Archive for the ‘Cardiac Stem Cells’ Category
Stem cell heart repair study hailed
Malaysia to open new budget airport in MH370 shadow
Sepang (Malaysia) (AFP) - Malaysia this week opens what it calls the world's largest airport built specifically for low-cost airlines, a project driven by budget travel's phenomenal growth but which debuts under the shadow of missing flight MH370. The $1.2 billion facility near the main Kuala Lumpur International Airport (KLIA) was originally targeted to open three years ago but has been hit by repeated delays, amid concerns over safety and subpar construction, even as costs have doubled. But the new KLIA2 budget terminal will begin operations Friday with an initial 56 flights, increasing the load as airlines move full operations over from a nearby existing facility in coming days. Its modern design features soaring ceilings, natural lighting, people-mover belts and improved connectivity with access to an existing express airport train to Kuala Lumpur 50 kilometres (31 miles) away.
Excerpt from:
Stem cell heart repair study hailed
Stem cells aid heart regeneration in salamanders
Apr 29, 2014 Marbled Salamander, Ambystoma opacum. Location: Durham County, North Carolina, United States. Photograph by Patrick Coin, via Wikipedia.
Imagine filling a hole in your heart by regrowing the tissue. While that possibility is still being explored in people, it is a reality in salamanders. A recent discovery that newt hearts can regenerate may pave the way to new therapies in people who need to have damaged tissue replaced with healthy tissue.
Heart disease is the leading cause of deaths in the United States. Preventative measures like healthful diets and lifestyles help ward off heart problems, but if heart damage does occur, sophisticated treatments and surgical procedures often are necessary. Unfortunately, heart damage is typically irreversible, which is why researchers are seeking regenerative therapies that restore a damaged heart to its original capacity.
We have known for hundreds of years that newts and other types of salamanders regenerate limbs. If you cut off a leg or tail, it will grow back within a few weeks. Stanley Sessions, a researcher at Hartwich College in Oneonta, N.Y., wondered if this external phenomenon also took place internally. To find out, he surgically removed a piece of heart in more than two dozen newts.
"To our surprise, if you surgically remove part of the heart, (the creature) will regenerate a new heart within just six weeks or so," Sessions said. "In fact, you can remove up to half of the heart, and it will still regenerate completely!"
Before the research team dove deeper into this finding, Sessions and his three undergraduate students, Grace Mele, Jessica Rodriquez and Kayla Murphy, had to determine how a salamander could even live with a partial heart. It turns out that a clot forms at the surgical site, acting much like the cork in a wine bottle, to prevent the amphibian from bleeding to death.
What is the cork made of? In part, stem cells. Stem cells have unlimited potential for growth and can develop into cells with a specialized fate or function. Embryonic stem cells, for example, can give rise to all of the cells in the body and, thus, have promising potential for therapeutics.
As it turns out, stem cells play an important role in regeneration in newts. "We discovered that at least some of the stem cells for heart regeneration come from the blood, including the clot," Sessions explained.
This finding could have exciting implications for therapies in humans with heart damage. By finding the genes responsible for regeneration in the newt, researchers may be able to identify pathways that are similar in newts and people and could be used to induce regeneration in the human heart. In fact, a clinical trial performed just last year was the first to use stem-cell therapy to regenerate healthy tissue and repair a patient's heart.
Combining advances in medical and surgical technologies with the basic pathways of heart regeneration in newts could lead to better therapies for humans. Sessions posed this hopeful question: "Wouldn't it be great if we could find a way to activate heart stem cells to bioengineer new heart tissue so that we can actually repair damaged hearts in humans?"
The rest is here:
Stem cells aid heart regeneration in salamanders
Stem Cell Treatment For Heart And Knee : Cytopeutics
Home
When heart fails to pump out sufficient blood to the rest of the body as demanded, most often caused by heart attack and high blood pressure, heart muscles will be damaged. This is a condition called heart failure. Most people with heart failure complain of breathing difficulty that may happen during exercise, eating or even sleeping. Other common symptoms and signs are lethargy, ankle swelling, abdominal bloating, frequent urination and memory impairment.
Patient with heart failure also have a poor prognosis and high risk of developing dangerous heart rhythms triggered by the damaged tissue inside the heart.
Current established treatment includes medications that have been proven to alleviate symptoms and reduce the risk of death. Furthermore if the heart damage were caused by blockage of artery, then angioplasty or heart bypass operation may help as they can restore blood supply to parts of the heart that is starved of oxygen. Unfortunately none of the conventional and current treatments above could regenerate new heart muscle to replace the permanently damaged ones caused by previous heart attacks. Hence there will always be some degree of heart failure and progressive deterioration in health.
For patient with heart failure, Cardiocell treatment will repair damaged cells and provide growth of new heart muscle, hence increase the overall strength of heart and alleviate heart failure. In addition, Cardiocell replaces the scarred portions of the damaged heart with viable muscle. As these scarred areas can trigger dangerous heart rhythms and cause cardiac arrest, by replacing the scar tissue, Cardiocell not only improves heart failure but also reduces the risk of sudden death from cardiac arrest.
In studies using cells identical to Cardiocell for heart failure, patients benefited from symptom relief, improved exercise capacity and stamina, and reduction of angina. There is evidence of increased heart strength and contractility, reduction of heart swelling and scar tissue.
Cardiocell allows the heart to repair and reverse its damage that current conventional treatment cannot provide. It is therefore complementary to conventional heart failure therapy. It brings new hope and treatment option for heart failure patients who remain ill in spite of, or are ineligible for, current treatments.
Generally if you had a heart attack in the last 2 years which has resulted in severe heart failure now and you have exhausted current methods of treatment, then you may be eligible for CardiocellTM treatment. We welcome your participation in CardiocellTM pilot programme as part of Cytopeutics clinical study. However, you should consult your regular doctor or cardiologist to determine your eligibility criteria.
View patient brochure
See the original post here:
Stem Cell Treatment For Heart And Knee : Cytopeutics
The Stem Cell Center at Texas Heart Institute at St. Luke’s
Welcome
The Stem Cell Center Texas Heart Institute is dedicated to the study of adult stem cells and their role in treating diseases of the heart and the circulatory system. Through numerous clinical and preclinical studies, we have come to realize the potential of stem cells to help patients suffering from cardiovascular disease.We are actively enrolling patients in studies using stem cells for the treatment of heart failure, heart attacks, and peripheral vascular disease.
Whether you are a patient looking for information regarding our research, or a doctor hoping to learn more about stem cell therapy, we welcome you to the Stem Cell Center. Please visit our Clinical Trials page for more information about our current trials.
Emerson C. Perin, MD, PhD, FACC Director, Clinical Research for Cardiovascular Medicine Medical Director, Stem Cell Center McNair Scholar
You may contact us at:
E-mail: stemcell@texasheart.org Toll free: 1-866-924-STEM (7836) Phone: 832-355-9405 Fax: 832-355-9440
We are a network of physicians, scientists, and support staff dedicatedto studying stem cell therapy for treating heart disease. Thegoals of the Network are to complete research studies that will potentially lead to more effective treatments for patients with cardiovasculardisease, and to share knowledge quickly with the healthcare community.
Websitein Spanish (En espaol)
Read more from the original source:
The Stem Cell Center at Texas Heart Institute at St. Luke's
Gene Therapy and Stem Cell Therapy For Heart Failure
Two experimental approaches are showing promise for the treatment of heart failure due to dilated cardiomyopathy: gene therapy and stem cell therapy. Both of these approaches have received a lot of publicity, and you may be wondering how close they are to routine clinical use.
The answer is that they are both in the very early stages of investigation, and a lot more work has to be done before they become widely available.
In animal experiments, several genes have been tried, including genes for sarcoplasmic reticulum (a membrane within muscle cells that helps to control calcium movement); for adrenaline receptors (receptors on cell membranes that allow cells to respond to adrenaline); and for adenylyl cyclase (a protein that helps to generate energy within cells).
While the animal testing of gene therapy has shown significant promise, it has not yet become advanced enough to proceed to clinical trials.
Based on such promising findings, early stem cell therapy has now been applied, in a few small studies, in carefully selected patients.
Early human studies suggest that the transplanted stem cells do not actually take over the work of the heart, but rather, they produce certain substances (including cytokines, growth factors, and others) that help the "native" heart cells to function more efficiently. They also appear to stimulate "native" stem cells already present in the heart to differentiate into functioning cardiac cells.
There has been only a very limited experience so far using stem cells in patients with heart failure. The small studies that have been done suggest that stem cells can modestly improve cardiac function in certain patients with dilated cardiomyopathy. This improvement is shown by an improvement in the ejection fraction.
Potential risks of stem cell therapy include the possibility of ventricular tachycardia, which apparently is seen in many patients after the injection of stem cells. Because of this problem, some investigators now require patients to receive implantable defibrillators prior to certain types of stem cell therapy for heart failure. Also, observations suggest that in patients who have stents for coronary artery disease, restenosis (blockage) may be more frequent after stem cell treatment.
In summary, stem cell therapy for heart failure is still in its early stages of investigation. Major questions remain regarding what types of cells are best to use, how they should be delivered, how likely it is that there will be a significant long-term benefit, and whether the long-term safety of the technique is acceptable. While stem cell therapy has shown promise, investigators are still quite a ways from being ready for a major clinical trial, let alone for routine usage.
Sources:
Read more here:
Gene Therapy and Stem Cell Therapy For Heart Failure
How doctors are using a simple test in surgery to save blood and money
When Mike Towns went in for cardiac surgery recently, doctors hoped to save two things: his heart, and a few units of blood.
The 69-year-old retired owner of a general store in Duoro, a small town outside Peterborough, Ont., was having his aortic valve replaced at Torontos Peter Munk Cardiac Centre, where doctors have piloted an innovative bedside-testing regime to reduce the amount of blood and blood products pumped into patients at the end of heart surgery.
The new protocol has driven down the cardiac centres use of red blood cells by 20 per cent and blood products by 40 per cent, saving the hospital more than $1-million so far.
The pilot project, which is set to expand to a dozen other Canadian hospitals beginning in September, is part of a larger movement toward conserving blood in this country.
Experts say that movement will be critical to prevent blood shortages as the population ages. The older the baby boomers get, the more they are expected to require complex treatments that include transfusions and the less they are expected to roll up their sleeves and donate blood.
Its a looming demographic development that could begin to drain the countrys blood banks and drive up the cost of a system that already costs more than $465-million a year in provincial and territorial funding to operate.
There are calculations that suggest now that our blood has run out we only produce just enough to support cancer patients and surgical patients right now. Just enough, said Stuart McCluskey, medical director of the blood-conservation program at Peter Munk Cardiac Centre, which is located at Toronto General Hospital.
Theres a finite amount of donors. This is such an important initiative because the only way to make the balance sheet work is to reduce the utilization of blood when its not needed.
A 2012 study in the journal Transfusion projected that demand for blood could begin exceeding supply the same year the paper was published.
The researchers dug into the 2008 figures for blood donation and blood use in Ontario a province they considered a fair proxy for supply and demand rates in the rest of the country and then extrapolated out to the year 2036. If the trends hold, red blood cell demand is forecasted to outstrip supply as soon as 2012, the study concluded.
Read the original here:
How doctors are using a simple test in surgery to save blood and money
Researchers develop new tool to check cells' 'batteries'
4 hours ago by Josh Barney Researchers at U.Va.'s School of Medicine have created a method to illuminate and understand mitochondria in living creatures like never before.
(Medical Xpress)Under the microscope, they glow like streetlights, forming tidy rows that follow the striations of muscle tissue. They are mitochondria the powerhouses of cells and researchers at the University of Virginia School of Medicine have created a method to illuminate and understand them in living creatures like never before.
Not only can the researchers make the mitochondria glow for the microscope, but they also can discern from that fluorescence the mitochondria's age, their health, even their stress level. And ultimately that glow, in its soft reds and greens, will shed light on human health and a massive array of illnesses, from diabetes to Parkinson's disease to cancer.
"Mitochondrial health is important for physiology and disease. That is well-known," said researcher Zhen Yan of U.Va.'s Cardiovascular Research Center. "However, the whole field of mitochondrial health is largely unexplored, in large part because of the lack of useful tools. This has hindered the understanding of the importance of mitochondria in disease development.
"With this study we have, for the first time, shown that we can use a reporter gene to measure mitochondrial health robustly in vivo. We believe this tool will allow us to get into the field of mitochondrial biology like never before. Before, we could see the mitochondria under an electron microscope. That showed us only what they looked like. Now we can measure the health of millions of mitochondria at the click of a button."
The reporter gene on which Yan and his team based the new tool is a type of gene used in scientific research to determine the activity and function of other genes. The reporter gene produces a protein that glows green when newly made; the protein then transitions to red as it ages. By giving the reporter gene specific targeting directions, the researchers were able to instruct the protein to enter the mitochondria, setting them aglow.
"So now we have fluorescent mitochondria, which are fluorescent green initially and then, as the mitochondria age or become oxidized, they transition to red, so that we can assess the oxidation status," said Rhianna Laker, a postdoctoral fellow in Yan's lab and the lead author of a new paper detailing the work.
The researchers have put their tool to the test in flies, worms and mice. They found that mice fed a high-fat diet had more red mitochondria, meaning the mitochondria were stressed or oxidized, while mice that exercised had more green mitochondria, Laker said. That finding speaks both to the importance of exercise and to the potential diagnostic power of the new tool, dubbed the MitoTimer.
Yan's lab collaborated with Jeff Saucerman of the Department of Biomedical Engineering to take the work to the next level. Saucerman's team has developed a computer program that can analyze the degree of mitochondrial fluorescence to assess both individual mitochondria and the overall ratio of red to green in a particular area. That ratio speaks to the health of the cells.
The mitochondria are also a sensor of metabolic state and stress, Yan said.
Excerpt from:
Researchers develop new tool to check cells' 'batteries'
What Is Stem Cell Therapy | Stem Cell For Heart | Cardiac …
What Is Cardiac Cell Therapy?
In its simplest form, cardiac cell therapy is simply the use of stem cells to regenerate new heart tissue. Stem cells were originally used to grow your heart before you were born. Stem cells capable of growing new heart tissue reside in all of us. Through the use of trial-tested technologies, your own stem cells can be used to grow and repair your cardiac tissue.
The most difficult aspect of this therapy was developing a way to isolate your stem cells and put them to use to grow new heart tissue. And thanks to years of research, this process has been developed and tested in clinical trials with favorable results.
What Is The Procedure?
There is a wide variety of methods of placing stem cells in the body or near the organ they are intended to help. One procedure tested under trial is through the use of catheters (a specialized tube) and is being implemented in a new state-of-the-art clinic by a U.S. licensed veteran cardiologist. This process requires only a local anesthetic and minimal recovery time (hours vs days). And your own cardiologist is consulted closely to make sure you are a good candidate for the procedure and to monitor your improvements when you return home.
If you'd like our recommendations on qualified cardiac stem cell clinics, please don't hesitate to contact us at info@heartcell.org or call us at (310) 362-0562. We'd be happy to connect you to a clinic, doctor or stem cell patient for you to explore your options further.
Read this article:
What Is Stem Cell Therapy | Stem Cell For Heart | Cardiac ...
Stem Cells Can Revive Failing Heart
Stem cells injected directly into heart muscle can help patients suffering from severe heart failure by improving an ailing heart's ability to pump blood, a new Danish trial indicates.
Doctors drew stem cells from patients' own bone marrow, and then injected those cells into portions of the heart where scar tissue seemed to interfere with heart function, explained lead researcher Dr. Anders Bruun Mathiasen. He is a research fellow in the Cardiac Catheterization Lab at Rigshospitalet University Hospital Copenhagen.
Within six months of treatment, patients who received stem cell injections had improved heart pumping function compared to patients receiving a placebo, according to findings that were to be presented Monday at the American Academy of Cardiology's annual meeting in Washington, D.C.
"We know these stem cells can initiate the growth of new blood vessels and heart muscle tissue," Mathiasen said. "That's what we think has happened."
If larger follow-up trials prove the treatment's effectiveness, it could provide hope for people suffering from untreatable heart failure.
"Heart failure is one of the biggest causes of death. If you can save lives or improve their symptoms, then a treatment like this would be extremely beneficial," said Dr. Cindy Grines, a cardiologist with the Detroit Medical Center and a spokeswoman for the American College of Cardiology.
The treatment could delay the need for a heart transplant and extend the lives of people who can't qualify for a transplant, Grines added.
This new clinical trial included 59 patients with severe heart failure who were considered untreatable. It is the largest randomized trial to test the potential of stem cell injections in treating heart disease, the researchers said.
In the trial, 39 patients received injections of stem cells into their heart muscle through a catheter inserted in the groin. The procedure required only local anesthesia, Mathiasen said. The other 20 received saline injections.
Doctors first mapped the patient's heart using a sensor sent through the catheter that tracks both heart movement and voltage conducted by heart tissue.
Go here to read the rest:
Stem Cells Can Revive Failing Heart
New human trial shows stem cells are effective for failing …
Patients with severe ischemic heart disease and heart failure can benefit from a new treatment in which stem cells found in bone marrow are injected directly into the heart muscle, according to research presented at the American College of Cardiology's 63rd Annual Scientific Session.
"Our results show that this stem cell treatment is safe and it improves heart function when compared to placebo," said Anders Bruun Mathiasen, M.D., research fellow in the Cardiac Catherization Lab at Rigshospitalet University Hospital Copenhagen, and lead investigator of the study. "This represents an exciting development that has the potential to benefit many people who suffer from this common and deadly disease."
Ischemic heart disease, also known as coronary artery disease, is the number one cause of death for both men and women in the United States. It results from a gradual buildup of plaque in the heart's coronary arteries and can lead to chest pain, heart attack and heart failure.
The study is the largest placebo-controlled double-blind randomized trial to treat patients with chronic ischemic heart failure by injecting a type of stem cell known as mesenchymal stromal cells directly into the heart muscle.
Six months after treatment, patients who received stem cell injections had improved heart pump function compared to patients receiving a placebo. Treated patients showed an 8.2-milliliter decrease in the study's primary endpoint, end systolic volume, which indicates the lowest volume of blood in the heart during the pumping cycle and is a key measure of the heart's ability to pump effectively. The placebo group showed an increase of 6 milliliters in end systolic volume.
The study included 59 patients with chronic ischemic heart disease and severe heart failure. Each patient first underwent a procedure to extract a small amount of bone marrow. Researchers then isolated from the marrow a small number of mesenchymal stromal cells and induced the cells to self-replicate. Patients then received an injection of either saline placebo or their own cultured mesenchymal stromal cells into the heart muscle through a catheter inserted in the groin.
"Isolating and culturing the stem cells is a relatively straightforward process, and the procedure to inject the stem cells into the heart requires only local anesthesia, so it appears to be all-in-all a promising treatment for patients who have no other options," Mathiasen said.
Although there are other therapies available for patients with ischemic heart disease, these therapies do not help all patients and many patients continue to face fatigue, shortness of breath and accumulation of fluid in the lungs and legs.
Previous studies have shown mesenchymal stromal cells can stimulate repair and regeneration in a variety of tissues, including heart muscle. Mathiasen said in the case of ischemic heart failure, the treatment likely works by facilitating the growth of new blood vessels and new heart muscle.
The study also supports findings from previous, smaller studies, which showed reduced scar tissue in the hearts of patients who received the stem cell treatment, offering additional confirmation that the treatment stimulates the growth of new heart muscle cells.
View post:
New human trial shows stem cells are effective for failing ...
"Mini hearts" on veins could be used to treat circulatory problems
When someone has chronic venous insufficiency, it means that because of faulty valves in their leg veins, oxygen-poor blood isn't able to be pumped back to their heart. The George Washington University's Dr. Narine Sarvazyan has created a possible solution, however a beating "mini heart" that's wrapped around the vein, to help push the blood through.
The mini heart takes the form of a cuff of rhythmically-contracting heart tissue, made by coaxing the patient's own adult stem cells into becoming cardiac cells. When one of those cuffs is placed around a vein, its contractions aid in the unidirectional flow of blood, plus it helps keep the vein from becoming distended. Additionally, because it's grown from the patient's own cells, there's little chance of rejection.
So far, the cuffs have been grown in the lab, where they've also been tested. Soon, however, Sarvazyan hopes to conduct animal trials, in which the cuffs are actually grown on the vein, in the body.
"We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs," she said. "We can make a new heart outside of ones own heart, and by placing it in the lower extremities, significantly improve venous blood flow."
Scientists at Germany's Fraunhofer Institute for Manufacturing Engineering and Automation are also working on a treatment for chronic venous insufficiency, although their approach has been to create artificial venous valves that could be used to replace the defective natural ones.
A paper on Sarvazyan's research was recently published in the Journal of Cardiovascular Pharmacology and Therapeutics. One of the mini hearts can be seen beating away, in the video below.
Source: The George Washington University
Read more here:
"Mini hearts" on veins could be used to treat circulatory problems
'Mini heart' invented to help return venous blood
George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection.
"We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs," said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "We can make a new heart outside of one's own heart, and by placing it in the lower extremities, significantly improve venous blood flow."
The novel approach of creating 'mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.
This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.
Story Source:
The above story is based on materials provided by George Washington University. Note: Materials may be edited for content and length.
See the article here:
'Mini heart' invented to help return venous blood
GW researcher invents 'mini heart' to help return venous blood
PUBLIC RELEASE DATE:
27-Mar-2014
Contact: Lisa Anderson lisama2@gwu.edu 202-994-3121 George Washington University
WASHINGTON (March 27, 2014) George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection.
"We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs," said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "We can make a new heart outside of one's own heart, and by placing it in the lower extremities, significantly improve venous blood flow."
The novel approach of creating 'mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.
This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.
###
The study, titled "Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency," is available at http://cpt.sagepub.com/content/early/2014/01/20/1074248413520343.full.
Media: To interview Dr. Sarvazyan about her research, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.
See the original post:
GW researcher invents 'mini heart' to help return venous blood
Researcher Invents 'Mini Heart' to Help Return Venous Blood
Contact Information
Available for logged-in reporters only
Newswise WASHINGTON (March 27, 2014) George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patients own adult stem cells, eliminating the chance of implant rejection.
We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs, said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. We can make a new heart outside of ones own heart, and by placing it in the lower extremities, significantly improve venous blood flow.
The novel approach of creating mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.
This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.
The study, titled Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency, is available at http://cpt.sagepub.com/content/early/2014/01/20/1074248413520343.full.
Media: To interview Dr. Sarvazyan about her research, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.
###
About the GW School of Medicine and Health Sciences:
Visit link:
Researcher Invents 'Mini Heart' to Help Return Venous Blood
Two Cedars-Sinai Heart Institute Physicians Honored by American College of Cardiology
Contact Information
Available for logged-in reporters only
Newswise LOS ANGELES (March 27, 2014) Two Cedars-Sinai Heart Institute physician-researchers have been named recipients of prestigious awards from the American College of Cardiology.
Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and a pioneer in developing cardiac stem cell treatments, will be awarded the 2014 Distinguished Scientist Award (Basic Domain) by the 40,000-member medical society during its 63rd Annual Scientific Session on March 31.
Sumeet Chugh, MD, associate director of the Heart Institute and a leading expert on heart rhythm disorders such as sudden cardiac arrest and atrial fibrillation, is to receive the Simon Dack Award for Outstanding Scholarship in recognition of Chughs contributions to the organizations peer-reviewed medical journals.
Dr. Marbn has earned the prestigious title of Distinguished Scientist by pioneering the development of stem cell treatments that can regenerate healthy heart muscle, said Shlomo Melmed, MD, senior vice president of Academic Affairs, dean of the Cedars-Sinai medical faculty and the Helene A. and Philip E. Hixon Chair in Investigative Medicine. Dr. Chugh is leading the quest to unlock the mysteries of how to prevent sudden cardiac arrest, which is 99 percent fatal. Their work is advancing life-saving treatments for patients all over the world and is a testament to the outstanding work of the Heart Institute.
Using techniques that he invented to isolate and grow stem cells from a patient's own heart tissue, Marbn designed and completed the first-in-human cardiac stem cell trial, called CADUCEUS, funded by the National Institutes of Health. The study was the first to show that stem cell therapy can repair damage to the heart muscle caused by a heart attack. Currently, a new, multicenter stem cell clinical trial called ALLSTAR is measuring the effectiveness of donor heart stem cells in treating heart attack patients.
A native of Cuba, Marbn came to the United States with his parents at age 6 as a political refugee. He earned his bachelor's degree in mathematics from Wilkes College in Pennsylvania, and then attended the Yale University School of Medicine in a combined MD/PhD program. Among the many honors Marbn has received are the Basic Research Prize of the American Heart Association the Research Achievement Award of the International Society for Heart Research, the Gill Heart Institute Award and the Distinguished Scientist Award of the American Heart Association.
Chugh, the Pauline and Harold Price Chair in Cardiac Electrophysiology, is an expert in the performance of radio frequency ablation procedures as well as the use of pacemakers, defibrillators and biventricular devices to correct heart rhythm problems. The author of more than 250 articles and abstracts in professional journals, Chugh initiated and directs the ongoing Oregon Sudden Unexpected Death Study, a large, comprehensive assessment of sudden cardiac arrest in a community of 1 million residents. Chugh leads the World Health Organization panel that is charged with performing a worldwide assessment of heart rhythm disorders for the Global Burden of Disease Study.
After earning his medical degree from Government Medical College Patiala, India, Chugh spent the first year of his internal medicine residency at Tufts Newton Wellesley Hospital in Boston and the next two years at Hennepin County Medical Center in Minneapolis. He completed a fellowship in cardiology at the University of Minnesota and a fellowship in clinical cardiac electrophysiology at Mayo Clinic in Rochester, Minn.
Excerpt from:
Two Cedars-Sinai Heart Institute Physicians Honored by American College of Cardiology
Pioneers in Adult Stem Cell Therapy Honored
The Alliance for the Advancement of Adult Stem Cell Therapy and Research hosted an awards luncheon for doctors and patients from around the world to recognize and honor their outstanding contributions and achievements in adult stem cell therapy. The Stem Cell Alliance event celebrated the revolutionary strides in the field of adult stem cell treatments for cardiac, pulmonary, neurological, spinal cord injuries and vascular diseases.
The Stem Cell Alliance event celebrated the revolutionary strides in the field of adult stem cell treatments for cardiac, pulmonary, neurological, spinal cord injuries and vascular diseases. Kelly Drouin of the Stem Cell Alliance, conferred awards to the Regenocyte medical team including Doctors Zannos Grekos, Hector Rosario, Eduardo Mejia and, in absentia, Victor Matos for their work and dedication in adult stem cell research and treatment.
These doctors are pioneers in clinical application of adult stem cell therapy and heroes to the many patients in attendance. Some of the patients had lost all hope after being told by their own doctors that they were out of options in the treatment of their disease, said Drouin.
The Stem Cell Alliance also recognized and awarded each of the attending patients for their courage and for leading the way for others to follow by undergoing adult stem cell treatment. Each patient spoke with heartfelt conviction; describing their prognosis and the life-saving benefits of the adult stem cell therapy they received.
Quality of life improvements measured by being able to independently transfer or dress yourself or walking without a cane, not needing an oxygen tank, or no longer requiring a defibrillator are priceless, stated Jonathan Fields, adult stem cell recipient and founder of the Jonathan Fields Save a Life Heal a Heart Foundation, dedicated to the advancement of adult stem cells for the treatment of heart disease.
The Alliance for the Advancement of Adult Stem Cell Therapy and Researchs mission is to educate the public on the process and the benefits of non-controversial adult stem cell therapy, to promote the use of adult stem cells in the research and treatment of life-altering diseases and, lastly, to provide financial assistance to those who medically qualify and cannot otherwise afford treatment.
Contact: Kelly Drouin The Alliance for the Advancement of Adult Stem Cell Therapy and Research Phone: (888)663-9974 Email: KellyDrouin@thestemcellalliance.org
Visit link:
Pioneers in Adult Stem Cell Therapy Honored
Leading Surgeons Warn Against Media Hype About Tracheal Regeneration
Contact Information
Available for logged-in reporters only
Newswise Beverly, MA, March 24, 2014 Reports of the two earliest tissue-engineered whole organ transplants using a windpipe, or trachea, created using the patient's own stem cells, were hailed as a breakthrough for regenerative medicine and widely publicized in the press. However, two leading transplant surgeons in Belgium warn of the dangers of media attention, and urge that tracheal bioengineering be demonstrated as both effective and safe before further transplants take place. Their views are published in an Editorial in The Journal of Thoracic and Cardiovascular Surgery, an official publication of the American Association for Thoracic Surgery.
In 2008, surgeons repopulated a donor trachea with cells from a 30-year-old woman, which they then transplanted into the patient. In 2011, a 36-year-old man who had been suffering from late-stage tracheal cancer was given a new trachea made from a synthetic scaffold seeded with his own stem cells. Both procedures were carried out by Professor Paolo Macchiarini and colleagues (Barcelona, 2008, and Sweden, 2011).
In 2012, an article in The New York Times, A First: Organs Tailor-Made With Bodys Own Cells, recognized tracheal regeneration as the first regenerative medicine procedure designed to implant bioartificial organs. The achievement was touted as the beginning of complex organ engineering for the heart, liver, and kidneys, and it was suggested that allotransplantation along with immunosuppression might become problems of the past.
Major medical breakthroughs deserve the necessary press attention to inform the medical community and public of the news, say Pierre R. Delaere, MD, PhD, and Dirk Van Raemdonck, MD, PhD, from the Department of Otolaryngology Head & Neck Surgery and the Department of Thoracic Surgery, University Hospital Leuven, Belgium. Unfortunately, misrepresentation of medical information can occur and is particularly problematic when members of the professional and public press are misled to believe unrealistic medical breakthroughs.
The authors raise doubts regarding whether a synthetic tube can transform into a viable airway tube, pointing out that the mechanism behind the transformation from nonviable construct to viable airway cannot be explained with our current knowledge of tissue healing, tissue transplantation, and tissue regeneration. Cells have never been observed to adhere, grow, and regenerate into complex tissues when applied to an avascular or synthetic scaffold and, moreover, this advanced form of tissue regeneration has never been observed in laboratory-based research, say the authors.
Delaere and Van Raemdonck reviewed the information gathered from published reports on three patients who received bioengineered tracheas and unpublished reports on an additional 11 patients. Although there were differences between the techniques used, production of the bioengineered trachea in all cases produced similar results, and the different approaches worked in comparable ways.
The results show that mortality and morbidity were very high. Several patients died within a three-month period, and the patients who survived longer functioned with an airway stent that preserved the airway lumen, they observe.
They also question whether the trachea can really be considered to be the first bioengineered organ. From the 14 reports reviewed, they concluded that the bioengineered tracheal replacements were in fact airway replacements that functioned only as scaffolds, behaving in a similar way to synthetic tracheal prostheses.
Read the rest here:
Leading Surgeons Warn Against Media Hype About Tracheal Regeneration
Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella …
Miami (PRWEB) March 20, 2014
Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group Inc., and Bioheart, Inc. Chief Scientific Officer Kristin Comella will be featured speakers at the 31st American Association of Orthopedic Medicine Annual Conference (AAOM) Conference and Scientific Seminar in Clearwater Beach, Florida April 9-12, 2014. Co-sponsored by the American Board of Quality Assurance and Utilization Review Physicians, Inc. (ABQAURP), the conference, titled Sports, Spine and Beyond: Latest Advances in Regenerative Orthopedic Medicine, will focus on the newest breakthroughs in the field of orthopedic medicine.
Purita, Novas and Comella will present the latest advances in stem cell therapies in sports medicine, regenerative orthopedic medicine and interventional pain medicine, including techniques for extracting stem cells from adipose tissue to use in patient treatments. Purita is a pioneer in the use of stem cells in orthopedics and founder of the Institute of Regenerative and Molecular Orthopedics in Boca Raton, Florida. Novas is a lead trainer and part of the research and development team for Stem Cell Training, a Global Stem Cells Group subsidiary.
Comella has more than 15 years experience in cell culturing and developing stem cell therapies for degenerative diseases and experience in corporate entities, with expertise in regenerative medicine, training and education, research, product development and senior management.
The conference will explore advances in other non-traditional treatments in sports and regenerative orthopedic medicine including manual medicine, nutrition, bioidentical hormone replacement therapy, musculoskeletal ultrasound and more. The goal of the AAOM Conference is to bring sports medicine physicians, PM&R specialists (physiatrists), family medicine physicians, orthopedic surgeons, neurologists and interventional pain physiciansincluding anesthesiologists and osteopathic pain physiciansthe latest state-of-the-art techniques and technologies to help treat their patients performance-related pain and injuries, overuse syndromes and chronic pain.
For more information on the 31st AAOM Annual Conference and Scientific Seminar, visit the AAOM website.
About the Global Stem Cells Group:
Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.
Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.
To learn more about Global Stem Cells Group, Inc.s companies and for investor information, visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.
See the article here:
Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella ...
Cellular 'counting' of rhythmic signals synchronizes changes in cell fate
Mar 20, 2014 Levels of the regulatory protein GtaC, tagged with green fluorescent protein, increase in the nucleus every six minutes. GtaC turns on genes that prepare cells to move. The image is a compilation of eight photos, taken at 3.5 minute intervals, showing GtaC's location in a single cell as it moves. Credit: Huaqing Cai
Johns Hopkins biologists have discovered that when biological signals hit cells in rhythmic waves, the magnitude of the cells' response can depend on the number of signaling cyclesnot their strength or duration. Because such so-called "oscillating signaling cycles" are common in many biological systems, the scientists expect their findings in single-celled organisms to help explain the molecular workings of phenomena such as tissue and organ formation and fundamental forms of learning.
In a report to be published online in the journal Science on March 21, the investigators say their experiments in amoebae show how repeated pulses of a signal cause short bursts of specific gene activity, the products of which linger and build with each new pulse. The cumulative amount of these gene products ultimately affects changes in cell fate.
"The mechanism we discovered here illustrates how a single cell can keep track of the number of times it has received a signal," says Peter Devreotes, Ph.D., professor and director of the Department of Cell Biology. "In most signaling systems, the cellular response depends on the strength or duration of the signal. This system allows the cells to count."
The Devreotes team says they figured out this signaling system in the amoeba Dictyostelium discoideum, a single-celled organism that can cluster to form a multi-celled structure that helps it survive when resources are scarce. At the heart of this process, they say, is a communication molecule called cAMP, a chemical released by starving cells in periodic spurtsevery six minutesthat is sensed by other cells nearby. The signal triggers a series of steps needed for the cells to join together and form specialized types of cells within the group makeup.
Devreotes says, "We have known since the 1970s that the cAMP signals achieve their best effect when they arrive every six minutesnot more and not lessbut we had no idea why."
To find out, the Johns Hopkins team focused on the behavior of a regulatory protein called GtaC, which is similar to the human GATA genes known to control stem cell fate in many tissues. Amoebae that lack GtaC can't activate the genes that enable the initially similar cells to cluster and to become the specialized cell types of the multicellular structure.
When the researchers attached GtaC to a protein that glows green, they saw that it entered the amoeba cell nucleus, left the nucleus and then entered again at a pace like the six-minute pulses of cAMP. If the researchers gave the cells a continuous supply of cAMP, GtaC would leave the nucleus after a brief lag and remain outside of it for as long as cAMP was present. When they removed cAMP, GtaC would re-enter the nucleus.
The researchers then engineered GtaC to stay put in the nucleus and found that the cells began to come together and specialize prematurely. However, in cells that lacked cAMP, the team found that these processes were not turned on even with GtaC in the nucleus.
To better understand the role of GtaC, the researchers used a protein that can glow to show when GtaC turned on a particular gene. What they found was another rhythmic, six-minute pattern of activity: The glowing spots indicating gene activity peaked in intensity approximately every six minutes and lagged about three minutes behind the peak of GtaC accumulation in the nucleus. According to Devreotes, this three-minute lag is likely due to the time it takes for the gene to be turned on and seen.
Follow this link:
Cellular 'counting' of rhythmic signals synchronizes changes in cell fate
Catching the early spread of breast cancer
7 hours ago
When cancer spreads from one part of the body to another, it becomes even more deadly. It moves with stealth and can go undetected for months or years. But a new technology that uses "nano-flares" has the potential to catch these lurking, mobilized tumor cells early on. Today, scientists presented the latest advances in nano-flare technology as it applies to the detection of metastatic breast cancer cells.
The report was one of more than 10,000 at the 247th National Meeting & Exposition of the American Chemical Society (ACS).
"We've taken perhaps the world's most important molecule, DNA, rearranged it into a spherical shape and modified it to detect specific molecules inside cells. These structures naturally enter cells and light up when they detect disease-causing molecules," said Chad Mirkin, Ph.D., who is collaborating with C. Shad Thaxton, M.D., Ph.D., to develop the new technology. "We're seeing if we can use nano-flares to create a new type of breast cancer diagnostic, and the early results are remarkable. Nano-flares could completely and radically change how we diagnose breast cancer."
Earlier is better when it comes to cancer detection, but sometimes, by the time a patient notices symptoms and visits a doctor, the first tumor has already spread from its original location in the body to another. It has undergone "metastasis," a state that causes many deaths related to cancer. Cancer took the lives of more than 8 million people worldwide in 2012.
To catch breast cancerand possibly other types of cancersearlier, the research groups built upon Mirkin's ongoing program that kicked off in the 1990s with the invention of "spherical nucleic acids" (SNAs). SNAs are usually made out of a gold nanoparticle core covered with densely packed, short strands of DNA.
"We thought that if we could get large amounts of nucleic acids to go inside cells, we could manipulate and measure things inside cells," said Mirkin, of Northwestern University. "Most people said we were wasting our time, but then out of curiosity, we put these particles in cell culture. Not only did we find that they go in, they went in better than any material known to man."
Taking advantage of their ability to enter cells easily, Mirkin's group set out to turn SNAs into a diagnostic toolthe nano-flare. Recently, he and Thaxton designed these particles, which enter circulating healthy and unhealthy cells in blood samples, but light up only inside breast cancer cells.
"Nano-flares can detect just a few cancer cells in a sea of healthy cells," Mirkin said. "That's important because when cancer spreads, only a few cells may break off from the original tumor and go into the bloodstream. An added bonus of these particles is that scientists may be able to sample the live cancerous cells and figure out what therapies they might respond to."
The groups have successfully tested the nano-flares' ability to identify metastatic breast cancer cells in blood samples from animals and are currently experimenting with human samples.
Visit link:
Catching the early spread of breast cancer
Okyanos Heart Institute Announces Completion of Investment Funding
Freeport, Bahamas (PRWEB) March 18, 2014
Okyanos Heart Institute, whose mission it is to bring a new standard of care and a better quality of life to patients with coronary artery disease (CAD) using adult stem cell therapy, announced today it has raised $8.9 million in its Series B offering. Passion Group founder Ali Shawkat led the round and is a visionary entrepreneur-investor with success in a diverse set of industries including cellular services, telecom, media and healthcare.
Okyanos has the vision, medical leadership, adult stem cell technology and business model to better the lives of millions of patients, their families and society, said Shawkat. Cell therapy promises to be a new pillar of medicine as it is based on the natural biology of the body.
"This funding brings Okyanos' total funding to $14.2 million. Financial strength is integral to our commitment to treat patients with cardiac cell therapy at the highest standards of safety and care, stated Matthew Feshbach, co-founder and CEO of Okyanos.
Okyanos' cardiac cell therapy utilizes cells known as adipose-derived stem and regenerative cells (ADRCs), processed by Cytori Therapeutics (NASDAQ: CYTX) Celution system, a technology which has been approved and is commercially available in Europe, Australia, New Zealand, Singapore and other international jurisdictions for various indications of use.
The company has procured a state-of-the-art Philips cath lab and is building out a center of excellence capable of treating over 1000 patients per year in Freeport, The Bahamas. Based on the recommendations of the Bahamas Stem Cell Task Force, which thoroughly studied the safety and efficacy of adult stem cell therapy, the Bahamas passed stem cell legislation in August, 2013.
Feshbach further stated, We have a sophisticated, entrepreneurial group of investors who are like-minded in our purpose to safely improve the quality of life of patients suffering from illnesses such as CAD, using adult stem cells derived from adipose (fat) tissue, added Feshbach. We appreciate the significant leadership and support of Mr. Shawkat who shares the Okyanos commitment.
The company will begin treating patients with coronary artery disease using their own stem cells in the summer of 2014.
About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow. For more information, go to http://www.okyanos.com.
Continue reading here:
Okyanos Heart Institute Announces Completion of Investment Funding
Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells
PUBLIC RELEASE DATE:
18-Mar-2014
Contact: Bei Shi shi_bei2147@126.com Society for Experimental Biology and Medicine
Bei Shi, Xianping Long, Ranzun Zhao, Zhijiang Liu, Dongmei Wang and Guanxue Xu, researchers at the First Affiliated Hospital of Zunyi Medical College within the Guizhou Province of China, have reported an approach for improving the use of stem cells for improvement of infarcted heart function and damage to the arteries in the March 2013 issue of Experimental Biology and Medicine. They have discovered that mesenchymal stem cells (MSCs) transfected with a recombinant adenovirus containing the human receptor activity-modifying protein 1 (hRAMP1) gene (EGFP-hRAMP1-MSCs) when transplanted into rabbit models for both Myocardial infarction (MI) and carotid artery injury inhibit vascular smooth muscle cell (VSMC) proliferation within the neointima, and greatly improved both infarcted heart function and endothelial recovery from artery injury more efficiently than the control EGFP-MSCs.
MSCs have good applicability for cell transplantation because they possess self-renewal and multiple differentiation potential. With addition of either environmental or chemical substances, MSCs can differentiate into a variety of cell types. Numerous animal experiments and small clinical trials have shown that MSC transplantation can promote the formation of new blood vessels and reduce myocardial infarct size, and diminish the formation of scar tissue and ventricular remodeling, and improve cardiac functions. Nevertheless, MSCs have the potential to differentiate into VSMCs and may be the source of proliferating VSMCs during neointima formation after vascular injury. Recently, genetically modified MSCs, such as heme oxygenase-1(HO-1), granulocyte colony-stimulating factor (G-CSF) over-expressing MSCs, have proven to be more efficient at ameliorating infarcted myocardium than administering MSCs alone.
Calcitonin gene related protein (CGRP) is one of the most well-known potent vasodilators and can regulate vascular tone and other aspects of vascular function. The receptors for CGRP include the calcitonin receptor-like receptor (CRLR), RAMP1, and the receptor component protein. RAMP1 confers ligand specificity for CGRP. The relaxation of the artery in response to CGRP is dependent on RAMP1 expression. The response to CGRP is augmented after the increased expression of RAMP1 in VSMCs in culture.
RAMP1 over-expression increased CGRP-induced vasodilation and protected against angiotensin II-induced endothelial dysfunction as well as prevented VSMCs proliferation. In this study, we tested the effects of human RAMP1-over-expressing MSCs on infarcted heart function and intimal hyperplasia by means of cell transplantation in rabbit models for MI reperfusion and carotid artery injury. Bei Shi said "Our data has shown that hRAMP1 over-expression in MSCs through genetic modification significantly inhibits neointimal proliferation and improves infarcted heart function."
Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "The effect of stem cell therapy with the RAMP1 expressing MSCs has been shown, by Bei Shi and colleagues, to reduce neointimal proliferation in the carotid angioplasty and myocardial infarction animal models. This approach could be important for the treatment of damaged vessels and the infracted heart".
###
Read the rest here:
Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells
New nanoparticle that only attacks cervical cancer cells
14 hours ago
One of the most promising technologies for the treatment of various cancers is nanotechnology, creating drugs that directly attack the cancer cells without damaging other tissues' development. The Laboratory of Cellular Oncology at the Research Unit in Cell Differentiation and Cancer, of the Faculty of Higher Studies (FES) Zaragoza UNAM (National Autonomous University of Mexico) have developed a therapy to attack cervical cancer tumors.
The treatment, which has been tested in animal models, consists of a nanostructured composition encapsulating a protein called interleukin-2 (IL -2), lethal to cancer cells.
According to the researcher Rosalva Rangel Corona, head of the project, the antitumor effect of interleukin in cervical cancer is because their cells express receptors for interleukin-2 that "fit together" like puzzle pieces with the protein to activate an antitumor response .
The scientist explains that the nanoparticle works as a bridge of antitumor activation between tumor cells and T lymphocytes. The nanoparticle has interleukin 2 on its surface, so when the protein is around it acts as a switch, a contact with the cancer cell to bind to the receptor and to carry out its biological action.
Furthermore, the nanoparticle concentrates interleukin 2 in the tumor site, which allows its accumulation near the tumor growth. It is not circulating in the blood stream, is "out there" in action.
The administration of IL-2 using the nanovector reduces the side effects caused by this protein if administered in large amounts to the body. These effects can be fever, low blood pressure, fluid retention and attack to the central nervous system, among others.
It is known that interleukin -2 is a protein (a cytokine, a product of the cell) generated by active T cells. The nanoparticle, the vector for IL-2, carries the substance to the receptors in cancer cells, then saturates them and kills them, besides generating an immune T cells bridge (in charge of activating the immune response of the organism). This is like a guided missile acting within tumor cells and activating the immune system cells that kill them.
A woman immunosuppressed by disease produces even less interleukin. For this reason, the use of the nanoparticle would be very beneficial for female patients.
The researcher emphasized that his group must meet the pharmaceutical regulations to carry their research beyond published studies and thus benefit the population.
See the original post:
New nanoparticle that only attacks cervical cancer cells
Heart cells respond to stiff environments
Mar 14, 2014 Schematic illustrating how mechanical properties of substrates affect where YAP/TAZ protein localization in cardiac stem cells (left) and how this affects stem cell development and function (right).
Proteins associated with the regulation of organ size and shape have been found to respond to the mechanics of the microenvironment in ways that specifically affect the decision of adult cardiac stem cells to generate muscular or vascular cells.
Cell development for specific functionsso-called cell differentiationis crucial for maintaining healthy tissue and organs. Two proteins in particularthe Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1 or TAZ)have been linked with control of cell differentiation in the tissues of the lymphatic, circulatory, intestinal and neural systems, as well as regulating embryonic stem cell renewal. An international collaboration of researchers has now identified that changes in the elasticity and nanotopography of the cellular environment of these proteins can affect how heart stem cells differentiate with implications for the onset of heart diseases.
Researchers at the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) collaborated with researchers in Finland, Italy, the Netherlands, Saudi Arabia and the Czech Republic in the study.
They engineered YAP and TAZ proteins that expressed green fluorescent protein so that their location within the cell could be tracked. They then prepared cell substrates from smart biomaterials displaying dynamic control of elasticity and nanostructure with temperature. "Our data provide the first evidence for YAP/TAZ shuttling activity between the nucleus and the cytoplasm being promptly activated in response to dynamic modifications in substrate stiffness or nanostructure," explain the researchers.
Observations of gene expression highlighted the key role of YAP/TAZ proteins in cell differentiation. In further investigations on the effect of substrate stiffness they also found that cell differentiation was most efficient for substrates displaying stiffness similar to that found in the heart.
The authors suggest that understanding the effects of microenvironment nanostructure and mechanics on how these proteins affect cell differentiation could be used to aid processes that maintain a healthy heart. They conclude, "These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design."
Explore further: Study identifies gene important to breast development and breast cancer
More information: Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. Diogo Mosqueira, et al. 2014 ACS Nano; DOI: 10.1021/nn4058984
A new study in Cell Reports identifies a gene important to breast development and breast cancer, providing a potential new target for drug therapies to treat aggressive types of breast cancer.
See original here:
Heart cells respond to stiff environments
Nasty nanoinjectors pose a new target for antibiotic research
Mar 14, 2014 by Brendan M. Lynch Parts of nanoinjectors from Salmonella as seen under an electron microscope. Credit: Dr. Matthew Lefebre and Professor Jorge Galan (Yale University)
If you've ever suffered the misery of food poisoning from a bacterium like Shigella or Salmonella, then your cells have been on the receiving end of "nanoinjectors"microscopic spikes made from proteins through which pathogens secrete effector proteins into human host cells, causing infection.
Many bacteria use nanoinjectors to infect millions of people around the world every year.
Today, Roberto De Guzman, associate professor of molecular biosciences at the University of Kansas, is leading a research group that is evaluating the potential of nanoinjectors as a target for a new class of antibiotics. Their work is funded by a five-year, $1.8 million grant from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.
"This grant will support our studies on elucidating how bacterial nanoinjectors are assembled," said De Guzman. "Nanoinjectors are protein machinery used by bacterial pathogens to inject virulence proteins into human cells to cause infectious diseases. They are nanoscale is sizethey look like needles and bacteria use them to inject virulence proteins into host cellsso I called them nanoinjectors. In microbiology, they are known as part of the type III secretion system, a protein delivery machinery."
The KU researcher said nanoinjectors are unique to pathogenic bacteria and are absolutely required for infectivity. Most people have heard of the diseases caused by bacterial pathogens that employ nanoinjectorsseveral of which have changed the course of the human experience for the worse.
"Examples are Yersinia pestis, which caused the Black Death in Europe and altered world history," said De Guzman. "Also, Pseudomonas aeruginosa, the number one cause of mortality among cystic fibrosis patients and a major source of secondary hospital infections, and Chlamydia, a major source of bacterial sexually transmitted disease."
Because an increasing number of pathogens have evolved strains that are unaffected by antibiotics now on the market, De Guzman said that new approaches in drug development are necessaryand nanoinjectors could present a worthwhile target.
"The problem is that all of these pathogens have developed resistance to current antibiotics," he said. "Further, antibiotics are not as profitable as other drugs, so pharmaceutical companies have disfavored developing them. Hence, there is a dearth of new antibiotics in the pipeline. We're in for a perfect storm when the age of antibiotics is no longer assured."
A major factor in NIH awarding this grant to KU is a $1.9 million nuclear magnetic resonance or NMR spectrometeressentially a huge magnetthat the university bought in 2004 through a bond approved by the Kansas Legislature.
View post:
Nasty nanoinjectors pose a new target for antibiotic research