Page 3«..2345..1020..»

Archive for the ‘Cardiac Stem Cells’ Category

Cardiac Regeneration – Center for Regenerative Medicine …

Reparative stem cells have the capability to restore function to damaged tissue by renewing cell growth (shown in green) in cardiac cells destroyed by heart disease.

Approximately 28 million Americans have been diagnosed with heart disease. Traditional medical therapies are not able to fully address the burden of disease, and the shortage of organs for transplantation remains a key barrier more than 117,000 people are on the national transplant list.

This unmet need drives Mayo Clinic researchers to make new discoveries to accelerate regenerative solutions into clinical trials and rapidly provide new hope to patients who can't currently be treated.

Cardiac regeneration is a broad effort that aims to repair irreversibly damaged heart tissue with cutting-edge science, including stem cell and cell-free therapy. Reparative tools have been engineered to restore damaged heart tissue and function using the body's natural ability to regenerate. Working together, patients and providers are finding regenerative solutions that restore, renew and recycle patients' own reparative capacity. Through the vision and generous support of Russ and Kathy Van Cleve, strong efforts are underway to develop discoveries that will have a global impact on ischemic heart disease.

Mayo Clinic researchers are leading efforts in translating new knowledge into applicable therapeutics through a multidisciplinary community of practice. As technology evolves, it offers the potential to regenerate cardiac tissue from noncardiac sources and ultimately provide personalized products and services to people with cardiovascular disease.

The overarching vision for the cardiac regeneration program at Mayo Clinic is to develop new therapies to cure ischemic heart disease. Mayo researchers are developing products for clinical testing that span the disease spectrum, including the following areas:

More information about cardiac regenerative medicine research at Mayo Clinic is on the Van Cleve Cardiac Regenerative Medicine Program website.

.

Read the rest here:
Cardiac Regeneration - Center for Regenerative Medicine ...

Autologous Stem Cell Based Therapies Market to Eyewitness Huge Growth by 2027 with Covid-19 Impact The Manomet Current – The Manomet Current

This Autologous Stem Cell Based Therapies market report provides vital info on survey data and the present market place situation of each sector. The purview of this Autologous Stem Cell Based Therapies market report is also expected to involve detailed pricing, profits, main market players, and trading price for a specific business district, along with the market constraints. This anticipated market research will benefit enterprises in making better judgments.

Get the complete sample, please click:https://www.globalmarketmonitor.com/request.php?type=1&rid=643098

This type of comprehensive and specialized market investigation also ponders the effect of these modernizations on the markets future development. Several innovative businesses are bouncing up in the business that are executing original innovations, unique approaches, and forthcoming contracts in order to govern the worldwide market and build their footprint. It is clear that market participants are making progress to combine the most cutting-edge technology in order to stay competitive. This is achievable since innovative products are introduced into the market on a frequent basis. The range of this Autologous Stem Cell Based Therapies market report extends outside market settings to comprise analogous pricing, gains, vital players, and market value for a major market areas. This foreseeable marketing plan will help firms make more up-to-date decisions.

Key global participants in the Autologous Stem Cell Based Therapies market include:Med cell Europe US STEM CELL, INC. Tigenix Mesoblast Pluristem Therapeutics Inc Brainstorm Cell Therapeutics Regeneus

20% Discount is available on Autologous Stem Cell Based Therapies market report:https://www.globalmarketmonitor.com/request.php?type=3&rid=643098

Segmentation on the Basis of Application:Neurodegenerative Disorders Autoimmune Diseases Cardiovascular Diseases

Market Segments by TypeEmbryonic Stem Cell Resident Cardiac Stem Cells Umbilical Cord Blood Stem Cells

Table of Content1 Report Overview1.1 Product Definition and Scope1.2 PEST (Political, Economic, Social and Technological) Analysis of Autologous Stem Cell Based Therapies Market2 Market Trends and Competitive Landscape3 Segmentation of Autologous Stem Cell Based Therapies Market by Types4 Segmentation of Autologous Stem Cell Based Therapies Market by End-Users5 Market Analysis by Major Regions6 Product Commodity of Autologous Stem Cell Based Therapies Market in Major Countries7 North America Autologous Stem Cell Based Therapies Landscape Analysis8 Europe Autologous Stem Cell Based Therapies Landscape Analysis9 Asia Pacific Autologous Stem Cell Based Therapies Landscape Analysis10 Latin America, Middle East & Africa Autologous Stem Cell Based Therapies Landscape Analysis 11 Major Players Profile

This market study also includes a geographical analysis of the world market, which includes North America, Europe, Asia Pacific, the Middle East, and Africa, as well as several other important regions that dominate the world market. The Market study highlights some of the most important resources that can assist in achieving high profits in the firm. This Autologous Stem Cell Based Therapies market report also identifies market opportunities, which will aid stakeholders in making investments in the competitive landscape and a few product launches by industry players at the regional, global, and company levels. As numerous successful ways are offered in the study, it becomes possible to expand your firm. By referring to this one-of-a-kind market study, one can achieve business stability. With the help of this Market Research Study, you may achieve crucial positions in the whole market. It does a thorough market analysis for the forecast period of 2021-2027.

Autologous Stem Cell Based Therapies Market Intended Audience: Autologous Stem Cell Based Therapies manufacturers Autologous Stem Cell Based Therapies traders, distributors, and suppliers Autologous Stem Cell Based Therapies industry associations Product managers, Autologous Stem Cell Based Therapies industry administrator, C-level executives of the industries Market Research and consulting firms

This comprehensive Autologous Stem Cell Based Therapies market report offers a practical perspective to the current market situation. It also compiles pertinent data that will undoubtedly aid readers in comprehending particular aspects and their interactions in the current market environment. The material offered in this Market research report is discussed in detail on numerous levels, including technological advancements, effective methods, and market penetration factors. The reports recommendations are mostly employed by existing industry participants. It provides sufficient statistical data to comprehend its operation. It also outlines the changes that must be made in order for current businesses to grow and adapt to market developments in the future.

About Global Market MonitorGlobal Market Monitor is a professional modern consulting company, engaged in three major business categories such as market research services, business advisory, technology consulting.We always maintain the win-win spirit, reliable quality and the vision of keeping pace with The Times, to help enterprises achieve revenue growth, cost reduction, and efficiency improvement, and significantly avoid operational risks, to achieve lean growth. Global Market Monitor has provided professional market research, investment consulting, and competitive intelligence services to thousands of organizations, including start-ups, government agencies, banks, research institutes, industry associations, consulting firms, and investment firms.ContactGlobal Market MonitorOne Pierrepont Plaza, 300 Cadman Plaza W, Brooklyn,NY 11201, USAName: Rebecca HallPhone: + 1 (347) 467 7721Email: info@globalmarketmonitor.comWeb Site: https://www.globalmarketmonitor.com

Related Market Research Reports:Dried Flowers Market Reporthttps://www.globalmarketmonitor.com/reports/578149-dried-flowers-market-report.html

Fennel Seed Powder Market Reporthttps://www.globalmarketmonitor.com/reports/526806-fennel-seed-powder-market-report.html

2-methyl-4-phenylindene (CAS 159531-97-2) Market Reporthttps://www.globalmarketmonitor.com/reports/634751-2-methyl-4-phenylindenecas-159531-97-2market-report.html

Balance Cushions Market Reporthttps://www.globalmarketmonitor.com/reports/692405-balance-cushions-market-report.html

Stun Guns Market Reporthttps://www.globalmarketmonitor.com/reports/522871-stun-guns-market-report.html

Outdoor Luxury Furniture Market Reporthttps://www.globalmarketmonitor.com/reports/640715-outdoor-luxury-furniture-market-report.html

See the original post:
Autologous Stem Cell Based Therapies Market to Eyewitness Huge Growth by 2027 with Covid-19 Impact The Manomet Current - The Manomet Current

Autologous Stem Cell Based Therapies Market 2021 Industry Statistics, Applications, Forecast 2026, and Key Player Analysis- Regeneus, Mesoblast,…

The Autologous Stem Cell Based Therapies Market is expected to grow at a CAGR of 8.98% and is poised to reach US$XX Billion by 2027 as compared to US$XX Billion in 2020. The factors leading to this extraordinary growth is attributed to various market dynamics discussed in the report. Our experts have examined the market from a 360 degree perspective thereby producing a report which is definitely going to impact your business decisions.

In order to make a pre-order inquiry, kindly click on the link below:-https://decisivemarketsinsights.com/autologous-stem-cell-based-therapies-market/68699036/pre-order-enquiry

The market research report by DECISIVE MARKETS INSIGHTS looks at several important elements that affect the global industrys development. This research includes a concise explanation of all the variables impacting these market participants growth, as well as information about their organizations, business models, marketing strategies, operational activities, technological integrations, and more. The top competitors in the global industry are included in this market analysis. In addition, the study includes mergers and acquisitions that have improved the product portfolios of various companies. The research provides an in-depth examination of several customer journeys that are relevant to the Autologous Stem Cell Based Therapies market and its sectors. It provides a variety of client perspectives on the products and services.

To avail Sample Copy of report, visit @ https://decisivemarketsinsights.com/autologous-stem-cell-based-therapies-market/68699036/request-sample

Key Companies Operating in this Market

Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe

Key Highlights of the Autologous Stem Cell Based Therapies Market Report

Market Segments and other perspective have been studied across 360 degree perspective Both Supply and Demand side mapping has been done to understand the market scenario We have used data triangulation to derive the market numbers Our data and analysis have been verified through C-level Executives while conducting primary interviews Porters Five Forces Analysis, Swot, Analysis, PEST Analysis, Value Chain Analysis and Market Attractiveness would be an added advantage in the report Market Size is Provided from 2019 to 2027; whereas CAGR is Provided from 2020 to 2027 Historical Year: 2019; Base Year: 2020; Forecast Years: 2020 2027

Market Segmentation and Scope of the Global Autologous Stem Cell Based Therapies Market

Market by TypeEmbryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells

Market by ApplicationNeurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases

The study digs deeper into their concerns and common issues across a variety of consumer touchpoints. The consultation and business intelligence solutions will assist interested parties, including CXOs, in developing a user experience that is tailored to their specific requirements. This will assist them in their efforts to increase customer engagement with their companies. The area experts conscious attempt to understand how certain industry owners succeed in keeping a competitive edge which makes the research intriguing. A cursory look at the true competitors adds a lot to the entire studys appeal. Possibilities that assist commodity owners in determining the size of their business offer value to the overall study. Furthermore, the reports research study informs readers about core COVID-19 issues and possible remedies.

To inquire about the discount, kindly fill the form by clicking on the link below:-https://decisivemarketsinsights.com/autologous-stem-cell-based-therapies-market/68699036/request-discount

The study paper dissects the total market potential of major regions with strengths, opportunity and challenge, constraints, and dangers. By identifying the high-improvement locations, the study inspects the open entryways, keeping an eye out for accomplices. It examines each submarket in terms of a single improvement design and its contribution to the market. It examines the recent developments, such as advancements, business strategies, new product releases, and acquisitions. It purposefully profiles the major market players and thoroughly investigates their advancement strategies.

Kindly click on the link below if you intend to make a direct purchase @https://decisivemarketsinsights.com/autologous-stem-cell-based-therapies-market/68699036/buy-now

What are the greatest investment options for expanding into new product and service categories? What value propositions should companies aim for when investing in new research & innovation? Which legislation will assist stakeholders to improve their supply chain network the most? Which regions could see consumption in particular segments mature shortly? What are some of the greatest vendor cost management tactics that some well-established players have found to be successful?

Kindly contact us and our expert will get back to you within 30 minutes:

Decisive Markets InsightsSunil KumarSales HeadEmail sales@decisivemarketsinsights.comUS +18317045538UK +441256636046

See the rest here:
Autologous Stem Cell Based Therapies Market 2021 Industry Statistics, Applications, Forecast 2026, and Key Player Analysis- Regeneus, Mesoblast,...

Quadruplets, Immune-Based Regimens Slated to Expand the Frontline Myeloma Paradigm – OncLive

The treatment of patients with newly diagnosed multiple myeloma is an evolving area, said Pianko. The drug combinations we have now are highly effective, but many of the options coming [down the pike] could allow us to provide deeper responses for patients. Data supporting the use of quadruplet regimens for [this patient population] are also coming.

Future trials will help us [determine] which of the triplet backbones will be the best partner for a CD38-based quadruplet regimen. However, before quadruplets can really be considered a true new standard of care, more data are required, added Pianko, a clinical assistant professor at the University of Michigan Health.

During the 2021 Institutional Perspectives in Cancer webinar on multiple myeloma, faculty from the University of Michigan Health zeroed in on therapeutic updates in the frontline and relapsed settings and how more novel approaches, including CAR T-cell therapy, are shifting best practices in the paradigm. Pianko, who chaired the event, noted that the webinar had a key role in helping to establish and connect the academic institution with local referring community providers to discuss cutting edge developments in myeloma treatment.

In an interview with OncLive, Pianko reflected on the abovementioned topicsspecifically how he approaches patients with newly diagnosed multiple myeloma, and differentiating options based on transplant eligibility, as well as which emerging immune-based therapies he is most intrigued by.

Pianko: My approach to the treatment of [patients with] newly diagnosed multiple myeloma incorporates a very patient-centric [tactic]. I look at multiple factors specific to the patient, which can help to guide treatment decisions, [including] age, other medical conditions, cardiovascular risk, pre-existing neuropathy, and transplant eligibility. These factors play into how we select treatment.

Recent data from several trials have allowed for multiple choices in the frontline setting that would be appropriate for both transplant-eligible and -ineligible patients with multiple myeloma. Largely, tailoring therapy to a specific patient is becoming more possible with much of the data we have in newly diagnosed multiple myeloma.

For the transplant-eligible population, our current practice is to generally use triplet regimens, [such as] bortezomib [Velcade], lenalidomide [Revlimid], and dexamethasone [VRd] or carfilzomib [Kyprolis], lenalidomide, and dexamethasone [KRd]. The patients age, cytogenetic risk, and pre-existing neuropathy can help us to choose [between these triplet regimens].

The ENDURANCE trial [NCT01863550] was a large, randomized, phase 3 study that compared VRd with KRd and showed that VRd was not superior to KRd. The study highlighted that there is a known difference in the adverse effect [AE] profiles of these [triplets]. The patients getting VRd had a high incidence of treatment discontinuation [because of] treatment-related AEs, including peripheral neuropathy, which is associated with bortezomib. In the KRd combination, high incidences of cardiac, pulmonary, and renal toxicities [were observed].

Largely, there [doesnt] seem to be a difference in terms of progression-free survival [PFS] between the 2 groups, but we did see a difference in the AE profiles. The basis for choosing one [triplet] over the other can be guided by the expected AEs and driven by the [individual] patient.

In my practice, I tend to favor KRd in young patients with newly diagnosed multiple myeloma without significant medical comorbidities and independent of cytogenetic risk. [This is] because of the peripheral neuropathy bortezomib [can cause] that can be permanent. For many patients who have a life expectancy of potentially at least 1 decade, the cumulative quality-of-life burden of daily pain from peripheral neuropathy is a significant issue to consider.

My discussion with my patients often discusses the risk of peripheral neuropathy and cardiopulmonary AEs from carfilzomib. Ultimately, after discussing [these risks] with the patient, we together choose which [treatment] is the most appropriate way forward.

In the transplant-ineligible patient population, there are younger patients who have medical comorbidities that might preclude a transplant, and we have our older patients. Generally, [transplant ineligibility] is in the range of 75 to 80 years old. That is when we could classify someone as being potentially transplant ineligible but [we need to consider] geriatric and frailty assessments that can help guide us.

For patients who are intermediate-fit or frail, we might consider a doublet regimen, such as lenalidomide plus dexamethasone [Rd]. The inclusion of daratumumab to this doublet [based on] the MAIA trial [NCT02252172] showed us that [Rd plus daratumumab] is a viable approach for patients with newly diagnosed, transplant-ineligible multiple myeloma. The toxicity profile of daratumumab pairs well [with Rd] in this [patient population] to be [considered] a potential standard of care.

Other regimens include the VRd-lite regimen, which uses a modified dose and schedule for bortezomib and lenalidomide. That is another option for our transplant-ineligible patients.

A study was recently published looking at a modified schedule of lenalidomide/dexamethasone where patients would get [the doublet] for 9 cycles and then were able to de-escalate [treatment] and drop the dexamethasone. It seems like this approach is another viable option for our transplant-ineligible patients, particularly those with intermediate-fit or frail disease.

The take-home message is that there are multiple options that we can choose from in both the transplant-eligible and -ineligible patient populations.

The role of daratumumab in the frontline setting for multiple myeloma is an evolving one. Based on the MAIA trial, Rd plus daratumumab is now an FDA-approved regimen for patients with newly diagnosed, transplant-ineligible multiple myeloma. We have seen promising early data from the GRIFFIN study [NCT02874742], which looked at the quadruplet combination of daratumumab plus VRd vs VRd alone.

We saw [from the GRIFFIN trial] that the addition of daratumumab to this regimen was another viable approach. We saw superior depth of response and higher rates of stringent complete responses in up to 60% of patients [treated with] daratumumab plus VRd vs about 20% for the triplet regimen. We also saw a higher degree of minimal residual disease [MRD]negative disease with the quadruplet [compared with the triplet]. The safety profile [with the quadruplet] was acceptable, and namely, the stem cell collection did not seem to be compromised by the inclusion of daratumumab in the up-front setting. Patients were able to successfully collect stem cells without any compromise in the quadruplet arm.

There is a large, international, phase 3 trial called the Perseus trial [NCT03710603], which is going to further evaluate the quadruplet vs triplet combinations that were evaluated in the GRIFFIN trial. [The results of the Perseus trial] should provide further information as to whether [daratumumab plus VRd] could be a potential standard [treatment for patients with] newly diagnosed multiple myeloma.

The KRd triplet [is also] a potential backbone for daratumumab-based therapy and there have also been some exciting studies looking at that [quadruplet]. At the University of Alabama at Birmingham, the phase 2 MASTER trial [NCT03224507] was led by Luciano J. Costa, MD, and looked at daratumumab plus KRd as a potential approach in newly diagnosed multiple myeloma.

There was also a recently reported small study out of Memorial Sloan Kettering Cancer Center called the MANHATTAN trial, which looked at weekly KRd plus daratumumab. In about 41 patients enrolled in the non-randomized trial, the overall response rate was 100%, and 39 patients had a very good partial response or better. Also, these patients had an exceedingly high rate of MRD-negative disease. This is a promising potential option, but randomized data need to be evaluated [because] this was a small, non-randomized study.

Speaking to that, C. Ola Landgren, MD, of the University of Miami Miller School of Medicine, is leading a multicenter, phase 3 trial called ADVANCE [NCT04268498] thatis looking at VRd vs KRd vs daratumumab plus KRd. It is a 3-arm, randomized trial that is likely to provide further data on the feasibility and efficacy of using [these triplets and quadruplets] in the up-front setting.

[Determining] the standard of care for patients with newly diagnosed multiple myeloma has become complicated these days. There are several trials in progress that can help answer this question soon. However, currently, daratumumab is a promising potential partner for each of our backbone triplets. From my perspective, phase 3 data are required to cement a quadruplet option as a standard of care for newly diagnosed multiple myeloma.

I anticipate that these upcoming trials in progress will show us whether a quadruplet regimen is the way to go for newly diagnosed disease, but those data are not available yet.

The management of toxicities from multi-drug regimens in newly diagnosed myeloma is an important consideration. When looking at combinations that include daratumumab and immunomodulatory drugs, such as lenalidomide, then cytopenias, low blood counts, and low neutrophil counts can certainly be an issue early on in treatment. Dose modifications of lenalidomide and potential use of growth factor support can be helpful in maintaining the blood counts to a sufficient level so that we can continue to give patients the highest doses [of the medications] to achieve deep remissions.

The peripheral neuropathy [associated with] bortezomib requires careful management. Much of the published data from these duties included twice-weekly subcutaneous bortezomib on days 1, 4, 8, and 11 at 1.3 mg/m2. In the community [setting] and in our practice, we use a modified schedule of once-weekly bortezomib that has a much lower rate of peripheral neuropathy.

Much progress [is being done regarding] the treatment of patients with relapsed/refractory multiple myeloma. [We are starting to] use immunotherapeutic drugs to try to harness the power of the immune system to attack myeloma. Myeloma has been such an exciting area of practice with all these new agents that have been coming out for patients with relapsed disease.

There are several drugs in this setting that are exciting and could potentially be considered as options for the newly diagnosed patient population. However, we are still several years away from [those drugs being introduced to the armamentarium].

Data presented during the 2020 ASH Annual Meeting showed that a host of bispecific antibodies targeting BCMA [are being investigated]. BCMA is a receptor protein on the surface of myeloma cells that seems to be universally expressed on myeloma plasma cells. [BCMA] is a good target for immune-based treatments and the advantage of bispecific antibodies is that they are off-the-shelf agents. They clearly offer a way to provide rapid responses [to patients].

Looking ahead, the current challenges of cytokine release syndrome [CRS] and dealing with the toxicities of [cellular therapies] are important to figure out, especially if there is any relationship between CRS and tumor burden. Bringing these agents into the frontline setting with patients who have a much larger tumor burden is going to be something to carefully consider in future trials. Yet, these drugs are not far enough along to be considered for frontline treatment, but they [yield] potent effects and can be administered off-the-shelf to patients.

It will be fascinating to see how the bispecific antibodies are incorporated into frontline treatment, as well as the early-relapse setting, but we are several years away from that. We have yet to see among many competitors in the bispecific antibody race which one will become available first and which will be the best. Will we have multiple options in this category? All these questions have yet to be answered.

CAR T-cell therapy is another platform that has been very exciting. With the recent FDA approval of idecabtagene vicleucel [Abecma], we have another option for heavily relapsed patients. It will be interesting to see if we can use CAR T-cell therapy in earlier lines of therapy and what effects [that would yield].

CAR T-cell therapy does require a fair amount of preparation, planning, manufacturing time, and lead time, so the logistical considerations for administering CAR T-cell therapy are significant. Likely, if [this treatment] is going to be considered in the frontline setting, patients will receive other agents prior as preparation for CAR T-cell therapy.

There is a fascinating future for immunotherapy in myeloma. The years to come will show us whether [bispecific antibodies and CAR T-cell therapies] have a role for the treatment of newly diagnosed disease.

The other thing to consider is treatment with checkpoint inhibitors has had a checkered history in myeloma. PD-1 inhibitors were shown to be toxic in combination with lenalidomide or pomalidomide [Pomalyst]. The checkpoint blockade approach, which has been successful in many other tumor types, has not had a future in myeloma; however, other novel immune checkpoints are being considered in the relapsed setting with TIGIT and LAG3 [inhibitors]. These are agents are being evaluated in ongoing trials.

There are other potential approaches we can use to modulate the immune system for the treatment of patients with multiple myeloma, but it takes many years to do these studies and establish safety and [efficacy]. It will be some time before we have other immune therapies applied to the frontline setting.

See the original post here:
Quadruplets, Immune-Based Regimens Slated to Expand the Frontline Myeloma Paradigm - OncLive

Lab-grown minihearts beat like the real thing – Science Magazine

By Sofia MoutinhoMay. 20, 2021 , 11:05 AM

They are no bigger than sesame seeds, and they pulse with a hypnotic rhythm. These are human minihearts, the first to be created in the lab with clearly beating chambers. The miniature organs, or organoids, mimic the working heart of a 25-day-old human embryo and could help unravel many mysteriesincluding why babies hearts dont scar after they experience a heart attack.

This is a great study, says Zhen Ma, a bioengineer who develops heart organoids at Syracuse University and was not part of the new research. The experiment is very important for understanding congenital heart defects and human heart formationwork that has so far relied on animal models, he says.

Although miniorgans like brains, guts, and livers have been grown in dishes for more than 10 years, heart organoids have been more challenging. The first ones, comprised of mouse cardiac cells, could contract rhythmically in a dish, but they looked more like a lump of cardiac cells than a proper heart, says Aitor Aguirre, a stem cell biologist at Michigan State University who has created his own beating human heart organoid, described in a preprint posted to Research Square. An organoid should recapitulate the function of the organ, he says. With a heart, You would expect chambers and pumping, because this is what the heart does.

To create heart organoids whose cells self-organize like those in an embryo, the authors of the new study programmed human pluripotent stem cells, which have the ability to differentiate into any kind of tissue, into various types of cardiac cells. They aimed to create the three tissue layers present in the walls of a heart chamber, one of the first parts of the heart to develop. Next, the researchers immersed the stem cells in different concentrations of growth-promoting nutrients until they found a recipe that coaxed the cells to form tissues in the same order and shape seen in embryos.

After 1 week of development, the organoids are structurally equivalent to the heart of a 25-day-old embryo. At this stage, the heart has only one chamber, which will become the left ventricle of the mature heart. The organoids are about 2 millimeters in diameter and include the main types of cells typically present in this stage of development: cardiomyocytes, epithelial cells, fibroblasts, and epicardium. They also have a clearly defined chamber that beats at 60 to 100 times per minute, the same rate of an embryos heart around the same age, the team reports today in Cell.

When I saw it the first time, I was amazed that these chambers could form on their own, says lead author Sasha Mendjan, a stem cell biologist at the Institute of Molecular Biotechnology at the Austrian Academy of Sciences. The amazing thing is that you see immediately whether the experiment worked and the organoid is functional, since it beatsunlike other organs.

The minihearts, which have so far survived for more than 3 months in the lab, will help scientists see heart development in unprecedented detail. They might also reveal the origins of cardiac problems like congenital heart defects in babies and cardiac cell death after heart attacks, Mendjan says. You cannot fully understand something until you can re-create it, he says, loosely quoting the Nobel physicist Richard Feynman.

Mendjan and his colleagues also froze pieces of the organoids to test their response to injury. They saw that cardiac fibroblasts, a type of cell responsible for maintaining tissue structure, migrated to the damaged areas to repair the dead cells, just as in babies that experience heart attacks. It has long been a mystery why babies hearts can regenerate after such injury without scarring, unlike those of adults. Now, we have a controlled and clean system outside of the human body to easily study this process, Mendjan says.

Aguirre says the next logical step is to connect beating heart organoids to vascular networks and test their ability to pump blood. Mendjans team plans to try to adjust the nutrient broth to produce organoids with all four chambers. With such advanced heart organoids, researchers could explore the many developmental heart problems that arise when these additional cavities start to form.

For Ma, growing a more adultlike heart organoid, with all its chambers and structures, is the future of the field. But he doesnt think this will happen in the next decade. For a complete heartlike organoid, he says, there is still a long way to go.

Continued here:
Lab-grown minihearts beat like the real thing - Science Magazine

Global Cell Therapy Markets, Technologies, and Competitive Landscape Report 2020-2030: Applications, Cardiovascular Disorders, Cancer, Neurological…

DUBLIN, May 21, 2021 /PRNewswire/ -- The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. The role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

The cell-based markets was analyzed for 2020, and projected to 2030. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair, as well as diabetes mellitus, will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 316 of these are profiled in part II of the report along with tabulation of 306 alliances. Of these companies, 171 are involved in stem cells.

Profiles of 73 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 67 Tables and 26 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering, and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation, and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. The current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

Key Topics Covered:

Part One: Technologies, Ethics & Regulations

Executive Summary

1. Introduction to Cell Therapy

2. Cell Therapy Technologies

3. Stem Cells

4. Clinical Applications of Cell Therapy

5. Cell Therapy for Cardiovascular Disorders

6. Cell Therapy for Cancer

7. Cell Therapy for Neurological Disorders

8. Ethical, Legal and Political Aspects of Cell therapy

9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions

10. Markets and Future Prospects for Cell Therapy

11. Companies Involved in Cell Therapy

12. Academic Institutions

13. References

For more information about this report visit https://www.researchandmarkets.com/r/oletip

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Originally posted here:
Global Cell Therapy Markets, Technologies, and Competitive Landscape Report 2020-2030: Applications, Cardiovascular Disorders, Cancer, Neurological...

Global Cardiovascular Drug Delivery Markets Report 2021: Diseases, Methods, Cell Therapy, Gene Therapy, Drug-eluting Stents, Key Markets -…

DUBLIN--(BUSINESS WIRE)--The "Cardiovascular Drug Delivery - Technologies, Markets & Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cardiovascular drug delivery markets are estimated for the years 2018 to 2028 on the basis of epidemiology and total markets for cardiovascular therapeutics.

The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. The role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.

Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases.

Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving the systemic administration of drugs for cardiovascular disorders are described including the use of nanotechnology.

Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.

The role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension, and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries.Fifteen companies are involved in drug-eluting stents.

New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure.

Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.

Advances in the molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to the treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation.

Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesions. Gene therapy is not only a sophisticated method of drug delivery; it may at times need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.

Selected 83 companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic.

Key Markets

Key Topics Covered:

Executive Summary

1. Cardiovascular Diseases

2. Methods for Drug Delivery to the Cardiovascular System

3. Cell Therapy for Cardiovascular Disorders

4. Gene Therapy for Cardiovascular Disorders

5. Drug-Eluting Stents

6. Markets for Cardiovascular Drug Delivery

7. Companies involved in Cardiovascular Drug Delivery

8. References

For more information about this report visit https://www.researchandmarkets.com/r/p5l8t6

Follow this link:
Global Cardiovascular Drug Delivery Markets Report 2021: Diseases, Methods, Cell Therapy, Gene Therapy, Drug-eluting Stents, Key Markets -...

Global Cardiovascular Drug Delivery Markets Report 2021: Cell and Gene Therapies, Including Antisense and RNA Interference are Described in Detail -…

DUBLIN, May 21, 2021 /PRNewswire/ -- The "Cardiovascular Drug Delivery - Technologies, Markets & Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cardiovascular drug delivery markets are estimated for the years 2018 to 2028 on the basis of epidemiology and total markets for cardiovascular therapeutics.

The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. The role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.

Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases.

Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving the systemic administration of drugs for cardiovascular disorders are described including the use of nanotechnology.

Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.

The role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension, and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries.Fifteen companies are involved in drug-eluting stents.

New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure.

Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.

Advances in the molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to the treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation.

Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesions. Gene therapy is not only a sophisticated method of drug delivery; it may at times need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.

Selected 83 companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic.

Key Markets

Key Topics Covered:

Executive Summary

1. Cardiovascular Diseases

2. Methods for Drug Delivery to the Cardiovascular System

3. Cell Therapy for Cardiovascular Disorders

4. Gene Therapy for Cardiovascular Disorders

5. Drug-Eluting Stents

6. Markets for Cardiovascular Drug Delivery

7. Companies involved in Cardiovascular Drug Delivery

8. References

For more information about this report visit https://www.researchandmarkets.com/r/qqxmpd

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Originally posted here:
Global Cardiovascular Drug Delivery Markets Report 2021: Cell and Gene Therapies, Including Antisense and RNA Interference are Described in Detail -...

Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market Business Strategy and Forecast to 2028 Top Companies Abbott…

Myocardial revascularization is an alternate procedure for patients suffering from ischemic heart disease and who cannot undergo interventions like heart bypass surgery due to widespread coronary artery disease, procedure failure, small coronary arteries, or cardiac stenosis. Further, reparative stem cells can restore the function of damaged tissue by renewing cell growth in cardiac cells destroyed by heart disease.

(**Note: The sample of this report is updated with COVID-19 impact analysis**)

To Know How COVID-19 Pandemic Will Impact Global Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market | Get a Sample Copy of Report, Click Here:

https://www.theinsightpartners.com/sample/TIPRE00021590/

Top Leading companies like

Report Introduction, Overview, and In-depth industry analysis

NOTE: Our analysts monitoring the situation across the globe explains that the market will generate remunerative prospects for producers post the COVID-19 crisis. The report aims to provide an additional illustration of the latest scenario, economic slowdown, and COVID-19 impact on the overall industry.

The report is a combination of qualitative and quantitative analysis of the Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market industry. The global market majorly considers five major regions, namely, North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America (SACM). The report also focuses on the exhaustive PEST analysis and extensive market dynamics during the forecast period.

Reason to Buy

Save and reduce time carrying out entry-level research by identifying the growth, size, leading players and segments in the global Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market.

Highlights key business priorities in order to guide the companies to reform their business strategies and establish themselves in the wide geography.

The key findings and recommendations highlight crucial progressive industry trends in the Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market, thereby allowing players to develop effective long term strategies in order to garner their market revenue.

Develop/modify business expansion plans by using substantial growth offering developed and emerging markets.

Scrutinize in-depth global market trends and outlook coupled with the factors driving the market, as well as those restraining the growth at a certain extent.

Enhance the decision-making process by understanding the strategies that underpin commercial interest with respect to products, segmentation and industry verticals.

Purchase a copy of the report @

https://www.theinsightpartners.com/buy/TIPRE00021590/

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

Call: +1-646-491-9876

Email: sales@theinsightpartners.com

Read more here:
Myocardial Revascularization, Repair, And Regeneration Products And Therapies Market Business Strategy and Forecast to 2028 Top Companies Abbott...

Epigenetic therapies for heart failure | VHRM – Dove Medical Press

Introduction

Although novel drugs have successfully entered the clinical arena of heart failure with reduced ejection fraction (HFrEF), such as the PARADIGM-HF-derived angiotensin receptor neprilysin inhibitor (ARNI), disease-modifying therapies with a prognostic impact for patients affected by heart failure with preserved ejection fraction (HFpEF) are still lacking.15 HF is a complex and highly prevalent syndrome for which the heart undergoes a substantial structural remodeling in patients at risk for major cardiovascular diseases (CVDs) (Figure 1).16 Geneenvironment interactions can be mediated by specific patterns of epigenetic-sensitive changes (mainly DNA methylation and histone modifications) which may modulate the individual responsiveness to HF development.614 This complex molecular circuit seems to trigger early cardiomyocyte loss, cardiac-remodeling, and micro- and macrovascular damage contributing to the development of major CVDs which may lead to differential HF clinical phenotypes.614 Of note, the reversible nature of epigenetic-sensitive changes has been translated in the clinical management of specific hematological malignancies with the approval by the Food and Drug Administration (FDA) of some epidrugs, such as decitabine (Dacogen) and azacitidine (Vidaza), as DNA methylation inhibitors, as well as vorinostat (Zolinza), belinostat (Beleodaq), romidepsin (Istodax), and panobinostat (Farydak), as histone deacetylase inhibitors (HDACi).15 Epidrugs are now providing a novel vision for personalized therapy of HF and heart transplantation, opening up novel options for management of the affected patients.1518 At molecular level, we can classify the epidrugs in: direct epidrugs [eg, the bromodomain and extra-terminal (BET) protein inhibitor apabetalone]; and repurposed drugs with potential, indirect (non-classical) epigenetic-oriented interference by which they may exert cardioprotective functions [eg, hydralazine, metformin, statins, and sodium-glucose co-transporter-2 inhibitors (SGLT2i)] or nutraceutical compounds [eg, omega-3 polyunsaturated fatty acids (PUFAs)]. Encouraging results are coming from large randomized trials evaluating the putative beneficial effects of combining epidrugs with the conventional therapy in patients with HF.1422 Our goal is to update on the emerging epigenetic-based strategies which may be useful in the prevention and treatment of HFrEF and HFpEF (Figure 1).

Figure 1 The possible role of epitherapy in the current framework of HFrEF and HFpEF management. The unstable transition state from the ACC/AHA Stage A/B to Stage C/D-Acute/Hospitalized HF is the key point in the treatment of HFrEF and HFpEF. The epitherapy, mainly apabetalone, statins, metformin, SGLT2i, and PUFAs in addition to the standard of the care may improve personalized therapy of affected patients.

Abbreviations: HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; SGLT2i, sodium glucose co-transporter 2 inhibitors; PUFAs, polyunsaturated fatty acids.

The bromodomain and extra terminal domain (BET) proteins, including the ubiquitous BRD2, BRD3, BRD4, and the testis-restricted BRDT, are epigenetic readers (via bromodomains) existing in the form of nuclear multidomain docking platforms which control the cell-specific activation of gene expression profiles.23 Experimental data demonstrated that BETs regulate vascular cells, cardiac myocytes, and inflammatory cells,24 and their activity may be extended to the regulation of calcification, thrombosis, as well as lipid and lipoprotein metabolism, all of which participate in atherogenesis.2527 In particular, BRD4 facilitated the expression of multiple proinflammatory and proatherosclerotic targets involved in thrombosis, leukocyte adhesion, and endothelial barrier function, thus identifying BRD4 as a possible therapeutic target in CVD setting.24 The quinazolone (RVX-208), known as apabetalone, is a derivative of the plant polyphenol resveratrol. Apabetalone acts as a direct epidrug by selectively targeting the BET family member BRD4 to block its interaction with acetylated lysines located in histones.28 Apabetalone-BRD4 binding can impact cholesterol levels and inflammation; in fact, apabetalone stimulates ApoA-I gene expression and increases high-density lipoprotein (HDL).29,30 Besides, apabetalone may attenuate the development of cardiac hypertrophy31 and cardiac fibrosis,32 suggesting novel options for the management of HF.

Resverlogix developed apabetalone (RVX-208), a first-in-class, orally available, small molecule for the treatment of atherosclerosis and associated CVDs.20 BETonMACE (NCT02586155) is the first Phase 3 clinical trial evaluating the cardiovascular efficacy and safety of apabetalone.22 Recent results from the BETonMACE study have demonstrated that apabetalone is associated with a reduction in first HF hospitalization and cardiovascular death in patients with type 2 diabetes and recent acute coronary syndrome as compared to controls (placebo-treated patients).22 Additionally, a significant increase in HDL and a decrease in alkaline phosphatase levels have been observed following 24 weeks of apabetalone treatment as compared to the placebo group.22 However, investigators were unable to make a distinction between HF in the setting of preserved or reduced ejection fraction. Thus, further clinical trials should be designed to evaluate the putative beneficial effects of apabetalone in HFrEF and HFpEF, separately.

Preclinical studies demonstrated that pharmacological HDACi,3336 BET inhibitors,31,37 and DNA methylation inhibitors38 can attenuate cardiac remodeling (cardiomyocyte hypertrophy and fibrosis). Although not originally developed as epidrugs, hydralazine (anti-hypertensive drug), metformin, and SGLT2i (anti-diabetic drugs), statins (anti-dyslipidemic drugs), and PUFAs (nutraceuticals) might have downstream epigenetic-oriented effects in cardiac cells. Hydralazine, for example, lowers blood pressure by a direct relaxation of vascular smooth muscle; additionally, it may reduce DNA methylation and improve cardiac function through increasing sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and modulating calcium homeostasis in cardiomyocytes.39 Statins are used as a first-line treatment to decrease serum cholesterol levels in dyslipidemic patients and as primary and secondary prophylaxis against atherosclerosis and associated CVDs.6 Many of their non-classical pleiotropic properties relevant for endothelial health are mediated by epigenetic mechanisms which improve blood flow, decrease LDL oxidation, enhance atherosclerotic plaque stability and decrease proliferation of vascular smooth muscle cells and platelet aggregation.6 Metformin is a first-line drug in the treatment of overweight and obese type 2 diabetic patients.10 Mechanistically, metformin may also have epigenetic-oriented effects through activating the AMP-activated protein kinase (AMPK) which, in turn, can phosphorylate and inhibit epigenetic enzymes such as histone acetyltransferases (HATs), class II HDAC, and DNA methyltransferases (DNMTs).40 Both metformin41,42 and statins43,44 may reduce cardiac fibrosis; however, whether their beneficial effects are mediated by epigenetic-oriented responses has yet to be demonstrated. Furthermore, SGLT2i are a new group of oral drugs used for treating type 2 diabetes and its cardiovascular/renal complications.45 Animal models have demonstrated that empagliflozin46,47 and dapagliflozin48 may improve hemodynamics in HF by increasing renal protection and cardiac fibrosis. Interestingly, inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by empagliflozin;49 this observation has provided insights about mechanisms by which SGLT2i can reduce cardiovascular mortality in man (EMPA-REG trial).50

An effective therapy for HFpEF has yet to be established. Hydralazine is frequently used in HFrEF, and represents a potential DNA methylation inhibitor.39 DNA methylation is the most studied direct epigenetic change with potential clinical implications in major CVDs and the development of HF.7,14 This epigenetic signature mainly involves methylation of CpG islands in the gene promoters leading to a specific long-term silencing of gene expression.7,14 A completed Phase 2 clinical trial (NCT01516346) evaluated the effect of prolonged therapy (24 weeks) with isosorbide dinitrate (ISDN) hydralazine on arterial wave reflections (primary endpoint) as well as left ventricular (LV) mass, fibrosis and diastolic function, and exercise capacity (6-minute walk test) in patients with HFpEF, New York Heart Association (NYHA) Class IIIV symptoms, and standard therapy as defined by ACEi, ARB, beta-blockers, or calcium channel blockers (CCBs).51 Results from this trial reported that ISDN, with or without hydralazine, had deleterious effects on reflection magnitude, LV remodeling, or submaximal exercise thus not supporting their routine use in patients with HFpEF.51

Metformin has been associated with a reduced mortality in patients with HFpEF, even if female gender was associated with worse outcomes.52 Recently, it has been observed that a long-term treatment with metformin can improve LV diastolic function and hypertrophy, decrease the incidence of new-onset HFpEF, and delay disease progression in patients with type 2 diabetes and hypertension.53 Besides, a prospective phase 2 clinical trial (NCT03629340) is testing the therapeutic efficacy of metformin in patients with pulmonary hypertension and HFpEF by evaluating exercise hemodynamics, functional capacity, skeletal muscle signaling, and insulin sensitivity. However, results have not been published. A recent study based on the JASPER registry, a multicenter, observational, prospective cohort of Japanese patients aged 20 years requiring hospitalization for acute HFpEF has reported that the use of statins could reduce mortality in affected patients without coronary heart disease.54 Furthermore, the use of statins was associated with improved clinical outcomes in patients with HFpEF but not in patients with HFrEF (or mid-range ejection fraction).55 A reduced rate of major adverse cardiac events, cardiovascular death and all-cause mortality was associated with SGLT2i treatment in both HFpEF and HFrEF patients as compared to placebo.56,57 However, the observed cardiovascular and renal benefits cannot be fully explained by improvement in risk factors (such as glycemia, blood pressure or dyslipidemias) suggesting that other molecular mechanisms may explain the cardiovascular benefits.56 Interestingly, the SGLT2i-related epigenetic interference may arise from their ability to increase the circulating and tissue levels of -hydroxybutyrate, a specific molecule able to generate a pattern of histone modifications (known as -hydroxybutyrylation) which are associated with the beneficial effects of fasting.58 Besides, the DELIVER (NCT03619213) multicenter, randomized, double-blind, placebo-controlled study of 6263 HFpEF patients will evaluate the effect of dapagliflozin 10 mg (1 per day) as compared to placebo in addition to the standard of care in order to reduce the composite of cardiovascular death or HF events. However, results have not yet been published.

The use of metformin has been generally considered a contraindication in HFrEF patients owing the potential risk of lactic acidosis; however, recent evidence has reported that metformin can provide beneficial effects in reducing the risk of incident HF and mortality in diabetic patients.5961 A completed, observational clinical trial (NCT03546062) has recently performed the evaluation of seriated cardiac biopsies from healthy implanted hearts in type 2 diabetes recipients during 12-month follow-up upon heart transplantation.21 Even if the intra-cardiomyocyte lipid accumulation in type 2 diabetes recipients may start in the early stages after heart transplantation, metformin therapy could reduce lipid accumulation independently of immunosuppressive therapy.21 The DANHEART trial (NCT03514108), a multicenter, randomized, double-blind, placebo-controlled study in 1500 patients with HFrEF will evaluate: 1) whether hydralazine-isosorbide dinitrate as compared to placebo may reduce the incidence of death and HF hospitalization, and 2) if metformin as compared to placebo may reduce the incidence of death, worsening of HF, acute myocardial infarction, and stroke in patients with diabetes or prediabetes. Two large randomized trials demonstrated that statins did not have beneficial effects in management of patients with HFrEF.62,63 Specifically, the CORONA phase 3 trial randomized more than 5000 patients with ischemic HFrEF to rosuvastatin as compared to placebo resulting in no benefits on the primary endpoints, as death from cardiovascular causes, nonfatal myocardial infarction, and nonfatal stroke.62 According to CORONA trial, the GISSI-HF study randomized almost 5000 patients with clinically apparent HF of any cause to rosuvastatin as compared to placebo and observed no benefits on the primary endpoints, as all-cause death or cardiovascular hospitalization.63 However, it is needed to highlight that both trials demonstrated that statins are safe in HF patients. In contrast with the previous evidence, the trial based on the Swedish Heart Failure Registry (21,864 patients with HFrEF, of whom 10,345 were treated with statins) reported an association between the use of statins and improved outcomes, as all-cause mortality, cardiovascular mortality, HF hospitalization, and combined all-cause mortality or cardiovascular hospitalization, especially in patients with ischemic HF.64 Thus, further randomized controlled trials focused on ischemic HF may be warranted. Omega-3 polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are key players in modulating inflammatory process by limiting leucocyte chemotaxis, adhesion molecule expression, leucocyte-endothelium interaction as well as T cell reactivity.65 EPA and DHA are mainly gained from marine food consumption and large population-based studies have shown that Mediterranean diet with PUFA supplementation may aid to prevent CVDs owing to their ability in promoting the release of nitric oxide from endothelial cells and decreasing serum levels of triglycerides.66 Recent evidence has indicated that PUFAs can significantly affect the cellular epigenome mainly thought DNA methylation-sensitive mechanisms.67,68 The GISSI multicenter, double-blind trial enrolled 6975 HF patients (New York Heart Association class IIIV, irrespective of cause and LV ejection fraction) and randomized them to low dose (0.84 g per day) of PUFAs as compared to placebo. PUFAs supplementation reduced risk for total mortality and HF hospitalization when added to standard therapy.19 Furthermore, in the OMEGA-REMODEL trial, high-dose of PUFAs (3.4 g per day) for 6 months post-myocardial infarction reduced infarct size and non-infarct myocardial fibrosis as well as improved ventricular systolic function.69 Taken together, these results suggest that PUFAs may aid to prevent HFrEF. More recently, the MESA longitudinal trial including 6562 participants 45 to 84 years has demonstrated that higher plasma levels of EPA were significantly associated with reduced risk both in HFpEF and HFrEF.70

Although the possibility of improving the HF standard of care with epidrugs is still in its infancy, the BETonMACE study has provided promising results about the use of apabetalone in reducing hospitalization and cardiovascular death. Preclinical models of cardiac remodeling demonstrated that metformin, statins, SGLT2i, and PUFAs4148 can improve vascular health and cardiac fibrosis by modulating specific molecular pathways, and, in part, through downstream epigenetic interference, especially for hydralazine39 and empagliflozin (Figure 2).49 Of note, metformin and SGLT2i can impact on the epigenetic memory phenomenon. This latter suggests that an early glycemia normalization can arrest hyperglycemia-induced epigenetic processes associated with enhanced oxidative stress and glycation of cellular proteins and lipids.71,72 In parallel, an increasing number of clinical trials is evaluating the putative beneficial repurposing of metformin, statins, SGLT2i, and PUFAs in patients with HFpEF and/or HFrEF;19,6264,69,7375 however, despite experimental evidence, none of these trials evaluated their potential epigenetic effects involved in improving the cardiac function. This gap should be overcome to improve personalized therapy of patients with HF. Thus, further randomized trials are needed to clarify whether apabetalone, as well as non-canonical repurposed epidrugs, will really be able to save failing hearts in different HF clinical phenotypes or prevent irreversible damages in high-risk patients. In this context, Network Medicine approaches may help to evaluate a possible repurposing of epidrugs in patients with major CVDs.15,76,77

Figure 2 Direct and indirect epigenetic drugs in preclinical models of HF. Cardiac remodeling includes different pathological phenotypes and each type of drug can selectively improve inflammation, cardiac fibrosis and hypertrophy, calcium homeostasis, and lipid metabolism.

Abbreviations: HF, heart failure; SGLT2i, sodium glucose co-transporter 2 inhibitors.

This work was supported by PRIN2017F8ZB89 from Italian Ministry of University and Research (MIUR) (PI Prof Napoli) and Ricerca Corrente (RC) 2019 from Italian Ministry of Health (PI Prof. Napoli).

The authors report no conflicts of interest in this work.

1. Gronda E, Sacchi S, Benincasa G, et al. Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. J Cardiovasc Med (Hagerstown). 2019;20:640649. doi:10.2459/JCM.0000000000000834.

2. Gronda E, Vanoli E, Sacchi S, et al. Risk of heart failure progression in patients with reduced ejection fraction: mechanisms and therapeutic options. Heart Fail Rev. 2020;25(2):295303. doi:10.1007/s10741-019-09823-z

3. Sokos GG, Raina A. Understanding the early mortality benefit observed in the PARADIGM-HF trial: considerations for the management of heart failure with sacubitril/valsartan. Vasc Health Risk Manag. 2020;16:4151. doi:10.2147/VHRM.S197291

4. Cacciatore F, Amarelli C, Maiello C, et al. Sacubitril/valsartan in patients listed for heart transplantation: effect on physical frailty. ESC Heart Fail. 2020;7:757762. doi:10.1002/ehf2.12610.

5. Clark KAA, Velazquez EJ. Heart failure with preserved ejection fraction: time for a reset. JAMA. 2020;324:15061508. doi:10.1001/jama.2020.15566.

6. Schiano C, Benincasa G, Franzese M, et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther. 2020;210:107514. doi:10.1016/j.pharmthera.2020.107514.

7. Schiano C, Benincasa G, Infante T, et al. Integrated analysis of DNA methylation profile of HLA-G gene and imaging in coronary heart disease: pilot study. PLoS One. 2020;15:e0236951. doi:10.1371/journal.pone.0236951.

8. Benincasa G, Cuomo O, Vasco M, et al. Epigenetic-sensitive challenges of cardiohepatic interactions: clinical and therapeutic implications in heart failure patients. Eur J Gastroenterol Hepatol. 2020. doi:10.1097/MEG.0000000000001867.

9. Benincasa G, Franzese M, Schiano C, et al. DNA methylation profiling of CD04+/CD08+ T cells reveals pathogenic mechanisms in increasing hyperglycemia: PIRAMIDE pilot study. Ann Med Surg (Lond). 2020;60:218226. doi:10.1016/j.amsu.2020.10.016.

10. Napoli C, Benincasa G, Schiano C, et al. Differential epigenetic factors in the prediction of cardiovascular risk in diabetic patients. Eur Heart J Cardiovasc Pharmacother. 2020;6:239247. doi:10.1093/ehjcvp/pvz062.

11. Napoli C, Coscioni E, de Nigris F, et al. Emergent expansion of clinical epigenetics in patients with cardiovascular diseases. Curr Opin Cardiol. 2021;36(3):295300. doi:10.1097/HCO.0000000000000843.

12. Infante T, Forte E, Schiano C, et al. Evidence of association of circulating epigenetic-sensitive biomarkers with suspected coronary heart disease evaluated by Cardiac Computed Tomography. PLoS One. 2019;14:e0210909. doi:10.1371/journal.pone.0210909.

13. de Nigris F, Cacciatore F, Mancini FP, et al. Epigenetic hallmarks of fetal early atherosclerotic lesions in humans. JAMA Cardiol. 2018;3:11841191. doi:10.1001/jamacardio.2018.3546.

14. Napoli C, Benincasa G, Donatelli F, et al. Precision medicine in distinct heart failure phenotypes: focus on clinical epigenetics. Am Heart J. 2020;224:113128. doi:10.1016/j.ahj.2020.03.007.

15. Sarno F, Benincasa G, List M, et al. Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin Epigenetics. 2021;13:66. doi:10.1186/s13148-021-01047-z.

16. Grimaldi V, Vietri MT, Schiano C, et al. Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep. 2014;17:476. doi:10.1007/s11883-014-0476-3.

17. Sabia C, Picascia A, Grimaldi V, et al. The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transplant Rev (Orlando). 2017;31:249256. doi:10.1016/j.trre.2017.08.004.

18. Vasco M, Benincasa G, Fiorito C, et al. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update. Transplant Rev (Orlando). 2021;35:100609. doi:10.1016/j.trre.2021.100609.

19. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:12231230. doi:10.1016/S0140-6736(08)61239-8.

20. Ray KK, Nicholls SJ, Buhr KA, et al. Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and type 2 diabetes: a randomized clinical trial. JAMA. 2020;323:15651573. doi:10.1001/jama.2020.3308.

21. Marfella R, Amarelli C, Cacciatore F, et al. Lipid accumulation in hearts transplanted from nondiabetic donors to diabetic recipients. J Am Coll Cardiol. 2020;75:12491262. doi:10.1016/j.jacc.2020.01.018.

22. Nicholls SJ, Schwartz GG, Buhr KA, et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol. 2021;20:13. doi:10.1186/s12933-020-01199-x.

23. Gaucher J, Boussouar F, Montellier E, et al. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J. 2012;31:38093820. doi:10.1038/emboj.2012.233.

24. Borck PC, Guo LW, Plutzky J. BET epigenetic reader proteins in cardiovascular transcriptional programs. Circ Res. 2020;126:11901208. doi:10.1161/CIRCRESAHA.120.315929.

25. Tonini C, Colardo M, Colella B, et al. Inhibition of bromodomain and extraterminal domain (BET) proteins by JQ1 unravels a novel epigenetic modulation to control lipid homeostasis. Int J Mol Sci. 2020;21:1297. doi:10.3390/ijms21041297.

26. Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:11191123. doi:10.1038/nature09589.

27. Dey A, Yang W, Gegonne A, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 2019;38:e100293. doi:10.15252/embj.2018100293.

28. Picaud S, Wells C, Felletar I, et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A. 2013;110:1975419759. doi:10.1073/pnas.1310658110.

29. McLure KG, Gesner EM, Tsujikawa L, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One. 2013;8:e83190. doi:10.1371/journal.pone.0083190.

30. Bailey D, Jahagirdar R, Gordon A, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol. 2010;55:25802589. doi:10.1016/j.jacc.2010.02.035.

31. Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154:569582. doi:10.1016/j.cell.2013.07.013.

32. Song S, Liu L, Yu Y, et al. Inhibition of BRD4 attenuates transverse aortic constriction- and TGF--induced endothelial-mesenchymal transition and cardiac fibrosis. J Mol Cell Cardiol. 2019;127:8396. doi:10.1016/j.yjmcc.2018.12.002.

33. Ooi JY, Tuano NK, Rafehi H, et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics. 2015;10:418430. doi:10.1080/15592294.2015.1024406.

34. Ferguson BS, McKinsey TA. Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol. 2015;83:1420. doi:10.1016/j.yjmcc.2015.03.010.

35. Chen Y, Du J, Zhao YT, et al. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol. 2015;14:99. doi:10.1186/s12933-015-0262-8.

36. Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479488. doi:10.1016/s0092-8674(02)00861-9

37. Spiltoir JI, Stratton MS, Cavasin MA, et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol. 2013;63:175179. doi:10.1016/j.yjmcc.2013.07.017.

38. Russell-Hallinan A, Neary R, Watson CJ, et al. Repurposing from oncology to cardiology: low-dose 5-azacytidine attenuates pathological cardiac remodeling in response to pressure overload injury. J Cardiovasc Pharmacol Ther. 2020:107424842097923. doi:10.1177/1074248420979235

39. Kao YH, Cheng CC, Chen YC, et al. Hydralazine-induced promoter demethylation enhances sarcoplasmic reticulum Ca2+ -ATPase and calcium homeostasis in cardiac myocytes. Lab Invest. 2011;91:12911297. doi:10.1038/labinvest.2011.92.

40. Bridgeman SC, Ellison GC, Melton PE, et al. Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes Metab. 2018;20(7):15531562. doi:10.1111/dom.13262.

41. Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87:504513. doi:10.1093/cvr/cvq066.

42. Zhao Q, Song W, Huang J, et al. Metformin decreased myocardial fibrosis and apoptosis in hyperhomocysteinemia -induced cardiac hypertrophy. Curr Res Transl Med. 2021;69:103270. doi:10.1016/j.retram.2020.103270.

43. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229243. doi:10.1161/CIRCRESAHA.116.308537.

44. Sun F, Duan W, Zhang Y, et al. Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF- receptor III expression. Br J Pharmacol. 2015;172:37793792. doi:10.1111/bph.13166.

45. Gronda E, Jessup M, Iacoviello M, et al. Glucose metabolism in the kidney: neurohormonal activation and heart failure development. J Am Heart Assoc. 2020;9(23):e018889. doi:10.1161/JAHA.120.018889.

46. Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18:45. doi:10.1186/s12933-019-0849-6.

47. Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18:15. doi:10.1186/s12933-019-0816-2.

48. Arow M, Waldman M, Yadin D, et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020;19:7. doi:10.1186/s12933-019-0980-4.

49. Steven S, Oelze M, Hanf A, et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370385. doi:10.1016/j.redox.2017.06.009.

50. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 Diabetes. N Engl J Med. 2016;374:1094. doi:10.1056/NEJMc1600827

51. Zamani P, Akers S, Soto-Calderon H, et al. Isosorbide Dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6:e004262. doi:10.1161/JAHA.116.004262.

52. Halabi A, Sen J, Huynh Q, et al. Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. doi:10.1186/s12933-020-01100-w.

53. Gu J, Yin ZF, Zhang JF, et al. Association between long-term prescription of metformin and the progression of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and hypertension. Int J Cardiol. 2020;306:140145. doi:10.1016/j.ijcard.2019.11.087.

54. Marume K, Takashio S, Nagai T, et al. Effect of statins on mortality in heart failure with preserved ejection fraction without coronary artery disease. Report from the JASPER Study. Circ J. 2019;83:357367. doi:10.1253/circj.CJ-18-0639.

55. Lee MS, Duan L, Clare R, et al. Comparison of effects of statin use on mortality in patients with heart failure and preserved versus reduced left ventricular ejection fraction. Am J Cardiol. 2018;122:405412. doi:10.1016/j.amjcard.2018.04.027.

56. Lam CSP, Chandramouli C, Ahooja V, Verma S. SGLT-2 inhibitors in heart failure: current management, unmet needs, and therapeutic prospects. J Am Heart Assoc. 2019;8:e013389. doi:10.1161/JAHA.119.013389.

57. Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819829. doi:10.1016/S0140-6736(20)31824-9.

58. Nishitani S, Fukuhara A, Shin J, et al. Metabolomic and microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-hydroxybutyrate on induction of adiponectin in adipocytes. Sci Rep. 2018;8:8805. doi:10.1038/s41598-018-27181-y.

59. Wong AK, AlZadjali MA, Choy AM, et al. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther. 2008;26:203213. doi:10.1111/j.1755-5922.2008.00053.x.

60. Pantalone KM, Kattan MW, Yu C, et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol. 2009;46:145154. doi:10.1007/s00592-008-0090-3.

61. Papanas N, Maltezos E, Mikhailidis DP. Metformin and heart failure: never say never again. Expert Opin Pharmacother. 2012;13:18. doi:10.1517/14656566.2012.638283.

62. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:22482261. doi:10.1056/NEJMoa0706201.

63. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:12311239. doi:10.1016/S0140-6736(08)61240-4.

64. Alehagen U, Benson L, Edner M, et al. Association between use of statins and outcomes in heart failure with reduced ejection fraction: prospective propensity score matched cohort study of 21 864 patients in the Swedish Heart Failure Registry. Circ Heart Fail. 2015;8:252260. doi:10.1161/CIRCHEARTFAILURE.114.001730.

65. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75:645662. doi:10.1111/j.1365-2125.2012.04374.x.

66. Mohebi-Nejad A, Bikdeli B. Omega-3 supplements and cardiovascular diseases. Tanaffos. 2014;13:614.

67. Burdge GC, Lillycrop KA. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care. 2014;17:156161. doi:10.1097/MCO.0000000000000023.

68. de la Rocha C, Prez-Mojica JE, Len SZ, et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep. 2016;6:25867. doi:10.1038/srep25867.

69. Heydari B, Abdullah S, Pottala JV, et al. Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: the OMEGA-REMODEL randomized clinical trial. Circulation. 2016;134:378391. doi:10.1161/CIRCULATIONAHA.115.019949.

70. Block RC, Liu L, Herrington DM, et al. Predicting risk for incident heart failure with omega-3 fatty acids: from MESA. JACC Heart Fail. 2019;7:651661. doi:10.1016/j.jchf.2019.03.008.

71. Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr. 2016;10:S17683. doi:10.1016/j.dsx.2016.03.016.

72. Sommese L, Benincasa G, Lanza M, et al. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complications. 2018;32:10761084. doi:10.1016/j.jdiacomp.2018.08.012.

73. Trum M, Wagner S, Maier LS, et al. CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165729. doi:10.1016/j.bbadis.2020.165729.

74. Nikolic M, Zivkovic V, Jovic JJ, et al. SGLT2 inhibitors: a focus on cardiac benefits and potential mechanisms. Heart Fail Rev. 2021. doi:10.1007/s10741-021-10079-9.

75. Mohammadzadeh N, Montecucco F, Carbone F, et al. Statins: epidrugs with effects on endothelial health? Eur J Clin Invest. 2020;50:e13388. doi:10.1111/eci.13388.

76. Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J. 2020 Nov 19:2003406. doi:10.1183/13993003.03406-2020.77.

77. Benincasa G, Marfella R, Della Mura N, et al. Strengths and opportunities of network medicine in cardiovascular diseases. Circ J. 2020 Jan 24;84(2):144152. doi:10.1253/circj.CJ-19-0879.

Original post:
Epigenetic therapies for heart failure | VHRM - Dove Medical Press

Science Links of the Week Explorersweb – ExplorersWeb

A passion for the natural world drives many of our adventures. And when were not actually outside, we love delving into the discoveries about the places where we live and travel. Here are some of the best natural history links weve found this week.

Elephants are dying in droves in Botswana: Between January and March 2021, 39 Africa elephants turned up dead in Botswana. All deaths occurred in the Moremi Game Reserve, the same region where 350 elephants died in mid-2020. Preliminary results indicate that cyanobacteria toxins are to blame. Water sources in the area are becoming warmer, creating an environment in which the toxic cyanobacteria thrive.

Scientists have grown a mini beating heart: Researchers in Vienna have grown tiny 3D heart-like organs in the lab. Made from human stem cells, the organoids, as theyre called, are the size of a sesame seed and beat the same way our hearts do. Unlike previous efforts that required artificial scaffolding, these cells organized themselves to grow a hollow chamber. Scientists hope that the mini-hearts will provide a better understanding of how the cardiac system responds to disease.

The largest iceberg in the world. Photo: ESA/Earth Observation

Worlds largest iceberg breaks away from Antarctic ice shelf: An iceberg bigger than Majorca has broken away from the Ronne Ice Shelf into the Weddell Sea. Unimaginatively named A-76, the iceberg is 4,320 square kilometres in area and is currently the largest iceberg in the world. Of course, it is bigger than Rhode Island, the standard comparison for such giant objects. The Antarctic region from which it comes is generally unaffected by climate change. [The break-off] is part of a natural cycle, says Alex Brisbourne, a glaciologist at the British Antarctic Survey.

Scientists dig deepest ocean hole in history: Researchers off the coast of Japan have drilled the deepest ocean hole in the history in the Pacific Ocean. The hole reaches nine kilometres below the surface of the ocean. It took just two hours and 40 minutes for the giant piston corer to reach the bottom of the Japan Trench. The team extracted a 37m-long sediment core from the bottom of the sea. The site is very close to the epicentre of the 2011 Tohoku-oki earthquake, the largest ever to strike Japan. Scientists hope that the sediments will help them understand the regions earthquake history.

Researcher want to find out if tardigrades could survive in space. Photo: Forbes.com

Tardigrades shot from gun to see if they can survive space travel: Tardigrades, also known as water bears and moss piglets, are microscopic invertebrates that are found almost everywhere water exists. If required (by drought, for example), they are able to drain their cells of liquid and enter suspended animation. In this state, they can survive everything from subzero temperatures to radiation. Researchers have put the Tardigrades into nylon bullets and fired them at sand targets in a vacuum chamber at speeds of up to 1,000 metres per second to see if they could withstand being shot onto other planets.

Death Valley is no longer the hottest place on Earth: Death Valley has held the record for the worlds hottest air temperature since 1913 when Furnace Creek reached 56.7C. Recently, two locations have surpassed Death Valley at its hottest. Satellite data reveal that the Lut Desert in Iran and the Sonoran Desert along the Mexican-U.S. border have reached a sizzling 80.8C.

Rebecca is a freelance writer and science teacher based in the UK.

She is a keen traveler and has been lucky enough to backpack her way around Africa, South America, and Asia. With a background in marine biology, she is interested in everything to do with the oceans and aims to dive and open-water swim in as many seas as possible.

Her areas of expertise include open water sports, marine wildlife and adventure travel.

Read more from the original source:
Science Links of the Week Explorersweb - ExplorersWeb

Global Exosome Therapeutic Market Updates, Future Growth, Industry Analysis and Comprehensive Study on Key Players-ReNeuron Group plc, Capricor…

Exosome therapeutic marketis expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

International Exosome Therapeutic market report offers the best market and business solutions to pharmaceutical industry in this rapidly revolutionizing market place to thrive in the market. Market definition of the document gives the scope of particular product with respect to the driving factors and restraints in the market. Competitor strategies such as new product launches, expansions, agreements, joint ventures, partnerships, and acquisitions can be utilized well by the pharmaceutical industry to take better steps for selling goods and services. Exosome Therapeutic market analysis report is a careful investigation of current scenario of the market and future estimations which spans several market dynamics.

Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&kb

The major players covered in the report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Key questions answered in Exosome Therapeutic Report:

Scope of the Exosome Therapeutic Market

The global exosome therapeutic market is segmented on the basis of countries into U.S., Mexico, Turkey, Hong Kong, Australia, South Korea, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua and Uruguay.

All country based analysis of the exosome therapeutic market is further analyzed based on maximum granularity into further segmentation. On the basis of type, the market is segmented into natural exosomes and hybrid exosomes. Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. On the basis of therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. On the basis of transporting capacity, the market is segmented into bio macromolecules and small molecules. On the basis of application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. On the basis of route of administration, the market is segmented into pa oral and parenteral. On the basis of end user, the market is segmented into hospitals, diagnostic centers and research & academic institutes and others.

Enquire Here Get customization & check discount for report @:https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&kb

Exosome Therapeutic Market Drivers:

Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

Exosome Therapeutic Market Restraints:

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market.

TOC of Exosome Therapeutic Market Report Contains:

Request for Detailed TOC:https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&kb

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

About Us:

Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge Market Research provides appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. GetCustomizationandDiscounton Report by emailingsopan.gedam@databridgemarketresearch.com. We are content with our glorious 99.9 % client satisfying rate.

Contact:

Data Bridge Market ResearchUS: +1 888 387 2818UK: +44 208 089 1725Hong Kong: +852 8192 7475

Read more from the original source:
Global Exosome Therapeutic Market Updates, Future Growth, Industry Analysis and Comprehensive Study on Key Players-ReNeuron Group plc, Capricor...

Induced Pluripotent Stem Cells Market 2021 | Industry Scenario and Key Vendors Thermo Fisher Scientific Inc., FUJIFILM Corporation, Horizon Discovery…

The Induced Pluripotent Stem Cells market is expected to grow at a CAGR of 8.77% and is poised to reach $XX Billion by 2027 as compared to $XX Billion in 2020. The factors leading to this extraordinary growth is attributed to various market dynamics discussed in the report. Our experts have examined the market from a 360 degree perspective thereby producing a report which is definitely going to impact your business decisions.In order to make a pre-order inquiry, kindly click on the link below:-https://decisivemarketsinsights.com/induced-pluripotent-stem-cells-market/93040505/pre-order-enquiry

Key Companies Operating in this Market

Thermo Fisher Scientific Inc., FUJIFILM Corporation, Horizon Discovery Ltd., Takara Bio Inc, Cell Applications, Inc., Lonza Group AG, Evotec A.G., ViaCyte, Inc., CELGENE CORPORATION, Fate Therapeutics, Astellas Pharma Inc.,

Market by Type(Hepatocytes, Fibroblasts, Keratinocytes, Amniotic Cells, Neuronal Cells, Cardiac Cells, Vascular Cells, Immune Cells, Renal Cells, Liver Cells, Others

Market by ApplicationAcademic Research, Drug Development & Discovery, Toxicity Screening, Regenerative Medicine

The report initiated at DECISIVE MARKETS INSIGHTS describes the various business activities of a particular company to give the readers an overall idea about the process which a company follows to create an advantage for itself from a competitive angle thus depicting a thorough overall idea about the Value Chain analysis. Several effective strategies are prevailing in the current global Induced Pluripotent Stem Cells Market that can be implemented for effective organizational growth over the forecasted period of 2020-2027. Some of the key investment areas are thoroughly elucidated in the report as well as an overall idea about conducting the process of modern Induced Pluripotent Stem Cells Market evaluation is well-included.

To avail Sample Copy of report, visit @ https://decisivemarketsinsights.com/induced-pluripotent-stem-cells-market/93040505/request-sample

A technique known as Real-estate crowd funding is becoming immensely popular in the modern market nowadays. It is the process of raising an adequate amount of money for investment in the real estate sector of businesses worldwide by reaching out to a handful of investor groups for assistance with a little amount of money. A lot of effective strategies are implemented for promoting the overall market like email marketing, product promotion, affiliate marketing, and various other social media platforms.

To inquire about the discount, kindly fill the form by clicking on the link below:-https://decisivemarketsinsights.com/induced-pluripotent-stem-cells-market/93040505/request-discount

Long term strategic planning is very much essential for balanced and effective market growth as well as elucidating the techniques to properly identify the brands on which a huge amount of investment can be made to gain a significant advantage over the other existing competitors in the modern market thus delineating an in-depth BCG analysis. The report elaborates on the various restraints, consequences, constraints, and various threats of the global competitive market. Some of the major external factors that are highly responsible for influencing the modern market growth are broadly elucidated in the report such as political, economic, social, and major technological factors thus laying out an elaborate and in-depth PESTEL analysis of the modern global market. A deep understanding of the feasibility of a business is mandatory for the global leaders of the market before making any major step towards further business growth. To get an overall idea about that, the most necessary thing is a proper estimation of the frailty and strengths of the key market products of the respective businesses thus depicting a thorough and well-formed SWOT analysis. There are numerous ways to keep going parallel with the rapid growth rate of the modern global market. Many essential modern marketing pointers are elaborately inculcated such as substitution threats, tremendous bargaining power of both the suppliers and the consumers, etc. henceforth explaining broadly the Porter Five Force Model. There are a lot of valid touch points that exist between the consumers and global businesses which are needed to be efficiently figured out to get a clear idea about the entire scenario of the relationship between the consumer and suppliers. The report delineates a variety of approaches that can be followed to enhance the strength of this relationship at present as well as in the future, thereby elucidating an in-depth point-by-point analysis.

Kindly click on the link below if you intend to make a direct purchase @https://decisivemarketsinsights.com/induced-pluripotent-stem-cells-market/93040505/buy-now

A lot of essential factors are incorporated such as gross margin, the volume of production and sales, appropriate revenue generation, export, import, graphical representations, etc. Decisive Markets Insights is one of the best in the business when it comes to fulfilling the requirement of the customers as per their variety of demands. The market research reports contain all the vital and efficient information regarding ways that will surely lead to business prosperity to a great extent.

Kindly contact us and our expert will get back to you within 30 minutes:

Decisive Markets InsightsSunil KumarSales HeadEmail sales@decisivemarketsinsights.comUS +18317045538UK +441256636046

See original here:
Induced Pluripotent Stem Cells Market 2021 | Industry Scenario and Key Vendors Thermo Fisher Scientific Inc., FUJIFILM Corporation, Horizon Discovery...

CAR T cell therapy explained: Cancer types, success rate, and more – Medical News Today

Chimeric antigen receptor (CAR) T cell therapy is a new type of cancer treatment. During this treatment, healthcare professionals reprogram the immune system to attack cancer cells.

Healthcare professionals currently use CAR T therapy to treat some blood cancers. However, scientists are investigating whether or not it could also work in other cancers.

This article will explain what CAR T cell therapy is and how it works. It will also look at some possible side effects and the recovery process.

T cells are part of the immune system. They are a type of white blood cell with proteins on the surface that act as receptors.

T cells move around the blood, checking for foreign substances, such as viruses or bacteria. These foreign substances also have proteins on their surfaces. Experts call these proteins antigens.

Immune cell receptors and antigens fit together like a lock and key. Each foreign substance and T cell has a differently shaped antigen or receptor. T cells bind to antigens that fit their receptor, destroying the foreign substance.

Cancerous cells also have antigens. However, T cells rarely have the right receptor to bind to them.

CAR T cell therapy is a way of training the immune system to recognize cancerous cells. It is a type of gene or cell therapy.

Scientists add CARs to a persons T cells. These new receptors help the T cells bind and destroy cancerous cells.

Different cancers have different antigens, and scientists must adapt the treatment accordingly.

Success rates vary depending on the type of cancer a healthcare professional is using CAR T cell therapy to treat.

One 2017 review suggests that up to 90% of people with a specific form of leukemia fully recovered following this form of treatment.

However, the treatment is still very new. The Food and Drug Administration (FDA) approved the first CAR T cell therapy in 2017. So, there is still much to learn about how well it works.

Healthcare professionals may use CAR T cell therapy if traditional cancer treatments, such as chemotherapy, are ineffective or if the cancer returns.

The FDA have approved four CAR T cell therapies in the United States. Healthcare professionals can only use them to treat specific blood cancers in certain groups of people, as follows:

However, the U.S. National Library of Medicine list over 600 ongoing CAR T cell therapy clinical trials. Scientists are currently investigating the use of CAR T cell therapy in many types of cancer, including:

According to the American Cancer Society, receiving CAR T cell therapy can take a few weeks.

The process has three steps:

Healthcare professionals will collect the T cells through an intravenous (IV) line. This can take 23 hours.

Blood will flow from the persons body into a machine that will remove the white blood cells. T cells are a type of white blood cell. The machine will then send the rest of the blood back through another IV line.

Healthcare professionals will separate the T cells from the rest of the white cells and send them to a laboratory. Scientists will then add CARs to the cells, creating CAR T cells.

The scientists will wait for the cells to multiply enough to fight cancerous cells before returning them. This part of the process can take a few weeks.

The next stage will be to insert the new CAR T cells into the persons bloodstream through another IV line.

Healthcare professionals may recommend chemotherapy first to prepare the immune system for the new CAR T cells.

CAR T cell therapy can cause some side effects. The most common side effect is cytokine release syndrome (CRS).

Cytokines are chemical messengers in the immune system that support the T cells. Cytokines multiply when the CAR T cells enter the body, and this can lead to an overproduction of cytokines.

CRS can cause mild symptoms, including:

It can also cause some severe symptoms, such as:

Severe CRS can also lead to neurological problems, including:

Serious CRS can be very dangerous. People with severe CRS will need immediate treatment in intensive care. Most of the symptoms are reversible, but CRS can sometimes be fatal.

People will usually have to stay in the hospital for observation after CAR T cell therapy. The observation period varies from hospital to hospital, but it is usually a few weeks.

Side effects can develop 121 days after treatment. People are also at higher risk of infection for 2830 days after the infusion.

CAR T cell therapy is a new cancer treatment that trains the immune system to fight cancer cells. Scientists genetically modify T cells so that they can detect and fight cancerous cells. The treatment tends to be effective, but it also carries a risk of serious side effects.

CAR T cell therapy is a very new treatment that is currently only available for some blood cancers. However, hundreds of studies are currently investigating its use in other cancer types.

See the rest here:
CAR T cell therapy explained: Cancer types, success rate, and more - Medical News Today

UK deal sees consolidation of two players in the iPSC space – BioPharma-Reporter.com

Under the terms of the agreement, the CEO of the Cambridge headquartered Axol Bioscience, Liam Taylor, and the Axol senior leadership team, will take over the management of the merged businesses, with the intent to migrate the brand to Axol Bioscience.

Censos interim CEO, Dr Tom Stratford, was also appointed non-executive director of the combined board.

The new entity, according to the parties, will become a leading provider of products and services in iPSC-based neuroscience, immune cell, and cardiac modeling for drug discovery and screening markets, providing customers validated ready-to-use cell lines and a suite of services with broader expertise, robust functional data, and customization capabilities.

They also promise shorter lead times for clients. On that, Liam Taylor, CEO Axol, told BioPharma-Reporter: Doubling the size of the scientific and technical project team and moving into two sites means bandwidth for larger production scale on the product side and ability to run simultaneous projects.

The transaction was also accompanied by a fundraising round in excess of 3.8m (US$5.3m) across shareholders. The funding was led by EIS fund manager, Calculus Capita, and Par Equity, a VC firm, based in Edinburgh. Also involved in the financing of the merged entity were Jonathan Milner, founder and former CEO of Abcam and chair of the Axol Bioscience board, Intuitive Investment group, Scottish Enterprise, and SyndicateRoom.

The investment will be used to enable growth of the business along with new hires to meet customer demand.

The growth plan, said Taylor, is to increase the manufacturing scale of flagship products while keeping a robust R&D pipeline moving to productize new cell lines as well as those owned by Censo.

At the same time, the merged entity will grow through our ability to run simultaneous service projects across a greater [number of] areas. There will be limited recruitment, merely to fill current gaps in field commercial, scientific technicians and quality, he added.

Dr Milner said merging these two players in the iPSC space, which have complementary expertise and offerings, is the most direct and low risk path to gaining a more competitive market position. He said the deal will move both organizations from thriving start-ups to a more polished commercial entity that is able to meet aggressive demand increases.

Originally posted here:
UK deal sees consolidation of two players in the iPSC space - BioPharma-Reporter.com

FDA Approves Merck’s KEYTRUDA (pembrolizumab) Plus Platinum- and Fluoropyrimidine-Based Chemotherapy for Treatment of Certain Patients With Locally…

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Mercks anti-PD-1 therapy, for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation in combination with platinum- and fluoropyrimidine-based chemotherapy. The approval is based on results from the Phase 3 KEYNOTE-590 trial, which demonstrated significant improvements in overall survival (OS), progression-free survival (PFS) and objective response rate (ORR) for KEYTRUDA plus fluorouracil (FU) and cisplatin versus FU and cisplatin alone, regardless of histology or PD-L1 expression status. For OS and PFS, KEYTRUDA plus FU and cisplatin reduced the risk of death by 27% (HR=0.73 [95% CI, 0.62-0.86]; p<0.0001) and reduced the risk of disease progression or death by 35% (HR=0.65 [95% CI, 0.55-0.76]; p<0.0001) versus FU and cisplatin alone. The ORR, an additional efficacy outcome measure, was 45% (95% CI, 40-50) for patients who received KEYTRUDA plus FU and cisplatin and 29% (95% CI, 25-34) for those who received FU and cisplatin alone (p<0.0001).

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue and can affect more than one body system simultaneously. Immune-mediated adverse reactions can occur at any time during or after treatment with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, dermatologic reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation. Early identification and management of immune-mediated adverse reactions are essential to ensure safe use of KEYTRUDA. Based on the severity of the adverse reaction, KEYTRUDA should be withheld or permanently discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

Because esophageal cancer generally has poor survival rates, new first-line therapies are urgently needed for these patients, said Dr. Peter Enzinger, Director, Center for Esophageal and Gastric Cancer, Dana-Farber/Brigham and Womens Cancer Center. Todays approval of this indication for KEYTRUDA introduces a new option, which has shown a superior survival benefit compared to FU and cisplatin alone, for newly diagnosed patients with locally advanced or metastatic esophageal or GEJ carcinoma that is not amenable to surgical resection or definitive chemoradiation, regardless of PD-L1 expression status and tumor histology.

There have been few advances in improving survival outcomes in the first-line treatment setting for esophageal cancer over the last three decades, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We are committed to putting patients first and continuing our research to help advance new approaches to potentially extend the lives of people with cancer. We thank all of the patients, their caregivers and healthcare professionals who participated in the study.

This approval was reviewed under the FDAs Real-Time Oncology Review (RTOR) pilot program and the FDAs Project Orbis, an initiative of the Oncology Center of Excellence that provides a framework for concurrent review of oncology drugs among its international partners. Under this project, the FDA, Australian Therapeutic Goods Administration, Health Canada and Swissmedic collaboratively reviewed the KEYNOTE-590 application. The application is still under review in Australia, Canada and Switzerland.

Data Supporting the Approval

The approval was based on data from KEYNOTE-590 (ClinicalTrials.gov, NCT03189719), a multicenter, randomized, placebo-controlled trial that enrolled 749 patients with metastatic or locally advanced esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma who were not candidates for surgical resection or definitive chemoradiation. Patients were randomized (1:1) to receive either KEYTRUDA (200 mg on Day 1 every three weeks) or placebo (on Day 1 every three weeks) in combination with cisplatin (80 mg/m2 on Day 1 every three weeks for up to six cycles) plus FU (800 mg/m2 per day on Days 1 to 5 every three weeks, or per local standard for FU administration, for up to 24 months); all study medications were administered via intravenous infusion.

Randomization was stratified by tumor histology (squamous cell carcinoma vs. adenocarcinoma), geographic region (Asia vs. ex-Asia) and Eastern Cooperative Oncology Group (ECOG) performance status (PS) (0 vs. 1).

Treatment with KEYTRUDA or chemotherapy continued until unacceptable toxicity or disease progression. Patients could be treated with KEYTRUDA for up to 24 months in the absence of disease progression. The major efficacy outcome measures were OS and PFS, as assessed by the investigator according to RECIST v1.1 (modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ). The study pre-specified analyses of OS and PFS based on squamous cell histology, Combined Positive Score (CPS) 10, and in all patients. Additional efficacy outcome measures were ORR and duration of response (DOR), according to modified RECIST v1.1, as assessed by the investigator.

The study population characteristics were median age of 63 years (range: 27 to 94), 43% age 65 or older; 83% male; 37% white, 53% Asian and 1% Black; 40% had an ECOG PS of 0, and 60% had an ECOG PS of 1. Ninety-one percent had M1 disease, and 9% had M0 disease. Seventy-three percent had a tumor histology of squamous cell carcinoma, and 27% had adenocarcinoma.

The trial demonstrated statistically significant improvements in OS and PFS for patients randomized to KEYTRUDA in combination with chemotherapy compared to chemotherapy alone. Efficacy results showed:

Endpoint

KEYTRUDA + Cisplatin + FU(n=373)

Placebo + Cisplatin + FU(n=376)

OS

Number of events (%)

262 (70)

309 (82)

Median in months (95% CI)

12.4 (10.5, 14.0)

9.8 (8.8, 10.8)

Hazard ratio* (95% CI)

0.73 (0.62, 0.86)

p-value

<0.0001

PFS

Number of events (%)

297 (80)

333 (89)

Median in months (95% CI)

6.3 (6.2, 6.9)

5.8 (5.0, 6.0)

Hazard ratio* (95% CI)

0.65 (0.55, 0.76)

p-value

<0.0001

ORR

ORR, % (95% CI)

45 (40, 50)

29 (25, 34)

Number of complete responses (%)

24 (6)

9 (2.4)

Number of partial responses (%)

144 (39)

101 (27)

p-value

<0.0001

DOR

Median in months (range)

8.3 (1.2+, 31.0+)

6.0 (1.5+, 25.0+)

* Based on the stratified Cox proportional hazard model

Based on a stratified log-rank test

Confirmed complete response or partial response

Based on the stratified Miettinen and Nurminen method

In a pre-specified formal test of OS in patients with PD-L1 (CPS 10) (n=383), the median was 13.5 months (95% CI, 11.1-15.6) for the KEYTRUDA arm and 9.4 months (95% CI, 8.0-10.7) for the placebo arm, with a HR of 0.62 (95% CI, 0.49-0.78; p<0.0001). In an exploratory analysis, in patients with PD-L1 (CPS <10) (n=347), the median OS was 10.5 months (95% CI, 9.7-13.5) for the KEYTRUDA arm and 10.6 months (95% CI, 8.8-12.0) for the placebo arm, with a HR of 0.86 (95% CI, 0.68-1.10).

In the study, the median duration of exposure was 5.7 months (range: 1 day to 26 months) in the KEYTRUDA combination arm and 5.1 months (range: 3 days to 27 months) in the chemotherapy arm. KEYTRUDA was discontinued for adverse reactions in 15% of patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA (1%) were pneumonitis (1.6%), acute kidney injury (1.1%) and pneumonia (1.1%). Adverse reactions leading to interruption of KEYTRUDA occurred in 67% of patients. The most common adverse reactions leading to interruption of KEYTRUDA (2%) were neutropenia (19%), fatigue/asthenia (8%), decreased white blood cell count (5%), pneumonia (5%), decreased appetite (4.3%), anemia (3.2%), increased blood creatinine (3.2%), stomatitis (3.2%), malaise (3.0%), thrombocytopenia (3%), pneumonitis (2.7%), diarrhea (2.4%), dysphagia (2.2%) and nausea (2.2%). The most common adverse reactions (all grades 20%) for KEYTRUDA plus chemotherapy were nausea (67%), fatigue (57%), decreased appetite (44%), constipation (40%), diarrhea (36%), vomiting (34%), stomatitis (27%) and weight loss (24%).

About Esophageal Cancer

Esophageal cancer begins in the inner layer (mucosa) of the esophagus and grows outward. Esophageal cancer is the eighth most commonly diagnosed cancer and the sixth leading cause of death from cancer worldwide. In the U.S., about 67% of newly diagnosed esophageal cancer cases were adenocarcinoma, and 33% were squamous cell carcinoma. It is estimated there will be approximately 19,260 new cases of esophageal cancer diagnosed and about 15,530 deaths resulting from the disease in the U.S. in 2021.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,400 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS 10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Continued here:
FDA Approves Merck's KEYTRUDA (pembrolizumab) Plus Platinum- and Fluoropyrimidine-Based Chemotherapy for Treatment of Certain Patients With Locally...

Stem Cell Therapy Market Evaluation of Industry Trends, Growth Drivers and Forecast To 2025 NeighborWebSJ – NeighborWebSJ

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

Get Brochure of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

To get Incredible Discounts on this Report, Click Here @https://www.tmrresearch.com/sample/sample?flag=D&rep_id=1787

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

Request For TOC @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United States

Tel: +1-415-520-1050

https://neighborwebsj.com/

Continue reading here:
Stem Cell Therapy Market Evaluation of Industry Trends, Growth Drivers and Forecast To 2025 NeighborWebSJ - NeighborWebSJ

Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in…

INTRODUCTION

Myocardial infarction (MI) remains one of the leading causes of death worldwide. The inflammatory response caused by MI sets the stage for fibrous tissue and often progresses to chronic heart failure (1), resulting in a more than 50% 5-year mortality after MI (2). An immunomodulation strategy, which prevents an excessive inflammatory response, can be beneficial to reduce scar tissue formation. Immunomodulation alone can likely prevent ongoing damage but fails to restore the compromised heart function. Promoting angiogenesis in the infarct area has the potential to reperfuse and salvage the surviving ischemic myocardium (3). Therefore, we hypothesize that long-term improvements in heart function after MI can be achieved by the combination of resolving inflammation and promoting angiogenesis in the infarct area.

Various therapeutics, such as cell transplant, exosomes, and nucleic acids, have been explored to treat MI and restore cardiac function, with varying degrees of success. Cell transplantation could enhance the functions of the infarcted heart (4), but only cardiomyocytes derived from pluripotent stem cells have been shown to engraft and generate functional myocardium (5). Limitations in cell sources, potential immune responses, and rigorous regulations hinder the clinical translation of cell-based therapies. Several studies have shown that cell-derived exosomes may be effective in treating cardiovascular diseases (6). However, there are obvious variations in exosomes resulting from multiple factors such as cell phenotype, preparation procedure, and exosome storage conditions (7). MicroRNAs (miRNA) are appealing genetic tools to stimulate cardiac performance, as they could regulate the levels of multiple genes simultaneously. Recently, it has been suggested that the cardiovascular system is regulated via a miRNA network (8). High-throughput screening work revealed that miRNAs, particularly microRNA-21-5p (miR-21-5p), are highly expressed in endothelial cells and stimulate angiogenesis by targeting antiangiogenic genes (9). miRNAs have a unique capacity to simultaneously promote the secretion of multiple endogenous molecules that might enhance vessel regeneration in the ischemic tissue. Negatively charged miRNAs typically cannot cross the cell membrane without a transfection agent. In addition, miRNAs are relatively unstable and can be degraded rapidly in vivo (10). Thus, vectors that protect and deliver miRNAs into cells are crucial to improve the efficacy of miRNA therapy.

Mesoporous silica nanoparticles (MSNs) have been developed as a promising vector for miRNA delivery because of their many excellent properties, such as good biocompatibility and high transfection efficiency. Moreover, studies have shown that inflammation can be modulated by phagocytosis of micro/nanomaterials, such as liposomes (11), polymer particles (12, 13), and inorganic particles (14). Macrophages play a central role in regulating infarct-induced inflammation because they adopt proinflammatory (M1) phenotypes. In this study, we found that MSNs showed great potential in inhibiting M1 polarization following inflammation both in vitro and in vivo (see details in Results). Therefore, we engineered an MSN/miR-21-5p complex by combining MSN, a potential anti-inflammatory nanomaterial, and miR-21-5p, a proangiogenic therapeutic.

RNA interference (RNAi) is a promising therapeutic approach for various diseases (15). An important aspect in RNAi delivery system design is to ensure precise spatiotemporal release (1621). Uncontrolled delivery of miRNA in the heart could result in sudden arrhythmia, as reported by Gabisonia et al. (22). In addition, studies have also identified that a big challenge for RNAi-based therapeutics is to achieve highly localized RNAi delivery (16, 18, 19, 23). Drug release from conventional hydrogels (24, 25) is controlled by passive diffusion and often results in off-target effects (26). In contrast, MSN/miR-21-5p complexes were conjugated within an injectable hydrogel matrix via pH-responsive bonds to form Gel@MSN/miR-21-5p, which accurately released MSN/miR-21-5p complexes only in the acidic infarct area.

Here, we designed an injectable hydrogel loaded with MSN/miR-21-5p complexes (Gel@MSN/miR-21-5p) to deliver miR-21-5p in a two-stage mechanism: The first stage comprises pH-triggered on-demand delivery of MSN/miR-21-5p complexes from the hydrogel matrix in acidic infarct areas, and the second stage involves intracellular delivery of miR-21-5p from MSN/miR-21-5p complexes. This drug delivery system is designed to harness the synergy of inflammation suppression and angiogenesis enhancement in treating MI, the efficacy of which was evaluated in a clinically relevant MI swine model.

Amino (-NH2) and trimethylamine [-N(CH3)3, TMA] functionalized MSNs (MSN-NH2-TMA) were first synthesized (fig. S1A), which had positive charges for miRNA loading (fig. S1B). The miRNA-loading capacity of the MSN-NH2-TMA complex was quantitatively evaluated by a gel retardation assay and potential measurements (fig. S1C), which showed complete encapsulation of miRNA when the mass ratio between the MSN-NH2-TMA complex and miRNA increased to 10:1. Subsequent studies were all using MSN/miRNA complexes with this ratio. Direct evidence of miRNAs loading in MSNs was also provided by transmission electron microscopy (fig. S1D) and energy-dispersive x-ray spectroscopy (EDS) analysis (fig. S1E), which revealed obvious miRNAs residing in MSN pores and signals corresponding to the element P from loaded miRNAs.

Gel@MSN/miR-21-5p was fabricated by mixing the MSN/miR-21-5p complex aqueous solution (30 wt%) with an aqueous solution of -CD (66.7 mg/ml) and aldehyde-capped polyethylene glycol (PEGCHO; 66.7 mg/ml). The hydrogel matrix had a porous structure with pore sizes of around 10 m in diameter and MSN/miR-21-5p complexes covering the wall surface (fig. S1F). Scanning electron microscope image of the injectable colloidal hydrogel (Gel@MSN) showed plenty of MSNs conjugated in the hydrogel (red arrows). The presence of MSNs was also confirmed by EDS, which showed an obvious elemental signal of Si (fig. S1G). Hydrogel formation resulted from two interactions (fig. S2): (i) hydrophobic interaction between cyclodextrins (CDs) along the PEGCHO chains (27) and (ii) Schiff base between the NH2 group from MSNs and the aldehyde (CHO) group from PEGCHO/CD complexes. The stepwise gelation was confirmed by comparing different gelation processes between the MSN/PEGCHO/CD (group with both Schiff base and hydrophobic interaction) and control groups (PEG/MSN, group without hydrophobic interactions and Schiff bases; PEG/MSN/CD, group only with hydrophobic interactions) (fig. S3A) as well as the different rheological characterization of the resulting hydrogels (fig. S3, B and C). The cross-linking relies on hydrophobic and Schiff interactions, which are relatively weaker than conventional covalent bonds. The liquid-gel transition takes approximately 5 min, after which point the hydrogel is injected into the infarct area. The weak interaction allows the hydrogel to exhibit a shear-thinning property, which permitted it to switch from hydrogel to fluid during injection and subsequently formed a firm hydrogel at the MI area along with the further cross-linking process (fig. S3D). The retention property of the hydrogel in the beating heart was also evaluated. During bench testing, hydrogel (labeled with blue dye) was injected into myocardium tissue, and no detachment or cracks were observed between the hydrogel and tissue after bending, distorting, long-time immersing underwater, or stretching (fig. S3E).

The MSN/miRNA complexes were conjugated onto an injectable hydrogel by Schiff bonds. The Schiff base bond is stable at pH 7.4 but is disrupted in an acidic environment (pH 6.8) (fig. S3, F to H), enabling an on-demand release of MSN/miRNA (step 3 in fig. S2B) (28, 29). The 1H NMR (nuclear magnetic resonance) of 1,6-diaminohexane (HDA) functionalized PEG with Schiff base in between (HDA-PEG-HDA) after incubation in phosphate-buffered saline (PBS) buffer with pH 7.4 (red line) and pH 6.8 (black line) for 24 hours, which presented a clear proton peak of aldehyde only in the pH 6.8 treated group, demonstrating the high stability of Schiff base bonds at pH 7.4 and its gradual cleavage to form an aldehyde group at an acidic environment (fig. S3F). The gel permeation chromatography results of HDA functionalized PEG with Schiff base in between (HDA-PEG-HDA) after incubation in PBS buffer with pH 7.4 (i) and pH 6.8 (ii) for 24 hours, which presented an obvious drop of molecule weight only in the pH 6.8 treated group. Moreover, the molecule weight loss is close to twice the molecule weight of HDA, indicating the separation of HDA with PEG, due to the break of Schiff base (fig. S3H). These data comprehensively demonstrated the high stability of Schiff base bonds at pH 7.4 and its gradual cleavage at the slightly acidic environment.

The on-demand release profile was characterized in PBS buffer with pH 7.4 and pH 6.8 [which respectively simulated the microenvironment of healthy tissue (pH 7.4) and infarcted myocardium (pH 6.8)] (30, 31). There was a sustained release of MSN/miRNA complexes from the hydrogel matrix with ~75% release after 7 days at pH 6.8 (fig. S3I). In contrast, only ~6% MSN/miRNA was released from the hydrogel after 7 days at pH 7.4, which could be attributed to the diffusion of MSN/miR-21-5p at the different hydrogel degradation rates under different pH conditions (fig. S3I). The miRNA release from the MSN/miRNA complexes is presented in fig. S3J, which shows that a further decrease in the pH value to 5 (simulated intracellular endosomes and lysosomes environment) (32) could trigger miRNA release from MSN/miRNA complexes, leading to a cumulative release of miRNA of up to 60% over 48 hours.

Hydrogel degradation in vitro was monitored by measuring dry weight loss as a function of time following incubation in PBS (pH 6.8) at 37C (fig. S3K). As shown in fig. S3K, Gel@MSN/miRNA lost approximately 93% of the initial gel mass within 20 days. For in vivo measurements, the PEG frame of the hydrogel was labeled by fluorescent dye. Following injection, the fluorescence signal in the injected area was detected at the indicated time points. Figure S4 shows that the fluorescence signal decay is down to 67% at day 3 and 16% at day 14. At day 28, we could not detect any fluorescence signal, indicating that the hydrogel was completely degraded.

The retention of MSNs in vivo was monitored by fluorescence in vivo imaging system (IVIS) imaging at the indicated time points. Figure S5 shows that the fluorescence signal decay is down to 54% at day 3, 18% at day 14, and 2% at day 28, indicating that accumulation of MSNs was gradually decreased at tissue. At day 36, no positive signal was observed, indicating that almost no residual MSNs could be detectable at tissue.

To assess the in vitro uptake of the MSN/miR-21-5p complex by endothelial cells, the miR-21-5p was labeled with Cy3 (orange-red), the MSNs were labeled with fluorescein isothiocyanate (FITC) (green), and the cell nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI) (blue). For in vitro uptake analysis, endothelial cells were cocultured with MSN/miR-NC complexes or MSN/miR-21-5p complexes. The confocal images and quantification analysis showed that MSN/miR-21-5p complexes showed high transfection efficiency of miR-21-5p and resulted in an approximately 37-fold enhanced miR-21-5p levels in endothelial cells compared to that of control cells (Fig. 1, A and B). Representative profiles from the flow cytometry analysis revealed that the CD31 expression level was 96.5% in endothelial cells (Fig. 1C). Flow cytometry analysis indicated that more than 70% of endothelial cells internalized the MSN/miR-21-5p complexes (identified by the CD31+Cy3+) (Fig. 1D). The cytokine levels were determined by Western blot and real-time quantitative polymerase chain reaction (PCR) assay. Figure 1E shows that compared to the endothelial cell group and the MSN/miR-NCtreated group, MSN/miR-21-5p significantly promoted the expression of proangiogenic cytokines (VEGFA and PDGF-BB) from endothelial cells. MSN/miR-21-5ptreated endothelial cells also had increased capillary tube network formation (as measured by branch points and total tube length via tube formation assay) (as shown in Fig. 1G). We then simulated serum-free and hypoxic infarct-like conditions in vitro to assess the protective effect of MSN/miR-21-5p on the hypoxia/ischemia-induced cardiomyocyte apoptosis (Fig. 1H). The cardiomyocytes were exposed to a combination of ischemic/hypoxic conditions for 24 hours. Endothelial cells were pretreated with MSN/miR-21-5p or MSN/miR-NC and then cocultured with cardiomyocytes subjected to hypoxia/ischemia. Notably, at 24 hours of coculture, we found that coculture with MSN/miR-21-5ptreated endothelial cells reduced the apoptosis of hypoxia/ischemia-induced cardiomyocytes. This correlated with increased secretion of proangiogenic cytokines (VEGFA and PDGF-BB) from endothelial cells treated with MSN/miR-21-5p (Fig. 1, I and J). Previous studies demonstrated that VEGFA or PDGF-BB inhibits apoptosis (33, 34). These data may suggest that miR-21-5pinduced expression of proangiogenic factors in endothelial cells could prevent cardiomyocytes from undergoing apoptosis under ischemic and hypoxic conditions.

(A) In vitro uptake of the MSN/miR-21-5p complex by adherent endothelial cells (ECs) and macrophages (MCs). (B) In vitro transfection efficiency of miR-21-5p was determined by quantifying the miRNA level using real-time quantitative PCR. (C) Representative flow cytometry analysis of CD31 levels in ECs and F4/80 levels in MCs. (D) In vitro uptake of the MSN/miR-21-5p complex by ECs and MCs was determined by quantifying the double-positive cells (CD31 or F4/80 and Cy3) using flow cytometric analysis. The protein expression levels of VEGFA and PDGF-BB in endothelial cells (E) and tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and IL-6 in macrophages (F) were determined by the real-time quantitative PCR and Western blot analysis. (G) The endothelial cells that formed three-dimensional (3D) capillary-like tubular structures were evaluated at indicated times (8 and 16 hours). (H) Schematic diagram of the experimental setup. TUNEL, terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labeling. (I) Apoptosis-positive cardiomyocytes from these treatment groups were further quantified. (J) Protein levels of secreted proangiogenic factors were determined by enzyme-linked immunosorbent assay (ELISA) analysis of cell supernatants from the MSN/miRNA-treated ECs (scale bars, 50 m). *P < 0.05 and ***P < 0.01. All experiments were carried out in triplicate. n = 5 per group. The data are shown as means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

To understand the in vitro immunomodulatory effect of MSN/miR-21-5p complexes, MSN/miR-NC complexes or MSN/miR-21-5p complexes were cocultured with isolated macrophages. MSNs were labeled with FITC (green), and miR-21-5p was labeled with Cy3 (red). Representative profiles from the flow cytometry analysis revealed that the F4/80 expression level was 98.2% in isolated macrophages (Fig. 1C). The confocal images and quantification analyses showed that MSN/miR-21-5p complexes had high uptake efficiency in macrophages. Flow cytometry analysis indicated that more than 80% of macrophages took up the MSN/miR-21-5p complexes (identified by the F4/80+Cy3 + staining pattern) (Fig. 1D). We then examined whether the uptake of the MSN/miR-21-5p complexes by macrophages could reduce the inflammatory response. For this purpose, a proinflammatory response was induced by injection of lipopolysaccharide (LPS), a potent inducer of inflammatory response (35), into the peritoneum of mice, and macrophages from the treated mice were collected. Figure 1F shows that the inflammation of the LPS-treated macrophages (LPS-macrophages) was markedly suppressed following uptake of the MSN/miR-21-5p complexes, as indicated by the notable decrease in the expression of tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and IL-6, which are typical cytokines involved in the inflammatory response. These data suggest that the MSN/miR-21-5p complexes released from Gel@MSN/miR-21-5p simultaneously reduced proinflammatory cytokines and increased proangiogenic factors in vitro. The enhanced proangiogenic factors from endothelial cells could effectively prevent cardiomyocytes from apoptosis under ischemic and hypoxic conditions.

To obtain insight into the mechanism by which the MSN/miR-21-5p complex acts on macrophages to modulate the immune response, we performed a proteome analysis of protein alterations in macrophages. We collected three replicates of LPS-induced macrophages (inflammatory stage macrophages) treated with MSN/miR-NC, MSN/miR-21-5p, or pure MSNs. Untreated LPS-macrophages were used as a negative control. We used a label-free quantitative proteomic approach. Hierarchical clustering analysis of the data revealed that the protein expression patterns of the three treatment groups (MSN/miR-NC, MSN/miR-21-5p, or pure MSNs) were obviously different from that of LPS-macrophages without treatment, while the protein expression patterns of the three groups were similar (Fig. 2A). This consistently indicated that the function of immunomodulation originates from the MSNs themselves.

(A) A heatmap of selected proteins representing major altered signaling pathways in three datasets of macrophages treated with MSNs, MSN/miR-NC, or MSN/miR-21-5p complexes. Macrophages with no treatment were used as a negative control. The color bar indicates normalized z score intensity-based absolute quantification. (B) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of both up- and down-regulated pathways in macrophages after MSN treatment. The most significant pathways in the phosphoproteome are plotted on the x axis as the log10 of the P value, compared with the proteome. (C) KEGG pathway map of Toll-like signaling pathway. Proteins shown with red backgrounds are down-regulated in macrophages after MSN complex treatments when compared with macrophages with no treatment, as determined by pathway analysis. (D) Real-time quantitative PCR and Western blot analysis of TLR1, TLR2, TLR3, TLR8, P-NFB, TNF-, IL-1, and IL-6 protein content alteration in macrophages after treatment with MSNs, MSN/miR-NC, or MSN/miR-21-5p complexes. (E) Real-time quantitative PCR and Western blot analysis of P-NFB, TNF-, IL-1, and IL-6 protein content alteration in MSN/miR-21-5p complextreated macrophages that overexpress TLR2 with the TLR2 overexpression vector. ***P < 0.01. n = 3 per group. The data are shown as means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

Current reports showed that the reduced inflammatory response elicited by MSN resulted from the reduction of transcription factor nuclear B (NFB), caspase-3, and IL-12 (36). The NFB signaling plays a major role in innate immunity and inflammatory responses. It was shown that the NFB signaling pathway plays important roles in MSN-regulated inflammation (37), but the exact mechanism leading to this effect was still obscure.

The present study used the GSEA (gene set enrichment analysis) method to examine the distribution of the functionally related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway gene sets within the ranked gene list. GSEA showed that there were groups of genes negatively correlated with the immune response after MSN treatments. The majority of genes that were differentially expressed in macrophages after MSN treatments were enriched in several pathways, such as neutrophil degranulation, Toll-like receptor (TLR) signaling pathway, and MyD88 deficiency (Fig. 2B). TLR activation and MyD88 (a downstream adapter of TLR pathways) play important roles in the NFB signaling pathway (37), stimulation of which may lead to activation of NFB signaling and eventually lead to proinflammatory responses and progression to fibrous tissues (38, 39).

We found that abundance of proteins (TLR1, TLR2, TLR4, TLR3, TLR7, TLR8, TLR9, CD14, RAC1, and TAB1) involved in TLR signaling was down-regulated in macrophages after MSN treatments, indicating that TLR signal transduction pathway activity decreased in response to MSN treatment (Fig. 2C). The most significantly down-regulated genes are TLR1, TLR2, TLR3, and TLR8, which had more than threefold change.

To gain further insight into the mechanism by which MSNs modulated the immune response through the TLR signaling pathway, we examined protein alterations of TLR1, TLR2, TLR3, and TLR8 within macrophages after MSN treatment (Fig. 2D). We found that the mRNA and protein expressions of TLR1, TLR2, TLR3, and TLR8 cytokines were substantially lower in all MSN-treated groups. Meanwhile, NFB signaling pathway and downstream proinflammatory cytokines (TNF-, IL-1, and IL-6) were inhibited, which is consistent with previous findings that TLRs act as primary sensors that elicit innate immune responses and activate NFB signaling (Fig. 2D). Among the known TLRs, TLR2 has been characterized extensively as an inducer of proinflammatory cytokines. To determine whether MSNs modulated the immune response by down-regulating TLR2, we first treated macrophages with MSNs and then transfected MSN-treated macrophages with a TLR2 overexpression plasmid vector or empty vectors. We found that the NFB signaling pathway was up-regulated in macrophages transfected with the TLR2 overexpression vector compared to the empty vector control group. Consistently, the amounts of TNF-, IL-1, and IL-6 protein in macrophages were increased by transfection with the TLR2 overexpression vector (Fig. 2E). These comprehensive data suggest that MSNs modulated immune response through down-regulating TLR2, which inhibited the activation of NFB signaling and subsequently decreased the release of proinflammatory cytokines (TNF-, IL-1, and IL-6) (fig. S6).

To obtain insight into the mechanism underlying miR-21-5penhanced angiogenesis, we performed a proteogenomic analysis of protein alterations in endothelial cells after miR-21-5p treatment. We collected three replicates of endothelial cells after treatment with MSN/miR-NC or MSN/miR-21-5p. We applied a label-free quantitative proteomic approach. Hierarchical clustering analysis of the data revealed that the genes could be assigned into two groups based on their protein expression patterns, and the assigned groups matched with the groups by treatment (Fig. 3A). GSEA revealed that there were groups of genes positively correlated with angiogenesis after MSN/miR-21-5p treatment. KEGG analysis suggested that the MSN/miR-21-5p treatment groups were positively associated with key angiogenic signaling pathways (Fig. 3B). Compared to MSN/miR-NCtreated endothelial cells, MSN/miR-21-5ptreated endothelial cells had a larger number of proteins enriched in pathways such as vascular endothelial growth factor (VEGF) signaling pathway and platelet-derived growth factor (PDGF) signaling pathway (Fig. 3B). VEGF is the major mediator in endothelial cells and is considered to be a crucial signal transducer in angiogenesis. The binding of VEGF to the VEGF receptor leads to a cascade of signaling pathways, including ERK-MAPK (extracellular signalregulated kinase/mitogen-activated protein kinase) signaling, which particularly plays a central role in angiogenesis. Therefore, we focused on ERK-MAPK signaling in MSN/miR-21-5ptreated endothelial cells and found that the levels of phospho-Erk1/2, phospho-FAK, phospho-P38, phospho-AKT, VEGFA, and PDGF-BB were up-regulated in the MSN/miR-21-5p treatment group compared to the MSN/miR-NC group, indicating that miR-21-5p could enhance VEGFA expression and subsequently lead to ERK-MAPK signaling activation (Fig. 3C).

(A) A heatmap of selected proteins representing strongly altered signaling pathways in three datasets of endothelial cells treated with MSN/miR-NC or MSN/miR-21-5p complexes. (B) KEGG pathway analysis of both up- and down-regulated pathways in endothelial cells after MSN/miR-21-5p complex treatment. (C) Western blot analysis of changes in SPRY1, P-ERK1/2, P-FAK, P-p38, P-AKT, VEGFA, and PDGF-BB protein content alteration in endothelial cells after treatment with the MSN/miR-21-5p complex. (D) The effect of MSN/miR-21-5p or MSN/miR-NC on SPRY1 mRNA levels (left) and SPRY1 protein levels (right) in endothelial cells. (E) Schematic diagram illustrating the design of luciferase reporters with the WT SPRY1 3 untranslated region (WT 3UTR) or the site-directed mutant SPRY1 3UTR (3UTR-Mut). (F) The effect of MSN/miR-21-5p on luciferase activity in endothelial cells transfected with either the WT SPRY1 3UTR reporter (left) or the mutant SPRY1 3UTR reporter (right). (G) Western blot analysis of P-ERK1/2, P-FAK, P-p38, P-AKT, VEGFA, and PDGF-BB protein level alteration in MSN/miR-21-5p complextreated endothelial cells after overexpressing SPRY1 with the SPRY1 overexpression vector. *P < 0.05 and ***P < 0.01. n = 3 per group. The data are shown as means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

To gain further insight into the mechanism by which miR-21-5p promotes angiogenesis, we used a miRNA database to predict the potential target genes of miR-21-5p and found that SPRY1 has a miR-21-5p binding site in its 3 untranslated region (UTR). The amount of SPRY1 protein in endothelial cells was down-regulated by MSN/miR-21-5p treatment but not by MSN/miR-NC treatment, whereas we found no difference in SPRY1 mRNA levels between the two groups (Fig. 3D). To determine whether miR-21-5p functionally targets SPRY1 to promote angiogenesis, we overexpressed SPRY1 in endothelial cells. We found that phospho-Erk1/2, phospho-FAK, phospho-P38, phospho-AKT, VEGFA, and PDGF-BB levels were down-regulated in MSN/miR-21-5ptreated endothelial cells transfected with SPRY1 overexpression plasmid vector, compared to cells transfected with the empty vector (Fig. 3E). To test whether miR-21-5p directly targets SPRY1, we constructed luciferase reporters that had either the wild-type (WT) SPRY1 3UTR or an SPRY1 3UTR containing mutations at the miR-21-5p binding site (Fig. 3F). First, we found that MSN/miR-21-5p, but not MSN/miR-NC, substantially inhibited the luciferase reporter activity of the WT SPRY1 3UTR. Second, the luciferase reporter activity of the SPRY1mRNA with the mutated 3UTR was not suppressed by MSN/miR-21-5p (Fig. 3G). These comprehensive data suggest that delivery of miR-21-5p using MSN/miR-21-5p complexes promotes angiogenesis by targeting SPRY1 and subsequently activating the VEGF-induced ERK-MAPK signaling pathway (fig. S6). Detailed predicted miR-21-5p targets by Venn diagram analysis were revealed in fig. S7.

The in vivo efficacy of Gel@MSN/miR-21-5p was evaluated in an induced MI swine model. Coronary arteries were identified and ligated to induce a uniform and consistent MI, and the morphology and pumping effectiveness of the heart were evaluated ~45 min after the MI induction. The MI animals were then randomly divided into four groups receiving saline (negative control), agomiR-21-5p (a commercially available agent used to up-regulate endogenous miR-21-5p level), Gel@MSN/miR-NC, and Gel@MSN/miR-21-5p injection. Sham-operated animals served as a positive control. Morphological and functional assessments were performed using the modified Simpson method, which can accurately calculate left ventricular ejection fraction (LV EF) to detect any early echocardiographic changes. Changes in the morphology and pumping effectiveness of the heart were assessed through measurements of LV end diastolic volume (LVEDV), LV end systolic volume (LVESV), EF, and LV end diastolic dimension (LVEDd). Representative echocardiography images of short-axis views for each treatment group at baseline (before MI) and 45 min, 14 days, and 28 days after MI are shown in Fig. 4A. MI caused a substantial reduction in LV function 45 min after induction, as indicated by an absolute 20% decline in the EF. The morphological and functional parameters were slightly improved in the agomiR-21-5p and Gel@MSN/miR-NC groups compared with the saline negative control group at 14 and 28 days after MI, indicating that either miR-21-5p or MSNs alone could improve the morphology and pumping effectiveness of the heart but only to a limited degree (~an absolute 4 to 5% increase in EF values at 28 days, as compared to the saline group). More substantial improvement was achieved in the Gel@MSN/miR-21-5p group, with an approximately absolute 10% increase in the LV EF values at 28 days after MI. Time course echocardiography assessment over the 28-day study period is shown in Fig. 4B. These data suggest the importance of the therapeutic itself (miR-21-5p) as well as the delivery system (a two-stage delivery) in mitigating the negative LV remodeling and improving the morphology and pumping effectiveness of the heart after MI.

(A) Representative echocardiography imaging by the modified Simpson method of short-axis views for each treatment group at baseline and 45 min, 14 days, and 28 days after MI. The site of the infarct zone is shown by arrows. Notable chamber dilation and wall thinning occurred at 28 days following MI, consistent with the adverse remodeling process. (B) Time course analysis of the EF, LVEDV, LVESV, and LVPWd. (C) MI caused a gradual decline in the EF over 28 days, which was notably attenuated by Gel@MSN/miR-21-5p. (D) MI caused a gradual increase in the LVEDV at day 14 and day 28. The LVEDV of the Gel@MSN/miR-21-5p treatment group was substantially attenuated compared with those of the other three treatment groups. (E) MI caused progressive thinning of the LVPWd thickness at the diastole, which was attenuated by Gel@MSN/miR-NC and agomiR-21-5p treatment and further attenuated by Gel@MSN/miR-21-5p treatment at day 14 and day 28. *P < 0.05 and ***P < 0.01. Sham, n = 3; MI/saline, n = 5; MI/agomir, n = 5; MI/Gel@MSN/miR-NC, n = 6; and MI/Gel@MSN/miR-21-5p, n = 6. The data are shown as the means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

Representative delayed-enhancement computed tomography (CT) images of cross-sectional planes of hearts from two-axis (long axis and short axis) slices at day 28 after MI are shown in Fig. 5. The infarct regions in the LV posterior wall were characterized by wall thinning (identified by red counterstain). Analysis of systolic LV wall thickness showed that the wall thickness in the infarcted zone was retained in the agomiR-21-5p and Gel@MSN/miR-NCtreated groups 28 days after MI to a limited degree (marked with white arrows) compared to that in the saline-treated group. LV wall thickness in the infarcted zone was further persevered with the Gel@MSN/miR-21-5ptreated group. Bulls eye plots (Fig. 5A) display LV wall thickness, wall motion, and regional EFs. Global cardiac functional measures such as LVEDV, LVEDV, and EF are shown in the inserted table.

Representative delayed enhancement CT images of cross-sectional planes of hearts from two-axis (long axis and short axis) slices at day 28 after MI are shown. (A) Bulls eye plots display the LV wall thickness, wall motion, and regional EFs. (B) The infarct zone was characterized by wall thinning (identified by white arrows). (C) Global cardiac functional measures such as cardiac output, stroke volume, and EF are shown in the inserted table. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

Infarct size as measured by tetraphenyl tetrazolium chloride (TTC) staining also showed that the Gel@MSN/miR-21-5p group had the smallest infarct size (Fig. 6A; paired multiple slices of an infarcted heart in the same pigs shown in fig. S8). The histological characterization of the LV sections from the infarct region at 28 days after MI showed that the infarcted regions in pigs injected with Gel@MSN/miR-21-5p present preserved distinct and thick muscle layers. However, moderately thickened muscle was observed in the agomiR-21-5p and Gel@MSN/miR-NC groups, and obvious fibrillary layers were observed in the saline group. The muscle layers were verified to be cardiomyocytes by anticardiac troponin-T staining (Fig. 6B). Massons trichrome staining showed approximately two times less fibrous content in the Gel@MSN/miR-21-5p group than in the saline group (Fig. 6D). These observations provided evidence that Gel@MSN/miR-21-5p treatment could effectively attenuate fibrosis and improve cardiac remodeling after MI.

A porcine model of MI was used to investigate the post-MI responsiveness of different groups to treatments. Healing at the infarct zone was analyzed after 28 days after treatment. (A) Representative image of TTC-stained hearts and morphometric measures of the infarct area from each group. White coloring in the TTC-stained sections indicates infarct zone and tissue necrosis. (B) Representative histological analysis of the infarcted myocardium among the treatment groups. H&E (left) staining, Massons trichrome staining (middle), and immunohistochemistry staining for cardiac troponin T (right) 28 days after MI showed a loss of cardiomyocytes and collagen deposition, and interstitial fibrosis was substantially reduced in the infarct zone after the Gel@MSN/miR-21-5p treatment (scale bars, 2000 m in the low-magnification images and 60 m in the high-magnification images). Quantitative analysis showing the percentage of the TTC-negative infarct area (C) and fibrotic area (D). (E) miRNA transfection efficiency was investigated using real-time quantitative PCR at 28 days following MI. *P < 0.05 and ***P < 0.01. Sham, n = 3; MI/Saline, n = 5; MI/Agomir, n = 5; MI/Gel@MSN/miR-NC, n = 6; and MI/Gel@MSN/miR-21-5p, n = 6. The data are shown as the mean SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai, 200011, China.

The in vivo data relating to drug release duration and efficacy of MSNs and miRNA delivery by Gel@MSN/miR-21-5p were characterized. Confocal images and quantification analysis showed that more than 60% of macrophages (identified by the F4/80+ marker) or endothelial cells (identified by the CD31+ marker) took up the MSN/miR-21-5p complexes 1 day after injection (Fig. 7). Furthermore, the high intracellular transfection efficacy was sustained up to ~28 days, as evidenced by an approximately twofold increase in endogenous miR-21-5p levels (Fig. 7), which could contribute to the improved morphology and pumping effectiveness of the heart.

MSNs were prelabeled with FITC (green), and miR-21-5p was prelabeled with Cy3 (red). The hydrogel (FITC-labeled Gel@MSN/miR-21-5p or Cy3-labeled Gel@MSN/miR-21-5p) was injected into the mid-myocardium of each target site in the pigs. The duration and efficiency of MSNs and miRNA delivery upon Gel@MSN/miR-21-5p injection were monitored using time course analysis at 1, 14, and 28 days after injection. (A) Histological sections of the infarct region in the Gel@MSN/miR-21-5p group were immunolabeled with the hematoxylin and eosin (H&E) macrophage marker F4/80. (B) Histological sections of the infarct region in the Gel@MSN/miR-21-5p group were immunolabeled with the endothelial marker CD31. Cell nuclei were counterstained with DAPI (blue). (C) F4/80+FITC+ and CD31+Cy3+ double-positive cells were quantified from at least eight high-resolution images acquired from at least eight different regions of each heart. (D) miR-21-5p levels were detected using real-time quantitative PCR at different time points. The transfection efficiency was determined by quantifying the miRNA level. Scale bars, 100 m. n = 3 per group. The data are shown as means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

We further compared the effects of MSN/miR-21-5p complexes without a hydrogel matrix (MSN/miR-21-5p alone) and with a hydrogel matrix (Gel@MSN/miR-21-5p) on treating MI. The morphological and functional parameters of the MSN/miR-21-5p group alone were worse than those of the Gel@MSN/miR-21-5p group at 14 and 28 days, and the parameters did not improve over time. The Gel@MSN/miR-21-5p delivery system provided sustained release of miR-21-5p (fig. S9) and sustained a superior therapeutic benefit compared to that from a bolus shot of MSN/miR-21-5p (fig. S10). Histological examination and the quantification of the total infarct size showed similar results. These data suggest that the hydrogel matrix could maintain a long-term drug release, which is important to achieve a persistent therapeutic effect. The hearts were harvested at 28 days after MI for fluorescent imaging, RNA extraction, and real-time quantitative PCR analysis. The fluorescent images showed that the areas of FITC and Cy3 fluorescence enhancement exactly overlapped with the infarct region (Fig. 8A). The confocal images and quantification of miR-21-5p levels showed that MSN/miRNA complexes were effectively transfected into cells within the infarct region in vivo (Fig. 8B). These data indicate that the hydrogel matrix achieved localized sustained drug release, triggered by the acidic microenvironment in the infarct region.

For examination of on-demand delivery, the hearts were harvested at 28 days after MI for fluorescent imaging, RNA extraction, and real-time quantitative PCR analysis. (A) The fluorescent images showed that there were no transfecting cells detected in the sham group. In contrast, it showed that the area of FITC and Cy3 fluorescence exactly overlapped with the infarct region. (B) Quantification of miR-21-5p levels showed that the MSN/miRNA complex could be highly transfected into cells within the infarct region in vivo. Scale bar, 100 m. ***P < 0.01. The data are shown as means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

The three-dimensional (3D) organization of the vascular network within the infarct regions was characterized by micro-CT angiography. The vascular density and volume were significantly improved with Gel@MSN/miR-21-5p (Fig. 9A). CD31 and smooth muscle actin (-SMA) are typical biomarkers of endothelial cells and mural cells in blood vessels. Immunofluorescence characterization showed that expression levels of CD31 and -SMA were significantly enhanced and that more newly formed vessels were observed in the Gel@MSN/miR-21-5p treatment group than in the other groups. These observations provided evidence that Gel@MSN/miR-21-5p treatment enhanced vascularization after MI.

(A) Micro-CT angiography analysis of 3D vascular structures within the infarct zone 28 days after MI indicates that the vascular volume was significantly increased in the Gel@MSN/miR-21-5p treatment group. The vascular volume within the infarct zone was quantitatively analyzed. *P < 0.05 and ***P < 0.01. n = 3 per group. (B) Immunofluorescence staining for CD31 (red) identified the vascular endothelium, and staining for -SMA (green) identified myofibroblasts and pericytes, showing that the cardiac capillary density in histological sections of the healing infarct zone was significantly higher in the Gel@MSN/miR-21-5p treatment group than in the other groups. The CD31 and -SMA staining intensities in the above-described groups were quantitatively analyzed (scale bars, 500 mm). *P < 0.05 and ***P < 0.01. Sham, n = 3; MI/saline, n = 5; MI/agomir, n = 5; MI/Gel@MSN/miR-NC, n = 6; and MI/Gel@MSN/miR-21-5p, n = 6. The data are shown as the means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

Immunofluorescence analysis of LV sections taken from the infarct region 1 day after MI showed that Gel@MSN/miR-21-5p effectively protected cardiomyocytes (fig. S11) and inhibited the expression of several key inflammatory mediators (TNF-, IL-1, and IL-6) (Fig. 10). Furthermore, concordant with reduced fibrotic area in the infarcted region in the Gel@MSN/miR-21-5ptreated group at 28 days after MI, the expression of key inflammatory mediators (TNF-, IL-1, and IL-6) was obviously reduced (fig. S12). These results suggested that Gel@MSN/miR-21-5p treatment modulated the immune response after MI by inhibiting the expression of proinflammatory cytokines.

Histological sections of the infarct zone (day 1 after MI) were immunolabeled with antibodies targeting TNF- (A), IL-6 (B), or IL-1 (C) and colabeled with the macrophage marker F4/80 (green). Cell nuclei were counterstained with DAPI (blue). (D) The percentages of cells double positive for F4/80 and TNF-, IL-1, or IL-6 (TNF-, IL-1, or IL-6expressing macrophages, respectively) were quantified. Quantification was performed in at least eight high-resolution images acquired from at least eight different regions of each heart. Scale bars, 100 m. ***P < 0.01. n = 3 per group. The data are shown as the means SD. Photo credit: Yan Li, Shanghai Ninth Peoples Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

The use of large-animal models of MI provides valuable information regarding the safety and efficacy of new therapies. Pig models offer an alternative because of their anatomical and physiological similarities to humans (40, 41). The treatment groups used materials such as PEG derivatives, CD, silica, and miRNA, and an obvious inflammatory response to foreign bodies was not observed in the treated pigs, indicating its potential for clinical transition.

Here, we report the potential for an efficient miRNA delivery system that simultaneously integrates immune modification and angiogenesis enhancement in the field of MI therapy. This study demonstrates the efficacy and feasibility of a delivery system in a clinically relevant porcine MI model, where both the pathophysiology and the administration mimic what would be observed and performed in humans.

Current therapeutic strategies (angiogenic therapy or anti-inflammatory therapy) involving protein delivery or gene therapy for treating MI have limited success in reducing infarct size (42, 43). The results of our study suggest that therapeutic outcome relies on both immunomodulation and angiogenesis. This study demonstrated that MSNs could reduce the inflammatory responses that can modify tissue remodeling and prevent fibrous tissue formation for improved repair after MI. Specifically, the effect of the resultant microenvironment can be further enhanced with sustained miR-21-5p delivery via MSNs and synergistically stimulate angiogenesis as well as changes in the morphology and pumping effectiveness of the heart after MI.

To date, the study to use miRNA for the treatment of ischemic cardiovascular disease in a preclinical pig model was performed by Gabisonia et al. (22). Gabisonia et al. used miR-199a therapy in an attempt to stimulate cardiomyocyte proliferation. The approach enabled the induction of preexisting cardiomyocytes to reenter the cell cycle and rebuild the injured heart (44). Substantial improvements in cardiac function and structure were attributed to this process. However, there are potential limitations of cardiomyocyte proliferation after birth including cardiomegaly or hypertrophy, as well as possible arrhythmias due to the immaturity of myocyte conduction or poor coupling with existing myocardium (45). As reported by Gabisonia, the generation of areas of poorly differentiated cardiomyocytes might cause tachyarrhythmias and eventually determine fatal reentry electric circuits. The adverse effects were also observed in several other studies, that long-term stimulation of cardiomyocyte proliferation might result in impaired cardiac function or arrhythmic events (4648). In the current study, we attempted to use specific miR-21-5pbased therapies to promote angiogenesis in infarct areas, which may further facilitate rescuing resident cardiomyocytes in an injured heart. We focused on myocardial salvage rather than replacement. The proangiogenic effects of miR-21-5p were characterized with multiple in vitro and in vivo experiments and could be attributed to targeting SPRY1. Loss of SPRY1 leads to the expression of proangiogenic cytokines (VEGFA and PDGF-BB) in endothelial cells. While manipulation of proteins in the Hippo pathway (identified as miR-199a targets) promotes adult cardiomyocyte cell cycling, animals subjected to this type of treatment also exhibit cardiac dysfunction and heart failure in the long term (47, 48). Our strategy represents another direction to promote MI repair. Until now, no major case of arrhythmias has been reported to be associated with long-term proangiogenic therapies in either animal studies or clinical trials. In addition, Gabisonia et al. used adeno-associated virus vectors as therapeutic and investigational tools, which have advantages such as high transfection efficiency. However, such virus-based delivery systems could lead to uncontrollable continuous miR-199a expression and unrestrained cardiac growth in the long term, which would eventually result in sudden death due to arrhythmia at weeks 7 to 8 in most of the treated pigs because controlled miRNA delivery was beyond the current capabilities of virus-mediated gene transfer. Therefore, the treatment needs to be carefully dosed, which could be achieved through the delivery of naked, synthetic miRNA mimics. In our study, a local on-demand and controlled delivery system was described. The system provided a controlled miR-21-5p mimic delivery, with ~75% release over 7 days at pH 6.8 in vitro. In addition, considering the limitation of current RNAi-based therapy associated with potential off-target accumulation, multiple works have been done in this area to optimize the RNAi delivery system (16, 18, 19, 23). For example, a hydrogel system used ultraviolet as the external stimulus to achieve on-demand controlled localized release of RNA at designated time points to induce human mesenchymal stem cell (hMSC) osteogenesis (18, 19). In the present study, the hydrogel is designed to be pH stimuli responsive to achieve on-demand miRNA delivery for persistent and accuracy therapeutic effect on MI. The miRNA delivery system (Gel@MSN/miR-21-5p) specifically released MSN/miR-21-5p only at the infarct region without affecting the surrounding healthy tissues, which addresses the safety issue associated with miRNA-based therapy. As shown in fig. S15, two pigs survived out to 11 months after Gel@MSN/miR-21treatment, and electrocardiography (ECG) was performed. ECG analysis of Q wave and T wave showed that ECG signal at 11 months is similar to that at 4 weeks after Gel@MSN/miR-21 treatment, indicating that Gel@MSN/miR-21 was not likely to pose a long-term safety risk.

Acute inflammation caused by MI is a protective response that kills invading pathogens, should be self-limiting, and leads to healing (49). However, excess activation of the acute inflammatory response leads to cardiac myocyte death. Macrophages play a central role in regulating inflammation. Modulation of macrophage activation may contribute to the resolution of cardiac injury after MI. The results of this study indicate that MSNs can be used to inhibit proinflammatory polarization (M1) in an inflammatory microenvironment following ischemic muscle injury in vivo (50). Gulin-Sarfraz et al. (13) also noticed that empty mesoporous silica particles could reduce the number of neutrophils and down-modulate the inflammatory response in a mouse airway inflammation model. In addition, our data showed that MSNs modulated immune response through down-regulating TLR2, which inhibited the activation of NFB signaling and subsequently decreased the release of proinflammatory cytokines (TNF-, IL-1, and IL-6). Our results are similar to the findings of Lee et al. (51), who demonstrated that exposure to MSNs decreased the expression of proinflammatory cytokines such as TNF-, IL-1, and IL-6 in macrophages. Consistent with these results, a more recent study indicated that MSNs inhibit lymphocyte proliferation, suppress the killing activity of natural killer cells, and decrease proinflammatory cytokine and nitric oxide production in macrophage cells (36).

Previous studies have demonstrated that angiogenesis can be promoted by the fine-tuned delivery of multiple growth factors and cells with biomaterials (52, 53). It relies on the precisely controlled sequential release or direct serial delivery, which are unfavorable for clinical use. The present study has provided a relatively simple approach that shows not only equivalent efficacy in promoting angiogenesis but also a modified cardiac inflammatory response in pigs after MI, suggesting that achieving cardiac repair through the stimulation of angiogenesis in the infarct region with a miRNA (miR-21-5p)based strategy is attainable in large mammals. The vascular volume was significantly improved within the infarct region in pigs treated with Gel@MSN/miR-21-5p. The enhanced vessels within the infarct region were associated with the accumulation of endothelial cells (identified by CD31+) and mural cells (identified by -SMA+) 28 days after MI. The mechanism by which miR-21-5p exerts its cardiac proangiogenic effects in the myocardium was also studied. KEGG analysis suggested that treatment with miR-21-5p complex was positively associated with key angiogenic signaling pathways such as VEGF signaling and PDGF signaling. Multiple experiments were further conducted and concluded that the delivery of miR-21-5p promoted angiogenesis by targeting SPRY1 and subsequently activating VEGF-induced ERK-MAPK signaling. Together, these data suggest that endogenous cardiac repair may be facilitated by the miR-21-5pinduced angiogenic network.

Increasing reports have revealed the advantage and importance of biomaterials in cardiac tissue engineering. Despite the enthusiasm, there are relatively few ongoing clinical trials using injected materials for cardiac repair, perhaps due to a lack of evidence in large-animal studies, which are necessary before progressing to human trials. Pig models offer an alternative because of their anatomical and physiological similarities to humans. The use of a pig model of MI may provide valuable information regarding the safety and efficacy of therapeutic strategies for MI in clinic. We performed a large-animal study with a pig model to demonstrate the translational potential. However, because the immediate treatment after MI may not be relevant to clinical situations, whether this approach also works in chronic cases and whether there exists an optimal therapeutic time window require further evaluation. There are also human-specific issues to consider including PEG immunity and species-specific interactions. Thus, understanding the factors that affect PEG immunity is crucial for both researchers and clinicians to ensure the treatment safety in clinic. Optimization of Gel@MSN/miR-21-5p dose and long-term studies are also needed for clinical translation.

In summary, the two-stage gene delivery system Gel@MSN/miR-21-5p developed in this study consists of three key components, pH-responsive hydrogel matrix, MSNs, and miR-21-5p. The responsive hydrogel serves as a matrix to achieve a highly localized drug release triggered by an acidic microenvironment and a 1-week sustained drug release (first stage release); MSN is the gene transfection vector (second stage release) and itself alone also resolves early inflammation by suppressing the TLR/NFB signaling pathway; and miR-21-5p promotes angiogenesis and mature vessel formation by targeting SPRY1 and subsequently activating VEGF-induced ERK-MAPK signaling. The synergy among these three elements demonstrated significance in treating MI in a swine model via a combination of anti-inflammatory and proangiogenic effects. Clinically relevant positive outcomes were observed upon Gel@MSN/miR-21-5p treatment, such as improved cardiac remodeling, reduced fibrosis formation and infarct size, and increased vascularization. The injectable property of Gel@MSN/miR-21-5p makes it potentially translatable to minimally invasive transcatheter-based surgery. In addition, this study is a proof of concept for controlled gene delivery and can serve as a technological platform to better elucidate the dose-dependent response of genes in MI treatment or deliver any other nucleic acids (such as DNAs, mRNAs, siRNAs, and miRNAs) or treat any other disease.

The purpose of this study was to design a controlled on-demand miR-21-5p delivery system (Gel@MSN/miR-21-5p) using MSNs combined with a hydrogel matrix, simultaneously integrating immune modification and angiogenesis enhancement in the field of MI therapy. Gel@MSN/miR-21-5p was fabricated by embedding MSN/miR-21-5p complexes into an injectable hydrogel matrix. We performed studies to determine the mechanical properties, structure, and on-demand release profile of Gel@MSN/miR-21-5p.

For the in vitro experiment, real-time quantitative PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to assess the immunomodulatory effect of MSNs. Real-time quantitative PCR, Western blot, ELISA, and tube formation assays were performed to determine the proangiogenic effect of miR-21-5p. The mechanisms underlying MSN-mediated inflammatory effects and miR-21-5pmediated proangiogenic effects were studied by proteogenomic analysis, real-time quantitative PCR, and Western blot.

For the in vivo experiments, pigs were randomly assigned to treatment groups, and, wherever applicable, treatment conditions were kept blinded until statistical analysis. Group sizes of at least five animals were chosen, which indicated that the therapeutic efficacy and safety of the Gel@MSN/miR-21-5p could be robustly identified. MI was characterized using multiple methods including echocardiography, delayed enhancement CT, TTC staining, and histological examination. The potential cardiac-protective effect against apoptosis induced by ischemia was analyzed by immunofluorescence analysis. The duration and efficiency of MSNs and miRNA delivered by Gel@MSN/miR-21-5p injection were monitored using time course analysis.

Animal protocols related to this study were reviewed and approved by the Institutional Animal Care and Use Committee at the School of Medicine of Shanghai Jiao Tong University. All experiments were performed in accordance with the guidelines published by the Institutional Animal Care and Use Committee at the School of Medicine of Shanghai Jiao Tong University, Shanghai. All animals were obtained from the Ninth Peoples Hospital Animal Center (Shanghai, China).

Yucatan mini pigs (male, 45 to 50 kg) were anesthetized with tiletamine hydrochloride and zolazepam hydrochloride (4 mg/kg). To establish the porcine MI model, transthoracic 2D echocardiographic measurement by Simpsons method (S5-1 transducer, PHILIPS Medical Systems) was performed to ensure that the animal was healthy before instrumentation and MI induction. Following baseline echocardiographic measurements, light anesthesia was maintained by continuous intravenous infusion of propofol (30 to 40 g kg1 min1). ECG, heart rate, and arterial pressure were constantly monitored. The pericardium was opened through a left thoracotomy, and the first two obtuse marginal arteries of the circumflex artery (OM1 and OM2) were identified and ligated to induce MI. Past studies demonstrated that this technique creates a uniform and consistent MI (24). The pericardium was left open. Pigs were randomized to receive a total of six distinct injection of saline, agomiR-21-5p, Gel@MSN/miR-NC, or Gel@MSN/miR-21-5p within a targeted 2 2 cm region of mid-myocardium immediately after MI (six injection sites, 100 l per injection). Sham controls were was processed in an identical fashion with the exception of coronary artery ligation. The injection of each target site is shown in fig. S13. For the Gel@MSN/miR-NC and Gel@MSN/miR-21 treatments, the miR-NC or miR-21 was preloaded in the MSN-NH2-TMA with a mass ratio of 1:10 between miRNA/MSNs. Then, the sterilized aqueous solutions (600 l) containing RNA-loaded MSN-NH2-TMA, CHO-PEG-CHO, and -CD with a mass ratio of 1:5:5 were incubated for 5 min to form an injectable hydrogel precursor with weak interaction, which was further drawn into a separate syringe, and injected into the mid-myocardium to form the final hydrogel at the target site immediately following MI induction. Animals were carefully monitored until they fully recovered from anesthesia.

Pigs were sedated at baseline, and 2D echocardiographic measurements by Simpsons method (IE33 digital ultrasonic scanner, PHILIPS Medical Systems, USA) were performed in right lateral recumbency. Echocardiography measurements were taken before surgery (baseline) and at 45 min, 14 days, and 28 days following MI. Transthoracic echocardiography allowed assessment and further calculation of LV dimensions, cardiac chamber size, wall thicknesses, EF, LVEDV, and LVEDd according to the biplane modified Simpsons rule. For these measurements, standard parasternal long-axis and apical chamber views were obtained.

CT examinations were performed at 28 days after MI. Animals were sedated with a cocktail injection of tiletamine hydrochloride (4 mg/kg) and zolazepam hydrochloride (4 mg/kg) injection. Pigs were placed in a right lateral position.

CT images were acquired with a clinical 320-slice scanner (Aquilion One, TOSHIBA Medical Systems). The heart was scanned along two long-axis views (vertical and horizontal) and with one set of short-axis views covering the entire LV from the atrioventricular valve plane to the apex. The following parameters were used: a tube voltage of 100 kV, a tube current of 75 mA, a gantry rotation time of 330 ms, 0.5-mm section thickness, a resolution of 0.5 0.5 mm, and free breathing. The CT contrast medium (Ultravist 370, Schering) was injected at a flow rate of 3.5 ml/s. To identify the scar and quantify the extent of post-infarction fibrosis, delayed contrast-enhanced multidetector CT images were acquired to assess viability 3 to 5 min after the administration of contrast media for LV function.

Multiphase reconstruction was performed with commercially available software (VITAL, TOSHIBA Medical Systems, Japan) by using short-axis slices from the base of the heart to the apex. The end diastole and end systole were defined as the maximal and minimal LV volume, respectively.

The hearts from each group were harvested, and blood vessels within the heart were imaged by angiography, as previously described (54). Briefly, a 50.8-millimeter, 18-gauge catheter (Surflo Teflon IV Catheter, Terumo Medical, USA) was inserted into the left ventricle of the heart and advanced into the ascending aorta. A 0.9% normal saline solution containing heparin sodium (100 U/ml) was perfused through the vasculature. The vasculature was then fixed by perfusion with 10% neutral buffered formalin (NBF) and cleared with saline. Last, 25 ml of polymerizable, lead chromatebased, radiopaque contrast agent (Microfil MV-122, Flow Tech, USA) was injected using a 30-ml syringe. Samples were stored at 4C for 24 hours to allow polymerization of the contrast agent.

Samples were scanned using micro-CT (Y. Cheetah, YXLON, Germany) with the following settings: 90 kV, 50 A source current, exposure time of 907 ms, and two images every 0.5 of a 360 rotation range at a voxel size of 76 m. 3D reconstruction of the micro-CT image was completed and analyzed using the manufacturers evaluation software (VG studiomax 3.0). The reconstruction was performed using binning mode, providing an isotropic voxel size of 76 m.

Since the infarct area is clearly visible in the heart tissue slice, matching the micro-CT image slices with their corresponding tissue slices could identify the infarct zone within the 3D micro-CT reconstructed model. The sectioning planes of the microtomograph and of the tissue samples are parallel. After sectioning, the infarct areas (infarcted myocardium appears pale) of the heart tissue slices were counterstained in red. After obtaining micro-CT images, the infarct areas of the micro-CT images were identified on the basis of the observation of the tissue slices.

The heart tissue was sectioned starting from the base to the apex. After sectioning, slices were immediately immersed in 2% TTC in 0.9% NaCl at 37C for 30 min for vital staining. Infarcted myocardium appeared pale after TTC staining. The MI area (TTC negative, white) is outlined. The infarcted area and the total area of the LV wall were analyzed using ImageJ software. The infarct size was calculated as follows: counts of TTC-negative area/counts of total LV wall area (%) on short-axial middle LV myocardial slices.

The excised hearts were sectioned through four horizontal planes, and each section was then subdivided into subsections for further histological and molecular analyses, as shown in fig. S14. Briefly, each heart was sectioned into four 1-cm-thick slices, starting from the apex toward the base. Then, two regions (indicated by letters) of each slice were chosen for further histological and molecular analyses. In all quantifications, we considered eight sectors of the four heart sections, and the same regions were chosen in animals with different treatments.

Pig hearts were carefully harvested 28 days following infarction. Samples representing the mid-infarct were sliced. These tissue samples were routinely processed for histologic analysis, and sections (5 m thick) were stained with hematoxylin and eosin (H&E) and Massons trichrome, as previously described (55). Capillary densities were examined by counting the number of capillaries stained with anti-CD31 (ab28364, Abcam, USA) and anti-SMA (ab5694, Abcam, USA) antibodies. For hydrogel immunomodulatory investigation, hearts were collected and processed after 1 and 28 days after MI. Immunofluorescence was used as previously described to identify F4/80+ cells (ab6640, Abcam, USA) colabeling with antiTNF- (ab6671, Abcam, USA), antiIL-6 (ab6672, Abcam, USA), or antiIL-1 antibody (NB600-633, Novas, USA); Alexa Fluor 488labeled donkey anti-rat antibody (Jackson ImmunoResearch Laboratories, USA) and the Alexa Fluor 594labeled anti-rabbit antibody (Jackson ImmunoResearch Laboratories, USA) were used for visualization. Slides were counterstained with DAPI (56). Immunohistochemistry was used to verify cardiomyocytes with anticardiac troponin-T antibody (ab10214). ImageJ software was applied to count blue pixels (positive for collagen) within that region in the trichrome images.

Time course analysis of transfection efficiency of Gel@MSN/miR-21-5p was performed in vivo. MSNs were prelabeled with FITC (green), or miR-21-5p was prelabeled with Cy3 (red). The hydrogel (FITC-labeled Gel@MSN/miR-21-5p or Cy3-labeled Gel@MSN/miR-21-5p) was injected into the mid-myocardium of each target site of pigs. The delivery efficiency of miR-21-5p into endothelial cells was examined by identifying CD31+ cells (ab28364, Abcam, USA) colabeling with Cy3-labeled miR-21-5p. The delivery efficiency of MSNs into macrophages was examined by identifying F4/80+ cells (ab6640, Abcam, USA) colabeled with FITC-labeled MSNs.

To assess whether MSNs could protect against apoptosis in cardiomyocytes, a terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labeling assay using an In Situ Cell Death Detection Kit (Roche, Switzerland) was performed at an earlier time (1 day) after MI, which labels broken DNA strands that are often associated with apoptosis. Percentages of positively stained cells were determined by counting the numbers of labeled cells and total cells.

The macrophage activation state was evaluated after intraperitoneal injections of LPS (Sigma-Aldrich, St. Louis, MO; 250 g in 0.5 ml of saline) into mice. Primary peritoneal macrophages were obtained from 20 g of female C57BL6J mice, as previously described (57). Briefly, cell lavage was collected by flushing the peritoneum with cold PBS. The peritoneum was centrifuged (800g, 4C, 9 min), and the pellet was incubated with ACK buffer (Fisher Scientific, Chino, USA) for 1 min to lyse erythrocytes. The remaining cells were cultured in RPMI 1640 medium and 10% fetal bovine serum (FBS) (Gibco, Gaithersburg, USA) at 37C in a 5% CO2 atmosphere and plated to select for adherent macrophages.

Primary cardiomyocytes were obtained from adult C57BL6J mice (8 weeks), as previously described (58). Briefly, the animal is euthanized humanely by cervical dislocation, and the heart is excised, taking care to remove the pericardium. Blood is removed from the coronary vessels after adequate perfusion with EDTA. Next, the heart is perfused with enzyme solution for 8 to 14 min. At the end of the enzyme digestion, the enzyme solution is flushed with 100 M Ca solution for 5 min, after which the heart is excised by dissecting the cannula, atria, and aorta. Once the first digestion was completed, the heart was transferred to a sterile petri dish and a second digestion step is carried out. The ventricular tissue is chopped with small scissors. Fresh digestion buffer was added, and the heart was quickly triturated with fine tweezers and forceps. This second digestion was performed at 37C in an incubator with 5% CO2 for 10 min to facilitate the collagenase activity. The reaction was halted by adding stop buffer containing FBS (Gibco), and the sample was filtered through a 100-m mesh. Following this, cardiomyocytes were purified via gravity separation in a falcon tube for 15 min and washed with Ca solution. After purification, cells were counted in a hemocytometer, seeded in laminin-coated culture dishes, and placed in an incubator with 5% CO2 at 37C.

Endothelial cells were purchased from the cell and stem cell bank (GNO 15, Chinese Academy of Sciences, China) and were maintained in culture with Dulbeccos modified Eagles medium (DMEM) (Gibco) supplied with 10% FBS (BioInd, Israel), as detailed by the manufacturer.

The tube formation assay was performed as previously described (59). Briefly, growth factorreduced Matrigel matrix (Life Technology) was plated in a 24-well plate after thawing at 4C overnight. The plate was then incubated at 37C for 30 min to allow the Matrigel to polymerize. MSNs, MSN/miRNA-NC, and MSN/miRNA-21transfected calcein-labeled endothelial cells in endothelial basal medium 2 (EBM2) supplemented with 0.5% FBS and basic fibroblast growth factor (5 ng/ml) (FGF) final were seeded on the Matrigel-coated well. The plate was then incubated at 37C in a 5% CO2 humidified atmosphere. Tube formation was observed at 8 and 16 hours with confocal microscopy. The tube formation ability was determined by measuring the total tube length of endothelial cells with ImageJ software.

For flow cytometric analyses, cells were blocked with 10% FBS for 10 min on ice and subsequently stained with fluorochrome-tagged anti-F4/80 (BM8, BioLegend) or APC-labeled anti-CD31 (eBioscience, 17-0319-42). All stains were performed in 1% bovine serum albumin PBS buffer for 1 hour in the dark at 4C, followed by two washing steps. Samples were analyzed on a FACSCalibur (BD Biosciences, USA). Dead cells were excluded by forward and side scatter, and data analysis was performed using FlowJo software version 7.6.3 (Tree Star Inc., Ashland, USA).

For in vitro uptake analysis, isolated peritoneal macrophages were cocultured with FITC-labeled nanoparticles (100 g/ml). For in vivo uptake analysis, FITC-labeled Gel@MSN/miR-21-5p was injected into the mid-myocardium of the pigs heart. In vitro and in vivo quantitative uptake of the MSNs by macrophages was determined by quantifying the fluorescence intensity of cells that were positive for F4/80 (ab6640, Abcam, USA) and showed colocalization with FITC.

The growth medium of the hypoxic/ischemia group was replaced with serum-free DMEM. Cells were placed in a hypoxic incubator (Sanyo, O2/CO2 incubator MCO-18M) with oxygen adjusted to 1.0% and CO2 adjusted to 5%. Normal culture (regular medium under 21% oxygen and 5% CO2) served as a control.

The hearts of pigs were collected. Total miRNA from the collected cells or the heart was extracted using the RNeasy Mini Kit (Qiagen) according to the manufacturers instructions. For miRNA level detection, reverse transcription was performed using the Reverse Transcription kit (Takara RR037a, USA) with miRNA-specific stem-loop RT primer (ID: miR8001313, RiboBio, China). Reverse transcriptase reactions contained 0.5 g of RNA samples, 0.2 M stem-loop RT primer, 1 RT buffer, 50 pmol of random primers 6, and PrimerScript Reverse Transcriptase (200 Ul1). The 10-l reactions were incubated in a T100 thermal cycler (Bio-Rad, Hercules, USA) for 15 min at 37C, 5 s at 72C, and then held at 4C. One microliter of cDNA was PCR-amplified using Premix Taq (Takara RR902A) with 1 l of forward primer (0.2 M) and 1 l of reverse primer (0.2 M) for miR-21-5p (RiboBio, ID: miR8001314). The 25-l reaction volume consisted of 1 l of cDNA, 12.5 l of Premix Taq, 9.5 l of ddH2O, 1 l of forward primer (0.2 M), and 1 l of reverse primer (0.2 M). The reactions were performed on a T100 thermal cycler.

The cDNAs were diluted 10 times to perform real-time quantitative PCR using TB Green Premix Ex Taq (Takara RR420A) for miR-21-5p level detection. The 25-l reaction volume consisted of 1 l of cDNA, 12.5 l of Green Premix Ex Taq, 9.5 l of ddH2O, 1 l of forward primer (0.4 M), and 1 l of reverse primer (0.4 M) for miR-21-5p (RiboBio, ID: miR8001314).

For miRNA level detection, cDNAs were synthesized using a reverse transcription kit (Takara, RR037a). Reverse transcriptase reactions contained 0.5 g of RNA samples, 25 pmol of Oligo dT Primer, 1 RT buffer, 50 pmol of random six primers, and PrimerScript Reverse Transcriptase (200 Ul1). The 10-l reactions were incubated in a MyCycler thermal cycler (Bio-Rad, Hercules, CA) for 15 min at 37C and 5 s at 72C and then held at 4C. The cDNAs were then diluted 10 times to perform real-time quantitative PCR for expression confirmation and expression pattern analysis.

The primers used are as follows: -actin (5-CAGGATTCCATACCCAAGAAG-3 and 5-AACCCTAAGGCCAACCGTG-3), IL-1 (5-GAAATGCCACCTTTTGACAGTG-3 and 5-TGGATGCTCTCATCAGGACAG-3), TNF- (5-GACGTGGAACTGGCAGAAGAG-3 and 5-TTGGTGGTTTGTGAGTGTGAG-3), IL-6 (5-TCTATACCACTTCACAAGTCGGA-3 and 5-GAATTGCCATTGCACAACTCTTT-3), TLR1 (5-CCGTCCCAAGTTAGCCCATT-3 and 5-TCCCCCATCGCTGTACCTTA-3), TLR2 (5-TGCGGACTGTTTCCTTCTGA-3 and 5-GCGTTTGCTGAAGAGGACTG-3), TLR3 (5-TACAAAGTTGGGAACGGGGG-3 and 5-GGTTCAGTTGGGCGTTGTTC-3), and TLR8 (5-ACAAACGTTTTACCTTCCTTTGTC-3 and 5-ATGCAGTTGACGATGGTTGC-3).

Western blotting was performed as previously described (56). Total protein was extracted using the EpiQuik whole-cell extraction kit (Epigentek, USA). The protein concentration was measured following the manufacturers instructions (Bio-Rad, USA). Protein was applied to and separated on 4 to 15% NuPAGE gels (Bio-Rad) and transferred to polyvinylidene difluoride membranes (Millipore, USA). The membranes were blocked with 5% bovine serum albumin and incubated with specific primary antibodies against the following: TNF- (AF-410-NA, R&D, USA), IL-1 (Novus, AF-401-NA), IL-6 (bs-0782R, Bioss, USA), VEGFA (DF7470, Affinity, USA), PDGF-BB (bs-1316R, Bioss), TLR1 (NB100-56563, Novus), TLR2 (Abcam, ab209217), TLR3 (NBP2-24875, Novus), TLR8 (NBP2-24917, Novus), NFB (CST8242s, Cell Signaling Technology, USA), p-NFB (CST3033s), SPRY1 (Abcam, ab111523), P-ERK1/2 (AF1018, R&D), ERK1/2 (AF1576, R&D), P-AKT (AF887, R&D), AKT (MAB2055, R&D), P-FAK (MAB4528, R&D), FAK (AF4467, R&D), P-P38 (CST4511), P38 (CST8690), and GAPDH (ab181602) at a ratio of 1:1000 overnight.

Horseradish peroxidaseconjugated IgG (1:10,000 dilution) from Santa Cruz Biotechnology (Santa Cruz, USA) was incubated with the membrane for 1 hour, after which the membranes were enhanced with a SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, USA). The relative amounts of the transferred proteins were quantified by scanning the autoradiographic films. Total protein or nuclear protein was normalized to the corresponding -actin.

For VEGFA and PDGF-BB protein secretion analysis, cells were pretreated with MSN complex loaded with 5 nmol of miR-21-5p as described above. After 6 hours of culture, the medium was replaced with fresh growth medium supplemented with 5.0% serum substitute Nu-Serum (NuS, BD, USA). Samples were collected at 48 hours. VEGFA and PDGF-BB protein levels in the medium were determined using an ELISA according to the manufacturers instructions (R&D Corp., USA). Absorbance was measured at 450 nm with a microplate reader (MTP-800Lab, Corona Electric, Japan). A standard curve was plotted to determine the VEGFA and PDGF-BB concentrations. The values are expressed as picograms per milliliter.

To detect the degradation of Gel@MSN/miR-21 in vivo, the PEG frame of the hydrogel was labeled rhodamine B. Sixty microliters of Gel@MSN/miR-21 was injected into the mid-myocardium of rats after induction of MI. To monitor the residual MSNs in vivo, 60 l of hydrogel containing rhodamine Blabeled MSNs was injected into the mid-myocardium of rats after induction of MI. At the indicated time points, rats were euthanized, and the hearts were removed from the animals. The organs were entirely maintained on ice until ex vivo analysis with Xenogen IVIS imaging system (Alameda, USA). Epifluorescence images of the hearts were acquired. Captured images were then analyzed using the Living Image 4.3.1 software (PerkinElmer Inc., USA). All data obtained by Xenogen IVIS were expressed as radiant efficiency, were assumed to be a calibrated measurement of the photon emission from the subject, and were technically defined as fluorescence emission radiance per incident excitation intensity as follows: photons/s/cm2/sr.

All numerical data are presented as the means SD. Statistical analysis was performed using commercially available software (SPSS 26). Data were first checked for normal distribution, and differences among groups were compared by one-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test. Comparisons between two groups were made using the unpaired t test. For all statistical analyses, significance was accepted at P < 0.05.

Acknowledgments: We thank Y. Zhang and X. Wang (Fudan University) for providing primary cardiomyocytes. The research project was carried out in the Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology. Funding: We acknowledge financial support from the Innovative Research Unit of Chinese Academy of Medical Sciences (2019-12M-5-037) and the National Natural Science Research Program of China (81970977, 31870969, 81870785, 81801039, 81720108011, and 81601606), the Shanghai Municipal Science and Technology Committee research program (number 18DZ2291100), the National Key Research Program of China (2017YFC0840100 and 2017YFC0840109), the Fundamental Research Funds for the Central Universities (2016qngz02), the National Natural Science Foundation of Shaanxi Province (2017JM5023), the Open Fund of the State Key Laboratory of Military Stomatology (2017KA02), and the Knowledge Innovation Program of Shenzhen (JCYJ20170816100941258). Author contributions: Y.L., L.C., D.Z., H.C., and Y.D. carried out animal studies and tissue analyses. X.C. and R.J. carried out the MSN complex synthesis, polyplex development, and Gel@MSN/miR-21-5p hydrogel fabrication and their characterization. Y.L., B.C., J.J.G., G.B., and S.L. contributed to data analysis and interpretation. C.Y., Z.Z., M.D., and Y.L. were responsible for the overall project design and manuscript organization. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Link:
Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in...

Scientists have Created a ‘Brain in a Dish.’ It Could Potentially Cure Alzheimer, Dementia – News18

Humans are born with a variety of cells. While all of them are absolutely essential for creating us, some cells are more complex and importantlike the nerve cells forming our brain. After all, what is a human body is nothing if not for its brain.

Once the brain cells start to deteriorate, with ageing or injury, humans start to lose cognitive and motor functions. Often seen in cases of Alzheimer's and schizophrenia.

But looking inside a living human brain is impossible; you can only dissect a dead brain that doesnt function. But a group of researchers have overcome this hurdle by building a brain in a dish.

Scientists have been growing living cells in Petri-dishes for a long time. But this research is leaps and bounds ahead as organoids, grown from stem cells, allowed them to conduct extensive genetic analyses. The organoid was allowed to grow for 20 months. They observed it developed in phases, as if on an internal clock, much like the brain of a human infant. This is beyond the former assumption that dish brain could only develop till foetal stage.

Until now, nobody has grown and characterized these organoids for this amount of time, Nor shown they will recapitulate human brain development in a laboratory environment for the most part, said Daniel Geschwind, author of the study. He adds how this will be incredibly useful as models to study the human brain and diseases as the organoids mature and replicate many aspects of normal human development. The study can be found in the journal Nature Neuroscience.

Studying the organoids is helping them understand the physiology and development of diseases like neurological and neurodevelopmental disorders including autism, epilepsy and schizophrenia.

The scientists developed these organoids using pluripotent stem cells. These cells are born one but have the ability to differentiate into multiple specific cells like neurons or cardiac and so on. They induced these cells, derived from skin and blood, to grow into neurons. By manipulating the chemical balance, cell-dish environment and so on, these cells not just developed a rough neural network but self-organised into a structure similar to a 3-D brain.

Excerpt from:
Scientists have Created a 'Brain in a Dish.' It Could Potentially Cure Alzheimer, Dementia - News18

Exosome therapeutic Market Segmentation, Parameters, Prospects 2021 And Forecast Research Report To 2027 KSU | The Sentinel Newspaper – KSU | The…

Exosome therapeutic Market Industry Trends and Forecast to 2028 New Research Report Added to Databridgemarketresearch.com database. The report width of pages: 350 Figures: 60 And Tables: 220 in it. Exosome therapeutic Market describes complete industry Outlook with in-depth analysis. This report also includes the complete analysis of each segment in terms of opportunity, market attractiveness index and growth rate, top players and new comers in industry, competitive landscape, sales, price, revenue, gross margin, market share, market risks, opportunities, market barriers, and challenges. key statistics on the market status. Which give the clear idea about the product differentiation and an understanding of competitive landscape Globally.

Exosome therapeutic Market Research report comprises of a brief summary on the trends and tendency that may help the key market players functioning in the industry to understand the market and strategize for his or her Organization expansion for this reason. This statistical surveying report examines the entire market size, market share, key segments, growth, key drivers, CAGR, historic data, present market trends And End User Demand, environment, technological innovation, upcoming technologies and the technical progress in the industry.

Global Exosome Therapeutic Market By Type (Natural Exosomes, Hybrid Exosomes), Source (Dendritic Cells, Mesenchymal Stem Cells, Blood, Milk, Body Fluids, Saliva, Urine Others), Therapy (Immunotherapy, Gene Therapy, Chemotherapy), Transporting Capacity (Bio Macromolecules, Small Molecules), Application (Oncology, Neurology, Metabolic Disorders, Cardiac Disorders, Blood Disorders, Inflammatory Disorders, Gynecology Disorders, Organ Transplantation, Others), Route of administration (Oral, Parenteral), End User (Hospitals, Diagnostic Centers, Research & Academic Institutes), Geography (North America, Europe, Asia-Pacific and Latin America)

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&pm

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Grab Your Report at an Impressive 30% Discount! Please click Here @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&pm

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

The major players covered in the report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

For More Insights Get FREE Detailed TOC @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&pm

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @ Corporatesales@databridgemarketresearch.com

Original post:
Exosome therapeutic Market Segmentation, Parameters, Prospects 2021 And Forecast Research Report To 2027 KSU | The Sentinel Newspaper - KSU | The...

2021 Updates in Autologous Stem Cell Based Therapies Industry with Global Market Demand Analysis, Industry Chain, Revenue and Forecast 2026 – The…

The Latest Released Autologous Stem Cell Based Therapies market study has evaluated the future growth potential of the Global Autologous Stem Cell Based Therapies Industry and provides information and useful stats on market structure and size. The report is intended to provide market intelligence and strategic insights to help decision-makers take sound investment decisions and identify potential gaps and growth opportunities.

Additionally, the Autologous Stem Cell Based Therapies Market report also identifies and analyses changing dynamics, emerging trends along with essential drivers, challenges, opportunities, and restraints in the Autologous Stem Cell Based Therapies market, which will help the future market to grow with promising CAGR and offers an extensive collection of reports on different markets covering crucial details. The report studies the competitive environment of the Autologous Stem Cell Based Therapies Market is based on company profiles and their efforts on increasing product value and production.

Get a Sample Copy of Report @ https://www.in4research.com/sample-request/46884

Keep yourself up to date with the latest market trends and changing dynamics due to COVID Impact and Economic Slowdown globally. Maintain a competitive edge by sizing up with available business opportunities in Autologous Stem Cell Based Therapies Market various segments and emerging territory.

The research offers detailed segmentation of the global Autologous Stem Cell Based Therapies market. Key segments analyzed in the research include Type and Application.

By Type:

By Application:

The report will include a market analysis of Autologous Stem Cell Based Therapies which includes Business to Business (B2B) transactions as well as Autologous Stem Cell Based Therapies aftermarket. The market value has been determined by analyzing the revenue generated by the companies solely. R&D, any third-party channel cost, consulting cost and any other cost except company revenue has been neglected during the analysis of the market. A comprehensive analysis will be provided covering the following points in the report:

Speak to Our Expert @ https://www.in4research.com/speak-to-analyst/46884

Top Key Players included in Autologous Stem Cell Based Therapies Market:

Region Included are: North America, Europe, Asia Pacific, Oceania, South America, Middle East & AfricaCountry Level Break-Up: United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand, etc.

What benefits does the In4Research study is going to provide?

Key questions answered by Autologous Stem Cell Based Therapies market report

Table of Content For Autologous Stem Cell Based Therapies Market Report

Chapter 1. Research Objective

Chapter 2. Executive Summary

Chapter 3. Strategic Analysis

Chapter 4. Autologous Stem Cell Based Therapies Market Dynamics

Chapter 5. Segmentation & Statistics

Chapter 6. Market Use case studies

Chapter 7. KOL Recommendations

Chapter 8. Investment Landscape

Chapter 9. Competitive Intelligence

Chapter 10. Company Profiles

Chapter 11. Appendix

To Buy the Full Report, Connect with us athttps://www.in4research.com/buy-now/46884

About In4Research

In4Researchis aprovider of world-classmarket research reports, customized solutions and consultingservices, and high-quality market intelligence thatfirmly believes in empowering the success of its clientssuccesses in growing or improving their business.We combine a distinctive package ofresearch reports and consulting services,global reach, andin-depth expertise in markets such asChemicals and Materials, Food and Beverage, Energy, and Powerthatcannot be matched by our competitors. Our focus is on providing knowledge and solutions throughout the entire value chain of the industries we serve. We believe in providing premium high-quality insights at an affordable cost.

For More Details Contact Us:

Contact Name: Rohan

Email: [emailprotected]

Phone: +1 (407) 768-2028

View original post here:
2021 Updates in Autologous Stem Cell Based Therapies Industry with Global Market Demand Analysis, Industry Chain, Revenue and Forecast 2026 - The...

[Full text] A Comprehensive Review on Factors Influences Biogenesis, Functions, Th | IJN – Dove Medical Press

Introduction

Extracellular vesicles (EVs) including exosomes, microvesicles, and apoptotic bodies are produced and released by almost all types of cell. EVs vary in size, properties, and secretion pathway depending on the originating cell.1,2 Exosomes are small EVs (sEVs) which are formed by a process of inward budding in early endosomes to form multivesicular bodies (MVBs) with an average size of 100 nm, and released into the extracellular microenvironment to transfer their components.3,4 Microvesicles are composed of lipid components of the plasma membrane and their sizes range from 1001000 nm, whereas apoptotic bodies result from programmed cell death.5 Initially, EVs were considered to maintain cellular waste through release of unwanted proteins and biomolecules; later, these organelles were considered important for intercellular communications through various cargo molecules such as lipids, proteins, DNA, RNA, and microRNAs (miRNAs).6 Previously, it was suggested that EVs play a critical role in normal cells to maintain homeostasis and prevent cancer initiation. Inhibition of EVs secretion causes accumulation of nuclear DNA in the cytoplasm, leading to apoptosis.1 The induction of apoptosis is the principal event of the reactive oxygen species (ROS) dependent DNA damage response.7,8

Several studies reported that exosomes are synthesized by means of two major pathways, the endosomal sorting complexes required for transport (ESCRT)-dependent and ESCRT-independent, and the processes are highly regulated by multiple signal transduction cascades.18 Exosomes released from the cell through normal exocytosis mechanisms are characterized by vesicular docking and fusion with the aid of SNARE complexes. Exosomes are considered to be organelle responsible for garbage disposal agents. However, at a later stage, these secretory bodies play a critical role in maintaining the physiological and pathological conditions of the surrounding cells by transferring information from donor cells to recipient cells. Exosome development begins with endocytosis to form early endosomes, later forming multivesicular endosomes (MVEs), and finally generating late endosomes by inward budding. MVEs merge with the cell membrane and release intraluminal endosomal vesicles that become exosomes into the extracellular space.9,10 Exosome biogenesis is dependent on various critical factors including the site of biogenesis, protein sorting, physicochemical aspects, and transacting mediators.11

Exosomes contain various types of cargo molecules including lipids, proteins, DNAs, mRNAs, and miRNAs. Most of the cargo is involved in the biogenesis and transportation ability of exosomes.12,13 Exosomes are released by fusion of MVBs with the cell membrane via activation of Rab-GTPases and SNAREs. Exosomes are abundant and can be isolated from a wide variety of body fluids and also cell culture medium.14 Exosomes contain tetraspanins that are responsible for cell penetration, invasion, and fusion events. Exosomes are released onto the external surface by the MVB formation proteins Alix and TSG101. Exosome-bound proteins, annexins and Rab protein, govern membrane transport and fusion whereas Alix, flotillin, and TSG101 are involved in exosome biogenesis.15,16 Exosomes contain various types of proteins such as integral exosomal membrane proteins, lipid-anchored outer and inner membrane proteins, peripheral surface and inner membrane proteins, exosomal enzymes, and soluble proteins that play critical roles in exosome functions.11

The functions of exosomes depend on the origin of the cell/tissue, and are involved in the immune response, antigen presentation programmed cell death, angiogenesis, inflammation, coagulation, and morphogen transporters in the creation of polarity during development and differentiation.1720 Ferguson and Nguyen reported that the unique functions of exosomes depend on the availability of unique and specific proteins and also the type of cell.21 All of these categories influence cellular aspects of proteins such as the cell junction, chaperones, the cytoskeleton, membrane trafficking, structure, and transmembrane receptor/regulatory adaptor proteins. The role of exosomes has been explored in different pathophysiological conditions including metabolic diseases. Exosomes are extremely useful in cancer biology for the early detection of cancer, which could increase prognosis and survival. For example, the presence of CD24, EDIL3, and fibronectin proteins on circulating exosomes has been proposed as a marker of early-stage breast cancer.22 Cancer-derived exosomes promoted tumor growth by directly activating the signaling pathways such as P13K/AKT or MAPK/ERK.23 Tumor-derived exosomes are significantly involved in the immune system, particularly stimulating the immune response against cancer and delivering tumor antigens to dendric cells to produce exosomes, which in turn stimulates the T-cell-mediated antitumor immune response.24 Exosomal surface proteins are involved in immunotherapies through the regulation of the tumor immune microenvironment by aberrant cancer signaling.25 A study demonstrated that exosomes have the potential to affect health and pathology of cells through contents of the vesicle.26 Exosomes derived from mesenchymal stem cells exhibit protective effects in stroke models following neural injury resulting from middle cerebral artery occlusion.27 The structural region of the exosome facilitate the release of misfolded and prion proteins, and are also involved in the propagation of neurodegenerative diseases such as Huntington disease, Alzheimers disease (AD), and Parkinsons disease (PD).28,29

Exosomes serve as novel intercellular communicators due to their cell-specific cargo of proteins, lipids, and nucleic acids. In addition, exosomes released from parental cells may interact with target cells, and it can influence cell behavior and phenotype features30 and also it mediate the horizontal transfer of genetic material via interaction of surface adhesion proteins.31 Exosomes are potentially serving as biomarkers due to the wide-spread and cell-specific availability of exosomes in almost all body fluids.13 Therefore, exosomes are exhibited as delivery vehicles for the efficient delivery of biological therapeutics across different biological barriers to target cells.3234

In this review, first, we comprehensively describe the factors involved in exosome biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and the therapeutic and clinical implications. Finally, we discuss the challenges and outstanding developments in exosome research.

The extracellular vesicles play critical role in inter cellular communication by serving as vehicles for transfer of biomolecules. These vesicles are generally classified into microvesicles, ectosomes, shedding vesicles, or microparticles. MVs bud directly from the plasma membrane, whereas exosomes are represented by small vesicles of different sizes that are formed as the ILV by budding into early endosomes and MVBs and are released by fusion of MVBs with the plasma membrane (Figure 1). Invagination of late endosomal membranes results in the formation of intraluminal vesicles (ILVs) within large MVBs.35 Biogenesis of exosomes occurs in three ways including vesicle budding into discrete endosomes that mature into multivesicular bodies, which release exosomes upon plasma membrane fusion; direct vesicle budding from the plasma membrane; and delayed release by budding at intracellular plasma membrane-connected compartments (IPMCs) followed by deconstruction of IPMC neck(s).11 The mechanisms of biogenesis of exosomes are governed by various types of proteins including the ESCRT proteins Hrs, CHMP4, TSG101, STAM1, VPS4, and other proteins such as the Syndecan-syntenin-ALIX complex, nSMase2, PLD2, and CD9.14,3639 After formation, the MVB can either fuse with the lysosome to degrade its content or fuse with the plasma membrane to release the ILVs as exosomes. The release of exosomes to the extracellular milieu is driven by proteins of the Rab-GTPase family including RAB2B, 5A, 7, 9A, 11, 27, and 35. SNARE family proteins VAMP7 and YKT6 have also been implicated in the release.14,38,4042 Biogenesis of exosomes is influenced by several external factors including cell type, cell confluency, serum conditions, and the presence and absence of cytokines and growth factors. In addition, biogenesis is also regulated by the sites of exosomes, protein sorting, physico-chemical aspects, and trans-acting mediators (Figure 2). For example, THP-1 cells were cultured in RPMI-1640 cell culture medium supplemented with 10% FCS secreted low level of exosomes compared to cells grown on cell culture medium supplemented with 1% FCS (Figure 3). The exogenous factor like serum starvation influences biogenesis and secretion of exosomes.

Figure 1 Biogenesis and cargoes of exosomes.

Figure 2 Effect of various factors on biogenesis of exosomes.

Figure 3 Serum deprivation causes an increase of the number of cellular exosomes in THP-1 cells. Panel (A); 10% FCS. Panel (B); 1% FCS. Panel (C) Quantification of exosomes using DLS and NTA.

Exosome release depends on expression of Rab27 or Ral. For example, exosomes released from the MVB significantly decrease in cells depleted of Rab2741 or Ral.43 The most efficient EV-producing cell types have yet to be determined44 and few reports suggest that immature dendritic cells produce limited amounts of EVs45,46 whereas mesenchymal stem cells secrete vast amounts, relevant for the production of EV therapeutics on a clinical scale.47,48 A few proteins play a critical role in the biogenesis of EVs, such as Rab27a and Rab27b.49 Over expression of Rab27a and Rab27b produce significant amounts of EVs in cancer cells. For example, overexpression of Rab27a and Rab27b in breast cancer cells,50 hepatocellular carcinoma cells,51 glioma cells,52 and pancreas cancer cells53 produces significant levels of EVs. Although all types of cells secrete and release EVs, cancer cells seem to produce higher levels than normal cells.54 Furthermore, the presence of invadopodia that are docking sites for Rab27a-positive MVBs induces secretion of EVs, and also enhances secretion of EVs in cancer cells.55 Thus, inhibition of invadopodia formation greatly reduces exosome secretion into conditioned media. This evidence demonstrates that cancer cells potentially release more EVs than non-cancer cells.

The rate of origin of exosomes from the plasma membrane of stem cells is vigorous, at rates equal to the production of exosomes,56 which is consistent with a report suggesting that stem cells bud ~50100 nm-diameter vesicles directly from the plasma membrane.57 Plasma membrane-derived exosomes contain selectively enriched protein and lipid markers in leukocytes.58 Plasma membrane exosomal budding is also observed for glioblastoma exosomes.59 Conventional transmission electron microscopy revealed that certain cell types contain deep invaginations of the plasma membrane that are indistinguishable from MVBs.6062 Certain cell types secrete exosomes containing cargo proteins, which primarily bud from the plasma membrane, and exosome composition is determined predominantly by intracellular protein trafficking pathways, rather than by the distinct mechanisms of exosome biogenesis.63 Biogenesis of exosomes is regulated by syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin. Syntenin interacts directly with ALIX through LYPX (n) L motifs.64 Glycosylation is an essential factor in the biogenesis of exosomes and N-linked glycosylation directs glycoprotein sorting into EMVs.65 Collectively, these reports suggest that exosomes are made at both plasma and endosome membranes rather than endosome alone. Oligomerization is a critical factor for exosomal protein sorting and it was found to be sufficient to target plasma membrane proteins to exosomes. High-order oligomeric proteins target them to exosomes.66 Further, plasma membrane anchors support exosomal protein budding. For example, budding of CD63 and CD9 from the plasma membrane is much more efficient than endosome-targeted budding of CD63 and CD9.63 Protein clustering is another factor that induces membrane scission.67

Physico-chemical properties determine budding efficiency and are crucial factors of exosome biogenesis, a fundamental process involving the budding of vesicles that are 30200 nm in size. In particular, lipids are critical players in exosome biogenesis, especially those able to form cone and inverse cone shapes. Generally, exosome membranes contain phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositols (PIs), phosphatidic acid (PA), cholesterol, ceramides, sphingomyelin, glycosphingolipids, and a number of lower abundance lipids.68,69 Exosomes have a rich content of PE and PS, which increase budding efficiency and promote exosome genesis and release. PA promotes exosome biogenesis and PLD2 is involved in the budding of certain exosomal cargoes.70 Besides these factors, ceramide is an important lipid molecule regulating exosome biogenesis and facilitating membrane curvature, which is essential for vesicular budding. Inhibition of an enzyme that generates ceramide impairs exosome biogenesis.71

The next critical factor is trans-acting mediators that are involved in the biogenesis of exosomes through regulating plasma membrane homeostasis, intracellular protein trafficking pathways, MVB maturation and trafficking, IPMC biogenesis, vesicle budding, and scission.11 For example, Rab proteins regulate exosome biogenesis via endosomes and the plasma membrane by determining organelle membrane identity, recruiting mechanistic effectors, and mediating organelle dynamics.72 The functions of Rab proteins in the control and biogenesis of exosomes depends on cell type. MVB biogenesis is regulated by Rab27a, Rab27b, their effectors Slp4, Slac2b, and Munc13-4, and also Rab 35 and Rab 11.73 Loss of Rab27 function leads to a ~5075% drop in exosome production, and is also involved in assembling the plasma membrane microdomains involved in plasma membrane vesicle budding, by regulating plasma membrane PIP2 dynamics.74 Overall, Rab27 proteins control exosome biogenesis at both endosomes and plasma membranes. In addition, Rab35 also contributes to exosome biogenesis by regulating PIP2 levels of plasma membrane, and its loss leads to a reduction of exosome release by ~50%.75 Gurunathan et al76 reported that yeast produces two classes of secretory vesicles, low density and high density, and dynamin and clathrin are required for the biogenesis of these two different types of vesicle.

The Ral family is involved in the biogenesis of exosomes, and inhibition of Ral causes an accumulation of MVBs near the plasma membrane and a ~50% decrease in the vesicular secretion of exosomes and exosomal marker proteins.43 Ral GTPases function through various effectors proteins, including Arf6 and the phospholipase PLD2, which are involved in exosomal release of SDCs.37 The ESCRT complex machinery (0 through III) are involved in MVB biogenesis on a major level including membrane deformation, sealing, and repair during a wide array of processes. The major contributions of the ESCRT complex to the biogenesis of vesicles are the recognition and sequestration of ubiquitinated proteins to specific domains of the endosomal membrane via ubiquitin binding subunits of ESCRT-0. After interaction with the ESCRT-I and -II complexes, the total complex will then combine with ESCRT-III, a protein complex that is involved in promoting the budding process. Finally, following cleaving of the buds to form ILVs, the ESCRT-III complex separates from the MVB membrane using energy supplied by the sorting protein Vps4.77 In addition, other proteins such as Alix, which is associated with several ESCRT (TSG101 and CHMP4) proteins, are involved in endosomal membrane budding and abscission, as well as exosomal cargo selection via interaction with syndecan.39 Another important factor, autophagy, is critically involved in exosome secretion. Autophagy related (Atg) proteins coordinate initiation, nucleation, and elongation during autophagosome biogenesis in the presence of ESCRT-III components including CHMP2A and VPS4. For instance, the absence of Atg5 in cancer cells causes a reduction in exosome production.78 Conversely, CRISPR/Cas9-mediated knockout of Atg5 in neuronal cells increases the release of exosomes and exosome-associated prions from neuronal cells.79

Exosomes play a critical role in the physiologic regulation of mammary gland development and are important mediators of breast tumorigenesis.80 Biogenesis of exosomes occurs in all cell types; however, production depends on cell type. For example, breast cancer cells (BCC) produce increased numbers of exosomes compared to normal mammary epithelial cells. Studies revealed that patients with BC have increased numbers of MVs in their blood.81 Kavanagh et al reported that several fold changes were observed from exosomes isolated from triple negative breast cancer (TNBC) chemoresistant therapeutic induced senescent (TIS) cells compared with control EVs.82 TIS cells release significantly more EVs compared with control cells, containing chemotherapy and key proteins involved in cell proliferation, ATP depletion, and apoptosis, and exhibit the senescence-associated secretory phenotype (SASP). Cannabidiol (CBD), inhibits exosome and microvesicle (EMV) release in three different types of cancer cells including prostate cancer (PC3), hepatocellular carcinoma (HEPG2), and breast adenocarcinoma (MDA-MB-231). All three different cell lines show variability in the release of exosomes in a dose-dependent manner. These variabilities are all due to mitochondrial function, including modulation of STAT3 and prohibitin expression. This study suggests that the anticancer agent CBD plays critical role in EMV biogenesis.83 Sulfisoxazole (SFX) inhibits sEV secretion from breast cancer cells through interference with endothelin receptor A (ETA) through the reduced expression of proteins involved in the biogenesis and secretion of sEV, and triggers co-localization of multivesicular endosomes with lysosomes for degradation.84 Secreted EVs from human colorectal cancer cells contain 957 vesicular proteins. The direct protein interactions between cellular proteins play a critical role in protein sorting during EV formation. SRC signaling plays a major role in EV biogenesis, and inhibition of SRC kinase decreases the intracellular biogenesis and cell surface release of EVs.85 Proteomic analysis revealed that the exosomes released from imatinib-sensitive GIST882 cell line exhibit 764 proteins. The authors found that significant amount of proteins belong to protein release function and involved in the classical pathway and overlap to a high degree with proteins of exosomal origin.86 Exosomes secreted by antigen-presenting cells contain high levels of MHC class II proteins and costimulatory proteins, whereas exosomes released from other cell types lack these proteins.1,87

The biogenesis of exosomes depends on a percentage of confluency of approximately 6090%, which influences the yield and functions of EVs.44 Gal et al88 observed a 10-fold decreased level of cholesterol metabolism in confluent cell cultures compared to cells in the preconfluent state. The high level of cholesterol content in confluent cells leads to a decreased level of EVs in prostate cancer.68 The major reason behind for the reduced level of vesicle production is contact inhibition, which triggers confluent cells to enter quiescence and/or alters their characteristics compared to actively dividing cells.89,90 Exogenous stimulation could influence the condition of the cells including the phenotype and efficacy of secretion. Previously, several studies demonstrated that various external factors increase biogenesis of EVs such as Ca2+ ionophores,91 hypoxia,9294 and detachment of cells,95 whereas lipopolysaccharide reduces biogenesis and release of EVs.96 Furthermore, serum, which supports adherence of the cells, plays a critical role in the biogenesis of EVs.97 For example, FCS has noticeable effects on cultured cells; however, the effects depend on cell type and differentiation status.97,98 To avoid the immense amounts of vesicles present in FCS, the use of conditioned media has been suggested. Culture viability and health status of cells are important aspects for producing an adequate amount of vesicles with proper cargo molecules such as protein and RNA.99,100 Exogenous stress, such as starvation, can induce phenotypic alterations and changes in proliferation. These changes cause alterations in the cells metabolism and eventually lead to low yields.101,102

Cellular stresses, such as hypoxia, inflammation, and hyperglycemia, influence the RNA and protein content in exosomes. To examine these factors, the effects of cellular stresses on endothelial cells were studied.99 Endothelial cells were exposed to different types of cellular stress such as hypoxia, tumor necrosis factor- (TNF-)-induced activation, and high glucose and mannose concentrations. The mRNA and protein content of exosomes produced by these cells were compared using microarray analysis and a quantitative proteomics approach. The results indicated that endothelial cell-derived exosomes contain 1354 proteins and 1992 mRNAs. Several proteins and mRNAs showed altered levels after exposure of their producing cells to cellular stress. Interestingly, cells exposed to high sugar concentrations had altered exosome protein composition only to a minor extent, and exosome RNA composition was not affected. Low-intensity ultrasound-induced (LIUS) anti-inflammatory effects have been achieved by upregulation of extracellular vesicle/exosome biogenesis. These exosomes carry anti-inflammatory cytokines and anti-inflammatory microRNAs, which inhibit inflammation of target cells via multiple shared and specific pathways. A study suggested that exosome-mediated anti-inflammatory effects of LIUS are feasible and that these techniques are potential novel therapeutics for cancers, inflammatory disorders, tissue regeneration, and tissue repair.103 Another factor, called manumycin-A (MA), a natural microbial metabolite, was analyzed in exosome biogenesis and secretion in castration-resistant prostate cancer (CRPC) C4-2B, cells. The effect of MA on cell growth was observed, and the results revealed that there was no effect on cell growth. However, MA attenuated the ESCRT-0 proteins Hrs, ALIX, and Rab27a, and exosome biogenesis and secretion by CRPC cells. The inhibitory effect of MA on exosome biogenesis and secretion was primarily mediated via targeted inhibition of Ras/Raf/ERK1/2 signaling. These findings suggest that MA is a potential drug candidate for the suppression of exosome biogenesis and secretion by CRPC cells.104

Methods of isolation of exosomes play critical roles in functions and delivery. Although several methods such as ultracentrifugation, density gradient centrifugation, chromatography, filtration, polymer-based precipitation, and immunoaffinity have been adopted to isolate pure exosomes without contamination, there is still a lack of consistency and agreement.105 Isolation of exosomes along with non-exosomal materials and damaged exosomal membranes creates artifacts and alters the protein and RNA profiles. Since exosomes are obtained from a variety of sources, the composition of proteins/lipids influences the sedimentation properties and isolation. Thus, precise and consistent techniques are warranted for the isolation, purification, and application of exosomes.

Although several functions of exosomes have been explored, the precise function of exosomes remains a mystery. Historically, exosomes have been known to function as cellular garbage bags, recyclers of cell surface proteins, cellular signalers, intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases.106 (Figure 4) ECVs are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communications, and contain immense bioactive information. Most cell types produce exosomes and release these into the extracellular environment, circulating through different bodily fluids such as urine, blood, and saliva and transferring their cargo to recipient cells. These vesicles play a significant role in various pathological conditions, such as different types of cancer, neurodegenerative diseases, infectious diseases, pregnancy complications, obesity, and autoimmune diseases, as reviewed elsewhere.107 Exosomes play a significant role in intercellular communication between cells by interacting with target cells via endocytosis.108 More specifically, exosomes are involved in cancer development, survival and metastasis of tumors, drug resistance, remodeling of the extracellular matrix, angiogenesis, thrombosis, and proliferation of tumor cells.94,109111 Exosomes contribute significantly to tumor vascularization and hypoxia-mediated inter-tumor communication during cancer progression, and premetastatic niches, which are significant players in cancer.16,94,109,112 Exosomes derived from hepatic epithelial cells increase the expression of enhancer zeste homolog 2 (EZH2) and cyclin-D1, and subsequently promotes G1/S transition.113

Figure 4 Multifunctional aspects biological functions of exosomes.

Conventionally, cells communicate with adjacent cells through direct cell-cell contact through gap junctions and cell surface protein/protein interactions, whereas cells communicating with distant cells do so through secreted soluble factors, such as hormones and cytokines, to facilitate signal propagation.114 Cells also communicate through electrical and chemical signals.115 Several studies have suggested that exosomes play vital roles in intercellular communication by serving as vehicles for transferring various cellular constituents, such as proteins, lipids, and nucleic acids, between cells.6,116118 Exosomes function as exosomal shuttle RNAs in which some exosomal RNAs from donor cells functions in recipient cells,6 a form of genetic exchange. Recently, researchers found that cells communicating with other cells through exosomes carrying cell-specific cargoes of proteins, lipids, and nucleic acids may employ novel intercellular communication mechanisms.30 Exosomes exert influences through various mechanistic approaches, such as direct stimulation of target cells via surface-bound ligands; transfer of activated receptors to recipient cells; and epigenetic reprogramming of recipient cells.119,120 Exosomes play critical roles in immunoregulation, including antigen presentation, immune activation, immune suppression, and immune tolerance via exosome-mediated intercellular communication. Mesenchymal stem cell (MSC)-derived exosomes play significant roles in wound healing processes.121 Exosomes from platelet-rich plasma (PRP) inhibit the release of TNF-. PRP-Exos significantly decreases the apoptotic rate of osteoarthritis (OA) chondrocytes compared with activated PRP (PRP-As).122 Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes enhance short interfering RNA (siRNA) delivery by forming non-covalent complexes with small RNA molecules, including siRNAs and anti-miRs, in both conditions, in vitro and in vivo.123 Non-GSC glioma cells were treated with GSC-released exosomes. The results showed that GSC-released exosomes increase proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells through the Notch1 signaling pathway and stemness-related protein expressions.124

Exosomal miR-1910-3p promotes proliferation and migration of breast cancer cells in vitro and in vivo through downregulation of myotubularin-related protein 3 and activation of the nuclear factor-B (NF-B) and wnt/-catenin signaling pathway, and promotes breast cancer progression.125 Human hepatic progenitor cell (CdH)-derived exosomes (EXOhCdHs) play a crucial role in maintaining cell viability and inhibit oxidative stress-induced cell death. Experimental evidence suggests that inhibition of exosome secretion treatment with GW4869 results in the acceleration of reactive oxygen species (ROS) production, thereby causing a decrease in cell viability.126 Tumor-derived EXs (TDEs) are vehicles that enable communication between cells by transferring bioactive molecules, also delivering oncogenic molecules and containing different molecular cargoes compared to EXs delivered from normal cells. They can therefore be used as non-invasive biomarkers for the early diagnosis and prognosis of most cancers, including breast and ovarian cancers.127 Exosomes released by ER-stressed HepG2 cells significantly enhance the expression levels of several cytokines, including IL-6, monocyte chemotactic protein-1, IL-10, and tumor necrosis factor- in macrophages. ER stress-associated exosomes mediate macrophage cytokine secretion in the liver cancer microenvironment, and also indicate the potential of treating liver cancer via an ER stress-exosomal-STAT3 pathway.128 Mesenchymal stem cell-derived exosomal miR-223 protects neuronal cells from apoptosis, enhances cell migration and increases miR-223 by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promote cell apoptosis through the PTEN-PI3K/Akt pathway and these studies indicate a potential therapeutic approach for AD.129 A mouse model of diabetes demonstrated that mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy through increased nerve conduction velocity. In addition, MSC-derived exosomes substantially suppress proinflammatory cytokines.130

Exosomes derived from activated astrocytes promote microglial M2 phenotype transformation following traumatic brain injury (TBI). miR-873a-5p significantly inhibits LPS-induced microglial M1 phenotype transformation.131 Several studies reported that exosomes are involved in cancer progression and metastasis; however, this depends on the type of cells the exosomes were derived from. For example, human umbilical vein endothelial cells (HUVEC) were treated with exosomes derived from HeLa cells (ExoHeLa), and the expression of tight junctions (TJ) proteins, such as zonula occludens-1 (ZO-1) and Claudin-5, was significantly reduced compared with exosomes from human cervical epithelial cells. Thus, permeability of the endothelial monolayer was increased after the treatment with ExoHeLa. Mice studies have shown that injection of ExoHeLa into mice increased vascular permeability and tumor metastasis. The results from this study demonstrated that HeLa cell-derived exosomes promote metastasis by triggering ER stress in endothelial cells and break down endothelial integrity. Such effects of exosomes are microRNA-independent.132 Exosomes mediate the gene expression of target cells and regulate pathological and physiological processes including promoting angiogenesis, inhibiting ventricular remodeling and improving cardiac function, as well as inhibiting local inflammation and regulating the immune response. Accumulating evidence shows that exosomes possess therapeutic potential through their anti-apoptotic and anti-fibrotic roles.

The functions of exosomes in immune responses are well established and do not cause any severe immune responses. A mouse study demonstrated that administration of a low dose of mouse or human cell-derived exosomes for extended periods of time caused no severe immune reactions.133 The function of exosomes in immune regulation is regulated by the transfer and presentation of antigenic peptides. Exosomes contain antigen-presenting cells (APCs) carrying peptide MHC-II and costimulatory signals and directly present the peptide antigen to specific T cells to induce their activation.134 For example, intradermal injection of APC-derived exosomes with MHC-II loaded with tumor peptide delayed tumor progression and growth.135 Exosome-derived immunogenic peptides activate immature mouse dendritic cells and indirectly activate APCs, and induce specific CD4+ T cell proliferation.136 Exosomes containing IFNa and IFNg, tumor necrosis factor a (TNFa), and IL from macrophages promoted dendritic cell maturation, CD4+ and CD8+ T cell activation, and the regulation of macrophage IL expression.137 The cargo of exosomes, such as DNA and miRNA, regulate the innate and adaptive immune responses. Exosomes are able to regulate the immune response by controlling gene expression and signaling pathways in recipient cells through transfer of miRNAs, and eventually control dendritic cell maturation.138 Exosomes containing miR-212-3p derived from tumors down-regulate the MHC-II transcription factor RFXAP (regulatory factor X associated protein) in dendritic cells, possibly promoting immune evasion by cancer cells.139 Exosomes containing miR-222-3p down regulate expression of SOCS3 (suppressor of cytokine signaling 3) in monocytes, which is involved in STAT3-mediated M2 polarization of macrophages.140 In mice, exosomes stimulate adaptive immune responses, including the activation of dendritic cells, with the uptake of breast cancer cell-derived exosomal genomic DNA and activation of cGAS-STING signaling and antitumor responses.141 The priming of dendritic cells is associated with the uptake of exosomal genomic and mitochondrial DNA (mtDNA) from T cells, inducing type I IFN production by cGAS-STING signaling.142 Inhibition of EGFR leads to increased levels of DNA in the exosomes and induces cGAS-STING signaling in dendritic cells, contributing to the overall suppression of tumor growth.143 Conversely, uptake of tumor-derived exosomal DNA by circulating neutrophils was shown to enhance the production of tissue factor and IL-8, which play a role in promoting tumor inflammation and paraneoplastic events.144 Melanoma-derived exosomes containing PD-L1 (programmed cell death ligand 1) suppress CD8+ T cell antitumor function and cancer cell-derived exosomes block dendritic cell maturation and migration in a PD-L1-dependent manner. Engineered cancer cell-derived exosomes promote dendritic cell maturation, resulting in increased proliferation of T cells and antitumor activity.145147

Inflammation is an important process for maintaining homeostasis in cellular systems. Systemic inflammation is an essential component in the pathogenesis of several diseases.148,149 Exosomes seem to play a crucial role in inflammation processes through cargo molecules, such as miRNA and proteins, which act on nearby as well as distant target tissues. Exosomes play a vital role in intercellular communication between cells via endocytosis and are associated with modulation of inflammation, coagulation, angiogenesis, and apoptosis.20,150153 Exosomes derived from dendritic cells, B lymphocytes, and tumor cells release exosomes that can regulate immunological memory through the surface expression of antigen-presenting MHC I and MHC II molecules, and subsequently elicit T cell activation and maturation.134,137,154156 Exosomes play a crucial role in carrying and presenting functional MHC-peptide complexes to modulate antigen-specific CD8+ and CD4+ responses.157,158 Exosomes containing miR-Let-7d influence the growth of T helper 1 (Th1) cells and inhibit IFN- secretion.159 Exosomes derived from choroid plexus epithelial cells containing miR-146a and miR-155 upregulate the expression of inflammatory cytokines in astrocytes and microglia.160 Exosomes containing miR-181c suppress the expression of Toll-like receptor 4 (TLR-4) and subsequently lower TNF- and IL-1 levels in burn-induced inflammation.161 Exosomal miR-155 from bone marrow cells (BMCs) increases the level of TNF- and subsequently enhances innate immune responses in chronic inflammation.162 Exosomes containing miR-150-5p and miR-142-3p derived from dendritic cells (DCs) increase expression of interleukin 10 (IL-10) and a decrease in IL-6 expression.163 Exosomal miR-138 can protect against inflammation by decreasing the expression level of NF-B, a transcription factor that regulates inflammatory cytokines such as TNF- and IL-18.164 HIF-1-inducing exosomal microRNA-23a expression from tubular epithelial cells mediates the cross talk between tubular epithelial cells and macrophages, promoting macrophage activation and triggering tubulointerstitial inflammation.165 A rat model study demonstrated that bone marrow mesenchymal stem cell (BMSC)-derived exosomes reduced inflammatory responses by modulating microglial polarization and maintaining the balance between M2-related and M1-related cytokines.165 Melatonin-stimulated mesenchymal stem cell (MSC)-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway, and significantly suppressed the pro-inflammatory factors IL-1 and TNF- and reduced the relative gene expression of IL-1, TNF-, and iNOS. Increasing levels of anti-inflammatory factor IL-10 are associated with increasing relative expression of Arg-1.166

Immunomodulators are essential factors for the prevention and treatment of disorders occurring due to an over high-spirited immune response, such as the SARS-CoV-2-triggered cytokine storm leading to lung pathology and mortality seen during the ongoing viral pandemic.167 MSC-secreted extracellular vesicles exhibit immunosuppressive capacity, which facilitates the regulation of the migration, proliferation, activation, and polarization of various immune cells, promoting a tolerogenic immune response while inhibiting inflammatory responses.168 Collagen scaffold umbilical cord-derived mesenchymal stem cell (UC-MSC)-derived exosomes induce collagen remodeling, endometrium regeneration, increasing the expression of the estrogen receptor /progesterone receptor, and restoring fertility. Furthermore, exosomes modulate CD163+ M2 macrophage polarization, reduce inflammation, increase anti-inflammatory responses, facilitate endometrium regeneration, and restore fertility through the immunomodulatory functions of miRNAs.169 Exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigens and it facilitate the induction of a cellular immune response.170 Shenoy et al171 reported that exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. These exosomes arrest the activation of T cells stimulated via the T cell checkpoint (TCR). Exosomes secreted by normal retinal pigment epithelial cells (RPE) by rotenone-stimulated ARPE-19 cells induce apoptosis, oxidative injury, and inflammation in ARPE-19 cells. Exosomes secreted under oxidative stress induce retinal function damage in rats and upregulate expression of Apaf1. Overexpression of Apaf1 in exosomes secreted under oxidative stress (OS) can cause the inhibition of cell proliferation, increase in apoptosis, and elicitation of inflammatory responses in ARPE-19 cells. Exosomes derived from ARPE-19 cells under OS regulate Apaf1 expression to increase apoptosis and to induce oxidative injury and inflammatory response through a caspase-9 apoptotic pathway.172 Collectively, these findings highlight the critical role of exosomes in inflammation and suggest the possibility of utilizing exosomes as an inducer to attenuate inflammation and restore impaired immune responses in various diseases including cancer.

The endomembrane system of eukaryotic cells is a complex series of interconnected membranous organelles that play vital roles in protecting cells from adverse conditions, such as stress, and maintaining cell homeostasis during health and disease.173 To preserve cellular homeostasis, higher eukaryotic cells are equipped with various potent self-defense mechanisms, such as cellular senescence, which blocks the abnormal proliferation of cells at risk of neoplastic transformation and is considered to be an important tumor-suppressive mechanism.174,175 Exosomes contribute to reduce intracellular stress and preservation of cellular homeostasis through clearance of damaged or toxic material, including proteins, lipids, and even nucleic acids. Therefore, exosomes serve as quality controller in cells.176 The vesicular transport system plays pivotal roles in the maintenance of cell homeostasis in eukaryote cells, which involves the cytoplasmic trafficking of biomolecules inside and outside of cells. Several types of membrane-bound organelles, such as the Golgi apparatus, endoplasmic reticulum (ER), endosomes and lysosomes, in association with cytoskeleton elements, are involved in the intracellular vesicular system. Molecules are transported through exocytosis and endocytosis to maintain homeostasis through the intracellular vesicular system and regulate cells responses to the internal and external environment. To maintain homeostasis and protect cells from various stress conditions, autophagy is an intracellular vesicular-related process that plays an important role through the endocytosis/lysosomal/exocytosis pathways through degradation and expulsion of damaged molecules out of the cytoplasm.177179 Autophagy, as an intracellular waste elimination system, is a synchronized process that actively participates in cellular homeostasis through clearance and recycling of damaged proteins and organelles from the cytoplasm to autophagosomes, and then to lysosomes.38,180182 Cells maintain homeostasis by autophagosomes, which are vesicles derived from autophagic and endosomal compartments. These processes are involved in adaption to nutrient deprivation, cell death, growth, and tumor progression or suppression. Autophagy flux contributes to maintaining homeostasis in the tumor microenvironment of endothelial cells. To support this concept, a study provided evidence suggesting that depletion of Atg5 in ECs could intensify the abnormal function of tumor vessels.183 Exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells. As a consequence of blocking exosome secretion, nuclear DNA accumulates in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery. Blocking exosome secretion aggravates the innate immune response, leading to ROS-dependent DNA damage responses and thus inducing senescence-like cell-cycle arrest or apoptosis in normal human cells. Thus, cells remove harmful cytoplasmic DNA, protecting them from adverse effects.182 Salomon and Rice reported that the involvement of exosomes in placental homeostasis and pregnancy disorders. EVs of placental origin are found in a variety of body fluids including urine and blood. Moreover, the number of exosomes throughout gestation is higher in complications of pregnancy, such as preeclampsia and gestational diabetes mellitus, compared to normal pregnancies.184

The endolysosomal system is critically involved in maintaining homeostasis through the highly regulated processes of internalization, sorting, recycling, degradation, and secretion. For example, endocytosis allows the internalization of various receptor proteins into cells, and vesicles formed from the plasma membrane fuse and deliver their membrane and protein content to early endosomes. Similarly, significant amounts of internalized content are recycled back to the plasma membrane via recycling endosomes,76 while the remaining material is sequestered in ILVs in late endosomes, also known as multivesicular bodies.185,186 Tetraspanin proteins, such as CD63 and CD81, are regulators of ILV formation. Once ILVs are formed, MVBs can degrade their cargo by fusing with lysosomes or, alternatively, MVBs can secrete their ILVs by fusing with the plasma membrane and release their content into extracellular milieu.187190 Exosomes play an important role in regulating intracellular RNA homeostasis by promoting the release of misfolded or degraded RNA products, and toxic RNA products. Y RNAs are involved in the degradation of structured and misfolded RNAs. Further studies have demonstrated that proteins involved in RNA processing are abundant in exosomes, and the half-lives of secreted RNAs are almost twice as short as those of intracellular mRNAs. These studies suggest that cells maintain intracellular RNA homeostasis through the release of distinct RNA species in extracellular vesicles.191193 Exosomes reduce cholesterol accumulation in Niemann-Pick type C disease, a lysosomal storage disease in which cells accumulate unesterified cholesterol and sphingolipids within the endosomal and lysosomal compartment.194

Autophagy is the intracellular vesicular-related process that regulates the cell environment against pathological and stress conditions. In order to maintain homeostasis and protect the cells against stress conditions, internal vesicles or secreted vesicles serve as a canal to degrade and expel damaged molecules out of the cytoplasm.38,181,182 Autophagy protects the cell from various stress conditions and maintains cellular homeostasis, regulating cell survival and differentiation through clearance and recycling of damaged proteins and organelles from the cytoplasm to autophagosomes, and then to lysosomes.180 Several studies have demonstrated that proteins are involved in controlling tumor cell function and fate, and mediate crosstalk between exosome biogenesis and autophagy. Coordination between exosome-autophagy networks serves as a tool to conserve cellular homeostasis via the lysosomal degradative pathway and/or secretion of cargo into the extracellular milieu.176,195 Autophagy is a multi-step process that occurs by initiation, membrane nucleation, maturation and finally the fusion of autophagosomes with lysosomes. The autophagy process is not only linked with endocytosis but is also linked with the biogenesis of exosomes. For example, subsets of the autophagy machinery involved in the biogenesis of exosomes and the autophagic process itself appear dispensable.78,196 Crosstalk between exosomal and autophagic pathways has been reported in a growing number of diseases. Proteomic studies were performed to analyze the involvement of key proteins in the interconnection between exosome and autophagy pathways. They found that almost all proteins were identified; however, their involvement differed between them. Among 100 proteins, four proteins were highly ranked including HSPA8 (3/100), HSP90AA1 (8/100), VCP (24/100), and Rab7A (81/100). These data suggest an interconnection between the exosome and autophagy.197,198 Endosomal autophagy plays a significant role in the interconnection between exosomes and autophagy. Stress is a major factor for autophagy. In particular, the starvation of cells is a key inducer of autophagy, and induces enlargement of MVB structures and a co-localization of Rab11 and LC3 in these structures, an indication that autophagy-related processes are associated with the MVB.199 The sorting of autophagy-related cargo into MVBs is dependent on Hsc70 (HSPA8), VPS4, and TSG101, and independent on LAMP-2A, thereby excluding a role for, the lysosome.200 Several proteins are involved in the regulation and biogenesis of secretory autophagy compartments such as GRASPs, LC3, Rab8a, ESCRTs, and SNAREs, along with several Atg proteins.181,201,202 Autophagosomes could fuse with MVBs to form amphisomes and release vesicles to the external environment.203

Autophagy and exosome biogenesis and function are interconnected by microRNA. Over-expression of miR-221/222 inhibits the level of PTEN and activates Akt signaling, and subsequently reduces the expression of hallmarks that positively relate to autophagy including LC3, ATG5 and Beclin1, and increases the expression of SQSTM1/p62.204 MiR-221/222 from human aortic smooth muscle cell (HAoSMC)-derived exosomes inhibit autophagy in HUVECs by modulating the PTEN/Akt signaling pathway. miRNA-223 attenuates hypoxia-induced apoptosis and excessive autophagy in neonatal rat cardiomyocytes and H9C2 cells via the Akt/mTOR pathway, by targeting poly(ADP-ribose) polymerase 1 (PARP-1) through increased autophagy via the AMPK/mTOR and Akt/mTOR pathways205 ATG5 mediates the dissociation of vacuolar proton pumps (V1Vo-ATPase) from MVBs, which prevents acidification of the MVB lumen and allows MVB-PM fusion and exosome release. Accordingly, knockout of ATG5 or ATG16L1 significantly reduces exosome release and attenuates the exosomal enrichment of lipidated LC3B. These findings demonstrate that autophagic mechanisms possibly regulate the fate of MVBs and subsequent exosome biogenesis.78 Bone marrow MSC (BMMSC)-derived exosomes contain a high level of miR-29c, which regulates autophagy under hypoxia/reoxygenation (H/R) conditions.206 Human umbilical cord MSC-derived exosomes (HucMDEs) promote hepatic glycolysis, glycogen storage, and lipolysis, and reduce gluconeogenesis. Additionally, autophagy potentially contributes to the effects of HucMDE treatment and increases formation of autophagosomes and the autophagy marker proteins BECN1, MAP, and 1LC3B. These findings suggest that HucMDEs improve hepatic glucose and lipid metabolism in T2DM rats by activating autophagy via the AMPK pathway.207 Liver fibrosis is a serious disorder caused by prolonged parenchymal cell death, leading to the activation of fibrogenic cells, extracellular matrix accumulation, and eventually liver fibrosis. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs) have been used to deliver circular RNAs mmu_circ_0000623 to treat liver fibrosis. The findings from this study suggest that Exos from ADSCs containing mmu_circ_0000623 significantly suppress CCl4-induced liver fibrosis by promoting autophagy activation. Autophagy inhibitor treatment significantly reverses the treatment effects of Exos.208 Inhibition of autophagy by PDGF and its downstream molecule SHP2 (Src homology 2-containing protein tyrosine phosphatase 2) increased hepatic stellate cell (HSC)-derived EV release. Disruption of mTOR signaling abolishes PDGF-dependent EV release. Activation of mTOR signaling induces the release of MVB-derived exosomes by inhibiting autophagy, as well as microvesicles, through activation of ROCK1 signaling. Furthermore, deletion of SHP2 attenuates CCl4 or BDL-induced liver fibrosis.209 The therapeutic effects of exosomes containing high concentrations of mmu_circ_0000250 were analyzed in diabetic mice. The findings indicated that a high concentration of mmu_circ_0000250 had a better therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. The results also showed that exosome treatment with mmu_circ_0000250 increased angiopoiesis in wounded skin and suppressed apoptosis by inducing miR-128-3p/SIRT1-mediated autophagy.210 A study showed that mice treated with differentiated cardiomyocyte (iCM) exosomes exhibited significant cardiac improvement post-myocardial infarction, with significantly reduced apoptosis and fibrosis. Apoptosis was associated with reduced levels of hypoxia and inhibition of exosome biogenesis. iCM-exosome-treated groups showed upregulation of autophagosome production and autophagy flux. Hence, these findings indicate that iCM-Ex can improve post-myocardial infarction cardiac function by regulating autophagy in hypoxic cardiomyocytes.211 Exosomes of hepatocytes play a crucial role in inhibiting hepatocyte apoptosis and promoting hepatocyte regeneration. Mesenchymal stem cell-derived hepatocyte-like cell exosomes (MSC-Heps-Exo) were injected into a mouse hepatic Ischemia/reperfusion (I/R) I/R model through the tail. The results demonstrated that MSC-Heps-Exo effectively relieve hepatic I/R damage, reduce hepatocyte apoptosis, and decrease liver enzyme levels. A possible mechanism of reduced hepatic ischemia/reperfusion injury is the enhancement of autophagy.212

Exosomes play a critical role in viral infections, particularly of retroviruses and retroviruses, and use preexisting pathways for intracellular protein trafficking and formation of infectious particles. Exosomes and viruses share several features including biogenesis, uptake by cells, and the intracellular transfer of RNAs, mRNAs, and cellular proteins. Some features are different, including self-replication after infection of new cells, regulation of viral expression, and complex viral entry mechanisms.213,214 Exosomes secreted from virus-infected cells carry mostly cargo molecules such as viral proteins, genomic RNA, mRNA, miRNA, and genetic regulatory elements.215218 These cargo molecules are involved in the alteration of recipient cell behavior, regulating cellular responses, and enabling infection by various types of viruses such as human T-cell lymphotropic virus (HTLV), hepatitis C virus (HCV), dengue virus, and human immunodeficiency virus (HIV).215 Exosomes communicate with host cells through contact between exosomes and their recipient cells, via different kinds of mechanisms. Initially, the transmembrane proteins of exosomes build a network directly with the signaling receptors of target cells and then join with the plasma membrane of recipient cells to transport their content to the cytosol. Finally, the exosomes are incorporated into the recipient cells.219221 A report suggested that disruption of exosomal lipid rafts leads to the inhibition of internalization of exosomes.95 Exosomes derived from HIV-infected patients contain the trans-activating response element, which is responsible for HIV-1 replication in recipient cells through downregulation of apoptosis.222 While exosomes serving as carrier molecules, exosomes contain miRNAs that induce viral replication and immune responses either by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. For example, exosomes enhance HIV-1 entry into human monocytic and T cell lines through the exosomal tetraspanin proteins CD9 and CD81.223 Influenza virus infection causes accumulation of various types of microRNAs in bronchoalveolar lavage fluid, which are responsible for the potentiation of the innate immune response in mouse type II pneumocytes. Serum of influenza virus-infected mice show significant levels of miR-483-3p, which increases the expression of proinflammatory cytokine genes and inflammatory pathogenesis of H5N1 influenza virus infection in vascular endothelial cells.224 Exosomes are involved in the transmission of inflammatory, apoptotic, and regenerative signals through RNAs. Chen et al investigated the potential functions of exosomal RNAs by RNA sequencing analysis in exosomes derived from clinical specimens of healthy control (HC) individuals and patients with chronic hepatitis B (CHB) and acute-on-chronic liver failure caused by HBV (HBV-ACLF). The results revealed that the samples contained unique and distinct types of RNAs in exosomes.225 Zika virus (ZIKV) infection causes severe neurological malfunctions including microcephaly in neonates and other complications associated with Guillain-Barr syndrome in adults. Interestingly, ZIKV uses exosomes as mediators of viral transmission between neurons and increases production of exosomes from neuronal cells. Exosomes derived from ZIKV-infected cells contained both ZIKV viral RNA and protein(s) which are highly infectious to nave cells. ZIKV uses neutral Sphingomyelinase (nSMase)-2/SMPD3 to regulate production and release of exosomes.226

During infections, viruses replicate in host cells through vesicular trafficking through a sequence of complexes known as ESCRT, and assimilate viral constituents into exosomes. Exosomes encapsulate viral antigens to maximize infectivity by hiding viral genomes, entrapping the immune system, and maximizing viral infection in uncontaminated cells. Exosomes can be used as a source of viral antigens that can be targeted for therapeutic use. A Variety of infectious diseases caused by viruses such as HCV, ZIKV, West Nile virus (WNV), and DENV enter into the host cells using clathrin-mediated or receptor-mediated endocytosis. For example, HCV infects host cells by specific targeting of cells through cellular contact, and hepatocyte-derived exosomes that contain HCV RNA can stimulate innate immune cells.217,227230 Exosomes show structural and molecular similarity to HIV-1 and HIV-2, which are enclosed by a lipid bilayer, and in the vital features of size and density, RNA species, and macro biomolecules including carbohydrates, lipids, and proteins. HIV-infected cells release enriched viral RNAs containing exosomes derived from HIV-infected cells and are enhanced with viral RNAs and Nef protein.6,38,231236 Izquierdo-Useros et al reported that both exosomes and HIV-1 express sialyllactose-containing gangliosides and interact with each other via sialic-acid-binding immunoglobulin-like lectins (Siglecs)-1. Siglecs-1 stimulates mature dendritic cell (mDC) capture and storage of both exosomes and HIV-1 in mDCs.237 Exosomes released from HIV-infected T cells contain transactivation response (TAR) element RNA, which stimulate proliferation, migration, and invasion of oral/oropharyngeal and lung cancer cells.238 Nuclear VP40 from Ebola virus VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Synthesized extracellular vesicles contain cytokines and EBOV proteins from infected cells, which are responsible for the destruction of immune cells during EBOV pathogenesis.239 HIV enters into the host cells through human T-cell immunoglobin mucin (TIM) proteins. TIMs are a group of proteins (TIM-1, TIM-3, and TIM-4) that promote phagocytosis of apoptotic cells.240 TIM-4 is involved in HIV-1 exosome-dependent cellular entry mechanisms. Substantiating this hypothesis, neural stem cell (NSC)-derived exosomes containing TIM-4 protein increase HIV-1 exosome-dependent cellular entry into host cells, and antibody against TIM4 inhibits exosome-mediated entry of HIV in various types of cell.241

Exosomes show immense promise in biomedical applications due to their potential in drug delivery, the carriage of biomolecular markers of many diseases, and cellular protection. In addition, they can be used in non-invasive diagnostics or minimum invasive diagnostics.150 Detection of biomarkers is vital for early diagnosis of cancer and also critical for treatment. Several studies have documented the importance of exosomes in a variety of diseases, although further examination of the biology and functions of exosomes is warranted due to the continuing emergence of new diseases in the present world. The complex cargo of exosomes facilitates the exploration of a variety of diagnostic windows into disease detection, monitoring, and treatment. Exosomes are found in all biological fluids and are secreted by all cells, rendering them attractive for use through minimally invasive liquid biopsies, and they have the potential for use in longitudinal sampling to follow disease progression.242 Exosomes are produced and secreted by almost all body fluids, including blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. These exosomes contain micro RNAs, proteins, and lipids serving as diagnostic markers.120 Exosomes are used in diagnostic applications in various kinds of diseases, such as cardiovascular diseases (CVDs),243 diseases of the central nervous system (CNS),244 cancer,245 and other prominent diseases including in the liver,246 kidney,247 and lung.248 Exosomes are potentially used to detect cancer-associated mutations in serum and also for the transfer of genomic DNA from donor cells to recipient cells.249 Exosomes carrying specific miRNAs or groups of miRNAs can be used as diagnostic markers to detect cancer. For example, exosomes containing oncogenic Kras, which have tumor-suppressor miRNAs-100, seem to have high diagnostic value, which could facilitate the differentiation of the expression pattern between cancer cells and normal cells.250,251 Similarly, miR-21 is considered to be diagnostic marker for various types of cancer including glioblastomas and pancreatic, colorectal, colon, liver, breast, ovarian, and esophageal cancers.252 Tumor suppressor miRNAs, such as miR-146a and miR-34a, function as diagnostic tools to detect liver, breast, colon, pancreatic, and hematologic malignancies.251 Exosomes containing GPC1 (glypican 1) are used as diagnostic markers to detect pancreatic, breast, and colon cancer.253,254

Exosomes play critical roles in various types of disease, and particularly in cancer progression and resistance to therapy. The unique biogenesis of exosomes and their biological features have generated excitement for their potential use as biomarkers for cancer.255 Generally, exosomes are produced and secreted by most cells and contain all the biological components of a cell. Hence, exosomes are found in all biological fluids and provide excellent opportunities for use as biomarkers.242 Surface proteins of exosomes are involved in the regulation of the tumor immune microenvironment and the monitoring of immunotherapies. Hence, exosome proteins play a critical role in cancer signaling.256 Exosomes from patients with metastatic pancreatic cancer show a higher mutant Kras allele frequency than exosomes from patients with local disease. In addition, the exosomes also accumulate a significantly higher level of cancer cell-specific DNA such as cytoplasmic DNA.8,257 Exosomes protect DNA and RNA from enzymatic degradation by encapsulation and stability in exosomes. The enhanced stability and retention of exosomes in liquid biopsies increases the availability and performance of exosomes as cancer biomarkers.258 Cancer cells contain cargo molecules, such as nucleic acid, proteins, metabolites, and lipids that are relatively different from normal cells, which is a contributing factor for their candidacy as cancer biomarkers. Exosomes isolated and purified from patient plasma samples enriched for miR-10b-5p, miR-101-3p, and miR-143-5p have been identified as potential diagnostic markers for gastric cancer with lymph node metastasis, gastric cancer with ovarian metastasis, and gastric cancer with liver metastasis, respectively.259 Kato et al analyzed the expression of CD44 protein and mRNA from cell lysates and exosomes from prostate cancer cells.260 Exosomes from serum containing CD44v8-10 mRNA was used as a diagnostic marker for docetaxel resistance in prostate cancer patients. The study was performed to evaluate plasma exosomal mRNA-125a-5p and miR-141-5p miRNAs as biomarkers for the diagnosis of prostate cancer from 19 healthy individuals and 31 prostate cancer patients. In comparing the miR-125a-5p/miR-141-5p level ratio, prostate cancer patients had significantly higher levels of miR-125a-5p/miR-141-5p. The findings from this study demonstrated that plasma exosomal expression of miR-141-3p and miR-125a-5p are markers of specific tumor traits associated with prostate cancer.261 Serum samples from 81 patients with gastric cancer showed that exosomes contained significant levels of long non-coding RNA (lncRNA) H19, which could be a diagnostic marker for gastric cancer.262 Plasma exosomes are suitable candidates as biomarkers for various diseases. For instance, plasma exosome lncRNA expression profiles were examined in esophageal squamous cell carcinoma (ESCC) patients. The findings suggest that five different types of lncRNAs were at significantly higher levels in exosomes from ESCC patients than in non-cancer controls. These lncRNAs may serve as highly effective, noninvasive biomarkers for ESCC diagnosis.263 Differential expression of lncRNAs, such as LINC00462, HOTAIR, and MALAT1, are significantly upregulated in hepatocellular carcinoma (HCC) tissues. The exosomes of the control group had a larger number of lncRNAs with a high amount of alternative splicing compared to hepatic disease patients.264 To demonstrate exosomes as a non-invasive cancer diagnostic tool, RNA-sequencing analysis was performed between three pairs of non-small-cell lung cancer (NSCLC) patients and controls from Chinese populations. The results show that circ_0047921, circ_0056285, and circ_0007761 were significantly expressed and that these exosomal circRNAs are promising biomarkers for NSCLC diagnosis.265 Exosomes were isolated from the serum of 34 patients with acute myocardial infarction (AMI), 31 patients with unstable angina (UA), and 22 healthy controls. The isolated exosomes exhibited higher levels of miR-126 and miR-21 in the patients with UA and AMI than in the healthy controls.266 Xu et al designed a study to examine tumor-derived exosomes as diagnostic biomarkers. In this study exosome miRNA microarray analysis was performed in the peripheral blood from four lung adenocarcinoma patients, including two with metastasis and two without metastasis. The results found that miR-4436a and miR-4687-5p were upregulated in the metastasis and non-metastasis group, while miR-22-3p, miR-3666, miR-4448, miR-4449, miR-6751-5p, and miR-92a-3p were downregulated. Exosomes containing miR-4448 have served as a diagnostic marker of patients with adenocarcinoma metastasis. Increased understanding of exosome biogenesis, structure, and function would enhance the performance of biomarkers in various kinds of disease diagnosis, prognosis, and surveillance.267

Exosomes have unique features such as ease of handling, molecular composition, and critical immunogenicity, and it is particularly easy to use them to transfer genes and proteins into cells. These unique characteristic features can inhibit angiogenesis and cancer metastasis, which are the two main targets of cancer therapy.268,269 Exosomes have potential therapeutic applications in a variety of diseases due to their potential capacity as vehicles for the delivery of therapeutic agents (Figure 5). Exosomes from colon cancer cells contain the highly immunogenic antigens MelanA/Mart-1 and gp100, serving as an indicator of tumor origin in particular organelles. Animal studies have demonstrated that tumor-derived antigen-containing exosomes induce potent antitumor T-cell responses and tumor regression.270 Exosomes containing tumor antigens are able to stimulate CD4+and CD8+T cells, and antigen-presenting exosomes inhibit tumor growth.135,271,272 MSC-derived exosomes exhibit the immunomodulatory and cytoprotective activities of their parent cells.273,274 Similarly, exosomes derived from bone marrow show protective roles in myocardial ischemia/reperfusion injury,109 hypoxia-induced pulmonary hypertension,275 and brain injury,276,277 and inhibit breast cancer growth via vascular endothelial growth factor down-regulation and miR-16 transfer in mice.278 Mesenchymal cell- and epithelial cell-derived exosomes exhibit tolerance and without any undesired side effects in patients and also act as therapeutic agents themselves.48,279 Exosomes engineered with ligands containing RGD peptide are used to induce signaling in specific cell types, and doxorubicin-loaded exosomes derived from dendritic cells show therapeutic responses in mammary tumor-bearing mice.46 Exosomal microRNAs are able to control other cells, and the delivery of miRNA or siRNA payload promotes anticancer activity in mammary carcinoma and glioma.280,281 Rabies virus glycoprotein (RVG)-modified dendritic cell-derived exosomes suppress the expression of BACE1 in the brain, which indicates the therapeutic potential of exosomes to target AD.282 Furthermore, these exosomes stimulated neurite outgrowth in cultured astrocytes by transferring miR-133b between cells.27 Immunotherapy is able to induce tumor-targeting immunity or an antitumor host immune response. For example, tumor-associated antigen-loaded mature autologous dendritic cells increase survival of metastatic castration-resistant patients.283 Exosome therapy induces upregulation of CD122 molecules in CD4+ T cells, whereas the lymphocyte pool is stable. Multiple vaccinations with exosomes increase circulating CD3-/CD56+ natural killer (NK) cells.284 An in vitro study demonstrated that adipose stem cell-derived exosomes up-regulate the peroxisome proliferator-activated receptor gamma coactivator 1, phosphorylate the cyclic AMP response element binding protein, and ameliorate abnormal apoptotic protein levels.285 Exosomes are used as potential carriers to carry anti-inflammatory drugs. Curcumin-encapsulated exosomes show significant anti-inflammatory activity, and exosomes are also used to deliver anti-inflammatory drugs to the brain through a noninvasive intranasal route.286,287 Turturici et al reported that specific progenitor cell-derived EVs contain biological cargo that promotes angiogenesis and tissue repair, and modulates immune functions.288

Figure 5 Therapeutic potential and versatile clinical implications of exosomes.

Generally, exosomes serve as vehicles for the delivery of drugs and are also actively involved as therapeutic agents. Conversely, injected exosomes enter into other cells and deliver functional cargo molecules very efficiently and rapidly, with minimal immune clearance and are well tolerated.16,21,245,289,290 Intravenous administration of human MSC-derived exosomes supports neuroprotection in a swine model of traumatic brain injury.291 In vitro and in vivo models demonstrate that exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal Cells (hiPSC-MSCs) protect the liver against hepatic ischemia/reperfusion injury through increasing the level of proliferation of primary hepatocytes, activity of sphingosine kinase, and synthesis of sphingosine-1-phosphate (S1P).292 Exosomes derived from macrophages show potential for use in neurological diseases because of their easy entry into the brain by crossing the blood-brain barrier (BBB). Catalase-loaded exosomes displayed a neuroprotective effect in a mouse model of PD and exosomes loaded with dopamine entered into the brain better in comparison to free dopamine.33,293 Treatment of tumor-bearing mice with autologous exosomes loaded with gemcitabine significantly suppressed tumor growth and increase longevity, and caused only minimal damage to normal tissues. The study demonstrated that autologous exosomes are safe and effective vehicles for targeted delivery of GEM against pancreatic cancer.294

Generally, lipid-based nanoparticles such as liposomes or micelles, or synthetic delivery systems have been adopted to transport active molecules. However, the merits of synthetic systems are limited due to various factors including inefficiency, cytotoxicity and/or immunogenicity. Therefore, the development of natural carrier systems is indispensable. One of the most prominent examples of such natural carriers are exosomes, which are used to transport drug and active biomolecules. Exosomes are more compatible with other cells because they carry various targeting molecules from their cells of origin. Exosomes are nano-sized membrane vesicles derived from almost all cell types, which carry a variety of cargo molecules from their parent cells to other cells. Due to their natural biogenesis and unique qualities, including high biocompatibility, enhanced stability, and limited immunogenicity, they have advantages as drug delivery systems (DDSs) compared to traditional synthetic delivery vehicles. For instance, extracellular vesicles, including exosomes, carry and protect a wide array of nucleic acids and can potentially deliver these into recipient cells.6 EVs possess inherent targeting properties due to their lipid composition and protein content enabling them to cross biological barriers, and these salient features exploit endogenous intracellular trafficking mechanisms and trigger a response upon uptake by recipient cells.45,295297 The lipid composition and protein content of exocytic vesicles have specific tropism to specific organs.296 The integrin of exosomes determines the ability to alter the pharmacokinetics of EVs and increase their accumulation in various type of organs including brain, lungs, or liver.117 For example, EVs containing Tspan8 in complex with integrin alpha4 were shown to be preferentially taken up by pancreatic cells.298 Similarly, the lipid composition of EVs influences the cellular uptake of EVs by macrophages.299 EVs derived from dendritic cell achieved targeted knockdown by fusion between expression of Lamp2b and neuron-specific RVG peptide by using siRNA in neuronal cell.45 EVs loaded with Cre recombinase protein were able to deliver functional CreFRB to recipient cells through active and passive mechanisms in the presence of endosomal escape, enhancing the compounds chloroquine and UNC10217832A.300 EVs from cardiosphere-derived cells achieved targeted delivery by fusion of the N-terminus of Lamp2b to a cardiomyocyte-specific peptide (CMP).301 RVG-exosomes were used to deliver anti-alpha-synuclein shRNA minicircle (shRNA-MC) therapy to the alpha-synuclein preformed-fibril-induced mouse model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved clinical symptoms. RVG exosome-mediated therapy prolonged the effectiveness and was specifically delivered into the brain.302 Zhang et al evaluated the effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. High loading efficiency of cisplatin was achieved by membrane disruption of exosomes by sonication.303 Incorporation of cisplatin into umbilical cord blood-derived M1 macrophage exosomes increased cytotoxicity 3.3-fold in drug-resistant A2780/DDP cells and 1.4-fold in drug-sensitive A2780 cells, compared to chemotherapy alone. Loading of cisplatin into M2 exosomes increased cytotoxicity by nearly 1.7-fold in drug-resistant A2780/DDP cells and 1.4-fold in drug-sensitive A2780 cells. The findings suggest that cisplatin-loaded M1 exosomes are potentially powerful tools for the delivery of chemotherapeutics to treat cancers regardless of drug resistance. Shandilya et al developed a chemical-free and non-mechanical method for the encapsulation and intercellular delivery of siRNA using milk-derived exosomes through conjugation between bovine lactoferrin with poly-L-lysine, wherein lactoferrin as a ligand was captured by the GAPDH present in exosomes, loading siRNA in an effortless manner.304 Targeted drug delivery was achieved with low immunogenicity and toxicity using exosomes derived from immature dendritic cells (imDCs) from BALB/c mice by expressing the fusion protein RGD. Recombinant methioninase (rMETase) was loaded into tumor-targeting iRGD-Exos. The findings suggest that the iRGD-Exos-rMETase group exhibited significant antitumor activity compared to the rMETase group.305 Several diseases show high inflammatory responses; therefore, amelioration of inflammatory responses is a critical factor. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IB (srIB), which is the dominant active form of IB, and can inhibit translocation of nuclear factor B into the nucleus. Intraperitoneal injection of purified srIB-loaded exosomes (Exo-srIBs) showed diminished mortality and systemic inflammation in septic mouse models.306 Systemic administration of macrophage-derived exosomes modified with azide and conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRP (aCD47 and aSIRP) through pH-sensitive linkers can actively and specifically target tumors through distinguishing between aCD47 and CD47 on the tumor cell surface.307 SPION-decorated exosomes prepared using fusion proteins of cell-penetrating peptides (CPP) and TNF- (CTNF-)-anchored exosomes coupled with superparamagnetic iron oxide nanoparticles (CTNF--exosome-SPIONs) significantly enhanced tumor cell growth inhibition via induction of the TNFR I-mediated apoptotic pathway. Furthermore, in vivo studies in murine melanoma subcutaneous cancer models showed that TNF--loaded exosome-based vehicle delivery enhanced cancer targeting under an external magnetic field and suppressed tumor growth with mitigating toxicity.308 Yu et al309 developed a formulation of erastin-loaded exosomes labeled with folate (FA) to form FA-vectorized exosomes loaded with erastin (erastin@FA-exo) to target triple-negative breast cancer (TNBC) cells with overexpression of FA receptors. Erastin@FA-exo increased the uptake efficiency of erastin and also significantly inhibited the proliferation and migration of MDA-MB-231 cells compared with erastin@exo and free erastin. Interestingly, erastin@FA-exo promoted ferroptosis with intracellular depletion of glutathione and ROS generation. Plasma exosomes (Exo) loaded with quercetin (Exo-Que) improved the drug bioavailability, enhanced the brain targeting of Que and potently ameliorated cognitive dysfunction in okadaic acid (OA)-induced AD mice compared to free quercetin by inhibiting phosphorylated tau-mediated neurofibrillary tangles.310 Spinal cord injury (SCI) causes paralysis of the limbs. To determine the role of resveratrol in SCI, exosomes derived from resveratrol-treated primary microglia were used as carriers which are able to enhance the solubility of resveratrol and enhance penetration of the drug through the BBB, thereby increasing its concentration in the CNS. The findings demonstrated that Exo + Res are highly effective at crossing the BBB with good stability, suggesting they have potential for enhancing targeted drug delivery and recovering neuronal function in SCI therapy, and is likely associated with the induction of autophagy and inhibition of apoptosis via the PI3K signaling pathway.311 Delivery of miR-204-5p by exosomes inhibits cancer cell proliferation and tumor growth, and induces apoptosis and chemoresistance by specifically suppressing the target genes of miR-204-5p in human cancer cells.312 Engineered exosomes with RVG peptide on the surface for neuron targeting and NGF-loaded exosomes (NGF@ExoRVG) were efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. The delivered NGF protein showed high stability and a long retention time, and also reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of double cortin-positive cells, a neuroblast marker.313 Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of AD by activation of microglia cells and increased dendritic spine density.314 Exosome-encapsulated paclitaxel showed efficacy in the treatment of multi-drug resistant cancer cells and it overcomes MDR in cancer cells.315,316 Saari et al found that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect.316 Exosome loaded doxorubicin (exoDOX) avoids undesired and unnecessary heart toxicity by partially limiting the crossing of DOX through the myocardial endothelial cells.317 Studies from in vitro and in vivo demonstrate that exosome loaded doxorubicin showed that exosomes did not decrease the efficacy of DOX and there is no cardiotoxicity in DOX-treated mice.318

The intrinsic properties of exosomes have been exploited to control various types of diseases, including neurodegenerative conditions and cancer, through promoting or restraining the delivery of proteins, metabolites, and nucleic acids into recipient cells effectively, eventually altering their biological response. Furthermore, exosomes can be engineered to deliver diverse therapeutic payloads to the target site, including siRNAs, antisense oligonucleotides, chemotherapeutic agents, and immune modulators. The natural lipid and protein composition of exosomes increases bioavailability and minimizes undesirable side effects to the recipients. Due to the availability of exosomes in biological fluid, they can be easily used as potential biomarkers for diagnosis of diseases. Exosomes are naturally decorated with numerous ligands on the surface that can be beneficial for preferential tumor targeting.282 Due to their unique properties, including superior targeting capabilities and safety profile, exosomes are the subject of clinical trials as cancer therapeutic agents.284 Exosomes derived from DCs loaded with tumor antigens have been used to vaccinate cancer patients with the goal of enhancing anti-tumor immune responses.284,319,320

Due to the potential level of various types of cargoes and salient features, exosomes are involved in intercellular messaging and disease diagnosis. As a result of dedicated studies, exosomes have been identified as natural drug delivery vehicles. However, we still face challenges regarding the purity of exosomes due to the lack of standardized techniques for their isolation and purification, inefficient separation methods, difficulties in characterization, and lack of specific biomarkers.321 The first challenge is the use of conventional methods, which are laborious for isolation and purification, time consuming, and vulnerable to contamination by other impurities, which will affect drug delivery processes. The second challenge is the various cellular origins of exosomes, which could affect specific applications. For example, in the application of exosomes in cancer therapy, we should avoid the use of exosomes derived from cancer cells, due to their oncogenic properties. Finally, exosomes have variable properties due to extraction from different types of cell and different cell culture techniques. Therefore, there is a necessity to address and overcome the challenges. There is also a need for an exosome consortium to develop common protocols for the development of rapid and precise methods of exosome isolation, and to assist the selection of sources that are dependent upon the specific therapeutic application. The most important challenge of exosome biology is the clinical translation of exosome-based research using different cell sources. Further characterization studies based on therapeutic applications are needed. Finally, important steps need to be taken to purify exosomes in a feasible, rapid, cost-effective, and scalable manner, which are free from downstream processing and have minimal processing times, that are specifically targeted to therapeutic applications and clinical settings.

The achievement of exosome therapy is based on success rate of clinical trials. Exosomes with size ranges from 60 to 200nm have been used as an active pharmaceutical ingredient or drug carrier in disease treatment. Exosomes derived from human and plant-derived exosomes are registered in clinical trials, but more complete reports are available for humanderived exosomes.322 There are two major exosomes from DCs and MSCs are frequently used in clinical trials, which potentially induce inflammation response and inflammation treatment. The more crucial aspect of exosomes in clinical trials needs to comply with good manufacturing practice (GMP) including upstream, downstream and quality control. Recently, France and USA conducted clinical trials using EVs containing MHCpeptide complexes derived from dendritic could alter tumor growth in immune competent mice and a Phase I anti-non-small cell lung cancer319,320 and several other clinical trial studies are shown in Table 1. Recent clinical case shows promising results with MSC-EVs derived from unrelated bone marrow donors for the treatment of a steroid-refractory graft-vs-host disease patient.279 Similarly, exosomes were used for the treatment of various types of diseases such as melanoma, non-small-cell-lung cancer, colon cancer and chronic kidney disease.284,319,320,323,324

Table 1 Summary of the Exosome Used in Clinical Trials (Source: clinicaltrials.com)

Exosomes are nano-sized membrane vesicles released by the fusion of an organelle of the endocytic pathway, a multivesicular body, with the plasma membrane. Since the last decade, exosomes have played a critical role in nanomedicine and studies related to exosome biology have increased immensely. Exosomes are secreted by almost all cell types and they are found in almost all types of body fluids. They function as mediators of cell-cell communications and play a significant role in both physiological and pathological processes. Exosomes carry a wide range of cargoes including proteins, lipids, RNAs, and DNA, which mediate signaling to recipient cells or tissues, making them a promising diagnostic biomarker and therapeutic tool for the treatment of cancers and other pathologies. In this review, we summarized what is known to date about the factors involved in exosome biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. Further, we reviewed the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we highlighted the challenges and outstanding developments in exosome research. The clinical application of exosomes is inevitable and they represent multicomponent biomarkers for several diseases including cancer and neurological diseases, etc. Recently, the mortality rate due to various types of cancers has increased. Therefore, therapies are essential to reduce mortality rates. At this juncture, we need sensitive, rapid, cost-effective, and large-scale production of exosomes to use as cancer biomarkers in diagnosis, prognosis, and surveillance. Furthermore, novel technologies are required for further tailoring exosomes as drug delivery vesicles with high drug pay loads, high specificity and low immunogenicity, and free of toxicity undesired side-effects. In addition, standardized and uniform protocols are necessary to isolate and purify exosomes for clinical applications, and more precise isolation and characterization procedures are required to increase understanding of the heterogeneity of exosomes, their cargo, and functions. There is an urgent need for information regarding the composition and mechanisms of action of the various substances in exosomes and to determine how to obtain highly purified exosomes at the right dosage for their clinical use. Currently, exosomes represent a promising tool in the field of nanomedicine and may provide solutions to a variety of todays medical mysteries.

The future direction of exosome research must focus on addressing the differential responses of communication between normal cells and cancer cells, how normal cells rapidly become cancerous, and how exosomes plays critical role in cancer progression via cell-cell communications. In vivo studies need to urgently address the critical factors such as biogenesis, trafficking, and cellular entry of exosomes originating from unmanipulated exosomes that control regulatory pathological functions. Further studies are required to decipher the mechanism of the cell-specific secretion and transport of exosomes, and the biological controls exerted by target cells. Exosomes represent a clinically significant nanoplatform. To substantiate this idea, numerous systematic in vivo studies are necessary to demonstrate the potency and toxicology of exosomes, which could help bring this novel idea a step closer to clinical reality. The most vital part of the system is to optimize the conditions for the engineering of exosomes that are non-toxic, for use in clinical trials. Furthermore, the translation of exosomes into clinical therapies requires their categorization as active drug components or drug delivery vehicles. Finally, future research should focus on the nanoengineering of exosomes that are tailored specifically for drug delivery and clinical efficacy.

Although we are the authors of this review, we would never have been able to complete it without the great many people who have contributed to the field of exosomes biogenesis, functions, therapeutic and clinical implications of exosomes aspects. We owe our gratitude to all those researchers who have made this review possible. We have cited as many references as permitted and apologize to the authors of those publications that we have not cited due to the limitation of references. We apologize to other authors who have worked on these aspects but whom we have unintentionally overlooked.

This study was supported by the KU-Research Professor Program of Konkuk University.

This work was supported by a grant from the Science Research Center (2015R1A5A1009701) of the National Research Foundation of Korea.

The authors report no conflicts of interest related to this work..

1. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373383. doi:10.1083/jcb.201211138

2. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;113(Pt 19):33653374.

3. Yez-M M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066

4. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364372. doi:10.1016/j.tcb.2015.01.004

5. Yamamoto T, Kosaka N, Ochiya T. Latest advances in extracellular vesicles: from bench to bedside. Sci Technol Adv Mater. 2019;20(1):746757. doi:10.1080/14686996.2019.1629835

6. Valadi H, Ekstrm K, Bossios A, Sjstrand M, Lee JJ, Ltvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654659. doi:10.1038/ncb1596

7. Kosaka N, Ochiya T. Unraveling the mystery of cancer by secretory microRNA: horizontal microRNA transfer between living cells. Front Genet. 2011;2:97. doi:10.3389/fgene.2011.00097

8. Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287. doi:10.1038/ncomms15287

9. Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7(7):495504. doi:10.1038/nrm1959

10. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):1724. doi:10.1016/j.gpb.2015.02.001

11. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487514. doi:10.1146/annurev-biochem-013118-111902

12. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18. doi:10.3389/fcell.2018.00018

13. Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep. 2019;27(3):940954.e946. doi:10.1016/j.celrep.2019.01.009

14. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193208. doi:10.1007/s00018-017-2595-9

15. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577. doi:10.1371/journal.pone.0008577

16. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):12081215. doi:10.1172/jci81135

17. Thry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569579. doi:10.1038/nri855

18. Thry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581593. doi:10.1038/nri2567

19. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752760. doi:10.1002/ijc.20657

20. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008;18(5):199209. doi:10.1016/j.tcb.2008.03.002

21. Ferguson SW, Nguyen J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release. 2016;228:179190. doi:10.1016/j.jconrel.2016.02.037

22. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers (Basel). 2017;9(12):8. doi:10.3390/cancers9010008

23. Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(2):121131. doi:10.3109/10408363.2015.1092496

24. Quah BJ, ONeill HC. Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med. 2005;9(3):643654. doi:10.1111/j.1582-4934.2005.tb00494.x

25. Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomedicine. 2016;12(1):163169. doi:10.1016/j.nano.2015.09.011

26. Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130516. doi:10.1098/rstb.2013.0516

27. Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):15561564. doi:10.1002/stem.1129

28. Rajendran L, Honsho M, Zahn TR, et al. Alzheimers disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103(30):1117211177. doi:10.1073/pnas.0603838103

29. Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015;290(6):34553467. doi:10.1074/jbc.M114.605253

30. Simons M, Raposo G. Exosomesvesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575581. doi:10.1016/j.ceb.2009.03.007

31. Natasha G, Gundogan B, Tan A, et al. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36(6):820829. doi:10.1016/j.clinthera.2014.04.019

32. Pascucci L, Cocc V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262270. doi:10.1016/j.jconrel.2014.07.042

33. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinsons disease therapy. J Control Release. 2015;207:1830. doi:10.1016/j.jconrel.2015.03.033

34. Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol. 2014;49(1):590600. doi:10.1007/s12035-013-8544-1

35. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:4151. doi:10.1016/j.semcdb.2015.02.010

36. Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):55535565. doi:10.1242/jcs.128868

37. Ghossoub R, Lembo F, Rubio A, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477. doi:10.1038/ncomms4477

38. Kowal J, Tkach M, Thry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116125. doi:10.1016/j.ceb.2014.05.004

39. Villarroya-Beltri C, Baixauli F, Gutirrez-Vzquez C, Snchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:313. doi:10.1016/j.semcancer.2014.04.009

40. Fader CM, Snchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009;1793(12):19011916. doi:10.1016/j.bbamcr.2009.09.011

41. Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):1930; sup pp 1113. doi:10.1038/ncb2000

42. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):10361045. doi:10.1038/ncb2574

43. Hyenne V, Apaydin A, Rodriguez D, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211(1):2737. doi:10.1083/jcb.201504136

44. Gudbergsson JM, Johnsen KB, Skov MN, Duroux M. Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. 2016;68(4):579592. doi:10.1007/s10616-015-9913-6

45. Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360367. doi:10.1016/j.nbd.2011.01.029

46. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):23832390. doi:10.1016/j.biomaterials.2013.11.083

47. Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9:47. doi:10.1186/1479-5876-9-47

48. Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336341. doi:10.1016/j.addr.2012.07.001

49. Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ. Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp Cell Res. 2013;319(12):17061713. doi:10.1016/j.yexcr.2012.10.006

50. Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res. 2008;6(3):372382. doi:10.1158/1541-7786.Mcr-07-0162

The rest is here:
[Full text] A Comprehensive Review on Factors Influences Biogenesis, Functions, Th | IJN - Dove Medical Press

Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business

Drinking certain energy drinks may cause significant damage to the heart, according to new findings published in Food and Chemical Toxicology.

Because the consumption of these beverages is not regulated and they are widely accessible over the counter to all age groups, the potential for adverse health effects of these products is a subject of concern and needed research, lead researcher Ivan Rusyn, MD, PhD, a professor at Texas A&M University in College Station, said in a prepared statement.

Rusyn et al. assessed a total of 17 popular energy drinks, studying their chemical profiles and looking for any associations with potential cardiac complications. Energy drinks sold by Adrenaline, Shoc, Bang Star, C4, CELSIUS, HEAT, EBOOST, Game Fuel, GURU, Kill Cliff, Kickstart, Monster Energy, Red Bull, Reign, Rockstar, RUNA, UPTIME, Venom Energy and Xyience Energy were all part of the teams analysis.

Overall, the authors found that stem cell-derived cardiomyocyteshuman heart cells grown in a laboratoryshowed signs of an increased beat rate after being exposed to some energy drinks. Also, theophylline, adenine and azelate were all ingredients the team associated with potentially contributing to QT prolongation in cardiomyocytes.

Go here to see the original:
Energy drinks may damage the heart, researchers warnshould the FDA get involved? - Cardiovascular Business

bluebird bio Announces Temporary Suspension on Phase 1/2 and Phase 3 Studies of LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) – BioSpace

Feb. 16, 2021 12:00 UTC

CAMBRIDGE, Mass.--(BUSINESS WIRE)-- bluebird bio, Inc. (Nasdaq: BLUE) announced today that the company has placed its Phase 1/2 (HGB-206) and Phase 3 (HGB-210) studies of LentiGlobin gene therapy for sickle cell disease (SCD) (bb1111) on a temporary suspension due to a reported Suspected Unexpected Serious Adverse Reaction (SUSAR) of acute myeloid leukemia (AML).

In line with the clinical study protocols for HGB-206 and HGB-210, bluebird bio placed the studies on temporary suspension following a report received last week that a patient who was treated more than five years ago in Group A of HGB-206 was diagnosed with AML. The company is investigating the cause of this patients AML in order to determine if there is any relationship to the use of BB305 lentiviral vector in the manufacture of LentiGlobin gene therapy for SCD. In addition, a second SUSAR of myelodysplastic syndrome (MDS) in a patient from Group C of HGB-206 was reported last week to the company and is currently being investigated.

No cases of hematologic malignancy have been reported in any patient who has received treatment with betibeglogene autotemcel for transfusion-dependent -thalassemia (licensed as ZYNTEGLOTM in the European Union and the United Kingdom), however because it is also manufactured using the same BB305 lentiviral vector used in LentiGlobin gene therapy for SCD, the company has decided to temporarily suspend marketing of ZYNTEGLO while the AML case is assessed.

The safety of every patient who has participated in our studies or is treated with our gene therapies is the utmost priority for us, said Nick Leschly, chief bluebird. We are committed to fully assessing these cases in partnership with the healthcare providers supporting our clinical studies and appropriate regulatory agencies. Our thoughts are with these patients and their families during this time.

The independent safety review board monitoring the companys studies as well as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) have been advised of these cases and bluebird bio will continue to work with regulatory agencies to complete its investigation.

Investor Conference Call Information

bluebird bio will hold a conference call to discuss this update on Tuesday, February 16 at 8:00 a.m. ET. Investors may listen to the call by dialing (844) 825-4408 from locations in the United States or +1 (315) 625-3227 from outside the United States. Please refer to conference ID number 880-6406.

To access the live webcast of bluebird bios presentation, please visit the Events & Presentations page within the Investors & Media section of the bluebird bio website at http://investor.bluebirdbio.com. A replay of the webcast will be available on the bluebird bio website for 90 days following the event.

About HGB-206 and HGB-210

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A, B and C. A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

HGB-210 is an ongoing Phase 3 single-arm open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for SCD in patients between two years and 50 years of age with sickle cell disease.

About LentiGlobin for SCD (bb1111)

LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.

The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.

LentiGlobin for SCD is investigational and has not been approved in any geography.

About ZYNTEGLO (betibeglogene autotemcel)

Betibeglogene autotemcel (beti-cel) is a one-time gene therapy that adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived adult Hb, at levels that may eliminate or significantly reduce the need for transfusions. In studies of beti-cel, transfusion independence (TI) is defined as no longer needing red blood cell transfusions for at least 12 months while maintaining a weighted average Hb of at least 9 g/dL.

The European Commission granted conditional marketing authorization (CMA) for beti-cel, marketed as ZYNTEGLO gene therapy, for patients 12 years and older with transfusion-dependent -thalassemia (TDT) who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available.

Non-serious adverse events (AEs) observed during clinical studies that were attributed to beti-cel included abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnea, pain in extremity, tachycardia and non-cardiac chest pain. One serious adverse event (SAE) of thrombocytopenia was considered possibly related to beti-cel.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

For details, please see the Summary of Product Characteristics (SmPC).

On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for beti-cel. The CMA for beti-cel is valid in the 27 member states of the EU as well as the UK, Iceland, Liechtenstein and Norway.

The U.S. Food and Drug Administration granted beti-cel Orphan Drug status and Breakthrough Therapy designation for the treatment of TDT. Beti-cel is not approved in the U.S. Beti-cel continues to be evaluated in the ongoing Phase 3 Northstar-2 (HGB-207) and Northstar-3 (HGB-212) studies.

bluebird bio is conducting a long-term safety and efficacy follow-up study, LTF-303 for people who have participated in bluebird bio-sponsored clinical studies of ZYNTEGLO.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, betibeglogene autotemcel, beti-cel, and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Companys timing and expectations regarding its investigation of the relationship of the AML and MDS events to the use of lentiviral vector BB305 in LentiGlobin gene therapy for SCD, and any myeloablation regimen used in connection with treatment. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements, many of which are beyond the Companys control. These risks and uncertainties include, but are not limited to: the risk that the Company may not be able to definitively determine whether the lentiviral vector BB305 used in LentiGlobin gene therapy for SCD and in betibeglogene autotemcel is related to the patients AML in a timely manner, or at all; the risk that the lentiviral vector BB305 has caused insertional oncogenic events, including AML; the risk that insertional oncogenic events associated with lentiviral vector or additional MDS events associated with myeloablation will be discovered or reported over time; the risk that regulatory authorities may impose a clinical hold, in addition to our temporary clinical hold on the HGB-206 and HGB-210 studies, or on additional programs; the risk that we may not be able to address regulatory authorities concerns quickly or at all; the risk that we may not resume patient treatment with ZYNTEGLO in the commercial context in a timely manner or at all; the risk that our lentiviral vector platform across our severe genetic disease programs may be implicated, affecting the development and potential approval of elivaldogene autotemcel; the risk that we may not be able to execute on our business plans, including our commercialization plans, meeting our expected or planned regulatory milestones, submissions, and timelines, research and clinical development plans, and in bringing our product candidates to market; and the risk that with the impact on the execution and timing of our business plans, we may not successfully execute our previously announced plans to spin off our oncology programs into an independent publicly-traded entity. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210216005442/en/

Read the original:
bluebird bio Announces Temporary Suspension on Phase 1/2 and Phase 3 Studies of LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) - BioSpace

Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions – OncLive

Betibeglogene autotemcel (beti-cel), a one-time gene therapy, enabled durable transfusion independence in most patients with transfusion-dependent -thalassemia (TDT) who were treated across 4 clinical studies.

Of 60 patients enrolled overall, 17 of 22 (77%) treated in the 2 phase 1/2 studies were able to stop packed red blood cell transfusions. In the 2 phase 3 studies, which used a refined manufacturing process resulting in improved beti-cel characteristics, 89% (n = 31/35) of patients with at least 6 months of follow-up achieved transfusion independence for more than 6 months,1 reported Suradej Hongeng, MD, during the virtual 2021 Transplantation & Cellular Therapy Meetings.

The median follow-up after beti-cel infusion in the 4 studies has been 24.8 months (range, 1.1-71.8).

With up to 6 years of follow-up, 1-time beti-cel gene therapy enabled durable transfusion independence in the majority of patients, said Hongeng, from Ramathibodi Hospital of Mahidol University, in Bangkok, Thailand.

Patients who achieved transfusion independence experienced a 38% median reduction in liver iron concentration (LIC) from baseline to month 48. The median reduction in LIC was 59% in patients with a baseline LIC more than 15 mg/g dw. A total of 21 of 37 (57%) patients who achieved transfusion independence have stopped iron chelation for 6 months or longer, with a median duration of 18.5 months from stopping iron chelation to last follow-up.

Erythropoiesis as determined by soluble transferrin receptor level was also improved in transfusion-independent patients. Bone marrow biopsies showed improvement in the myeloid:erythroid ratio.

Beti-cel adds functional copies of a modified form of the -globin (A-T87Q-globin) gene into a patients own hematopoietic stem cells (HSCs) through transduction of autologous CD34+ cells using a BB305 lentiviral vector. Following single-agent busulfan myeloablative conditioning, beti-cel is infused, after which the transduced HSCs engraft and reconstitute red blood cells containing functional adult hemoglobin derived from the gene therapy.

Of the 60 patients treated, 43 were genotype non-/ and 17 were / . The median age at consent was 20 years in the phase 1/2 trials and 15 years in the phase 3 trials. Median LIC at baseline was 7.1 and 5.5 mg Fe/g dw, respectively, and median cardiac T2 was 34 and 37 msec, respectively. The vector copy number was 0.8 in the phase 1/2 trial and 3.0 in the phase 3 study. Additionally, 32t and 78t CD34+ cells were transduced, respectively.

The phase 1/2 studies showed promising results but lower achievement of transfusion independence in patients with the / genotype, leading to a refinement in the manufacturing process, which resulted in a higher number of transduced cells and a higher number of vector copy number, said Hongeng.

The median time to neutrophil engraftment was 22.5 days and the median time to platelet engraftment was 44 days. Lymphocyte subsets were generally within the normal range after beti-cel infusion, which is different from allogeneic stem cell [transplantation], which is probably around 6 months to a year to get complete recovery of immune reconstitution, he said. The median duration of hospitalization was 42 days.

All patients were alive at the last follow-up (March 3, 2020). Eleven of 60 (18%) of patients experienced at least 1 adverse event (AE) considered related or possibly related to beti-cel, the most common being abdominal pain (8%) and thrombocytopenia (5%). Serious AEs were those expected after myeloablative conditioning: veno-occlusive liver disease (8%), neutropenia (5%), pyrexia (5%), thrombocytopenia (5%), and appendicitis, febrile neutropenia, major depression, and stomatitis (3% each).

Of the 7 patients experiencing veno-occlusive liver disease, 3 were of grade 4 and 2 were of grade 3. Two other patients had grade 2 veno-occlusive disease. There were no cases of insertional oncogenesis.

Persistent vector-positive hematopoietic cells and durable HbaT87Q levels supported stable total hemoglobin over time. In phase 3 trials, the median peripheral blood vector copy number was 1.2 c/dg at month 12 and 2.0 c/dg at month 24, and the median total hemoglobin was 11.5 g/dL at month 12 and 12.9 g/dL at month 24.

The weighted average of hemoglobin during transfusion independence in the phase 1/2 trials was 10.4 g/dL, and patients were transfusion-independent for a median of 51.2 months. In the phase 3 studies, the weighted average of hemoglobin during transfusion independence was 11.9 g/dL, and patients were transfusion-independent for a medium 17.7 months.

Hongeng S, Thompson AA, Kwiatkowski JL, et al. Efficacy and safety of betibeglogene autotemcel (beti-cel; LentiGlobin for -thalassemia) gene therapy in 60 patients with transfusion-dependent -thalassemia (TDT) followed for up to 6 years post-infusion. Presented at: 2021 Transplantation & Cellular Therapy Meetings; February 8-12, 2021; virtual. Abstract 1.

Read this article:
Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions - OncLive

Archives