Page 28«..1020..27282930..40..»

Archive for the ‘Cardiac Stem Cells’ Category

Scientists grow first ever contracting human muscle in a lab dish

In a new study, researchers from Duke University in Durham, NC, reveal they have grown the first ever human skeletal muscle that contracts in response to external stimuli, such as electrical impulses and pharmaceuticals. The team says their creation paves the way for testing of new drugs and the study of diseases without having to put a patients heath at risk.

This is a microscopic view of the lab-grown human muscle.

Image credit: Duke University

The beauty of this work is that it can serve as a test bed for clinical trials in a dish, says study leader Nenad Bursac, associate professor of biomedical engineering at Duke.

We are working to test drugs efficacy and safety without jeopardizing a patients health and also to reproduce the functional and biochemical signals of diseases especially rare ones and those that make taking muscle biopsies difficult.

Bursac and his team says there is a strong focus on the development of in vitro models for use in medical research, motivated by ethical factors such as reducing animal testing and the need to improve health outcomes in human patients.

In June last year, Medical News Today reported on the creation of lab-grown miniature human hearts by researchers from Abertay University in the UK, while another study revealed how researchers from the University of Texas successfully grew human lungs from the cells of deceased children.

But Bursac and his team say while much progress has been made in creating in vitro models for liver, lung and cardiac tissues, there has been little progress toward the development of human skeletal muscle.

This is of particular concern as there are a wide range of metabolic, neuromuscular and dystrophic disorders involving skeletal muscle that are under investigation and still lacking therapies, they note.

Lab-grown muscle closely mimics responses of native human muscle

Read this article:
Scientists grow first ever contracting human muscle in a lab dish

LLY Collaborates With BMY And MRK, CLTX On Watchlist, ZLTQ Continues To Grow

Bristol-Myers Squibb Co. (BMY: Quote) has entered into a clinical collaboration agreement with Eli Lilly and Co. (LLY: Quote) to explore combination regimens from its immuno-oncology portfolio with other mechanisms of action that may accelerate the development of new treatment options for patients.

As per the agreement terms, a phase 1/2 trial will evaluate Bristol-Myers Squibb's approved immunotherapy Opdivo in combination with Lilly's investigational Galunisertib as a potential treatment option for patients with advanced (metastatic and/or unresectable) glioblastoma, hepatocellular carcinoma and non-small cell lung cancer.

Opdivo is approved by FDA for intravenous use for the treatment of patients with unresectable or metastatic melanoma while Galunisertib is currently under investigation as an oral treatment for advanced/metastatic malignancies, including phase 2 evaluation in hepatocellular carcinoma, myelodysplastic syndromes (MDS), glioblastoma, and pancreatic cancer.

In other related news, Lilly has also entered into a collaboration agreement with Merck & Co. Inc. (MRK: Quote) to evaluate the safety, tolerability and efficacy of Merck's KEYTRUDA in combination with Lilly compounds in multiple clinical trials.

Merck's KEYTRUDA was granted accelerated approval by FDA last September for unresectable or metastatic melanoma with disease progression following Ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor.

BMY closed Tuesday's trading at $63.12, up 1.51%.

Celsus Therapeutics plc (CLTX: Quote) has completed enrollment in its phase II study evaluating the safety and efficacy of MRX-6 cream 2% in a pediatric population with mild to moderate atopic dermatitis.

The topline data from the trial are expected by end-February, 2015.

CLTX closed Tuesday's trading 10.39% higher at $5.95.

Cellular Dynamics International (ICEL: Quote) has entered into a research collaboration with privately-held Cord Blood Registry to reprogram newborn stem cells into induced pluripotent stem cells.

Read more from the original source:
LLY Collaborates With BMY And MRK, CLTX On Watchlist, ZLTQ Continues To Grow

Research looks to build organ stockpiles

TUCSON Dr. Zain Khalpey stands next to a ghostly white lung pumping rhythmically on the table next to him. Thats pretty damn good, actually, Khalpey says as he gazes at the data recorded by the lungs ventilator.

The ventilator indicates that the pig lung is inflating and deflating like a normal lung. Experiments such as this bring research a step closer to the operating room.

Khalpey, an associate professor of surgery at the University of Arizona, focuses his research on making more organs available to patients who need a transplant. Every day, 18 people on organ transplant lists die, according to the U.S. Department of Health and Human Services.

In Arizona patients have to wait two to three years for a lung transplant, according to the U.S. National Library of Medicine. This waiting period is emotionally and financially draining for patients.

Khalpey is trying to shrink the wait time. He is taking damaged organs and refurbishing them so they end up in a needy patients body. Other organs too damaged to be refurbished are stripped of their cells and used to grow new organs with the patients stem cells.

In the future, donor organs may not even be needed. Khalpey is working on hybrid organs that are 3-D printed and then seeded with the patients stem cells.

From London

to Tucson

Khalpeys passion for transplant surgery started on a rainy day in 1990s London. A 16-year-old boy lay on the operating table about to undergo a heart-and-lung transplant. Cystic fibrosis caused his lungs to become a breeding ground for infection that whittled away his ability to breathe.

A team of surgeons replaced the boys lungs as well as his heart because he was more likely to survive with donor organs. The medical team rushed the boys viable heart to a second operating room, where it gave new life to another patient.

More:
Research looks to build organ stockpiles

Cedars-Sinai Medical Tip Sheet for Jan., 2015

Contact Information

Available for logged-in reporters only

Newswise Researchers Recreate Stem Cells From Deceased Patients to Study Present-Day Illnesses Cedars-Sinai research scientists have developed a novel method to re-create brain and intestinal stem cells from patients who died decades ago, using DNA from stored blood samples to study the potential causes of debilitating illnesses such as inflammatory bowel disease. The lab research, published in the journal STEM CELLS Translational Medicine, could yield new therapies for people who suffer from aggressive motor-neuron and gut-related conditions that proved fatal to the deceased patients who long-ago volunteered their blood samples. CONTACT: Cara Martinez, 310-423-7798; Email cara.martinez@cshs.org

Cedars-Sinai Heart Institute Physician-Researcher Awarded National Heart, Lung, and Blood Institute Grant to Develop Prevention Strategies for Deadly Heart Condition One of medicines most prominent experts in sudden cardiac arrest has received a new $2.36 million grant to study how to better predict the deadly heart condition that kills an estimated 300,000 Americans each year. Over recent years, Sumeet S. Chugh, MD, and his team of researchers in the Cedars-Sinai Heart Institute have identified several risk factors for sudden cardiac arrest, including levels of sex hormones in the blood, genetics and electrical and structural abnormalities of the heart. CONTACT: Sally Stewart, 310-248-6566; Email sally.stewart@cshs.org

Study Shows More Patients With Lou Gehrigs Disease Have Genetic Origin Than Previously Thought Genetics may play a larger role in causing Lou Gehrigs disease than previously believed, potentially accounting for more than one-third of all cases, according to one of the most comprehensive genetic studies to date of patients who suffer from the condition also known as amyotrophic lateral sclerosis, or ALS. The study, conducted by investigators at Cedars-Sinai and Washington University in St. Louis, also showed that patients with defects in two or more ALS-associated genes experience disease onset about 10 years earlier than patients with single-gene mutations. CONTACT: Sandy Van, 808-526-1708; Email sandy@prpacific.com

Computer System More Effective Than Doctors at Producing Comprehensive Patient Reports A computer system was more effective than doctors at collecting information about patient symptoms, producing reports that were more complete, organized and useful than narratives generated by physicians during office visits, according to a Cedars-Sinai study. Investigators said the research, published in the American Journal of Gastroenterology, highlights the potential of computers to enhance the quality of medical care and improve outcomes by harnessing accurate and thorough patient information. CONTACT: Duke Helfand, 310-248-6608; Email: duke.helfand@cshs.org

Double Lung Transplant Patient Pays Tribute to Donors Family in the Rose Parade Hours before receiving a lung transplant he thought would never happen, Michael Adams told his surgical team at Cedars-Sinai that hed be happy to live just one more year. Adams, 51, had suffered from cystic fibrosis since he was a baby. Hed been in and out of hospitals for as long as he could remember. By Thanksgiving of 2002, the former wheelchair company worker had end-stage disease. His lungs barely worked. Even eight liters of oxygen left him gasping for air. Then Adams received the call that saved his life: Two healthy lungs had suddenly become available. They belonged to a 15-year-old boy who had been shot and killed on the steps of his church 78 miles away in San Bernardino. Adams was transferred immediately to Cedars-Sinai, where he underwent a double lung transplant. He and his transplant surgeons are available for interviews CONTACT: Laura Coverson, 310-423-5215 Email: laura.coverson@cshs.org

# # #

Go here to see the original:
Cedars-Sinai Medical Tip Sheet for Jan., 2015

Stem Cell Treatment for Heart Disease

At Stem Cell Treatment Institute advanced stem cell procedures are performed at some of the most scientifically advanced hospitals in the world. Our Heart Disease treatment differs from standard methods by attacking the root cause inside the heart. Stem cell therapy is focused on affecting physical changes in the heart that can improve a patient's quality of life.

Most Heart Failure patients are treated by IV; injecting the stem cells into the blood which transports them up the heart.

Another procedure, by which the stem cells are surgically implanted directly into the heart, with angiography is also available.

Treatment using Bone Marrow Stem Cells First bone marrow is collected from the patient's iliac crest (hip bone) using thin-needle puncture under local anesthesia. Once the bone marrow collection is complete, patients may return to their hotel and go about normal activities.

The stem cells are then processed in a state-of-the-art laboratory. In the lab, both the quantity and quality of the stem cells are measured.

The stem cells are then implanted back into the patient by IV or surgical implantation.

Cost: Stem cell treatments begin around $13,500 (adults).

To contact us and learn more Click Here >>>

As we age our stem cells become less prolific and less effective. For this reason younger cells are often preferred. We do not need to go all the way back to an early stage embryo to get young cells. Young cells can be used from The Placenta, or Umbilical Cord (cord blood cells), and other young sources. These young cells are more likely than stem cells found in adult sources like bone marrow and adipose tissue (fat) to have proliferative properties. This means that stem cells found in placenta and cord blood have a greater ability to regenerate. In some counrties (US and Europe) requlations limit access to these advanced stem cell sources. Fortunately our International Health Department Permit, a COFEPRIS, is on a Presidential level, insuring access to the highest level of quality stem cells.

Begin the evaluation and scheduling process now! Click Here >>>

Follow this link:
Stem Cell Treatment for Heart Disease

heart disease helped with own Adult Stem Cells and Stem …

HEART DISEASE & HEART ATTACK Helped With Your OWN STEM CELLS Watch these Heart Repair VIDEOS .. and Review All your Stem Cell Options for Heart Attacks

Heart disease can be helped and controlled with your own Stem Cells. REVIEW and Investigate All your NATURAL Adult Stem cell Options.

Just 2 Patented Stem Cell Enhancer capsules, release 3 to 4 Million New STEM CELLS into your blood stream within 60 Minutes.. Your very OWN Adult Stem Cells can Help prevent and repair Heart Attacks with NO Injections.. NO Surgery .. NO Controversy .. No Hospitals...

Stem Cells help heart disease .. Witness Stem Cell Enhancer capsules HERE !

Heart disease patients with clogged arteries and severe chest pain who were injected with stem cells from their own bone marrow had a small improvement in blood flow and the pumping ability of their hearts, along with an easing of pain, researchers found.

Doctors in the Netherlands drew bone marrow from the hips of heart disease patients in the study. After isolating the stem cells, they injected them back into the patients hearts and monitored their progress. The results were published in the Journal of the American Medical Association.(JAMA)

Go HERE and see a VIDEO of HOW your OWN Adult Stem cells repair your Body)...

FACT : To treat a range of conditions, and several thousand heart disease patients have been treated with adult stem cells, those found in mature organs. While some cardiologists originally hoped bone marrow cells might generate new heart muscle to replace damaged tissue, that hasnt been found to occur, said Warren Sherman, a cardiologist at Columbia University in New York.

The focus has shifted, said Sherman, in a telephone interview today. Cardiologists are now hoping that bone marrow stem cells can promote the growth of new blood vessels and improve the quality of life and level of chest pain patients have. The new study, in 50 heart disease patients, showed that adult stem cells can improve blood flow and ease chest pain, Sherman said. In the study, half of the heart disease patients got their own stem cells and the others got a simulated treatment. The cardiologists used a catheter, a thin wire threaded through their arteries that also carried a small camera to guide the injections. Go Review and investigate healthy heart and heart wellness stem cell options HERE

Less Discomfort

Excerpt from:
heart disease helped with own Adult Stem Cells and Stem ...

Adult Stem Cell Technology Center, LLCs Director Sherley's Address on Whats Holding Back Regenerative Medicine …

Boston, MA (PRWEB) December 23, 2014

Earlier this year in a June 24 international conference presentation, Dr. James L. Sherley, director of the Adult Stem Cell Technology Center, LLC (ASCTC) focused attention on an often overlooked and under appreciated unique property of adult tissue stem cells. His title Asymmetric Self-Renewal by Distributed Stem Cells: Misunderstood in the Past, Important for the Future, embodied the essence of his message to congress participants. He gave the address at the 4th World Congress on Cell Science and Stem Cell Research in Valencia, Spain.

The international congress was organized by the Omics Group as a part of its mission to foster the dissemination of leading discoveries and advances in life sciences research. Their posting this month of the slides from Dr. Sherley's June 24 keynote address now provides worldwide open access to life sciences investigators - stem cell biologists in particular - of the concepts that he emphasized.

In a 2008 publication [Breast Disease 29, 37-46, 2008], Sherley coined the new term distributed stem cells (DSCs) as a biology-based name for all natural tissue stem cells that are not embryonic in origin. Adult stem cells are included under the DSC heading. DSCs do not make every cell in the body. Their nature is to produce only a limited tissue-specific or organ-specific distribution of the total possible mature cell types. So, for example, liver DSCs make mature liver cells, but not mature cells found in other organs like the lungs.

Since 2001 and the start of "the stem cell debate," Sherley has insisted that only DSCs can be effective for developing new cellular therapies. In his keynote address, he explained to attendees why the counterparts of DSCs human embryonic stem cells (hESCs) and more recently developed induced pluripotent stem cells (iPSCs) could not.

Though many stem cell scientists recognize and acknowledge the genetic defects, incomplete differentiation, and tumor formation problems of hESCs and iPSCs - which their proponents suggest can be solved - few appreciate their greater problem, which cannot be solved. Unlike DSCs, hESCs and iPSCs lack the property of asymmetric self-renewal.

Sherleys main message is that asymmetric self-renewal, which is the gnomonic for DSCs the very property that defines DSCs is essential for effective cellular therapies. Asymmetric self-renewal means that DSCs can actively multiply with simultaneous reproduction of themselves and production of mature cells. This ability allows DSCs to replenish mature cells, which are continuously lost from tissues and organs, but not lose their genetic blueprint required for tissue and organ renewal and repair.

The asymmetric self-renewal of DSCs is a crucial consideration for all aspects of their study and use. Sherley argues that overlooking it is holding back progress in regenerative medicine. Asymmetric self-renewal is the factor that limits the production of DSCs; but it is so unique to them that it can also be used to identify DSCs, which are notorious for being elusive. The ASCTCs patented technologies for producing and counting DSCs for research and clinical development are grounded in the companys special research and bioengineering expertise for DSC asymmetric self-renewal.

Asymmetric self-renewal may even play a role in the efficient production of iPSCs. At the end of his address, Sherley announced the approval of a new ASCTC patent. The patent covers the invention of a method to make iPSCs from DSCs that were produced by regulating their asymmetric self-renewal (U.S. Patent and Trademark Office No. 8,759,098).

The ASCTC anticipates that despite the new technologys origin in DSC research, it will advance human disease research based on iPSCs. Although iPSCs are not suitable for cell therapy applications, they are uniquely able to provide disease research models for hard to obtain cell types found in patients (e.g., brain cells from autism patients, cardiac cells from heart disease patients).

Visit link:
Adult Stem Cell Technology Center, LLCs Director Sherley's Address on Whats Holding Back Regenerative Medicine ...

Stem Cell Treatment Heart Disease – ASCI – Asian Stem Cell …

Cardiovascular diseases remain the biggest cause of deaths worldwide, though over the last two decades, cardiovascular mortality rates have declined in many high-income countries but have increased at an astonishingly fast rate in low- and middle-income countries. The percentage of premature deaths from cardiovascular disease range from 4% in high-income countries to 42% in low-income countries. More than 17 million people died from cardiovascular diseases in 2008. Each year, heart disease kills more Americans than cancer. In recent years, cardiovascular risk in women has been increasing and has killed more women than breast cancer.

Measures to prevent cardiovascular disease may include:

A fairly recent emphasis is on the link between low-grade inflammation that hallmarks atherosclerosis and its possible interventions. C-reactive protein (CRP) is a common inflammatory marker that has been found to be present in increased levels in patients at risk for cardiovascular disease. Also osteoprotegerin which is involved with regulation of a key inflammatory transcription factor called NF-B has been found to be a risk factor of cardiovascular disease and mortality. Studies have shown that Stem Cells have shown the ability to reduce inflammation.

Streaming NIH Database:

Read more here:
Stem Cell Treatment Heart Disease - ASCI - Asian Stem Cell ...

Stem Cell Research: Heart Stem Cells May Help Heal Hearts …

Two men in landmark heart stem cell study tell their stories.

WebMD Archive

Jim Dearing of Louisville, Ky., one of the first men in the world to receive heart stem cells, might have helped start a medical revolution that could lead to a cure for heart failure.

Three years after getting the experimental stem cell procedure, following two heart attacks and heart failure, Dearings heart is working normally.

2012 WebMD, LLC. All rights reserved.

The difference is clear and dramatic -- and it's lasting, according to findings now being made public for the first time.

Dearing first showed "completely normal heart function" on an echocardiogram done in 2011, says Roberto Bolli, MD, who is leading the stem cell trial at the University of Louisville. Those results have not been published before.

That was still true in July 2012, when Dearing again showed normal heart function on another echocardiogram.

Based on those tests, Bolli says, "Anyone who looks at his heart now would not imagine that this patient was in heart failure, that he had a heart attack, that he was in the hospital, that he had surgery, and everything else."

It's not just Dearing who has benefited. His friend, Mike Jones, who had even more severe heart damage, also got the stem cell procedure in 2009. Since then, scarred regions of his heart have shrunk. His heart now appears leaner and stronger than it was before.

Excerpt from:
Stem Cell Research: Heart Stem Cells May Help Heal Hearts ...

New UQ platform aids stem cell research

Researchers at The University of Queensland are part of a global team that has identified a new type of artificial stem cell.

UQ Associate Professor Christine Wells (right) said Project Grandiose had revealed it could track new ways to reprogram a normal adult cell, such as skin cells, into cells similar to those found in an early embryo.

The development is expected to help researchers explore ways to arrive at new cell types in the laboratory, with important implications for regenerative medicine and stem cell science.

Associate Professor Wells, who leads the Stemformatics stem cell research support unit at UQs Australian Institute for Bioengineering and Nanotechnology, said the project involved a consortium of 50 researchers from Canada, Australia, Korea, the USA and the Netherlands

We all come from just one cell the fertilised egg and this cell contains within its DNA a series of instruction manuals to make all of the many different types of cells that make up our body, AIBN Associate Professor Wells said.

These very early stage cells can now be made in the lab by reversing this process of development.

Our research reveals the new instructions imposed on a cell when this developmental process is reversed.

Project Grandiose is a large-scale research effort to understand what happens inside a cell as it reverts to an artificial stem cell.

The role of the Stemformatics.org group was to help the researchers have access to the vast information and data they generated from the project, Associate Professor Wells said.

Our online data platform is designed to let non-specialists view the genes involved and the many ways they are regulated during cell formation.

Follow this link:
New UQ platform aids stem cell research

Loss of a chemical tag on RNA keeps embryonic stem cells in suspended animation

A team of scientists that included researchers from UCLA has discovered a novel mechanism of RNA regulation in embryonic stem cells. The findings are strong evidence that a specific chemical modification, or "tag," on RNA plays a key role in determining the ability of embryonic stem cells to adopt different cellular identities.

The team also included scientists from Harvard Medical School, Massachusetts General Hospital and Stanford University.

Published in the journal Cell Stem Cell, the research reveals that depleting or knocking out a key component of the machinery that places this chemical tag -- known both as m6A and N6-methyladenosine -- on RNA significantly blocks embryonic stem cells from differentiating into more specialized types of cells.

A key property of embryonic stem cells is their ability to differentiate into many specialized types of cells. However, instead of marching toward a specific fate when prompted by signals to differentiate, embryonic stem cells that have reduced ability to place m6A become stuck in a sort of suspended animation, even though they appear healthy.

Yi Xing, a UCLA associate professor of microbiology, immunology and molecular genetics, led the informatics analyses and was a co-corresponding author of the paper. Other corresponding authors were Dr. Cosmas Giallourakis, an assistant professor of medicine at Harvard Medical School and Massachusetts General Hospital, and Dr. Howard Chang, a professor of Stanford University's School of Medicine and a Howard Hughes Medical Institute investigator.

The study of naturally occurring chemical modifications on RNAs is part of an emerging field known as epitranscriptomics. The m6A tag is the most commonly occurring modification known to scientists; it is found on RNAs of thousands of protein-coding genes and hundreds of non-coding genes in a typical cell type. The tags may help regulate RNA metabolism by marking them for destruction.

Little was known about the dynamics, conservation and function of m6A in human or mouse embryonic stem cells when the authors began the project. The authors analyzed which RNAs were tagged with m6A and the location of the m6A modifications along RNAs in mouse and human embryonic stem cells.

"Our analysis revealed a high level of conservation of m6A patterns between mice and humans, suggesting that m6A has conserved functions in human and mouse embryonic stem cells," Xing said. "Moreover, RNAs with m6A tags were degraded more rapidly and lived a shorter life in the cell than those without."

The investigators then found a strikingly conserved requirement for the presence of normal levels of m6A for differentiating embryonic stem cells into multiple cell types. Depletion of METTL3, a gene encoding the enzyme that places the m6A tag on RNAs, severely blocked human embryonic stem cells from differentiating into the gut or neural precursors. Deletion of the mouse METTL3 gene also led to a severe block in the ability of embryonic stem cells to differentiate into neural and cardiac lineages.

The study suggests that m6A modifications on RNA make the transition between cell states possible by instructing the cells to physically degrade those RNAs marked by m6A in embryonic stem cells, to allow the cells to become another cell type. However, if the cells can no longer tag RNA for destruction, the cells lose the ability to change. This discovery sheds new light on gene regulation in stem cells.

View post:
Loss of a chemical tag on RNA keeps embryonic stem cells in suspended animation

Advances reshape stem cell research

A decade ago, a dream team of researchers from Pittsburgh to South Korea claimed a medical invention that promised to reshape a culture war.

The scientists said they custom-designed stem cells from cloned human embryos. The scientific breakthrough was celebrated around the globe.

Then the bottom fell out.

A scandal erupted over fabricated data, and University of Pittsburgh biologist Gerald Schatten was forced to pull back the findings. Critics cast the 2004 discovery as a farce, a high-profile fraud that forced the journal Science into a rare retraction in January 2006.

Eight years later, the push to use stem cells as a medical treatment continues, but scholars balk at the suggestion that anyone is trying to make genetically identical individuals.

We're not here to clone human beings, for gosh sakes, said John Gearhart, a stem cell researcher and University of Pennsylvania professor in regenerative medicine. Instead, he said, scholars are working to manipulate stem cells to produce heart cells for cardiac patients, brain cells for neurological patients and other custom transplants that could match a person's genetic makeup.

Schatten's work continues at the Magee-Womens Research Institute at Pitt, where university officials cleared him of scientific misconduct, and he remains a vice chairman for research development. He focuses on educating and training physician-scientists and other scientists, a school spokeswoman wrote in a statement. She said Schatten was traveling and was unable to speak with the Tribune-Review.

Researchers have turned the onetime myth of developing stem cells into reality.

At the Oregon Health and Science University, researchers succeeded by blending unfertilized human eggs with body tissue to mold stem cells. Scholars say the cells could let doctors grow customized organs for transplants and other therapies.

The approach engineered by biologist Shoukhrat Mitalipov's research team last year in Portland is among two that scientists are using to forge laboratory-made stem cells the so-called master cells that can transform into other body parts without relying on donated human embryos. Federal law tightly controls the use of taxpayer money for embryonic research.

Read more:
Advances reshape stem cell research

Stem Cell Treatment Congestive Heart Failure | CHF Stem …

Congestive Heart Failure Treatment Using Stem Cells

Congestive Heart Failureor CHF is a state wherein the heart does not have the capability to properly function as a pump. As a result of the cardiac-malfunction the oxygen pumped into the body is insufficient. Congestive heart failure is generally caused bysimultaneousillnesses. Illnesses that weaken the heart muscle,or diseases that trigger the heart muscles to become stiff, or illnesses that create an increase in oxygen demands for the body which consequently increases the supply for fresh oxygen by the body when the heart is incapable of producing oxygen-rich blood at the level needed.

Congestive heart failure and ishchemic heart disease can have an impact on numerous organs in the body. For instance, the injured areas of the heart directly affected by the sickness does not have the capability to produce enough blood for the kidneys, which then affect their capability to excrete water and salt (sodium). The distressed kidney function may cause the body to retain more fluids than needed by the body. The lungs also may develop pulmonary edema (PE).

PE occurs when the fluid in the lungs diminishes a persons ability to exercise normally. Fluid might likewise accumulate inside the liver, which directly affects it function by impairing the livers capability to create important proteins and also in helping clear the body of harmful elements and/ortoxins. The intestines might also turn out to be much less effective in being able to absorb the vitamins, nutrients and medicines a human needs. The fluids in the body can also accumulate quickly which could result to edema (severe swelling) of the ankles and feet.

An Ejection fraction of 20% would be considered a dangerous level and therefore indicates a highly advanced stage of heart failure. Healthy people usually have ejection fractions in between 52% and 68%.

Here is the original post:
Stem Cell Treatment Congestive Heart Failure | CHF Stem ...

Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury

PUBLIC RELEASE DATE:

19-Nov-2014

Contact: Lauren Woods lauren.woods@mountsinai.org 646-634-0869 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc

Delivering stem cell factor directly into damaged heart muscle after a heart attack may help repair and regenerate injured tissue, according to a study led by researchers from Icahn School of Medicine at Mount Sinai presented November 18 at the American Heart Association Scientific Sessions 2014 in Chicago, IL.

"Our discoveries offer insight into the power of stem cells to regenerate damaged muscle after a heart attack," says lead study author Kenneth Fish, PhD, Director of the Cardiology Laboratory for Translational Research, Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai.

In the study, Mount Sinai researchers administered stem cell factor (SCF) by gene transfer shortly after inducing heart attacks in pre-clinical models directly into damaged heart tissue to test its regenerative repair response. A novel SCF gene transfer delivery system induced the recruitment and expansion of adult c-Kit positive (cKit+) cardiac stem cells to injury sites that reversed heart attack damage. In addition, the gene therapy improved cardiac function, decreased heart muscle cell death, increased regeneration of heart tissue blood vessels, and reduced the formation of heart tissue scarring.

"It is clear that the expression of the stem cell factor gene results in the generation of specific signals to neighboring cells in the damaged heart resulting in improved outcomes at the molecular, cellular, and organ level," says Roger J. Hajjar, MD, senior study author and Director of the Cardiovascular Research Center at Mount Sinai. "Thus, while still in the early stages of investigation, there is evidence that recruiting this small group of stem cells to the heart could be the basis of novel therapies for halting the clinical deterioration in patients with advanced heart failure."

cKit+ cells are a critical cardiac cytokine, or protein receptor, that bond to stem cell factors. They naturally increase after myocardial infarction and through cell proliferation are involved in cardiac repair.

According to researchers there has been a need for the development of interventional strategies for cardiomyopathy and preventing its progression to heart failure. Heart disease is the number one cause of death in the United States, with cardiomyopathy or an enlarged heart from heart attack or poor blood supply due to clogged arteries being the most common causes of the condition. In addition, cardiomyopathy causes a loss of cardiomyocyte cells that control heartbeat, and changes in heart shape, which lead to the heart's decreased pumping efficiency.

"Our study shows our SCF gene transfer strategy can mobilize a promising adult stem cell type to the damaged region of the heart to improve cardiac pumping function and reduce myocardial infarction sizes resulting in improved cardiac performance and potentially increase long-term survival and improve quality of life in patients at risk of progressing to heart failure," says Dr. Fish.

Read the original here:
Delivering stem cells into heart muscle may enhance cardiac repair and reverse injury

Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury

New York, NY (PRWEB) November 19, 2014

Delivering stem cell factor directly into damaged heart muscle after a heart attack may help repair and regenerate injured tissue, according to a study led by researchers from Icahn School of Medicine at Mount Sinai presented November 18 at the American Heart Association Scientific Sessions 2014 in Chicago, IL.

Our discoveries offer insight into the power of stem cells to regenerate damaged muscle after a heart attack, says lead study author Kenneth Fish, PhD, Director of the Cardiology Laboratory for Translational Research, Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai.

In the study, Mount Sinai researchers administered stem cell factor (SCF) by gene transfer shortly after inducing heart attacks in pre-clinical models directly into damaged heart tissue to test its regenerative repair response. A novel SCF gene transfer delivery system induced the recruitment and expansion of adult c-Kit positive (cKit+) cardiac stem cells to injury sites that reversed heart attack damage. In addition, the gene therapy improved cardiac function, decreased heart muscle cell death, increased regeneration of heart tissue blood vessels, and reduced the formation of heart tissue scarring.

It is clear that the expression of the stem cell factor gene results in the generation of specific signals to neighboring cells in the damaged heart resulting in improved outcomes at the molecular, cellular, and organ level, says Roger J. Hajjar, MD, senior study author and Director of the Cardiovascular Research Center at Mount Sinai. Thus, while still in the early stages of investigation, there is evidence that recruiting this small group of stem cells to the heart could be the basis of novel therapies for halting the clinical deterioration in patients with advanced heart failure.

cKit+ cells are a critical cardiac cytokine, or protein receptor, that bond to stem cell factors. They naturally increase after myocardial infarction and through cell proliferation are involved in cardiac repair.

According to researchers there has been a need for the development of interventional strategies for cardiomyopathy and preventing its progression to heart failure. Heart disease is the number one cause of death in the United States, with cardiomyopathy or an enlarged heart from heart attack or poor blood supply due to clogged arteries being the most common causes of the condition. In addition, cardiomyopathy causes a loss of cardiomyocyte cells that control heartbeat, and changes in heart shape, which lead to the hearts decreased pumping efficiency.

Our study shows our SCF gene transfer strategy can mobilize a promising adult stem cell type to the damaged region of the heart to improve cardiac pumping function and reduce myocardial infarction sizes resulting in improved cardiac performance and potentially increase long-term survival and improve quality of life in patients at risk of progressing to heart failure, says Dr. Fish.

This study adds to the emerging evidence that a small population of adult stem cells can be recruited to the damaged areas of the heart and improve clinical outcomes, says Dr. Hajjar.

Other study co-authors included Kiyotake Ishikawa, MD, Jaume Aguero, MD, Lisa Tilemann, MD, Dongtak Jeong, PhD, Lifan Liang, PhD, Lauren Fish, Elisa Yaniz-Galende, PhD, and Krisztina Zsebo, PhD.

See more here:
Delivery of Stem Cells into Heart Muscle After Heart Attack May Enhance Cardiac Repair and Reverse Injury

High impact clinical trials yield results that could lead to improved kidney care

PUBLIC RELEASE DATE:

15-Nov-2014

Contact: Kurtis Pivert kpivert@asn-online.org 202-699-0238 American Society of Nephrology @ASNKidney

Philadelphia, PA (November 15, 2014) -- The results of numerous high-impact clinical trials that could affect kidney-related medical care will be presented at ASN Kidney Week 2014, November 11-16 at the Pennsylvania Convention Center in Philadelphia, PA.

ACT-AKI: A Phase 2 Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of AC607 for the Treatment of Acute Kidney Injury in Cardiac Surgery Subjects

ADVANCE-ON: long term benefits of intensive glucose control for end-stage kidney disease

HALT Progression of Polycystic Kidney Disease (HALT PKD) Trials: Primary Results of a 2x2 Factorial Trial in Early Stage CKD HALT Progression of Polycystic Kidney Disease Trials: Primary results of a randomized trial in moderately advanced stage CKD

Impact of Extended Weekly Hemodialysis Hours on Quality of Life and Clinical Outcomes: the ACTIVE Dialysis Multinational Trial

Randomized Clinical Trial of Ergocalciferol Supplementation in 25 Vitamin D Deficient Hemodialysis Patients

Renal Efficacy and Safety of Anti-TGF-1 Therapy in Patients with Diabetic Nephropathy

See the rest here:
High impact clinical trials yield results that could lead to improved kidney care

Enhanced cardiac differentiation of mouse embryonic stem …

Page 1

Section: Animal Cell Technology

Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor

Sasitorn Rungarunlert Nuttha Klincumhom Istvan Bock Csilla Nemes Mongkol Techakumphu Melinda K. Pirity Andras Dinnyes

S. Rungarunlert N. Klincumhom I. Bock Cs. Nemes MK. Pirity A. Dinnyes BioTalentum Ltd., Aulich Lajos u. 26. H-2100, Godollo, Hungary

S. Rungarunlert N. Klincumhom M. Techakumphu Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand

I. Bock A. Dinnyes Molecular Animal Biotechnology Laboratory, Szent Istvan University, H-2100 Gdll, Hungary Corresponding author: andras.dinnyes@biotalentum.hu; Phone: +36/20/510-9632, Fax: +36/28/526-151

Emails: Sasitorn Rungarunlert nut_vs@yahoo.com Nuttha Klincumhom nuttha.klincumhom@biotalentum.hu Istvan Bock istvan.bock@biotalentum.hu Csilla Nemes csilla.nemes@biotalentum.hu Mongkol Techakumphu Mongkol.T@chula.ac.th Melinda K. Pirity melinda.pirity@biotalentum.hu

Page 2

Abstract Embryoid body (EB) formation is a common intermediate during in vitro differentiation of pluripotent stem cells into specialized cell types. We have optimized the slow-turning, lateral vessel (STLV) for large scale and homogenous EB production from mouse embryonic stem cells. The effects of inoculating different cell numbers, time of EB adherence to gelatin-coated dishes, and rotation speed for optimal EB formation and cardiac differentiation were investigated. Using 3x105 cells/ml, 10 rpm rotary speed and plating of EBs onto gelatin-coated surfaces three days after culture, were the best parameters for optimal size and EB quality on consequent cardiac differentiation. These optimized parameters enrich cardiac differentiation in ES cells when using the STLV method.

See original here:
Enhanced cardiac differentiation of mouse embryonic stem ...

New Insights For Cardiac Assessment Before Administering …

The ASTIS trial (Autologous Stem cell Transplantation International Scleroderma), launched in 2001, evaluated the efficacy of autologous haematopoietic stem cell transplantation (HSCT) in patients with systemic sclerosis. A key point to safe use of HSCT is a correct evaluation of cardiac condition, and a close follow up for cardiac complications. In a letter to the Editor published in The Journal of the American Medical Association, entitled Cardiac Assessment Before Stem Cell Transplantation for Systemic Sclerosis, Dr. Burt at the Division of Immunotherapy, Northwestern University and colleagues highlight the importance of performing extensive cardiopulmonary screening in patients with severe forms of systemic sclerosis before administrating HSCT.

HSCT therapy first involves harvestingpatients stem cells. Since Scleroderma, also known as systemic sclerosis, is a chronic systemic autoimmune disease (autoimmune diseases are characterized by a hyper-reactive response of the immune response against substances, and tissues normally present in the body), thesecond step of the process involves destroyingpatients hyper-reactive immune system usingchemotherapy. Afterward, the patients harvested stem cells will be injected back into the body. The objective is to reset the patient immune system to normal standards and thus stop the process of scleroderma.

Systemic sclerosis is associated with many cardiac complications, including intrinsic myocardial ischemia and fibrosis, left ventricular diastolic dysfunction, and pericardial disease. While the criteria for exclusion inthe ASTIS trial was mean pulmonary artery pressure greater than 50 mm Hg by echo-cardiogram or cardiac catheterization, theauthors emphasize that this does not exclude pulmonary arterial hypertension. Despite the fact that2009 guidelines updatedtheir information and described pulmonary arterial hypertension as a mean pulmonary artery pressure higher than 25 mm Hg, the authors cautioned that a significant amount of attention has to be dedicated toassessing cardiac risks in these patients to prevent treatment-related mortality.

Link:
New Insights For Cardiac Assessment Before Administering ...

Enliven: Journal of Anesthesiology and Critical Care Medicine ISSN : 2374 – 4448 I e001 – Video


Enliven: Journal of Anesthesiology and Critical Care Medicine ISSN : 2374 - 4448 I e001
Left Ventricular Assist Device and Resident Cardiac Stem Cells in Heart Failure: Human Heart #39;s Potential Matter.

By: enlivenarchive

Read the original:
Enliven: Journal of Anesthesiology and Critical Care Medicine ISSN : 2374 - 4448 I e001 - Video

Before There Will Be Blood

Contact Information

Available for logged-in reporters only

Newswise Hematopoietic stem cells (HSCs) give rise to all blood and immune cells throughout the life of vertebrate organisms, from zebrafish to humans. But details of their genesis remain elusive, hindering efforts to develop induced pluripotent stem cell (iPSC) replacements that might address a host of blood disorders.

In a paper published Nov. 20 in the journal Cell, researchers at the University of California, San Diego School of Medicine describe the surprising and crucial involvement of a pro-inflammatory signaling protein in the creation of HSCs during embryonic development, a finding that could help scientists to finally reproduce HSCs for therapeutic use.

The recent breakthrough of induced pluripotency has made the concept of patient-specific regenerative medicine a reality, said principal investigator David Traver, PhD, professor in the Department of Cellular and Molecular Medicine. The development of some mature cell lineages from iPSCs, such as cardiac and neural, has been reasonably straightforward, but not with HSCs. This is likely due, at least in part, to not fully understanding all of the factors used by the embryo to generate HSCs. We believe the discovery that pro-inflammatory cues are important in vivo will help us recapitulate instruction of HSC fate in vitro from iPSCs.

Traver and colleagues specifically looked at the role of a cytokine (a type of cell signaling protein) called tumor necrosis factor alpha or TNFa, which plays a pivotal role in regulating systemic inflammation and immunity. The work extended previous research by Spanish biologist Victoriano Mulero, who had reported that TNFa was important in the function of the embryonic vascular system and that in animal models where TNF function was absent, blood defects resulted.

The Cell papers first author Raquel Espin-Palazon, a postdoctoral researcher in Travers lab and a former colleague of Muleros, determined that TNFa was required for the emergence of hematopoietic stem cells during embryogenesis in zebrafish a common animal model.

Traver said the finding was completely unexpected because HSCs emerge relatively early in embryonic formation when the developing organism is considered to be largely sterile and devoid of infection.

Thus, there was no expectation that pro-inflammatory signaling would be active at this time or in the blood-forming regions, Traver said. Equally surprising, we found that a population of embryonic myeloid cells, which are transient cells produced before HSCs arise, are the producers of the TNFa needed to establish HSC fate. So it turns out that a small subset of myeloid cells that persist for only a few days in development are necessary to help generate the lineal precursors of the entire adult blood-forming system.

The newly discovered role of TNFa in HSC development mirrors a parallel discovery regarding interferon gamma (INFg), another cytokine and major mediator of pro-inflammatory signaling, highlighting multiple inputs for inflammatory signaling in HSC emergence. Traver said the crucial roles of TNFa and INFg in HSC emergence are likely similar in humans because of the highly conserved nature of HSC development across vertebrate evolution.

Go here to read the rest:
Before There Will Be Blood

Salk Scientists Discover a Key to Mending Broken Hearts

Contact Information

Available for logged-in reporters only

Newswise LA JOLLAResearchers at the Salk Institute have healed injured hearts of living mice by reactivating long dormant molecular machinery found in the animals cells, a finding that could help pave the way to new therapies for heart disorders in humans.

The new results, published November 6 in the journal Cell Stem Cell, suggest that although adult mammals dont normally regenerate damaged tissue, they may retain a latent ability as a holdover from development like their distant ancestors on the evolutionary tree. When the Salk researchers blocked four molecules thought to suppress these programs for regenerating organs, they saw a drastic improvement in heart regeneration and healing in the mice.

The findings provide proof-of-concept for a new type of clinical treatment in the fight against heart disease, which kills about 600,000 people each year in the United Statesmore than AIDS and all cancer types combined, according to the U.S. Centers for Disease Control and Prevention.

Organ regeneration is a fascinating phenomenon that seemingly recapitulates the processes observed during development. However, despite our current understanding of how embryogenesis and development proceeds, the mechanisms preventing regeneration in adult mammals have remained elusive, says the studys senior author Juan Carlos Izpisua Belmonte, a professor in the Gene Expression Laboratory at Salk.

Within the genomes of every cell in our bodies, we have what information we need to generate an organ. Izpisua Belmontes group has for many years focused on elucidating the key molecules involved in embryonic development as well as those potentially underlying healing responses in regenerative organisms such as the zebrafish.

Indeed, back in 2003, Izpisua Belmontes laboratory first identified the signals preceding zebrafish heart regeneration. And in a 2010 Nature paper, the researchers described how regeneration occurred in the zebrafish. Rather than stem cells invading injured heart tissue, the cardiac cells themselves were reverting to a precursor-like state (a process called dedifferentiation), which, in turn, allowed them to proliferate in tissue.

Although in theory it might have seemed like the next logical step to ask whether mammals had evolutionarily conserved any of the right molecular players for this kind of regenerative reprogramming, in practice it was a scientific risk, recalls Ignacio Sancho-Martinez, a postdoctoral researcher in Izpisua Belmontes lab.

When you speak about these things, the first thing that comes to peoples minds is that youre crazy, he says. Its a strange sounding idea, since we associate regeneration with salamanders and fish, but not mammals.

Excerpt from:
Salk Scientists Discover a Key to Mending Broken Hearts

donga.com[English donga]

Korean stem cells regenerate coach Hiddinks worn-out knee cartilage NOVEMBER 06, 2014 08:34 Korean stem cells regenerate coach Hiddinks worn-out knee cartilage . NOVEMBER 06, 2014 08:34. . Guus Hiddink, the legendary soccer coach who led the Korean national team to the semifinals at the 2002 World Cup Korea-Japan, has been reborn as a figure symbolizing excellence of Korean stem cell treatment. Hiddink, who was suffering from severe arthritis, had his knee cartilage almost completely worn out. Rejecting recommendations to take an artificial joint surgery by hospitals in the U.S. and Germany, Hiddink chose to take stem cell treatment in Korea. He started treatment in January this year, and was declared as having fully recovered from the illness 10 months later.

The treatment that gave coach Hiddink a second life is Cartistem that is made from cord blood stem cells. Cartistem developed by bio venture firm Medipost received product licensure as treatment for knee cartilage, which has been damaged due to degenerative conditions and repeated injuries, from the Korea Food and Drug Ministry in January 2012. It was the first to receive licensure among stem cell treatments in the world. The treatment is undergoing clinical trials in the U.S. to acquire licensure from the Food and Drug Administration. Despite a highly costly price that is not covered by the national health insurance system, the treatment has been used in more than 1,600 patients thus far.

Stem cell treatments developed in Korea include Hearticellgram, a treatment for cardiac infarction, and Cupistem, a treatment for fistulous opening (a disease that causes holes in tissue between rectums and anus), as well as Cartistem. Hearticellgram and Cupistem use stem cells from tissues of the patients own body. Umbilical cord stem cells and autologous stem cells do not derive from human eggs and hence are free from controversy of bioethics. They are results of steadfast research and investment in stem cells by Korean biotech firms.

In tune with the aging society and a growing number of people with chronic diseases, the bio industry is considered a "cash cow industry of the future." Notably, the stem cell sector that treats abnormal bodily organs is the most promising field. Not only bio powerhouses such as the U.S., Japan and the European Union but also China have jumped into the industry. As research on induced pluripotent stem cells (iPS) recently won the Nobel Prize in physiology and medicine, countries worldwide are having mounting interest in the field. The Korean government should create an environment to enable Korean biotech firms to take a leap forward in the global market, by providing generous support for investment and putting in place prompt and predictable licensure and approval process.

The treatment that gave coach Hiddink a second life is Cartistem that is made from cord blood stem cells. Cartistem developed by bio venture firm Medipost received product licensure as treatment for knee cartilage, which has been damaged due to degenerative conditions and repeated injuries, from the Korea Food and Drug Ministry in January 2012. It was the first to receive licensure among stem cell treatments in the world. The treatment is undergoing clinical trials in the U.S. to acquire licensure from the Food and Drug Administration. Despite a highly costly price that is not covered by the national health insurance system, the treatment has been used in more than 1,600 patients thus far.

Stem cell treatments developed in Korea include Hearticellgram, a treatment for cardiac infarction, and Cupistem, a treatment for fistulous opening (a disease that causes holes in tissue between rectums and anus), as well as Cartistem. Hearticellgram and Cupistem use stem cells from tissues of the patients own body. Umbilical cord stem cells and autologous stem cells do not derive from human eggs and hence are free from controversy of bioethics. They are results of steadfast research and investment in stem cells by Korean biotech firms.

In tune with the aging society and a growing number of people with chronic diseases, the bio industry is considered a "cash cow industry of the future." Notably, the stem cell sector that treats abnormal bodily organs is the most promising field. Not only bio powerhouses such as the U.S., Japan and the European Union but also China have jumped into the industry. As research on induced pluripotent stem cells (iPS) recently won the Nobel Prize in physiology and medicine, countries worldwide are having mounting interest in the field. The Korean government should create an environment to enable Korean biotech firms to take a leap forward in the global market, by providing generous support for investment and putting in place prompt and predictable licensure and approval process.

Continue reading here:
donga.com[English donga]

Cardio3 Biosciences Acquires CorQuest Medical Inc.

CorQuests revolutionary technology is designed to enable cardiologists to take a unique access route directly to the patients left atrium and therefore has the potential to become a major breakthrough innovation for therapeutic indications such as mitral valve disorders and structural heart disease, conditions often linked to heart failure. Specifically, CorQuests novel heart access technology comprises a number of instruments which allows for quick, user friendly and easy trans-thoracic access to the heart, directly into the left atrium, ensuring a minimally invasive approach to deliver numerous existing therapeutic devices.

When CE-marked, the insertion of the heart access sheath into a patients left atrium will allow the deployment of catheters or other necessary instruments for use in the treatment of various indications such as mitral valve occlusion defects. As such, the market potential could be very significant as this new open access route could be used in many existing medical device applications.

Currently in the advanced pre-clinical development phase, Cardio3 BioSciences intends to progress the device through the appropriate clinical and regulatory approval processes, with the aim of obtaining CE mark approval by the end of 2016, which would allow commercialisation in Europe. The first indication to be targeted with the CorQuest technology is expected to be the repair or replacement of the mitral valve.

The CorQuest technology platform is fully complementary with Cardio3 BioSciences C-Cathez and C-Cure programs. The C-Cathez catheter could be passed through CorQuests sheath to deliver C-Cure into the myocardium when the traditional route via the aorta may lead to complications for the patient.

The acquisition of CorQuest and the development of these technologies will not significantly affect the Companys burn rate over the two coming years. However, the acquisition of an extra medical device with a potential to market by 2016, as well as other therapeutic applications, will enable the Company to create multiple short term value creation milestones for its shareholders.

Dr Christian Homsy, CEO of Cardio3 BioSciences, comments: As part of our business strategy of building further on our cardiovascular diseases expertise, we have been actively seeking to acquire technologies that complement our existing medical devices for treating severe heart conditions. This invention is truly novel and may solve one of the very significant issues in mitral valve repair for example. Indeed, today, mitral valve repair procedures require a convoluted access to the valve. This revolutionary technology allows a direct access to the valve, from above, without perforation of the inter-atrial wall or the apex of the heart. The development of this technology will enable Cardio3 BioSciences to build on its leadership position in innovative therapies and devices for cardiovascular diseases.

In addition to the heart access technology, Cardio3 Biosciences acquisition of CorQuest includes a line of medical devices and implants targeted at various structural heart diseases including atrial fibrillation and mitral valve diseases, which will further expand Cardio3 BioSciences cardiovascular therapeutic applications portfolio.

As the heart access sheath is an open technology, the market potential of this new route to the heart and its accompanying line of medical devices and implants could be significant in a global market of cardiac medical devices which is expected to total $65.6 billion in 2015, with an annual growth rate of 9.8%.

Georges Rawadi, VP Business Development at Cardio3 BioSciences comments: Over 20 million invasive cardiac procedures, involving devices, are performed worldwide on an annual basis. This potential new access route to the heart could be used in a substantial proportion of those.

Dr. Didier De Cannire, founder of CorQuest Medical Inc. and technology inventor, further adds:

Original post:
Cardio3 Biosciences Acquires CorQuest Medical Inc.

Stem Cell Therapy || Heart Failure || Stem Cell Treatment …

Heart Disease

With respect to the heart, stem cells have the ability to not only home into the damaged areas but also to initiate a cascade of biological events which both culminate in healing of the heart muscle. For example, animal studies have demonstrated that stem cell therapy will cause new muscle cells to be formed through stimulation of dormant stem cells that are already inside the heart muscle. In these studies, the administered stem cell also transformed into new heart muscle cells.

At Stem Cell Institute, our stem cell treatment protocol for heart failure involves administration of mesenchymal stem cells harvested from human umbilical cord tissue.

The adult stem cells used to treat heart failure at the Stem Cell Institute come from human umbilical cord tissue (allogeneic mesenchymal). These stem cells are expanded at Medistem Panamas state-of-the-art laboratory.

The mesenchymal stem cells we use are recovered from donated umbilical cords following normal, healthy births. Each mother has her medical history screened and is tested for infectious diseases. Proper consent is received from each family prior to donation.

All umbilical cord-derived stem cells are screened for infectious diseases to International Blood Bank Standards before they are cleared for use in patients.

Approximately 1 in 10 donated umbilical cords pass our rigorous screening process.

Through retrospective analysis of our cases, weve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them golden cells.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.

See more here:
Stem Cell Therapy || Heart Failure || Stem Cell Treatment ...

Stem Cell Therapy Safely Repairs Damaged Heart Muscle in …

Using stem cells to repair damaged heart muscle in patients with chronic heart failure is safe and beneficial, whether the cells come from patients own bone marrow or from a healthy volunteer, according to a preliminary study by researchers at the Johns Hopkins University School of Medicine and the University of Miami Miller School of Medicine. In a study of 31 patients, the therapy reduced heart muscle scar tissue and improved their quality of life. For many patients in the study, the therapy also enhanced their hearts pumping ability.

An article describing the study, "Comparison of Allogeneic vs. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients with Ischemic Cardiomyopathy," is published in the Journal of the American Medical Association (JAMA) on Nov. 6. Results are scheduled to be presented that same day at the American Heart Association Scientific Sessions in Los Angeles.

The researchers say this is the first study to compare autologous stem cells, which are derived from the patients' own bone marrow, to allogeneic stem cells, taken from the marrow of healthy volunteers, in patients with heart disease. The advantage of using allogeneic cells is the potential for developing an off-the-shelf therapy that could be delivered in a more timely way, rather than requiring a bone marrow biopsy from heart failure patients and waiting for the cells to be processed. Also, stem cells from the patients themselves may not be as robust.

All of the study patients had longstanding ischemic cardiomyopathy - chronic heart failure caused by a prior heart attack that blocked blood flow to the heart and damaged heart muscle. The condition affects about 70 percent of the six million people in the United States who suffer from heart failure.

"The primary focus of our study was to determine the safety of the therapy, specifically within 30 days of the treatment," says Gary Gerstenblith, M.D., professor of medicine at the Johns Hopkins University School of Medicine and co-author of the study. "We found that the treatment was safe and also that many of the patients experienced significant improvement, whether they had received the allogeneic or the autologous stem cells," he says.

Patients in the study were randomly selected to have either their own stem cells or donated cells injected directly into their heart muscle. They were monitored for treatment-associated complications, such as death, heart attack, stroke, hospitalization for worsening heart failure and dangerous heart arrhythmias. All of the patients were still alive 12 months after the treatment.

The researchers were especially interested in learning whether the patients immune system would recognize the allogeneic (donated) stem cells as foreign and mount an immune response to reject the cells. Only 3.7 percent of the patients receiving the donated cells had such a response. The cells were injected into the heart muscle just once during a cardiac catheterization procedure.

The particular cells used for the therapy, mesenchymal stem cells, are less likely to stimulate an immune response and rejection than most other stem cells. They have the ability to repair muscular tissues and to reduce inflammation.

Patients in the allogeneic and autologous groups were further divided according to the doses of the stem cells they received. Three different doses were tested: 20 million cells, 100 million cells and 200 million cells.

"We generally think the more the better, but in fact, the lowest dose of 20 million cells appeared to be the most effective at improving the hearts pumping ability as well as reducing the extent of scar tissue," says Peter Johnston, M.D., assistant professor of medicine at Johns Hopkins and co-author of the study.

Go here to read the rest:
Stem Cell Therapy Safely Repairs Damaged Heart Muscle in ...

Archives