietary stem cell and bioengineering approaches and are utilized by drug developers for accurate preclinical testing of the effectiveness and safety of new drugs, maximizing the successes in drug discovery whilst minimizing costs and harm caused to patients. With the recent acquisition of Xellera Therapeutics Limited for manufacturing Good Manufacturing Product (GMP)-grade clinical materials, Novoheart is now developing gene- and cell-based therapies as well as next-generation therapeutics for cardiac repair or regeneration.
For further information, please contact:Ronald Li, CEOinfo@novoheart.com
For media enquiries or interviews, please contact:Media Relationsmedia@novoheart.com
Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.
Cautionary Note Regarding Forward-Looking Statements
Information set forth in this news release may involve forward-looking statements under applicable securities laws. Forward-looking statements are statements that relate to future, not past, events. In this context, forward-looking statements often address expected future business and financial performance, and often contain words such as "anticipate", "believe", "plan", "estimate", "expect", and "intend", statements that an action or event "may", "might", "could", "should", or "will" be taken or occur, or other similar expressions. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements, or other future events, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Such factors include, among others, the risks identified in under the heading Risk Factors in Novohearts annual information form for the year ended June 30, 2019 or other reports and filings with the TSX Venture Exchange and applicable Canadian securities regulators. Forward-looking statements are made based on management's beliefs, estimates and opinions on the date that statements are made and the respective companies undertakes no obligation to update forward-looking statements if these beliefs, estimates and opinions or other circumstances should change, except as required by applicable securities laws. Investors are cautioned against attributing undue certainty to forward-looking statements.
Read the original here:
Novoheart to Co-develop First of its Kind Human Heart-in-a-Jar Model of Heart Failure with AstraZeneca - GlobeNewswire
Canine Stem Cell Therapy Market In Depth Research and Overview 2019 to 2025 – The Chicago Sentinel
This report studies the Global Canine Stem Cell Therapy market size, industry status and forecast, competition landscape and growth opportunity. This research report categorizes the global Canine Stem Cell Therapy market by companies, region, type and end-use industry.
The non-invasive stem cell obtaining procedure, augmented possibility of accomplishing high quality cells, and lower price of therapy coupled with high success rate of positive outcomes have collectively made allogeneic stem cell therapy a preference for veterinary physicians. Moreover, allogeneic stem cell therapy is 100% safe, which further supports its demand on a global level. Pet owners are identified to prefer allogeneic stem cell therapy over autologous therapy, attributed to its relatively lower costs and comparative ease of the entire procedure.
Avail a Sample Copy before Purchase:
The prominent players in the global Canine Stem Cell Therapy market are:
VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics, Medivet Biologics, Okyanos, Vetbiologics, VetMatrix, Magellan Stem Cells, ANIMAL CELL THERAPIES, Stemcellvet
Canine Stem Cell TherapyMarket segment by Types:
Allogeneic Stem CellsAutologous Stem cells
Canine Stem Cell TherapyMarket segment by Applications:Veterinary HospitalsVeterinary ClinicsVeterinary Research Institutes Top of Form
Global Canine Stem Cell Therapy Market Segmentation by Region:
North America, United States, Canada, Mexico, Asia-Pacific, China, India, Japan, South Korea, Australia, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Europe, Germany, France, UK, Italy, Russia, Rest of Europe, Central & South America
Scope of the Report
A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry.
The report is designed to incorporate both qualitative and quantitative aspects of the Canine Stem Cell Therapy Market with respect to each of the regions and countries involved in the study. Furthermore, the report also caters the detailed information about the crucial aspects such as major drivers & restraining factorswhich will define the future growth of the market.
Get Exclusive Discount at:
-Identify the current and future prospects of the global Canine Stem Cell Therapy market in the developed and emerging markets
-Analyse various perspectives of the market with the help of Porters five forces analysis
-Information about the growth of the various material, type, and application that are expected to dominate the market
-Regional and country analysis of the market
-Identify the latest developments, market shares, and strategies employed by the major market players
-3 months analyst support, along with the Market Estimate sheet (in Excel)
In addition, this report discusses the key drivers influencing market growth, opportunities, the challenges and the risks faced by key players and the market as a whole. It also analyses key emerging trends and their impact on present and future development.
The research includes historic data from 2013 to 2018, and forecast to 2025 which makes the reports an invaluable resource for industry executives, marketing, sales and product managers, consultants, analysts, and other people looking for key industry data in readily accessible documents with clearly presented tables and graphs.
Contact Us:
Phone: + 1704 266 3234
Mob: +91-750-707-8687
sales@marketinsightsreports.com
irfan@marketinsightsreports.com
See the rest here:
Canine Stem Cell Therapy Market In Depth Research and Overview 2019 to 2025 - The Chicago Sentinel
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Development, Top Trends and Future Scope with New Industry Opportunities – VaporBlash
Autologous Stem Cell and Non-Stem Cell Based Therapies Market covers the latest developments and growth opportunities. Trends, revenue analysis, Global industry share and dynamics are presented to optimize the business. The vital Track insights, opportunities in existing and emerging segments are explained. This report has published stating that the Global Market is anticipated to expand significantly at Million US$ in 2019 and is projected to reach Million US$ by 2023, at a CAGR of during the forecast period.
Get Sample Copy athttps://www.orianresearch.com/request-sample/1146196
In this report we cover the players as far as item fulfillment and business procedure they embrace to continue in Autologous Stem Cell and Non-Stem Cell Based Therapies market. This report analyses the aggressive scene regarding markets, applications, and geologies. The Competitive Strategic Window enables the seller to characterize an arrangement or fit between their capacities and open doors for future development prospects. During a forecast period, it characterizes the ideal or good fit for the merchants to embrace progressive merger and acquisitions procedures, topography extension, inquire about and advancement, new product acquaintance techniques with execute further business development.
The major players profiled in this report include:,U.S. STEM CELL, INC.,Brainstorm Cell Therapeutics,Cytori,Dendreon Corporation,Fibrocell,Lion Biotechnologies,Caladrius Biosciences,Opexa Therapeutics,Orgenesis,Regenexx,Genzyme,Antria,Regeneus,Mesoblast,Pluristem Therapeutics Inc,Tigenix,Med cell Europe,Holostem,Miltenyi Biotec,
With tables and figures helping analyse worldwide Autologous Stem Cell and Non-Stem Cell Based Therapies market, this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market. .
No. of Pages:139
Inquire more or share questions if any before the purchase on this report @https://www.orianresearch.com/enquiry-before-buying/1146196
Furthermore, the report provides a detailed analysis of the global Autologous Stem Cell and Non-Stem Cell Based Therapies market with analysis of market size by value and volume. Along with this, an analysis of penetration rate and the average revenue generated per user (ARPU) in the market has also been done. The report also includes a detailed analysis of the global Autologous Stem Cell and Non-Stem Cell Based Therapies market by countries, comprising of its market by value, volume, and ARPU and penetration rate.
The end users/applications and product categories analysis:On the basis of product, this report displays the sales volume, revenue (Million USD), product price, market share and growth rate of each type, primarily split into-Embryonic Stem CellResident Cardiac Stem CellsAdult Bone MarrowDerived Stem CellsUmbilical Cord Blood Stem Cells
On the basis on the end users/applications, this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Autologous Stem Cell and Non-Stem Cell Based Therapies for each application, including-Neurodegenerative DisordersAutoimmune Diseases Cancer and TumorsCardiovascular Diseases
Market Share In the context of China-US trade war and global economic volatility and uncertainty, it will have a big influence on this market. Autologous Stem Cell and Non-Stem Cell Based Therapies Report by Material, and Geography Global Forecast to 2023 is a professional and comprehensive research report on the worlds major regional market conditions, focusing on the main regions (North America, Europe and Asia-Pacific) and the main countries (United States, Germany, United Kingdom, Japan, South Korea and China).
Why To Select This Report:
Complete analysis on market dynamics, market status, and competitive Autologous Stem Cell and Non-Stem Cell Based Therapies view is offered.
Forecast Autologous Stem Cell and Non-Stem Cell Based Therapies Industry trends will present the market drivers, constraints and growth opportunities.
This research report will help to understand how the market will grow in the coming years lets say next 5-6 years and so on.
All vital Autologous Stem Cell and Non-Stem Cell Based Therapies Industry verticals are presented in this study like Product Type, Applications and Geographical Regions.
This in-depth market study will help to analyze the and take informed decision in their respective field.
Order a copy of Report @https://www.orianresearch.com/checkout/1146196
Key Points Table of Contents
Chapter 1 Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Overview
Chapter 2 Autologous Stem Cell and Non-Stem Cell Based Therapies Up and Down Stream Industry Analysis
Chapter 3 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis
Chapter 4 2014-2019 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast
Chapter 5 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis
Chapter 6 Asia Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend
Chapter 7 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis
Chapter 8 2014-2019 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast
Chapter 9 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis
Chapter 10 North American Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend
Chapter 11 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Market Analysis
Chapter 12 2014-2019 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast
Chapter 13 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Key Manufacturers Analysis
Chapter 14 Europe Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend
Chapter 15 Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing Channels Development Proposals Analysis
Chapter 16 Development Environmental Analysis
Chapter 17 Autologous Stem Cell and Non-Stem Cell Based Therapies New Project Investment Feasibility Analysis
Chapter 18 2014-2019 Global Autologous Stem Cell and Non-Stem Cell Based Therapies Productions Supply Sales Demand Market Status and Forecast
Chapter 19 Global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Development Trend
Chapter 20 Global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry Research Conclusions
About Us
Orian Research is one of the most comprehensive collections of market intelligence reports on The World Wide Web. Our reports repository boasts of over 500000+ industry and country research reports from over 100 top publishers. We continuously update our repository so as to provide our clients easy access to the worlds most complete and current database of expert insights on global industries, companies, and products. We also specialize in custom research in situations where our syndicate research offerings do not meet the specific requirements of our esteemed clients.
Contact Us
Ruwin Mendez
Vice President Global Sales & Partner Relations
Orian Research Consultants
US: +1 (415) 830-3727 | UK: +44 020 8144-71-27
Email:[emailprotected]
See original here:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Development, Top Trends and Future Scope with New Industry Opportunities - VaporBlash
Upstate SC toddler survives rare cancer and the risky procedure used to treat it – Greenville News
Outcome means a special Thanksgiving
Hailie and Treylin Hyman saw the bruising on their baby girls leg as a sign that the active 1-year-old was learning to walk.
But as a blood test would later reveal, little Maci was actually suffering from an extremely rare blood cancer that threatened her life without a risky treatment - atreatmentalmost as dangerous as the disease.
In the beginning, it was very scary, Hailie Hyman told The Greenville News.
I couldnt think of anything but the bad things, she confessed. It was all about the statistics. And the statistics arent good.
Hailie Hyman holds her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
Terrifying months followed the diagnosis, punctuated by one critical complication after another, leaving the Boiling Springs couple to wonder if Maci would survive.
Somehow, though, the blue-eyed toddler pulled through.And now her family is looking forward to a special Thanksgiving with much to be grateful for.
The Hymans journey began last February atMacis 1-year-old well-child checkup.
We had no idea anything was wrong, her mom said.But they did a routine (blood test) and a couple of hours later, we got a call saying her platelets were very low.
The Hymans were referred to a hematologist who found other abnormalities in Macis blood and scheduled a bone marrow biopsy to investigate further.
Hailie Hyman holds her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
During the procedure, the child suffered an aneurysm in an artery and went into cardiac arrest. The team performed CPR on her for 20 minutes before she was stabilized, her mom said.
Later, in the pediatric intensive care unit, she suffered internal bleeding, too.
It was really hard, she said. There were many nights that I would just pray and pray and pray.
Initially believing Maci had leukemia, doctors subsequently determined she had myelodysplastic syndrome, or MDS.
The condition occurs when abnormal cells in the bone marrow leave the patient unable to make enough blood, according to the American Cancer Society.
Its rare, afflicting as few 10,000 Americans a year, though the actual number is unknown.
Maci Hyman, 1, interacts with hospital staff before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
In children, its rarer still. Most people arediagnosed in their 70s.
We were told that just four out of 1 million children get it every year, Hailie Hyman said.
That made the diagnosis elusive at first, said Dr. Nichole Bryant, a pediatric hematologist-oncologist with Prisma Health-Upstate, formerly Greenville Health System.
Shes the only one Ive seen in my career, she said.
Maci had to have regular blood transfusions, antibiotics and other medications to fight the MDS, Bryant said. But the only hope for a cure was a stem cell transplant at the Medical University of South Carolina in Charleston.
When they said that was the only treatment plan for MDS, I of course went to Google, Hailie Hyman said. I read about transplant patients and ...all the complications. It was terrifying. But no matter how many bad things I saw, we had to do it. There is no other option.
The transplantis extremely risky.
Hailie Hyman looks at a fish tank with her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
First, high doses of chemotherapy are given to destroy the diseased bone marrow, leaving the patient without an immune system, so fighting infections becomes a challenge. Then healthy donor marrow is infused.
Its also fraught with potentially life-threatening complications, including graft vs. host disease, which occurs when immune cells from the donor attack the patients body, Bryant said. Other complications include permanent kidney damage and gastrointestinal problems.
They have to go to hell and back, she said. But its the only option for long-term survival.
Maci had a really rough start, suffering lots and lots and lots of complications, Bryant said.
Her kidneys failed, so she wound up on dialysis. When she couldnt breathe on her own, she was put on a ventilator. And because she couldnt eat, she had to be tube fed.
Hailie Hyman looks at a fish tank with her daughter Maci, 1, before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
She had blistering sores in her mouth and throughout her GI tract, her mom said. Because her liver wasnt functioning properly, her abdomen filled up with fluid that had to be drained. She was bleeding so profusely in her lungs that one of them collapsed.
Maci, who was sedated through much of it, was put on full life support, she said.
That night we almost lost her, her mom said. We were in the hallway crying our eyes out. We didnt know what do to or think. It was pretty scary for a while.
Somehow, Maci made it.
There were so many times during her first months that it seemed like she would not survive, Bryant said. So the fact that she is here ... is really a miracle.
Macis family found an unrelated donor through the National Marrow Donor Program, enlisting hundreds of other people to join the registry in the process, Bryant said.
Nichole Bryant, M.D.(Photo: Provided)
It was an important part of their journey that maybe didnt directly benefit Maci, she said. But if everybody did that, we wouldnt have difficulty finding a donor for anybody.
Doctors have no explanation for why Maci got MDS. She didnt carry the genetic mutation for it and there is no family history.
She is a rare child - and not in a good way, her mom said, adding,Youve got to laugh sometimes or youre going to cry.
Maci was admitted to MUSC on June 2 and released on Oct. 14.
The Hymans, both 22, spent the entire time in Charlestonwhile Hailies mom cared for their older daughter, Athena, now 2.
Treylins employer held his welding job open for him. And other friends and family members did what they could to help.
We had many, many people very generously donate to us to cover expenses at home and living expenses where we were, Hailie Hyman said.
We are thankful for everyone who helped us through it the cards, the gifts, the donations. Every single cent is greatly appreciated.
They still need to travel to Charleston once a week to see the transplant doctor. In between, Maci is seen in Greenville.
She's doing well, but recovery from a transplant can take months to years, Bryant said.
NEWS CHECKUP
Get more news about developments in health andpatient care at the local, state and national level. Pleaseconsider becominga subscriber. Here's our special offer.
Her kidneys are functioning again so she was able to come off dialysis. But she still must take many medications, including anti-rejection drugs that suppress her immune system and leaveher at risk for infection. And she still must be tube fed.
She is miles ahead of where she was two months ago, Bryant said. But she still has a long way to go. Its a long, long road.
Macis mom says she can be up and playing one day and flopped over on the couch another. She still experiences a lot of nausea and vomiting, but is doing well compared to where she was.
Hailie Hyman pulls her daughter Maci, 1, in a wagon in the hallway before an appointment at the Prisma Health Pediatric Hematology Oncology Center Monday, Nov. 4, 2019.(Photo: JOSH MORGAN/Staff)
So as the nation pauses to give thanks this Thanksgiving, she says the family will be countingtheir many blessings family andfriends, Gods mercy, andthe doctors and nurses who saved Macis life.
She has battled a lot and overcome a lot, she said. I have no doubt she will be able to get through.
Want to know more about becoming a marrow donor? Go to bethematch.org.
Read or Share this story: https://www.greenvilleonline.com/story/news/health/2019/11/27/upstate-sc-toddler-survives-rare-cancer-and-risky-procedure-treat/4158606002/
Continued here:
Upstate SC toddler survives rare cancer and the risky procedure used to treat it - Greenville News
The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure – Physician’s Weekly
Heart failure (HF) is the most frequent cardiovascular diagnosis and exacts significant health and financial costs around the globe. It is estimated that at least 26 million people worldwide are living with HF, including nearly 6 million in the United States.1, 2 One in nine U.S. deaths in 2009 included heart failure as a contributing cause and about 50 percent of people in the U.S. with HF die within five years of diagnosis.2 The annual cost of HF-related healthcare services, medication and missed days of work is estimated at $40 billion in the United States and $108 billion globally.3, 4 Quality of life in HF patients is frequently worse than many other chronic diseases and comorbidities are common.5-7 The challenges of HF are expected to grow, as it is estimated that more than 8 million people in the United States alone will have HF by 2030.2 Current therapies improve quality of life in the short-term and have improved long-term survival but a significant number of patients have Class 3 HF despite optimal medical and device therapy. These patients have limited treatment options beyond heart transplant and left ventricular assist devices (LVAD). New therapeutic approaches that address the underlying causes of HF are needed to improve patient outcomes.
Heart failure is a complex disease process and multiple pathways contribute to its development and progression. Myocardial ischemia is frequently an issue in both ischemic and non-ischemic cardiomyopathy as well as HF with preserved and/or reduced ejection fraction. Myocardial ischemia results in insufficient oxygen and nutrients and leads to hypoxia, cardiomyocyte and fibrosis, which all contribute to the progression of heart failure. More effective angiogenesis may prevent this progression. Cell homing also plays a critical role, as injured cardiac tissue secretes factors that lead to the recruitment, proliferation, migration and differentiation of progenitor cells that can help repair tissue damage. Stromal cell-derived factor (SDF)-1 has been shown to play an important role in cardiac repair by mediating cell homing.10 Mitochondrial energy generation is also impaired in HF, leading to decreased contractility and adverse changes to cardiac architecture.11 Scar tissue formed in response to cardiomyocyte injury or death can compromise the hearts mechanical strength or electrical signaling results in myocardial infarction. Inflammatory responses to cardiac tissue damage can promote inappropriate and chronic inflammation and the expression of pro-inflammatory molecules that lead to pathologic changes to cardiac architecture.12, 13
These pathways offer a variety of potential new targets for therapeutic intervention to prevent the development and progression of HF. This opens the door to the development of novel therapies that address the underlying molecular and cellular causes of disease rather than treating HF symptoms alone.
After decades of development, gene-based therapies are now validated therapeutic modalities for the treatment of inherited retinal disorders and cancer and are undergoing clinical evaluation in a variety of inherited, acute and chronic diseases. Nearly two dozen single gene-based therapies for HF have been evaluated in clinical trials.14 Genes evaluated as monogenic gene therapy for HF in clinical trials include vascular endothelial growth factor (VEGF) and fibroblast growth factor type 4 (FGF4) to promote angiogenesis; adenylyl cyclase type 6 (AC6) and sarco/endoplasmic reticulum Ca2+-ATPase type 2 (SERCA2) to improve cardiac calcium homeostasis, which plays a critical role in the contraction and relaxation of heart muscle; and stromal cell-derived factor-1 (SDF-1) to improve cell homing and promote cardiac tissue repair. Late-stage trials of single gene therapies have yielded conflicting results, raising the question as to whether positively impacting a single pathway can be sufficient to overcome detrimental activity of other pathways that contribute to the development and progression of HF. Other potential limitations to HF therapies evaluated in clinical trials to date include the method of delivery, dose and the potency of vectors and gene products.
Given the multiple molecular and cellular pathways active in HF, a multi-gene approach to HF gene therapy may be needed. Simultaneously delivering multiple genes that target diverse HF-related pathways has the potential to improve cardiac biology and function. A triple gene therapy approach (INXN-4001, Triple-Gene LLC, a majority-owned subsidiary of Intrexon Corporation) is currently in clinical development, with each of the genes targeting a specific HF-related pathway. The investigational drug candidate INXN4001 vector expresses: the S100A1 gene product, which regulates calcium-controlled networks and modulates contractility, excitability, maintenance of cellular metabolism and survival; SDF-1a which recruits stem cells, inhibits apoptosis and supports new blood vessel formation; and VEGF-165 which initiates new vessel formation, endothelial cell migration/activation, stem cell recruitment and tissue regeneration. The hypothesis is that the simultaneous delivery of multiple genes in a single vector would more effectively improve multiple aspects of cardiac function compared with single gene therapy. It is delivered by retrograde coronary sinus infusion of a triple effector plasmid designed with a self-cleaving linker to constitutively express human S100A1, SDF-1a and VEGF 165. This route is designed to allow for delivery of a dose to the ventricle which may help achieve improved therapeutic effect.
Several preclinical studies have set the foundation on which to advance a triple gene therapy for HF into the clinic.15-17 Using in vitro studies, transfecting cells derived from patients with dilated cardiomyopathy with a triple gene combination demonstrated improvement in contraction rate and duration, to the levels demonstrated by the control cells and did not result in increased cell death compared to controls.15 Studies in an Adriamycin-induced cardiomyopathy rodent model demonstrated triple gene therapy increased fractional shortening and myocardial wall thickness compared to controls.16 In addition, retrograde coronary sinus infusion of INXN-4001 in a porcine model of ischemic HF resulted in a cardiac-specific biodistribution profile.17
A Phase 1 clinical study has been initiated to evaluate the safety of a single dose of triple gene therapy in stable patients implanted with a LVAD for mechanical support of end-stage HF. An independent Data and Safety Monitoring Board agreed to proceeding to the second cohort following review of the data from the first cohort in the multi-site study.18 The study is ongoing and final results will help to inform our understanding of the potential that multi-gene therapy may play in the treatment of HF.
The recent FDA approvals of gene therapies for an inherited retinal disease and cancer are evidence that gene therapy is a valid therapeutic strategy. Realizing the potential of gene therapy in HF will require appropriately designed clinical trials, but several interesting approaches currently in development may prove to be effective. The results of the initial investigational drug INXN-4001 Phase 1 trial should provide insight into the safety of combining S100A1, SDF-1a and VEGF-165. Evaluation of additional multi-gene combinations will also be important for understanding which targeted pathways yield the greatest effects with respect to relevant clinical endpoints. Continued refinement and optimization of vector design and delivery methods will also be important for advancing further HF gene therapies from bench to bedside.
Read the original:
The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure - Physician's Weekly
Human heart cells are altered by spaceflight, but return mostly to normal on Earth – Space Daily
Heart muscle cells derived from stem cells show remarkable adaptability to their environment during and after spaceflight, according to a study publishing November 7 in the journal Stem Cell Reports.
The researchers examined cell-level cardiac function and gene expression in human heart cells cultured aboard the International Space Station for 5.5 weeks. Exposure to microgravity altered the expression of thousands of genes, but largely normal patterns of gene expression reappeared within 10 days after returning to Earth.
"Our study is novel because it is the first to use human induced pluripotent stem cells to study the effects of spaceflight on human heart function," says senior study author Joseph C. Wu of Stanford University School of Medicine.
"Microgravity is an environment that is not very well understood, in terms of its overall effect on the human body, and studies like this could help shed light on how the cells of the body behave in space, especially as the world embarks on more and longer space missions such as going to the moon and Mars."
Past studies have shown that spaceflight induces physiological changes in cardiac function, including reduced heart rate, lowered arterial pressure, and increased cardiac output. But to date, most cardiovascular microgravity physiology studies have been conducted either in non-human models or at tissue, organ, or systemic levels. Relatively little is known about the role of microgravity in influencing human cardiac function at the cellular level.
To address this question, Wu and his collaborators (including graduate student Alexa Wnorowski, former Stanford graduate student Arun Sharma, now a research fellow at Cedars-Sinai in Los Angeles, and former Stanford graduate student turned astronaut Kathleen Rubins) studied human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). They generated hiPSC lines from three individuals by reprogramming blood cells, and then differentiated them into hiPSC-CMs.
Beating hiPSC-CMs were then launched to the International Space Station aboard a SpaceX spacecraft as part of a commercial resupply service mission. Simultaneously, ground control hiPSC-CMs were cultured on Earth for comparison purposes.
Upon return to Earth, space-flown hiPSC-CMs showed normal structure and morphology. However, they did adapt by modifying their beating pattern and calcium recycling patterns.
In addition, the researchers performed RNA sequencing of hiPSC-CMs harvested at 4.5 weeks aboard the International Space Station, and 10 days after returning to Earth. These results showed that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples.
Most notably, gene pathways related to mitochondrial function were expressed more in space-flown hiPSC-CMs. A comparison of the samples revealed that hiPSC-CMs adopt a unique gene expression pattern during spaceflight, which reverts to one that is similar to groundside controls upon return to normal gravity.
"We're surprised about how quickly human heart muscle cells are able to adapt to the environment in which they are placed, including microgravity," Wu says. "These studies may provide insight into cellular mechanisms that could benefit astronaut health during long-duration spaceflight, or potentially lay the foundation for new insights into improving heart health on Earth."
According to Wu, limitations of the study include its short duration and the use of 2D cell culture. In future studies, the researchers plan to examine the effects of spaceflight and microgravity using more physiologically relevant hiPSC-derived 3D heart tissues with various cell types, including blood vessel cells. "We also plan to test different treatments on the human heart cells to determine if we can prevent some of the changes the heart cells undergo during spaceflight," Wu says.
Research Report: "Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function"
Related LinksCell PressSpace Medicine Technology and Systems
With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.
Our news coverage takes time and effort to publish 365 days a year.
If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
Original post:
Human heart cells are altered by spaceflight, but return mostly to normal on Earth - Space Daily
Celgene to Present New and Updated Data on Key Hematology Pipeline Therapies at American Society of Hematology (ASH) 2019 Annual Meeting – Business…
SUMMIT, N.J.--(BUSINESS WIRE)--Celgene Corporation (NASDAQ: CELG) today announced data from nearly 70 Company-sponsored, global alliance and investigator-initiated clinical studies evaluating Celgenes investigational and approved therapies will be presented at the 61st American Society of Hematology (ASH) Annual Meeting & Exposition, December 7-10, in Orlando, Fla.
Celgene has a deep and ongoing commitment to innovative research and development in treatments for serious blood disorders, with the potential to transform patient outcomes, said Alise Reicin, M.D., President, Global Clinical Development for Celgene. We look forward to ASH as an opportunity to highlight our commitment and leadership in the research and development of novel therapies for the treatment of blood cancers through new insights in both CD19 and BCMA targeted cell therapies and important progress in our myeloid pipeline.
In leukemia and lymphoma, highlighted studies this year include safety and efficacy results from the pivotal TRANSCEND NHL-001 study of an investigational CD-19 targeted chimeric antigen receptor (CAR) T cell therapy lisocabtagene maraleucel (liso-cel) in relapsed/refractory large B-cell non-Hodgkin lymphoma. Additional liso-cel data from three ongoing studies will evaluate the use of the therapy in an outpatient setting, as well as in transplant noneligible patients with relapsed/refractory large B-cell non-Hodgkin lymphoma (PILOT) and in patients with relapsed/refractory chronic lymphocytic leukemia (TRANSCEND CLL-004).
In multiple myeloma, other notable investigational cell therapy abstracts include the first phase 1 clinical data from the bi-specific T-Cell Engager (TCE) CC-93269 and updated phase 1 clinical data from CAR T program, bb21217, both targeting the B-cell maturation antigen (BCMA) in relapsed/refractory disease.
Several abstracts focusing on data in myeloid diseases including longer-term response data from the phase 3 MEDALIST study of luspatercept to treat anemia in patients with IPSS-R very low-, low-, or intermediate-risk myelodysplastic syndromes with ring sideroblasts who require red-blood-cell (RBC) transfusions will be presented. Additionally, the first data from a phase 2 study of luspatercept in myelofibrosis-associated anemia, results from a study of fedratinib in myelofibrosis patients with low platelet counts, and the first data from CELMoD agent CC-90009, a GSPT1 degrader in relapsed or refractory acute myeloid leukemia (AML) will be presented.
Selected abstracts include*:
Lymphoma & Chronic Lymphocytic Leukemia
Multiple Myeloma
Myeloid Diseases
Beta thalassemia
A complete listing of abstracts can be found at https://www.hematology.org/Annual-Meeting/abstracts/
The safety and efficacy of investigational agents and/or investigational uses of approved marketed products have not been established. There is no guarantee that the agents will receive health authority approval or become commercially available in any country for the uses being investigated.
*All times Eastern Time
About REVLIMID
REVLIMID (lenalidomide) in combination with dexamethasone (dex) is indicated for the treatment of adult patients with multiple myeloma (MM)
REVLIMID is indicated as maintenance therapy in adult patients with MM following autologous hematopoietic stem cell transplantation (auto-HSCT)
REVLIMID is indicated for the treatment of adult patients with transfusion-dependent anemia due to low-or intermediate-1risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities
REVLIMID is indicated for the treatment of adult patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib
REVLIMID in combination with a rituximab product is indicated for the treatment of adult patients with previously treated follicular lymphoma (FL)
REVLIMID in combination with a rituximab product is indicated for the treatment of adult patients with previously treated marginal zone lymphoma (MZL)
REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials
REVLIMID is only available through a restricted distribution program, REVLIMID REMS.
Important Safety Information
WARNING: EMBRYO-FETAL TOXICITY, HEMATOLOGIC TOXICITY, and VENOUS and ARTERIAL THROMBOEMBOLISM
Embryo-Fetal Toxicity
Do not use REVLIMID during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting REVLIMID treatment. Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after REVLIMID treatment. To avoid embryo-fetal exposure to lenalidomide, REVLIMID is only available through a restricted distribution program, the REVLIMID REMS program.
Information about the REVLIMID REMS program is available at http://www.celgeneriskmanagement.com or by calling the manufacturers toll-free number 1-888-423-5436.
Hematologic Toxicity (Neutropenia and Thrombocytopenia)
REVLIMID can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with del 5q MDS had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.
Venous and Arterial Thromboembolism
REVLIMID has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with MM who were treated with REVLIMID and dexamethasone therapy. Monitor for and advise patients about signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patients underlying risks.
CONTRAINDICATIONS
Pregnancy: REVLIMID can cause fetal harm when administered to a pregnant female and is contraindicated in females who are pregnant. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential risk to the fetus
Severe Hypersensitivity Reactions: REVLIMID is contraindicated in patients who have demonstrated severe hypersensitivity (e.g., angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis) to lenalidomide
WARNINGS AND PRECAUTIONS
Embryo-Fetal Toxicity: See Boxed WARNINGS
REVLIMID REMS Program: See Boxed WARNINGS: Prescribers and pharmacies must be certified with the REVLIMID REMS program by enrolling and complying with the REMS requirements; pharmacies must only dispense to patients who are authorized to receive REVLIMID. Patients must sign a Patient-Physician Agreement Form and comply with REMS requirements; female patients of reproductive potential who are not pregnant must comply with the pregnancy testing and contraception requirements and males must comply with contraception requirements
Hematologic Toxicity: REVLIMID can cause significant neutropenia and thrombocytopenia. Monitor patients with neutropenia for signs of infection. Advise patients to observe for bleeding or bruising, especially with use of concomitant medications that may increase risk of bleeding. Patients may require dose interruption and/or dose reduction. MM: Monitor complete blood counts (CBC) in patients taking REVLIMID + dexamethasone or REVLIMID as maintenance therapy, every 7 days for the first 2 cycles, on days 1 and 15 of cycle 3, and every 28 days thereafter. MDS: Monitor CBC in patients on therapy for del 5q MDS, weekly for the first 8 weeks of therapy and at least monthly thereafter. See Boxed WARNINGS for further information. MCL: Monitor CBC in patients taking REVLIMID for MCL weekly for the first cycle (28 days), every 2 weeks during cycles 2-4, and then monthly thereafter. FL/MZL: Monitor CBC in patients taking REVLIMID for FL or MZL weekly for the first 3 weeks of Cycle 1 (28 days), every 2 weeks during Cycles 2-4, and then monthly thereafter
Venous and Arterial Thromboembolism: See Boxed WARNINGS: Venous thromboembolic events (DVT and PE) and arterial thromboses (MI and CVA) are increased in patients treated with REVLIMID. Patients with known risk factors, including prior thrombosis, may be at greater risk and actions should be taken to try to minimize all modifiable factors (e.g., hyperlipidemia, hypertension, smoking). Thromboprophylaxis is recommended and the regimen should be based on the patients underlying risks. ESAs and estrogens may further increase the risk of thrombosis and their use should be based on a benefit-risk decision
Increased Mortality in Patients With CLL: In a clinical trial in the first-line treatment of patients with CLL, single-agent REVLIMID therapy increased the risk of death as compared to single-agent chlorambucil. Serious adverse cardiovascular reactions, including atrial fibrillation, myocardial infarction, and cardiac failure, occurred more frequently in the REVLIMID arm. REVLIMID is not indicated and not recommended for use in CLL outside of controlled clinical trials
Second Primary Malignancies (SPM): In clinical trials in patients with MM receiving REVLIMID and in patients with FL or MZL receiving REVLIMID + rituximab therapy, an increase of hematologic plus solid tumor SPM, notably AML, have been observed. In MM patients, MDS was also observed. Monitor patients for the development of SPM. Take into account both the potential benefit of REVLIMID and risk of SPM when considering treatment
Increased Mortality with Pembrolizumab: In clinical trials in patients with MM, the addition of pembrolizumab to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with MM with a PD-1-or PD-L1- blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials
Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with REVLIMID + dexamethasone. Pre-existing viral liver disease, elevated baseline liver enzymes, and concomitant medications may be risk factors. Monitor liver enzymes periodically. Stop REVLIMID upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered
Severe Cutaneous Reactions Including Hypersensitivity Reactions: Angioedema and severe cutaneous reactions including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) have been reported. These events can be fatal. Patients with a prior history of Grade 4 rash associated with thalidomide treatment should not receive REVLIMID. REVLIMID interruption or discontinuation should be considered for Grade 2-3 skin rash. REVLIMID must be discontinued for angioedema, Grade 4 rash, exfoliative or bullous rash, or if SJS, TEN, or DRESS is suspected and should not be resumed following discontinuation for these reactions
Tumor Lysis Syndrome (TLS): Fatal instances of TLS have been reported during treatment with REVLIMID. The patients at risk of TLS are those with high tumor burden prior to treatment. Closely monitor patients at risk and take appropriate preventive approaches
Tumor Flare Reaction (TFR): TFR has occurred during investigational use of REVLIMID for CLL and lymphoma. Monitoring and evaluation for TFR is recommended in patients with MCL, FL, or MZL. Tumor flare may mimic the progression of disease (PD). In patients with Grade 3 or 4 TFR, it is recommended to withhold treatment with REVLIMID until TFR resolves to Grade 1. REVLIMID may be continued in patients with Grade 1 and 2 TFR without interruption or modification, at the physicians discretion
Impaired Stem Cell Mobilization: A decrease in the number of CD34+ cells collected after treatment (>4 cycles) with REVLIMID has been reported. Consider early referral to transplant center to optimize timing of the stem cell collection
Thyroid Disorders: Both hypothyroidism and hyperthyroidism have been reported. Measure thyroid function before starting REVLIMID treatment and during therapy
Early Mortality in Patients With MCL: In another MCL study, there was an increase in early deaths (within 20 weeks); 12.9% in the REVLIMID arm versus 7.1% in the control arm. Risk factors for early deaths include high tumor burden, MIPI score at diagnosis, and high WBC at baseline (10 x 109/L)
ADVERSE REACTIONS
Multiple Myeloma
Myelodysplastic Syndromes
Mantle Cell Lymphoma
Follicular Lymphoma/Marginal Zone Lymphoma
DRUG INTERACTIONS
Periodically monitor digoxin plasma levels due to increased Cmax and AUC with concomitant REVLIMID therapy. Patients taking concomitant therapies such as erythropoietin-stimulating agents or estrogen-containing therapies may have an increased risk of thrombosis. It is not known whether there is an interaction between dexamethasone and warfarin. Close monitoring of PT and INR is recommended in patients with MM taking concomitant warfarin
USE IN SPECIFIC POPULATIONS
Please see full Prescribing Information, including Boxed WARNINGS, for REVLIMID.
About INREBIC
INREBIC (fedratinib) is indicated for the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis (MF).
IMPORTANT SAFETY INFORMATION
WARNING: ENCEPHALOPATHY INCLUDING WERNICKES
Serious and fatal encephalopathy, including Wernickes, has occurred in patients treated with INREBIC. Wernickes encephalopathy is a neurologic emergency. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.
WARNINGS AND PRECAUTIONS
Encephalopathy, including Wernickes: Serious and fatal encephalopathy, including Wernickes encephalopathy, has occurred in INREBIC-treated patients. Serious cases were reported in 1.3% (8/608) of patients treated with INREBIC in clinical trials and 0.16% (1/608) of cases were fatal.
Wernickes encephalopathy is a neurologic emergency resulting from thiamine (Vitamin B1) deficiency. Signs and symptoms of Wernickes encephalopathy may include ataxia, mental status changes, and ophthalmoplegia (e.g., nystagmus, diplopia). Any change in mental status, confusion, or memory impairment should raise concern for potential encephalopathy, including Wernickes, and prompt a full evaluation including a neurologic examination, assessment of thiamine levels, and imaging. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.
Anemia: New or worsening Grade 3 anemia occurred in 34% of INREBIC-treated patients. The median time to onset of the first Grade 3 anemia was approximately 2 months, with 75% of cases occurring within 3 months. Mean hemoglobin levels reached nadir after 12 to 16 weeks with partial recovery and stabilization after 16 weeks. Red blood cell transfusions were received by 51% of INREBIC-treated patients and permanent discontinuation of INREBIC occurred due to anemia in 1% of patients. Consider dose reduction for patients who become red blood cell transfusion dependent
Thrombocytopenia: New or worsening Grade 3 thrombocytopenia during the randomized treatment period occurred in 12% of INREBIC-treated patients. The median time to onset of the first Grade 3 thrombocytopenia was approximately 1 month; with 75% of cases occurring within 4 months. Platelet transfusions were received by 3.1% INREBIC-treated patients. Permanent discontinuation of treatment due to thrombocytopenia and bleeding that required clinical intervention both occurred in 2.1% of INREBIC-treated patients. Obtain a complete blood count (CBC) at baseline, periodically during treatment, and as clinically indicated. For Grade 3 thrombocytopenia with active bleeding or Grade 4 thrombocytopenia, interrupt INREBIC until resolved to less than or equal to Grade 2 or baseline. Restart dose at 100 mg daily below the last given dose and monitor platelets as clinically indicated.
Gastrointestinal Toxicity: Gastrointestinal toxicities are the most frequent adverse reactions in INREBIC-treated patients. During the randomized treatment period, diarrhea occurred in 66% of patients, nausea in 62% of patient and vomiting in 39% of patients. Grade 3 diarrhea 5% and vomiting 3.1% occurred. The median time to onset of any grade nausea, vomiting, and diarrhea was 1 day, with 75% of cases occurring within 2 weeks of treatment. Consider providing appropriate prophylactic anti-emetic therapy (e.g., 5-HT3 receptor antagonists) during INREBIC treatment. Treat diarrhea with anti-diarrheal medications promptly at the first onset of symptoms. Grade 3 or higher nausea, vomiting, or diarrhea not responsive to supportive measures within 48 hours, interrupt INREBIC until resolved to Grade 1 or less or baseline. Restart dose at 100 mg daily below the last given dose. Monitor thiamine levels and replete as needed.
Hepatic Toxicity: Elevations of ALT and AST (all grades) during the randomized treatment period occurred in 43% and 40%, respectively, with Grade 3 or 4 in 1% and 0%, respectively, of INREBIC-treated patients. The median time to onset of any grade transaminase elevation was approximately 1 month, with 75% of cases occurring within 3 months. Monitor hepatic function at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher ALT and/or AST elevations (greater than 5 ULN), interrupt INREBIC dose until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose. If re-occurrence of a Grade 3 or higher elevation of ALT/AST, discontinue treatment with INREBIC.
Amylase and Lipase Elevation: Grade 3 or higher amylase 2% and/or lipase 10% elevations developed in INREBIC-treated patients. The median time to onset of any grade amylase or lipase elevation was 15 days, with 75% of cases occurring within 1 month of starting treatment. One patient developed pancreatitis in the fedratinib clinical development program (n=608) and pancreatitis resolved with treatment discontinuation. Monitor amylase and lipase at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher amylase and/or lipase elevations, interrupt INREBIC until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose.
ADVERSE REACTIONS: The most common adverse reactions for INREBIC treated vs. placebo were diarrhea (66% vs. 16%), nausea (62% vs. 15%), anemia (40% vs. 14%), and vomiting (39% vs. 5%). Dosage interruptions due to an adverse reaction during the randomized treatment period occurred in 21% of patients who received INREBIC. Adverse reactions requiring dosage interruption in >3% of patients who received INREBIC included diarrhea and nausea. Dosage reductions due to an adverse reaction during the randomized treatment period occurred in 19% of patients who received INREBIC. Adverse reactions requiring dosage reduction in >2% of patients who received INREBIC included anemia (6%), diarrhea (3%), vomiting (3%), and thrombocytopenia (2%).
DRUG INTERACTIONS: Coadministration of INREBIC with a strong CYP3A4 inhibitor increases fedratinib exposure. Increased exposure may increase the risk of adverse reactions. Consider alternative therapies that do not strongly inhibit CYP3A4 activity. Alternatively, reduce the dose of INREBIC when administering with a strong CYP3A4 inhibitor. Avoid INREBIC with strong and moderate CYP3A4 inducers. Avoid INREBIC with dual CYP3A4 and CYP2C19 inhibitor. Coadministration of INREBIC with drugs that are CYP3A4 substrates, CYP2C19 substrates, or CYP2D6 substrates increases the concentrations of these drugs, which may increase the risk of adverse reactions of these drugs. Monitor for adverse reactions and adjust the dose of drugs that are CYP3A4, CYP2C19, or CYP2D6 substrates as necessary when coadministered with INREBIC.
PREGNANCY/LACTATION: Consider the benefits and risks of INREBIC for the mother and possible risks to the fetus when prescribing INREBIC to a pregnant woman. Due to the potential for serious adverse reactions in a breastfed child, advise patients not to breastfeed during treatment with INREBIC, and for at least 1 month after the last dose.
RENAL IMPAIRMENT: Reduce INREBIC dose when administered to patients with severe renal impairment. No modification of the starting dose is recommended for patients with mild to moderate renal impairment. Due to potential increase of exposure, patients with preexisting moderate renal impairment require more intensive safety monitoring, and if necessary, dose modifications based on adverse reactions.
HEPATIC IMPAIRMENT: Avoid use of INREBIC in patients with severe hepatic impairment.
Please see full Prescribing Information, including Boxed WARNING.
About Celgene
Celgene Corporation, headquartered in Summit, New Jersey, is an integrated global biopharmaceutical company engaged primarily in the discovery, development and commercialization of innovative therapies for the treatment of cancer and inflammatory diseases through next-generation solutions in protein homeostasis, immuno-oncology, epigenetics, immunology and neuro-inflammation. For more information, please visit http://www.celgene.com. Follow Celgene on Social Media: Twitter, Pinterest, LinkedIn, Facebook and YouTube.
FORWARD-LOOKING STATEMENTS
This press release contains forward-looking statements, which are generally statements that are not historical facts. Forward-looking statements can be identified by the words "expects," "anticipates," "believes," "intends," "estimates," "plans," "will," "outlook" and similar expressions. Forward-looking statements are based on management's current plans, estimates, assumptions and projections, and speak only as of the date they are made. We undertake no obligation to update any forward-looking statement in light of new information or future events, except as otherwise required by law. Forward-looking statements involve inherent risks and uncertainties, most of which are difficult to predict and are generally beyond our control. Actual results or outcomes may differ materially from those implied by the forward-looking statements as a result of the impact of a number of factors, many of which are discussed in more detail in our Annual Report on Form 10-K and our other reports filed with the U.S. Securities and Exchange Commission, including factors related to the proposed transaction between Bristol-Myers Squibb and Celgene, such as, but not limited to, the risks that: management's time and attention is diverted on transaction related issues, including the planned divestiture of OTEZLA; disruption from the proposed transaction makes it more difficult to maintain business, contractual and operational relationships; legal proceedings are instituted against Bristol-Myers Squibb, Celgene or the combined company; and Bristol-Myers Squibb, Celgene or the combined company is unable to retain key personnel.
Hyperlinks are provided as a convenience and for informational purposes only. Celgene bears no responsibility for the security or content of external websites.
All trademarks are the property of their respective owners.
Financial Contrast: BioRestorative Therapies (OTCMKTS:BRTX) and Livongo Health (OTCMKTS:LVGO) – DFS Caller
BioRestorative Therapies (OTCMKTS:BRTX) and Livongo Health (NASDAQ:LVGO) are both medical companies, but which is the better stock? We will compare the two companies based on the strength of their risk, institutional ownership, profitability, earnings, valuation, analyst recommendations and dividends.
Institutional and Insider Ownership
0.1% of Livongo Health shares are owned by institutional investors. 17.9% of BioRestorative Therapies shares are owned by company insiders. Strong institutional ownership is an indication that hedge funds, endowments and large money managers believe a stock will outperform the market over the long term.
Analyst Recommendations
This is a breakdown of recent ratings and recommmendations for BioRestorative Therapies and Livongo Health, as reported by MarketBeat.
Livongo Health has a consensus target price of $44.30, indicating a potential upside of 71.17%. Given Livongo Healths higher probable upside, analysts plainly believe Livongo Health is more favorable than BioRestorative Therapies.
Profitability
This table compares BioRestorative Therapies and Livongo Healths net margins, return on equity and return on assets.
Valuation & Earnings
This table compares BioRestorative Therapies and Livongo Healths top-line revenue, earnings per share (EPS) and valuation.
BioRestorative Therapies has higher earnings, but lower revenue than Livongo Health.
Summary
Livongo Health beats BioRestorative Therapies on 7 of the 9 factors compared between the two stocks.
BioRestorative Therapies Company Profile
BioRestorative Therapies, Inc. develops therapeutic products and medical therapies using cell and tissue protocols, primarily involving adult stem cells for the treatment of disc/spine disease and metabolic disorders. The company's lead cell therapy candidate is the BRTX-100, which focuses on providing non-surgical treatment for protruding and bulging lumbar discs in patients suffering from chronic lumbar disc disease. It also develops the ThermoStem program, a pre-clinical program for the treatment of metabolic diseases, such as type 2 diabetes, obesity, hypertension, and other metabolic disorders, as well as cardiac deficiencies. In addition, the company provides curved needle device, a needle system with a curved inner cannula that allows access to difficult-to-locate regions for the delivery or removal of fluids and other substances. Further, it offers skin care products under the Stem Pearls brand name. BioRestorative Therapies, Inc. has a research and development agreement with Rohto Pharmaceutical Co., Ltd.; and a research agreement with Pfizer, Inc. and the University of Pennsylvania. The company was formerly known as Stem Cell Assurance, Inc. and changed its name to BioRestorative Therapies, Inc. in August 2011. BioRestorative Therapies, Inc. was incorporated in 1997 and is headquartered in Melville, New York.
Livongo Health Company Profile
Livongo Health, Inc. provides an integrated suite of solutions for the healthcare industry in North America. It solutions promote health behavior change based on real-time data capture supported by intuitive devices and insights driven by data science. The company offers a platform that provides cellular-connected devices, supplies, informed coaching, data science-enabled insights, and facilitates access to medications. Its products include Livongo for Diabetes, Livongo for Hypertension, Livongo for Prediabetes and Weight Management, and Livongo for Behavioral Health by myStrength. The company was formerly known as EosHealth, Inc. and changed its name to Livongo Health, Inc. in 2014. Livongo Health, Inc. was incorporated in 2008 and is headquartered in Mountain View, California.
See the original post:
Financial Contrast: BioRestorative Therapies (OTCMKTS:BRTX) and Livongo Health (OTCMKTS:LVGO) - DFS Caller
Space travel affects heart cells, but only temporarily – BBC Focus Magazine
The thought of spaceflight may make the heart skip a beat, but actually travelling beyond Earth could alter the organs cells.
With extended stays aboard the International Space Station (ISS) commonplace, and the likelihood of humans spending longer periods in space increasing, there is a need to better understand the effects of micro-gravity on cardiac function.
New research suggests heart muscle cells derived from stem cells have a remarkable ability to adapt to their environment during and after spaceflight.
Scientists examined cell-level cardiac function and gene expression in human heart cells cultured aboard the International Space Station for five-and-a-half weeks.They found that exposure to micro-gravity changed the expression of thousands of genes, but largely normal patterns reappeared within 10 days after returning to Earth.
Read more about the body in space:
Senior study author, Joseph Wu, of Stanford University School of Medicine, said: Our study is novel because it is the first to use human induced pluripotent stem cells to study the effects of spaceflight on human heart function.
Micro-gravity is an environment that is not very well understood, in terms of its overall effect on the human body, and studies like this could help shed light on how the cells of the body behave in space, especially as the world embarks on more and longer space missions such as going to the Moon and Mars.
Until now, most studies on how the heart reacts to micro-gravity have been conducted in either non-human models or at tissue, organ or systemic level.To address this, the beating cells were launched to the ISS aboard a SpaceX spacecraft as part of a commercial resupply service mission.Simultaneously, they were also cultured on Earth for comparison purposes.
When they returned to the planet, the cells showed normal structure and morphology.However, they did adapt by modifying their beating pattern and calcium recycling patterns.
Immunofluorescence imaging of the cells grown in micro-gravity aboard the International Space Station Joseph Wu lab, Stanford University School of Medicine/PA
Researchers sequenced the cells harvested at four-and-a-half weeks aboard the ISS, and 10 days after returning to Earth.Results showed that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples.
Most notably, gene pathways related to mitochondrial function were expressed more in the space-flown cells, according to the research published in the Stem Cells Reports journal.
A comparison of the samples revealed the space cells adopted a unique gene expression pattern during spaceflight, which reverted to one that is similar to ground-side controls upon return to normal gravity.
Dr Wu added: Were surprised about how quickly human heart muscle cells are able to adapt to the environment in which they are placed, including micro-gravity.
These studies may provide insight into cellular mechanisms that could benefit astronaut health during long-duration spaceflight, or potentially lay the foundation for new insights into improving heart health on Earth.
Read more:
Space travel affects heart cells, but only temporarily - BBC Focus Magazine
Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne’s…
CHICAGO, Nov.5, 2019 /PRNewswire/ -- Scientists from Dystrogen Therapeutics Corp. published data supporting cardioprotective effects of the Company's therapy for muscular dystrophy disorders. Cardiomyopathy is the most devastating cause of morbidity and mortality in Duchenne Muscular Dystrophy (DMD) patients and affects 30% of patients by 14years of age and 50% of patients by 18years of age. Heart failure in these patients is the result of cardiac myocyte death and fibrosis, leading to both diastolic and systolic dysfunction. Dystrogen Therapeutics Corp has developed an engineered chimeric cell therapy which has been previously shown to restore muscle function in pre-clinical studies. For Duchenne's muscular dystrophy, the company has developed dystrophin expressing chimeras "DECs." Using the company's proprietary technology, DECs are created by an ex vivo fusion of allogeneic human myoblast from a healthy donor with autologous human myoblast received from DMD patient. DECs have been shown to maintain the ability to express normal dystrophin protein in previously published pre-clinical studies. The new study published in the October 15th, 2019 online edition of the journal Stem Cell Reports and Reviewsconfirmed the protective effect of DEC on cardiac function after intraosseous delivery shown by increased values of both ejection fraction and fractional shortening, which at 90days revealed a rebound effect when compared to the vehicle injected controls and mice receiving not-chimeric cell therapy. Moreover, these functional improvements correlated with restoration of dystrophin expression in cardiac muscle at 90days post-DEC treatment.
"These findings are potentially significant for the treatment of DMD," said Dr. Maria Siemionow, MD, PhD Dystrogen Therapeutics Corp chief scientific officer and the therapy's inventor. "This study establishes DEC as a promising new option for cardiac protection and potential amelioration of DMD related cardiac pathology."
"These data add to the growing body of literature supporting the potential of our chimeric cell platform to restore systemic muscle function, with less potential side effects then gene therapy-based approaches," said Dr. Kris Siemionow, MD, PhD Dystrogen Therapeutics Corp CEO. "We are very pleased to have these data published in a highly relevant journal for the field and look forward to further exploring this opportunity."
About Dystrogen Therapeutics
Dystrogen Therapeutics is a clinical-stage life sciences company committed to developing personalized therapies for rare diseases. The company has developed a chimeric cell therapy platform. Dystrophin expressing chimeras "DEC" are based on ex vivo fusion of allogeneic human myoblast derived from donors with autologous human myoblast received from the DMD patient, where chimeric cells maintain the ability to express normal dystrophin protein. DEC cells increase the number/pool of normal myoblasts and reduce inflammation. DEC cells induce replacement of fibrotic tissue, thus significantly improving muscle strength and function in DMD pre-clinical studies. The therapy minimizes immune response effects and the need for immunosuppression. This new approach will be based on delivery and restoration of dystrophin in affected muscles preventing the premature loss of mobility and early mortality of DMD patients. The company is planning on enrolling patients for its DEC chimeric cell therapy Duchenne muscular dystrophy trial. This therapy offers a unique advantage and allows the patient's body and immune system to accept the chimeric cells without rejection. Pre-clinical results have demonstrated that increased dystrophin levels correlate with improved functional outcomes. First clinical results from DEC therapy are expected in late 2020.
Contact: info@dystrogen.com
SOURCE Dystrogen Therapeutics Corp
Follow this link:
Dystrogen Therapeutics Announces That Treatment With Dystrophin Expressing Chimeric (DEC) Cells Improves Cardiac Function in Preclinical Duchenne's...
AVROBIO, Inc. Reports Third Quarter 2019 Financial Results and Provides Business Update – Business Wire
CAMBRIDGE, Mass.--(BUSINESS WIRE)--AVROBIO, Inc. (NASDAQ: AVRO) (the Company), a Phase 2 clinical-stage gene therapy company, today reported financial results for the third quarter ended September 30, 2019 and provided a business update.
We are thrilled with the progress across our pipeline, including the dosing of the first patient in our cystinosis program and receipt of orphan drug designation for our investigational gene therapy for Gaucher disease, commented Geoff MacKay, President and Chief Executive Officer of AVROBIO. In our Fabry program, we have now dosed eight patients across two clinical trials and we are on track to use our optimized lentiviral vector and a conditioning regimen utilizing therapeutic drug monitoring for the first time to dose a patient in our Phase 2 clinical trial for Fabry disease by the end of 2019. While our rapid expansion and early data have been exciting, we are humbled by the needs of the rare disease communities with whom we engage. They impress a sense of urgency on our work to deliver a new paradigm that we believe can supersede current treatment options and potentially provide patients freedom from a lifetime of disease.
Program Updates and Milestones
Third Quarter 2019 Financial Results
AVROBIO reported a net loss of $17.1 million for the third quarter of 2019 as compared to a net loss of $11.6 million for the comparable period in 2018. This increase was due to increased research and development expenses, as well as increased general and administrative expenses.
Research and development expenses were $13.0 million for the third quarter of 2019 as compared to $9.2 million for the comparable period in 2018. This increase was driven by increased program development activities related to the advancement of the Companys pipeline, as well as increased personnel-related costs resulting from an increase in employee headcount.
General and administrative expenses were $5.0 million for the third quarter of 2019 as compared to $3.0 million for the comparable period in 2018. This increase was primarily due to an increase in employee headcount, expenses associated with being a publicly traded company, including consulting expenses, and the impact of non-cash stock-based compensation.
As of September 30, 2019, AVROBIO had $206.4 million in cash and cash equivalents, as compared to $126.3 million in cash and cash equivalents as of December 31, 2018. The cash balance as of September 30, 2019 reflects the receipt of net proceeds of $129.5 million from the Companys July 2019 follow-on equity offering. Based on the Companys current operating plan, AVROBIO expects its cash and cash equivalents as of September 30, 2019 will enable the Company to fund its operating expenses and capital expenditure requirements into the second half of 2021.
About AVROBIO, Inc.
AVROBIO, Inc. is a leading, Phase 2 gene therapy company focused on the development of its investigational gene therapy, AVR-RD-01, in Fabry disease, as well as additional gene therapy programs in other lysosomal storage disorders including Gaucher disease, cystinosis and Pompe disease. The Companys plato platform includes a proprietary vector system, automated cell manufacturing solution and refined conditioning regimen deploying therapeutic drug monitoring. AVROBIO is headquartered in Cambridge, MA and has offices in Toronto, ON. For additional information, visit http://www.avrobio.com.
Forward-Looking Statements
This press release contains forward-looking statements, including statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as aims, anticipates, believes, could, estimates, expects, forecasts, goal, intends, may, plans, possible, potential, seeks, will, and variations of these words or similar expressions that are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements regarding our business strategy, prospective products and goals, the therapeutic potential of our product candidates, the design, commencement, enrollment and timing of ongoing or planned clinical trials, clinical trial results, product approvals and regulatory pathways, the intended incentives conferred by orphan-drug designation, potential regulatory approvals and the timing thereof, expected benefits from the appointment of Ms. Verdin to the position of Chief Human Resources Officer and Ms. May to the position of Chief Commercial Officer, anticipated benefits of our gene therapy platform including potential impact on our commercialization activities, timing and likelihood of success, plans and objectives of management for future operations, future results of anticipated products, and the market opportunity for and anticipated commercial activities relating to our product candidates, and statements regarding the Companys financial and cash position and expected cash runway. Any such statements in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Results in preclinical or early stage clinical trials may not be indicative of results from later stage or larger scale clinical trials and do not ensure regulatory approval. You should not place undue reliance on these statements, or the scientific data presented.
Any forward-looking statements in this press release are based on AVROBIOs current expectations, estimates and projections about our industry as well as managements current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of AVROBIOs product candidates will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators, the risk that AVROBIO may not realize the intended benefits of our gene therapy platform, including the features of our plato platform, the risk that our product candidates or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving AVROBIOs product candidates, the risk that we will be unable to obtain and maintain regulatory approval for our product candidates, the risk that the size and growth potential of the market for our product candidates will not materialize as expected, risks associated with our dependence on third-party suppliers and manufacturers, risks regarding the accuracy of our estimates of expenses and future revenue, risks relating to our capital requirements and needs for additional financing, and risks relating to our ability to obtain and maintain intellectual property protection for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIOs actual results to differ materially and adversely from those contained in the forward-looking statements, see the section entitled Risk Factors in AVROBIOs Quarterly Report on Form 10-Q for the quarter ended June 30, 2019, as well as discussions of potential risks, uncertainties and other important factors in AVROBIOs subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law.
CONDENSED CONSOLIDATED BALANCE SHEETS
(In thousands)
(Unaudited)
September 30,
December 31,
2019
2018
Cash and cash equivalents
$
206,362
$
126,302
Prepaid expenses and other current assets
7,345
3,718
Property and equipment, net
2,673
2,634
Other assets
825
825
Total assets
$
217,205
$
133,479
Accounts payable
$
1,408
$
2,784
Accrued expenses and other current liabilities
8,502
7,822
Deferred rent, net of current portion
535
689
Total liabilities
10,445
11,295
Total stockholders equity
206,760
122,184
Total liabilities and stockholders equity
$
217,205
$
133,479
CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS
(In thousands, except share and per share data)
(Unaudited)
Three Months Ended September 30,
Nine Months Ended September 30,
2019
2018
2019
2018
Operating expenses:
Research and development
$
13,042
$
9,232
$
37,755
$
22,286
General and administrative
5,022
Continue reading here:
AVROBIO, Inc. Reports Third Quarter 2019 Financial Results and Provides Business Update - Business Wire
Teva and Celltrion Announce the Availability of TRUXIMA (rituximab-abbs) Injection, the First Biosimilar to Rituxan (rituximab) in the United States -…
JERUSALEM & PARSIPPANY, N.J. & INCHEON, South Korea--(BUSINESS WIRE)--Teva Pharmaceuticals USA, Inc., a U.S. affiliate of Teva Pharmaceutical Industries Ltd. (NYSE and TASE: TEVA), Celltrion, Inc., (KRX KRX:068270) and Celltrion Healthcare, Co., Ltd. (KRX KOSDAQ:091990), today announced that TRUXIMA (rituximab-abbs) injection is the first biosimilar to the reference product Rituxan1 (rituximab) now available in the United States with a full oncology label. TRUXIMA is currently indicated for the treatment of adult patients with non-Hodgkins Lymphoma (NHL) and Chronic Lymphocytic Leukemia (CLL):
We are excited about the first FDA-approved biosimilar to rituximab in the U.S., stated Brendan OGrady, Executive Vice President and Head of North America Commercial at Teva. Tevas commitment to biosimilars is focused on the potential to create lower healthcare costs and increased price competition. This focus is consistent with Tevas mission of making accessible medications to help improve the lives of patients.
TRUXIMA was approved by the U.S. Food and Drug Administration (FDA) as the first rituximab biosimilar. The approval was based on a review of a comprehensive data package inclusive of foundational and extensive analytical characterization, nonclinical data, clinical pharmacology, immunogenicity, clinical efficacy, and safety data. In May 2019, the FDA approved TRUXIMA to match all of the reference products oncology indications for NHL and CLL. In light of a patent settlement with Genentech, Celltrion and Teva have a pending FDA submission for rheumatoid arthritis (RA), granulomatosis with polyangiitis (GPA), and microscopic polyangiitis (MPA), and a license from Genentech to expand the TRUXIMA label to include these indications in Q2 2020.
We are pleased to announce the launch of the first rituximab biosimilar, TRUXIMA, with our marketing partner Teva in the U.S. said Mr. Hyoung-Ki Kim, Vice Chairman at Celltrion Healthcare. We believe that the introduction of TRUXIMA into the U.S. market will contribute to addressing unmet needs of U.S. patients as well.
The Wholesale Acquisition Cost (WAC or list price) for TRUXIMA will be 10 percent lower than the reference product. TRUXIMA is being made available through primary wholesalers at a WAC of $845.55 for 100mg vial and $4227.75 for 500mg vial. Actual costs to individual patients and providers for TRUXIMA are anticipated to be lower than WAC because WAC does not account for additional rebates and discounts that may apply. Savings on out-of-pocket costs may vary depending on the patients insurance payer and eligibility for participation in the assistance program.
Dedicated patient support services are also available from Teva through the Comprehensive Oncology Reimbursement Expertise (CORE) program. CORE is available to help eligible patients, caregivers and healthcare professionals navigate the reimbursement process. CORE offers a range of services, including benefits verification and coverage determination, support for precertification and prior authorization, assistance with coverage guidelines and claims investigation, and support through the claims and appeals process. A savings program is also available for eligible commercially insured patients. To learn more, please visit TevaCORE.com. For healthcare professionals seeking additional information, there is also a dedicated site at TRUXIMAhcp.com.
Celltrion and Teva Pharmaceutical Industries Ltd. entered into an exclusive partnership in October 2016 to commercialize TRUXIMA in the U.S. and Canada.
Please see the Important Safety Information below including the Boxed Warning regarding fatal infusion-related reactions, severe mucocutaneous reactions, hepatitis B virus reactivation and progressive multifocal leukoencephalopathy. For more information, please visit the full prescribing information.
Important Safety Information
WARNING: FATAL INFUSION-RELATED REACTIONS, SEVERE MUCOCUTANEOUS REACTIONS, HEPATITIS B VIRUS REACTIVATION and PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY
Infusion-Related Reactions - Administration of rituximab products, including TRUXIMA, can result in serious, including fatal, infusion-related reactions. Deaths within 24 hours of rituximab infusion have occurred. Approximately 80% of fatal infusion-related reactions occurred in association with the first infusion. Monitor patients closely. Discontinue TRUXIMA infusion for severe reactions and provide medical treatment for Grade 3 or 4 infusion-related reactions
Severe Mucocutaneous Reactions - Severe, including fatal, mucocutaneous reactions can occur in patients receiving rituximab products
Hepatitis B Virus (HBV) Reactivation - HBV reactivation can occur in patients treated with rituximab products, in some cases resulting in fulminant hepatitis, hepatic failure, and death. Screen all patients for HBV infection before treatment initiation, and monitor patients during and after treatment with TRUXIMA. Discontinue TRUXIMA and concomitant medications in the event of HBV reactivation
Progressive Multifocal Leukoencephalopathy (PML), including fatal PML, can occur in patients receiving rituximab products
Warnings and Precautions
Infusion-Related Reactions - Rituximab products can cause severe, including fatal, infusion-related reactions. Severe reactions typically occurred during the first infusion with time to onset of 30-120 minutes. Rituximab product-induced infusion-related reactions and sequelae include urticaria, hypotension, angioedema, hypoxia, bronchospasm, pulmonary infiltrates, acute respiratory distress syndrome, myocardial infarction, ventricular fibrillation, cardiogenic shock, anaphylactoid events, or death.
Premedicate patients with an antihistamine and acetaminophen prior to dosing. Institute medical management (e.g. glucocorticoids, epinephrine, bronchodilators, or oxygen) for infusion-related reactions as needed. Depending on the severity of the infusion-related reaction and the required interventions, temporarily or permanently discontinue TRUXIMA. Resume infusion at a minimum 50% reduction in rate after symptoms have resolved. Closely monitor the following patients: those with pre-existing cardiac or pulmonary conditions, those who experienced prior cardiopulmonary adverse reactions, and those with high numbers of circulating malignant cells (>25,000/mm3)
Severe Mucocutaneous Reactions - Mucocutaneous reactions, some with fatal outcome, can occur in patients treated with rituximab products. These reactions include paraneoplastic pemphigus, Stevens-Johnson syndrome, lichenoid dermatitis, vesiculobullous dermatitis, and toxic epidermal necrolysis. The onset of these reactions has been variable and includes reports with onset on the first day of rituximab exposure. Discontinue TRUXIMA in patients who experience a severe mucocutaneous reaction. The safety of re-administration of rituximab products to patients with severe mucocutaneous reactions has not been determined.
Hepatitis B Virus Reactivation - Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure and death, can occur in patients treated with drugs classified as CD20-directed cytolytic antibodies, including rituximab products. Cases have been reported in patients who are hepatitis B surface antigen (HBsAg) positive and also in patients who are HBsAg negative but are hepatitis B core antibody (anti-HBc) positive. Reactivation also has occurred in patients who appear to have resolved hepatitis B infection (i.e., HBsAg negative, anti-HBc positive and hepatitis B surface antibody [anti-HBs] positive).
HBV reactivation is defined as an abrupt increase in HBV replication manifesting as a rapid increase in serum HBV DNA levels or detection of HBsAg in a person who was previously HBsAg negative and anti-HBc positive. Reactivation of HBV replication is often followed by hepatitis, i.e., increase in transaminase levels. In severe cases increase in bilirubin levels, liver failure, and death can occur.
Screen all patients for HBV infection by measuring HBsAg and anti-HBc before initiating treatment with TRUXIMA. For patients who show evidence of prior hepatitis B infection (HBsAg positive [regardless of antibody status] or HBsAg negative but anti-HBc positive), consult with physicians with expertise in managing hepatitis B regarding monitoring and consideration for HBV antiviral therapy before and/or during TRUXIMA treatment.
Monitor patients with evidence of current or prior HBV infection for clinical and laboratory signs of hepatitis or HBV reactivation during and for several months following TRUXIMA therapy. HBV reactivation has been reported up to 24 months following completion of rituximab therapy.
In patients who develop reactivation of HBV while on TRUXIMA, immediately discontinue TRUXIMA and any concomitant chemotherapy, and institute appropriate treatment. Insufficient data exist regarding the safety of resuming TRUXIMA treatment in patients who develop HBV reactivation. Resumption of TRUXIMA treatment in patients whose HBV reactivation resolves should be discussed with physicians with expertise in managing HBV.
Progressive Multifocal Leukoencephalopathy (PML) - JC virus infection resulting in PML and death can occur in rituximab product-treated patients with hematologic malignancies. The majority of patients with hematologic malignancies diagnosed with PML received rituximab in combination with chemotherapy or as part of a hematopoietic stem cell transplant. Most cases of PML were diagnosed within 12 months of their last infusion of rituximab.
Consider the diagnosis of PML in any patient presenting with new-onset neurologic manifestations. Evaluation of PML includes, but is not limited to, consultation with a neurologist, brain MRI, and lumbar puncture.
Discontinue TRUXIMA and consider discontinuation or reduction of any concomitant chemotherapy or immunosuppressive therapy in patients who develop PML.
Tumor Lysis Syndrome (TLS) - Acute renal failure, hyperkalemia, hypocalcemia, hyperuricemia, or hyperphosphatemia from tumor lysis, sometimes fatal, can occur within 12-24 hours after the first infusion of rituximab products in patients with NHL. A high number of circulating malignant cells (>25,000/mm3) or high tumor burden, confers a greater risk of TLS.
Administer aggressive intravenous hydration and anti-hyperuricemic therapy in patients at high risk for TLS. Correct electrolyte abnormalities, monitor renal function and fluid balance, and administer supportive care, including dialysis as indicated.
Infections - Serious, including fatal, bacterial, fungal, and new or reactivated viral infections can occur during and following the completion of rituximab product-based therapy. Infections have been reported in some patients with prolonged hypogammaglobulinemia (defined as hypogammaglobulinemia >11 months after rituximab exposure). New or reactivated viral infections included cytomegalovirus, herpes simplex virus, parvovirus B19, varicella zoster virus, West Nile virus, and hepatitis B and C. Discontinue TRUXIMA for serious infections and institute appropriate anti-infective therapy. TRUXIMA is not recommended for use in patients with severe, active infections.
Cardiovascular Adverse Reactions - Cardiac adverse reactions, including ventricular fibrillation, myocardial infarction, and cardiogenic shock may occur in patients receiving rituximab products. Discontinue infusions for serious or life-threatening cardiac arrhythmias. Perform cardiac monitoring during and after all infusions of TRUXIMA for patients who develop clinically significant arrhythmias, or who have a history of arrhythmia or angina.
Renal Toxicity - Severe, including fatal, renal toxicity can occur after rituximab product administration in patients with NHL. Renal toxicity has occurred in patients who experience tumor lysis syndrome and in patients with NHL administered concomitant cisplatin therapy during clinical trials. The combination of cisplatin and TRUXIMA is not an approved treatment regimen. Monitor closely for signs of renal failure and discontinue TRUXIMA in patients with a rising serum creatinine or oliguria.
Bowel Obstruction and Perforation - Abdominal pain, bowel obstruction and perforation, in some cases leading to death, can occur in patients receiving rituximab in combination with chemotherapy. In postmarketing reports, the mean time to documented gastrointestinal perforation was 6 (range 1-77) days in patients with NHL. Evaluate if symptoms of obstruction such as abdominal pain or repeated vomiting occur.
Immunization - The safety of immunization with live viral vaccines following rituximab product therapy has not been studied and vaccination with live virus vaccines is not recommended before or during treatment.
Embryo-Fetal Toxicity - Based on human data, rituximab products can cause fetal harm due to B-cell lymphocytopenia in infants exposed to rituximab in-utero. Advise pregnant women of the risk to a fetus. Females of childbearing potential should use effective contraception while receiving TRUXIMA and for 12 months following the last dose of TRUXIMA.
Most common adverse reactions in clinical trials of NHL (>25%) were: infusion-related reactions, fever, lymphopenia, chills, infection, and asthenia
Most common adverse reactions in clinical trials of CLL (>25%) were: infusion-related reactions and neutropenia
Nursing Mothers - There are no data on the presence of rituximab in human milk, the effect on the breastfed child, or the effect on milk production. Since many drugs including antibodies are present in human milk, advise a lactating woman not to breastfeed during treatment and for at least 6 months after the last dose of TRUXIMA due to the potential for serious adverse reactions in breastfed infants.
About TRUXIMA
TRUXIMA (rituximab-abbs) is a U.S. Food and Drug Administration (FDA)-approved biosimilar to RITUXAN (rituximab) for the treatment of adult patients with CD20-positive, B-cell NHL to be used as a single agent or in combination with chemotherapy or CLL in combination with fludarabine and cyclophosphamide (FC).
TRUXIMA has the same mechanism of action as Rituxan and has demonstrated biosimilarity to Rituxan through a totality of evidence.
About Celltrion Healthcare, Co. Ltd.
Celltrion Healthcare conducts the worldwide marketing, sales and distribution of biological medicines developed by Celltrion, Inc. through an extensive global network that spans more than 120 different countries. Celltrion Healthcares products are manufactured at state-of-the-art mammalian cell culture facilities, designed and built to comply with the US Food and Drug Administration (FDA) cGMP guidelines and the EU GMP guidelines.
About Celltrion, Inc.
Headquartered in Incheon, Korea, Celltrion is a leading biopharmaceutical company, specializing in research, development and manufacturing of biosimilar and innovative drugs. Celltrion strives to provide more affordable biosimilar mAbs to patients who previously had limited access to advanced therapeutics. Celltrion received FDA approval for TRUXIMA (rituximab-abbs) and HERZUMA (trastuzumab-pkrb) in 2018.
About Teva
Teva Pharmaceutical Industries Ltd. (NYSE and TASE: TEVA) has been developing and producing medicines to improve peoples lives for more than a century. We are a global leader in generic and specialty medicines with a portfolio consisting of over 3,500 products in nearly every therapeutic area. Around 200 million people around the world take a Teva medicine every day, and are served by one of the largest and most complex supply chains in the pharmaceutical industry. Along with our established presence in generics, we have significant innovative research and operations supporting our growing portfolio of specialty and biopharmaceutical products. Learn more at http://www.tevapharm.com.
Teva's Cautionary Note Regarding Forward-Looking Statements
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 regarding TRUXIMA, which are based on managements current beliefs and expectations and are subject to substantial risks and uncertainties, both known and unknown, that could cause our future results, performance or achievements to differ significantly from that expressed or implied by such forward-looking statements. Important factors that could cause or contribute to such differences include risks relating to:
and other factors discussed in our Quarterly Reports on Form 10-Q for the first and second quarter of 2019 and in our Annual Report on Form 10-K for the year ended December 31, 2018, including in the sections captioned "Risk Factors and Forward Looking Statements. Forward-looking statements speak only as of the date on which they are made, and we assume no obligation to update or revise any forward-looking statements or other information contained herein, whether as a result of new information, future events or otherwise. You are cautioned not to put undue reliance on these forward-looking statements.
1 RITUXAN is a registered trademark of Genentech and Biogen.
See the original post here:
Teva and Celltrion Announce the Availability of TRUXIMA (rituximab-abbs) Injection, the First Biosimilar to Rituxan (rituximab) in the United States -...
Takeda to Highlight Expanded Portfolio of Products Across Oncology and Hematology at 61st American Society of Hematology (ASH) Annual Meeting -…
CAMBRIDGE, Mass. & OSAKA, Japan--(BUSINESS WIRE)--Takeda Pharmaceutical Company Limited (TSE: 4502/NYSE:TAK) today announced that it will present a total of 29 company-sponsored abstracts at the 61st American Society of Hematology (ASH) Annual Meeting on December 7-10, 2019 in Orlando, FL, highlighting the companys commitment to advancing the treatment of hematologic cancers and bleeding disorders.
Pursuing Breakthrough, Patient-Centric Innovation in Oncology and Bleeding Disorders
Takeda will present 29 scientific updates on the companys investigational and early-stage therapies, which demonstrates its investment in new compounds to address patient needs, as well as data from Phase 3 trials and real-world evidence findings, in disease states including multiple myeloma, lymphoma and leukemia.
We are presenting notable data on several clinical programs at ASH, highlighting our deep oncology pipeline and our commitment to developing innovative therapies that may address unmet needs for blood cancer patients, said Phil Rowlands, Ph.D., Head, Oncology Therapeutic Area Unit, Takeda. In particular we look forward to sharing data from the Phase 3 clinical trial of ixazomib in amyloidosis patients, data from the US MM-6 study, which evaluates an in-class transition from parenteral bortezomib to oral ixazomib in multiple myeloma, further analyses from the Phase 3 ECHELON-2 trial of ADCETRIS in peripheral T-cell lymphoma, as well as early stage data from several of our pipeline programs.
In hematology, Takeda will present real-world evidence from studies of its portfolio of treatments across bleeding disorders, including hemophilia A, hemophilia B and von Willebrand disease. The company will also present scientific updates related to its hemophilia A and hemophilia B gene therapy programs and adeno-associated virus (AAV) gene therapy platform.
Understanding real-world evidence is critical as Takeda continues to provide patients with innovative therapies for hemophilia A and hemophilia B while broadening our research and development efforts in von Willebrand disease and other bleeding disorders, said Daniel Curran, M.D., Head, Rare Diseases Therapeutic Area Unit, Takeda. Also at ASH, we look forward to providing an update on our gene therapy programs in hemophilia and the optimization of Takedas AAV gene therapy platform, particularly for patients with pre-existing immunity to AAV serotypes.
Accepted oncology abstracts include:
Note: all times listed are in Eastern Standard Time
NINLARO (ixazomib) and Multiple Myeloma
ADCETRIS (brentuximab vedotin) and Lymphoma
ICLUSIG (ponatinib)
Pipeline (multiple myeloma, lymphoma, chronic lymphocytic leukemia, acute myeloid leukemia)
Accepted hematology abstracts include:
Note: all times listed are in Eastern Standard Time
ADYNOVATE (Antihemophilic Factor (Recombinant), PEGylated) and Hemophilia A
FEIBA (Anti-Inhibitor Coagulant Complex)
von Willebrand Disease
Pipeline (hemophilia A, hemophilia B and gene therapies)
About ADCETRISADCETRIS is an antibody-drug conjugate (ADC) comprising an anti-CD30 monoclonal antibody attached by a protease-cleavable linker to a microtubule disrupting agent, monomethyl auristatin E (MMAE), utilizing Seattle Genetics' proprietary technology. The ADC employs a linker system that is designed to be stable in the bloodstream but to release MMAE upon internalization into CD30-positive tumor cells.
ADCETRIS injection for intravenous infusion has received FDA approval for six indications in adult patients with: (1) previously untreated systemic anaplastic large cell lymphoma (sALCL) or other CD30-expressing peripheral T-cell lymphomas (PTCL), including angioimmunoblastic T-cell lymphoma and PTCL not otherwise specified, in combination with cyclophosphamide, doxorubicin, and prednisone, (2) previously untreated Stage III or IV classical Hodgkin lymphoma (cHL), in combination with doxorubicin, vinblastine, and dacarbazine, (3) cHL at high risk of relapse or progression as post-autologous hematopoietic stem cell transplantation (auto-HSCT) consolidation, (4) cHL after failure of auto-HSCT or failure of at least two prior multi-agent chemotherapy regimens in patients who are not auto-HSCT candidates, (5) sALCL after failure of at least one prior multi-agent chemotherapy regimen, and (6) primary cutaneous anaplastic large cell lymphoma (pcALCL) or CD30-expressing mycosis fungoides (MF) who have received prior systemic therapy.
Health Canada granted ADCETRIS approval with conditions for relapsed or refractory Hodgkin lymphoma and sALCL in 2013, and non-conditional approval for post-autologous stem cell transplantation (ASCT) consolidation treatment of Hodgkin lymphoma patients at increased risk of relapse or progression in 2017, adults with pcALCL or CD30-expressing MF who have had prior systemic therapy in 2018, and for previously untreated Stage IV Hodgkin lymphoma in combination with doxorubicin, vinblastine, and dacarbazine in 2019.
ADCETRIS received conditional marketing authorization from the European Commission in October 2012. The approved indications in Europe are: (1) for the treatment of adult patients with relapsed or refractory CD30-positive Hodgkin lymphoma following ASCT, or following at least two prior therapies when ASCT or multi-agent chemotherapy is not a treatment option, (2) for the treatment of adult patients with relapsed or refractory sALCL, (3) for the treatment of adult patients with CD30-positive Hodgkin lymphoma at increased risk of relapse or progression following ASCT, (4) for the treatment of adult patients with CD30-positive cutaneous T-cell lymphoma (CTCL) after at least one prior systemic therapy and (5) for the treatment of adult patients with previously untreated CD30-positive Stage IV Hodgkin lymphoma in combination with AVD.
ADCETRIS has received marketing authorization by regulatory authorities in more than 70 countries for relapsed or refractory Hodgkin lymphoma and sALCL. See important safety information below.
ADCETRIS is being evaluated broadly in more than 70 clinical trials, including a Phase 3 study in first-line Hodgkin lymphoma (ECHELON-1) and another Phase 3 study in first-line CD30-positive peripheral T-cell lymphomas (ECHELON-2), as well as trials in many additional types of CD30-positive malignancies.
Seattle Genetics and Takeda are jointly developing ADCETRIS. Under the terms of the collaboration agreement, Seattle Genetics has U.S. and Canadian commercialization rights and Takeda has rights to commercialize ADCETRIS in the rest of the world. Seattle Genetics and Takeda are funding joint development costs for ADCETRIS on a 50:50 basis, except in Japan where Takeda is solely responsible for development costs.
ADCETRIS (brentuximab vedotin) Important Safety Information (European Union)Please refer to Summary of Product Characteristics (SmPC) before prescribing.
CONTRAINDICATIONS
ADCETRIS is contraindicated for patients with hypersensitivity to brentuximab vedotin and its excipients. In addition, combined use of ADCETRIS with bleomycin causes pulmonary toxicity.
SPECIAL WARNINGS & PRECAUTIONS
Progressive multifocal leukoencephalopathy (PML): John Cunningham virus (JCV) reactivation resulting in progressive multifocal leukoencephalopathy (PML) and death can occur in patients treated with ADCETRIS. PML has been reported in patients who received ADCETRIS after receiving multiple prior chemotherapy regimens. PML is a rare demyelinating disease of the central nervous system that results from reactivation of latent JCV and is often fatal.
Closely monitor patients for new or worsening neurological, cognitive, or behavioral signs or symptoms, which may be suggestive of PML. Suggested evaluation of PML includes neurology consultation, gadolinium-enhanced magnetic resonance imaging of the brain, and cerebrospinal fluid analysis for JCV DNA by polymerase chain reaction or a brain biopsy with evidence of JCV. A negative JCV PCR does not exclude PML. Additional follow up and evaluation may be warranted if no alternative diagnosis can be established Hold dosing for any suspected case of PML and permanently discontinue ADCETRIS if a diagnosis of PML is confirmed.
Be alert to PML symptoms that the patient may not notice (e.g., cognitive, neurological, or psychiatric symptoms).
Pancreatitis: Acute pancreatitis has been observed in patients treated with ADCETRIS. Fatal outcomes have been reported. Closely monitor patients for new or worsening abdominal pain, which may be suggestive of acute pancreatitis. Patient evaluation may include physical examination, laboratory evaluation for serum amylase and serum lipase, and abdominal imaging, such as ultrasound and other appropriate diagnostic measures. Hold ADCETRIS for any suspected case of acute pancreatitis. ADCETRIS should be discontinued if a diagnosis of acute pancreatitis is confirmed.
Pulmonary Toxicity: Cases of pulmonary toxicity, some with fatal outcomes, including pneumonitis, interstitial lung disease, and acute respiratory distress syndrome (ARDS), have been reported in patients receiving ADCETRIS. Although a causal association with ADCETRIS has not been established, the risk of pulmonary toxicity cannot be ruled out. Promptly evaluate and treat new or worsening pulmonary symptoms (e.g., cough, dyspnoea) appropriately. Consider holding dosing during evaluation and until symptomatic improvement.
Serious infections and opportunistic infections: Serious infections such as pneumonia, staphylococcal bacteremia, sepsis/septic shock (including fatal outcomes), and herpes zoster, and opportunistic infections such as Pneumocystis jiroveci pneumonia and oral candidiasis have been reported in patients treated with ADCETRIS. Carefully monitor patients during treatment for emergence of possible serious and opportunistic infections.
Infusion-related reactions (IRR): Immediate and delayed IRR, as well as anaphylaxis, have been reported with ADCETRIS. Carefully monitor patients during and after an infusion. If anaphylaxis occurs, immediately and permanently discontinue administration of ADCETRIS and administer appropriate medical therapy. If an IRR occurs, interrupt the infusion and institute appropriate medical management. The infusion may be restarted at a slower rate after symptom resolution. Patients who have experienced a prior IRR should be premedicated for subsequent infusions. IRRs are more frequent and more severe in patients with antibodies to ADCETRIS.
Tumor lysis syndrome (TLS): TLS has been reported with ADCETRIS. Patients with rapidly proliferating tumor and high tumor burden are at risk of TLS. Monitor these patients closely and manage according to best medical practice.
Peripheral neuropathy (PN): ADCETRIS treatment may cause PN, both sensory and motor. ADCETRIS-induced PN is typically an effect of cumulative exposure to ADCETRIS and is reversible in most cases. Monitor patients for symptoms of neuropathy, such as hypoesthesia, hyperesthesia, paresthesia, discomfort, a burning sensation, neuropathic pain, or weakness. Patients experiencing new or worsening PN may require a delay and a dose reduction or discontinuation of ADCETRIS.
Hematological toxicities: Grade 3 or Grade 4 anemia, thrombocytopenia, and prolonged (equal to or greater than one week) Grade 3 or Grade 4 neutropenia can occur with ADCETRIS. Monitor complete blood counts prior to administration of each dose.
Febrile neutropenia: Febrile neutropenia has been reported with ADCETRIS. Complete blood counts should be monitored prior to administration of each dose of treatment. Closely monitor patients for fever and manage according to best medical practice if febrile neutropenia develops.
When ADCETRIS is administered in combination with AVD, primary prophylaxis with G-CSF is recommended for all patients beginning with the first dose.
Stevens-Johnson syndrome (SJS): SJS and toxic epidermal necrolysis (TEN) have been reported with ADCETRIS. Fatal outcomes have been reported. Discontinue treatment with ADCETRIS if SJS or TEN occurs and administer appropriate medical therapy.
Gastrointestinal (GI) Complications: GI complications, some with fatal outcomes, including intestinal obstruction, ileus, enterocolitis, neutropenic colitis, erosion, ulcer, perforation and haemorrhage, have been reported with ADCETRIS. Promptly evaluate and treat patients if new or worsening GI symptoms occur.
Hepatotoxicity: Elevations in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) have been reported with ADCETRIS. Serious cases of hepatotoxicity, including fatal outcomes, have also occurred. Pre-existing liver disease, comorbidities, and concomitant medications may also increase the risk. Test liver function prior to treatment initiation and routinely monitor during treatment. Patients experiencing hepatotoxicity may require a delay, dose modification, or discontinuation of ADCETRIS.
Hyperglycemia: Hyperglycemia has been reported during trials in patients with an elevated body mass index (BMI) with or without a history of diabetes mellitus. Closely monitor serum glucose for patients who experiences an event of hyperglycemia. Administer anti-diabetic treatment as appropriate.
Renal and Hepatic Impairment: There is limited experience in patients with renal and hepatic impairment. Available data indicate that MMAE clearance might be affected by severe renal impairment, hepatic impairment, and by low serum albumin concentrations.
CD30+ CTCL: The size of the treatment effect in CD30 + CTCL subtypes other than mycosis fungoides (MF) and primary cutaneous anaplastic large cell lymphoma (pcALCL) is not clear due to lack of high level evidence. In two single arm phase II studies of ADCETRIS, disease activity has been shown in the subtypes Szary syndrome (SS), lymphomatoid papulosis (LyP) and mixed CTCL histology. These data suggest that efficacy and safety can be extrapolated to other CTCL CD30+ subtypes. Carefully consider the benefit-risk per patient and use with caution in other CD30+ CTCL patient types.
Sodium content in excipients: This medicinal product contains 13.2 mg sodium per vial, equivalent to 0.7% of the WHO recommended maximum daily intake of 2 g sodium for an adult.
INTERACTIONSPatients who are receiving a strong CYP3A4 and P-gp inhibitor, concomitantly with ADCETRIS may have an increased risk of neutropenia. If neutropenia develops, refer to dosing recommendations for neutropenia (see SmPC section 4.2). Co-administration of ADCETRIS with a CYP3A4 inducer did not alter the plasma exposure of ADCETRIS, but it appeared to reduce plasma concentrations of MMAE metabolites that could be assayed. ADCETRIS is not expected to alter the exposure to drugs that are metabolized by CYP3A4 enzymes.
PREGNANCY: Advise women of childbearing potential to use two methods of effective contraception during treatment with ADCETRIS and until 6 months after treatment. There are no data from the use of ADCETRIS in pregnant women, although studies in animals have shown reproductive toxicity. Do not use ADCETRIS during pregnancy unless the benefit to the mother outweighs the potential risks to the fetus.
LACTATION (breast-feeding): There are no data as to whether ADCETRIS or its metabolites are excreted in human milk, therefore a risk to the newborn/infant cannot be excluded. With the potential risk, a decision should be made whether to discontinue breast-feeding or discontinue/abstain from therapy with ADCETRIS.
FERTILITY: In nonclinical studies, ADCETRIS treatment has resulted in testicular toxicity, and may alter male fertility. Advise men being treated with ADCETRIS not to father a child during treatment and for up to 6 months following the last dose.
Effects on ability to drive and use machines: ADCETRIS may have a moderate influence on the ability to drive and use machines.
UNDESIRABLE EFFECTS
Monotherapy: The most frequent adverse reactions (10%) were infections, peripheral sensory neuropathy, nausea, fatigue, diarrhoea, pyrexia, upper respiratory tract infection, neutropenia, rash, cough, vomiting, arthralgia, peripheral motor neuropathy, infusion-related reactions, pruritus, constipation, dyspnoea, weight decreased, myalgia and abdominal pain. Serious adverse drug reactions occurred in 12% of patients. The frequency of unique serious adverse drug reactions was 1%. Adverse events led to treatment discontinuation in 24% of patients.
Combination Therapy: In the study of ADCETRIS as combination therapy with AVD in 662 patients with previously untreated advanced HL, the most common adverse reactions ( 10%) were: neutropenia, nausea, constipation, vomiting, fatigue, peripheral sensory neuropathy, diarrhoea, pyrexia, alopecia, peripheral motor neuropathy, decreased weight, abdominal pain, anaemia, stomatitis, febrile neutropenia, bone pain, insomnia, decreased appetite, cough, headache, arthralgia, back pain, dyspnoea, myalgia, upper respiratory tract infection, alanine aminotransferase increased. Serious adverse reactions occurred in 36% of patients. Serious adverse reactions occurring in 3% of patients included febrile neutropenia (17%), pyrexia (6%), and neutropenia (3%). Adverse events led to treatment discontinuation in 13% of patients.
ADCETRIS (brentuximab vedotin) Important Safety Information (U.S.)
BOXED WARNINGPROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML): JC virus infection resulting in PML and death can occur in ADCETRIS-treated patients.
Contraindication
ADCETRIS concomitant with bleomycin due to pulmonary toxicity (e.g., interstitial infiltration and/or inflammation).
Warnings and Precautions
Administer G-CSF primary prophylaxis beginning with Cycle 1 for patients who receive ADCETRIS in combination with chemotherapy for previously untreated Stage III/IV cHL or previously untreated PTCL.
Monitor complete blood counts prior to each ADCETRIS dose. Monitor more frequently for patients with Grade 3 or 4 neutropenia. Monitor patients for fever. If Grade 3 or 4 neutropenia develops, consider dose delays, reductions, discontinuation, or G-CSF prophylaxis with subsequent doses.
Most Common (20% in any study) Adverse ReactionsPeripheral neuropathy, fatigue, nausea, diarrhea, neutropenia, upper respiratory tract infection, pyrexia, constipation, vomiting, alopecia, decreased weight, abdominal pain, anemia, stomatitis, lymphopenia, and mucositis.
Drug InteractionsConcomitant use of strong CYP3A4 inhibitors or inducers has the potential to affect the exposure to monomethyl auristatin E (MMAE).
Use in Specific PopulationsModerate or severe hepatic impairment or severe renal impairment: MMAE exposure and adverse reactions are increased. Avoid use.
Advise males with female sexual partners of reproductive potential to use effective contraception during ADCETRIS treatment and for at least 6 months after the final dose of ADCETRIS.
Advise patients to report pregnancy immediately and avoid breastfeeding while receiving ADCETRIS.
For additional Important Safety Information, including BOXED WARNING, please see the full Prescribing Information for ADCETRIS at http://www.seattlegenetics.com or http://www.ADCETRIS.com.
ADYNOVATE Professional Important Information
ADYNOVATE [Antihemophilic Factor (Recombinant), PEGylated] Important Information
Indications and Limitation of UseADYNOVATE is a human antihemophilic factor indicated in children and adults with hemophilia A (congenital factor VIII deficiency) for:
ADYNOVATE is not indicated for the treatment of von Willebrand disease.
DETAILED IMPORTANT RISK INFORMATION
CONTRAINDICATIONSPrior anaphylactic reaction to ADYNOVATE, to the parent molecule (ADVATE [Antihemophilic Factor (Recombinant)]), mouse or hamster protein, or excipients of ADYNOVATE (e.g. Tris, mannitol, trehalose, glutathione, and/or polysorbate 80).
WARNINGS & PRECAUTIONSHypersensitivity ReactionsHypersensitivity reactions are possible with ADYNOVATE. Allergic-type hypersensitivity reactions, including anaphylaxis, have been reported with other recombinant antihemophilic factor VIII products, including the parent molecule, ADVATE. Early signs of hypersensitivity reactions that can progress to anaphylaxis may include angioedema, chest tightness, dyspnea, wheezing, urticaria, and pruritus. Immediately discontinue administration and initiate appropriate treatment if hypersensitivity reactions occur.
Neutralizing AntibodiesFormation of neutralizing antibodies (inhibitors) to factor VIII can occur following administration of ADYNOVATE. Monitor patients regularly for the development of factor VIII inhibitors by appropriate clinical observations and laboratory tests. Perform an assay that measures factor VIII inhibitor concentration if the plasma factor VIII level fails to increase as expected, or if bleeding is not controlled with expected dose.
ADVERSE REACTIONSThe most common adverse reactions (1% of subjects) reported in the clinical studies were headache and nausea.
Click here for Full Prescribing Informationhttps://www.shirecontent.com/PI/PDFs/ADYNOVATE_USA_ENG.pdf
FEIBA [Anti-Inhibitor Coagulant Complex] Indications and Detailed Important Risk Information
Indications for FEIBA
FEIBA is an Anti-Inhibitor Coagulant Complex indicated for use in hemophilia A and B patients with inhibitors for:
FEIBA is not indicated for the treatment of bleeding episodes resulting from coagulation factor deficiencies in the absence of inhibitors to coagulation factor VIII or coagulation factor IX.
Detailed Important Risk Information for FEIBA
WARNING: EMBOLIC AND THROMBOTIC EVENTS
CONTRAINDICATIONS
FEIBA is contraindicated in patients with:
WARNINGS AND PRECAUTIONS
Thromboembolic events (including venous thrombosis, pulmonary embolism, myocardial infarction, and stroke) can occur, particularly following the administration of high doses (>200 units/kg/day) and/or in patients with thrombotic risk factors.
Patients with DIC, advanced atherosclerotic disease, crush injury, septicemia, or concomitant treatment with recombinant factor VIIa have an increased risk of developing thrombotic events due to circulating tissue factor or predisposing coagulopathy. Potential benefit of treatment should be weighed against potential risk of these thromboembolic events.
Infusion should not exceed a single dose of 100 units/kg and daily doses of 200 units/kg. Maximum injection or infusion rate must not exceed 2 units/kg/minute. Monitor patients receiving >100 units/kg for the development of DIC, acute coronary ischemia and signs and symptoms of other thromboembolic events. If clinical signs or symptoms occur, such as chest pain or pressure, shortness of breath, altered consciousness, vision, or speech, limb or abdomen swelling and/or pain, discontinue FEIBA and initiate appropriate diagnostic and therapeutic measures.
Safety and efficacy of FEIBA for breakthrough bleeding in patients receiving emicizumab has not been established. Cases of thrombotic microangiopathy (TMA) were reported in a clinical trial where subjects received FEIBA as part of a treatment regimen for breakthrough bleeding following emicizumab treatment. Consider the benefits and risks with FEIBA if considered required for patients receiving emicizumab prophylaxis. If treatment with FEIBA is required for patients receiving emicizumab, the hemophilia treating physician should closely monitor for signs and symptoms of TMA. In FEIBA clinical studies TMA has not been reported.
Hypersensitivity and allergic reactions, including severe anaphylactoid reactions, can occur. Symptoms include urticaria, angioedema, gastrointestinal manifestations, bronchospasm, and hypotension. Reactions can be severe and systemic (e.g., anaphylaxis with urticaria and angioedema, bronchospasm, and circulatory shock). Other infusion reactions, such as chills, pyrexia, and hypertension have also been reported. If signs and symptoms of severe allergic reactions occur, immediately discontinue FEIBA and provide appropriate supportive care.
Because FEIBA is made from human plasma it may carry a risk of transmitting infectious agents, e.g., viruses, the variant Creutzfeldt-Jakob disease (vCJD) agent and, theoretically, the Creutzfeldt-Jakob disease (CJD) agent.
FEIBA contains blood group isohemagglutinins (anti-A and anti-B). Passive transmission of antibodies to erythrocyte antigens, e.g., A, B, D, may interfere with some serological tests for red cell antibodies, such as antiglobulin test (Coombs test).
ADVERSE REACTIONS
Most frequently reported adverse reactions observed in >5% of subjects in the prophylaxis trial were anemia, diarrhea, hemarthrosis, hepatitis B surface antibody positive, nausea, and vomiting.
Serious adverse reactions seen are hypersensitivity reactions and thromboembolic events, including stroke, pulmonary embolism and deep vein thrombosis.
DRUG INTERACTIONS