Page 34«..1020..33343536..40..»

Archive for the ‘Cardiac Stem Cells’ Category

Human neural stem cells could meet the clinical problem of …

New research has shown human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels. Critical limb ischemia (CLI) is a disease that severely obstructs arteries and reduces the blood flow to legs and feet. CLI remains an unmet clinical problem and with an ageing population and the rise in type II diabetes, the incidence of CLI is expected to increase.

The study, led by academics in the University of Bristol's School of Clinical Sciences, is published online in the American Heart Association journal Arteriosclerosis, Thrombosis, and Vascular Biology.

Current stem cell therapy trials for the treatment of CLI have revitalised new hope for improving symptoms and prolonging life expectancy. However, there are limitations on the use of autologous cell therapy. The patient's own stem cells are generally invasively harvested from bone marrow or require purification from peripheral blood after cytokine stimulation. Other sources contain so few stem cells that ex vivo expansion through lengthy bespoke Good Manufacturing Practice processes is required. Ultimately, these approaches lead to cells of variable quality and potency that are affected by the patient's age and disease status and lead to inconsistent therapeutic outcomes.

In order to circumvent the problem a team, led by Professor Paolo Madeddu in the Bristol Heart Institute at the University of Bristol, has used a conditionally immortalised clonal human neural stem cell (hNSC) line to treat animal models with limb ischaemia and superimposed diabetes. The CTX cell line, established by stem cell company ReNeuron, is genetically modified to produce genetically and phenotypically stable cell banks.

Results of the new study have shown that CTX treatment effectively improves the recovery from ischaemia through the promotion of the growth of new vessels. The safety of CTX cell treatment is currently being assessed in disabled patients with stroke [PISCES trial, NCT01151124]. As a result, the same cell product is immediately available for starting dose ranging safety and efficacy studies in CLI patients.

Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine and Head of Regenerative Medicine Section in the Bristol Heart Institute at the University of Bristol, said: "Currently, there are no effective drug interventions to treat CLI. The consequences are a very poor quality of life, possible major amputation and a life expectancy of less than one year from diagnosis in 50 per cent of all CLI patients.

"Our findings have shown a remarkable advancement towards more effective treatments for CLI and we have also demonstrated the importance of collaborations between universities and industry that can have a social and medical impact."

Dr John Sinden, Chief Scientific Officer of ReNeuron, added: "The novel idea of using neural stem cells to treat vascular disease arose from a chance discussion with Professor Madeddu. The discussion led to a short pilot study with our cells producing very clear data, which then developed into a further eight experiments exploring different variants of the disease model, the product formulation and dose variation.

"The study also explored the cascade of molecular events that produced vascular and muscle recovery. It is a great example of industry and academia working successfully towards the key goal, clinical translation."

Explore further: UH Case Medical Center launches novel clinical trial using stem cells to prevent amputation

See the article here:
Human neural stem cells could meet the clinical problem of ...

Cardiac Stem Cells (CSCs) | University of Maryland Medical Center

For immediate release: September 10, 2012

Baltimore, MD --Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in animal models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation.

The surprising finding is that the cells from neonates are extremely regenerative and perform better than adult stem cells, says the study's senor author, Sunjay Kaushal, M.D., Ph.D., associate professor of surgery at the University of Maryland School of Medicine and director, pediatric cardiac surgery at the University of Maryland Medical Center. We are extremely excited and hopeful that this new cell-based therapy can play an important role in the treatment of children with congenital heart disease, many of whom don't have other options.

Dr. Kaushal envisions cellular therapy as either a stand-alone therapy for children with heart failure or an adjunct to medical and surgical treatments. While surgery can provide structural relief for some patients with congenital heart disease and medicine can boost heart function up to two percent, he says cellular therapy may improve heart function even more dramatically. We're looking at this type of therapy to improve heart function in children by 10, 12, or 15 percent. This will be a quantum leap in heart function improvement.

Heart failure in children, as in adults, has been on the rise in the past decade and the prognosis for patients hospitalized with heart failure remains poor. In contrast to adults, Dr. Kaushal says heart failure in children is typically the result of a constellation of problems: reduced cardiac blood flow; weakening and enlargement of the heart; and various congenital malformations. Recent research has shown that several types of cardiac stem cells can help the heart repair itself, essentially reversing the theory that a broken heart cannot be mended.

Stem cells are unspecialized cells that can become tissue- or organ-specific cells with a particular function. In a process called differentiation, cardiac stem cells may develop into rhythmically contracting muscle cells, smooth muscle cells or endothelial cells. Stem cells in the heart may also secrete growth factors conducive to forming heart muscle and keeping the muscle from dying.

To conduct the study, researchers obtained a small amount of heart tissue during normal cardiac surgery from 43 neonates and 13 adults. The cells were expanded in a growth medium yielding millions of cells. The researchers developed a consistent way to isolate and grow neonatal stem cells from as little as 20 milligrams of heart tissue. Adult and neonate stem cell activity was observed both in the laboratory and in animal models. In addition, the animal models were compared to controls that were not given the stem cells.

Dr. Kaushal says it is not clear why the neonatal stem cells performed so well. One explanation hinges on sheer numbers: there are many more stem cells in a baby's heart than in the adult heart. Another explanation: neonate-derived cells release more growth factors that trigger blood vessel development and/or preservation than adult cells.

This research provides an important link in our quest to understand how stem cells function and how they can best be applied to cure disease and correct medical deficiencies, says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs, University of Maryland; the John Z. and Akiko K. Bowers Distinguished Professor; and dean, University of Maryland School of Medicine. Sometimes simple science is the best science. In this case, a basic, comparative study has revealed in stark terms the powerful regenerative qualities of neonatal cardiac stem cells, heretofore unknown.

Insights gained through this research may provide new treatment options for a life-threatening congenital heart syndrome called hypoplastic left heart syndrome (HLHS). Dr. Kaushal and his team will soon begin the first clinical trial in the United States to determine whether the damage to hearts of babies with HLHS can be reversed with stem cell therapy. HLHS limits the heart's ability to pump blood from the left side of the heart to the body. Current treatment options include either a heart transplant or a series of reconstructive surgical procedures. Nevertheless, only 50-60 percent of children who have had those procedures survive to age five.

Continue reading here:
Cardiac Stem Cells (CSCs) | University of Maryland Medical Center

Stem cell therapy: When will it help the heart? | The Why Files

Stem cells: When will they heal the heart?

Its been 15 years since a University of Wisconsin-Madison researcher isolated embryonic stem cells the do-anything cells that appear in early development. Its been six years since adult human cells were transformed into the related induced pluripotent stem cells.

ENLARGE

Some day, stem cell therapy could restore cells, save hearts, and avoid the need for some heart transplants, such as this one. This heart is ready for its new home.

And yet the early hope to grow spare parts turning stem cells into specialized cells for repairing a failing brain, pancreas or heart, remains mostly promise rather than reality.

Researchers have since found how to transform stem cells into a wide variety of body cells, including heart muscle cells, or cardiomyocytes. But the holy Grail tissue supplementation or replacement remains tantalizingly out of reach.

Last week, Why Files attended a symposium on treating cardiovascular disease with stem cells, at the BioPharmaceutical Technology Center Institute near Madison, Wis. We found the picture unexpectedly complicated: as multiple kinds of stem cells are grown and delivered in a bewildering variety of ways to treat a catalog of conditions.

So far, stem cells have not been approved to treat any heart disease in the United States.

Still, the need remains clear. Disorders of the heart and blood vessels, which deliver oxygen and nutrients to the body, continue to kill. Today, one of every 2.6 Americans will die of some cause related to their heart, writes Columbia University Medical Center.

Read more:
Stem cell therapy: When will it help the heart? | The Why Files

Stem cells reverse heart damage – WBTV 3 News, Weather, Sports …

CHARLOTTE, NC (WBTV) -

In 2003,Melvin Walkerlay on an exam table of a Charlotte Hospital.He had suffered a massive heart attack that destroyed a large portion of tissue in his heart.

"I worked in concrete for about 23 years and started having heart attacks," said Melvin.

Several years later, Melvin's heart took additional beatings.

"And they've just been coming one right after the other."

"I'm just lucky that I can feel them coming and I go to the hospital."

So far Melvin has suffered four heart attacks and has had six stents put in place.

In patients like Melvin whose attacks are severe, the heart gets so scarred cardiac tissue no longer performs efficiently.

"After the procedure, it's like turning the light switch on," said Melvin.

"It all comes back. It took a little time, but it all comes back."

See original here:
Stem cells reverse heart damage - WBTV 3 News, Weather, Sports ...

Endogenous cardiac stem cell – Wikipedia, the free encyclopedia

Endogenous cardiac stem cells (eCSCs) are tissue-specific stem progenitor cells harboured within the adult mammalian heart.

They were first discovered in 2003 by Bernardo Nadal-Ginard, Piero Anversa and colleagues [1][2] in the adult rat heart and since then have been identified and isolated from mouse, dog, porcine and human hearts.[3][4]

The adult heart was previously thought to be a post mitotic organ without any regenerative capability. The identification of eCSCs has provided an explanation for the hitherto unexplained existence of a subpopulation of immature cycling myocytes in the adult myocardium. Indeed, recent evidence from a genetic fate-mapping study established that stem cells replenish adult mammalian cardiomyocytes lost by cardiac wear and tear and injury throughout the adult life.[5] Moreover, it is now accepted that myocyte death and myocyte renewal are the two sides of the proverbial coin of cardiac homeostasis in which the eCSCs play a central role.[6] These findings produced a paradigm shift in cardiac biology and opened new opportunities and approaches for future treatment of cardiac diseases by placing the heart squarely amongst other organs with regenerative potential such as the liver, skin, muscle, CNS. However, they have not changed the well-established fact that the working myocardium is mainly constituted of terminally differentiated contractile myocytes. This fact does not exclude, but is it fully compatible with the heart being endowed with a robust intrinsic regenerative capacity which resides in the presence of the eCSCs throughout the individual lifespan.

Briefly, eCSCs have been first identified through the expression of c-kit, the receptor of the stem cell factor and the absence of common hematopoietic markers, like CD45. Afterwards, different membrane markers (Sca-1, Abcg-2, Flk-1) and transcription factors (Isl-1, Nkx2.5, GATA4) have been employed to identify and characterize these cells in the embryonic and adult life.[7] eCSCs are clonogenic, self renewing and multipotent in vitro and in vivo,[8] capable of generating the 3 major cell types of the myocardium: myocytes, smooth muscle and endothelial vascular cells.[9] They express several markers of stemness (i.e. Oct3/4, Bmi-1, Nanog) and have significant regenerative potential in vivo.[10] When cloned in suspension they form cardiospheres,[11] which when cultured in a myogenic differentiation medium, attach and differentiate into beating cardiomyocytes.

In 2012, it was proposed that Isl-1 is not a marker for endogenous cardiac stem cells.[12] That same year, a different group demonstrated that Isl-1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest.[13] It has also been reported that Flk-1 is not a specific marker for endogenous and mouse ESC-derived Isl1+ CPCs. While some eCSC discoveries have been brought into question, there has been success with other membrane markers. For instance, it was demonstrated that the combination of Flt1+/Flt4+ membrane markers identifies an Isl1+/Nkx2.5+ cell population in the developing heart. It was also shown that endogenous Flt1+/Flt4+ cells could be expanded in vitro and displayed trilineage differentiation potential. Flt1+/Flt4+ CPCs derived from iPSCs were shown to engraft into the adult myocardium and robustly differentiate into cardiomyocytes with phenotypic and electrophysiologic characteristics of adult cardiomyocytes.[14]

With the myocardium now recognized as a tissue with limited regenerating potential,[15] harbouring eCSCs that can be isolated and amplified in vitro [16] for regenerative protocols of cell transplantation or stimulated to replicate and differentiate in situ in response to growth factors,[17] it has become reasonable to exploit this endogenous regenerative potential to replace lost/damaged cardiac muscle with autologous functional myocardium.

View post:
Endogenous cardiac stem cell - Wikipedia, the free encyclopedia

Stem-Cell Therapy and Repair after Heart Attack and Heart Failure

Stem Cell Therapy: Helping the Body Heal Itself

Stem cells are natures own transformers. When the body is injured, stem cells travel the scene of the accident. Some come from the bone marrow, a modest number of others, from the heart itself. Additionally, theyre not all the same. There, they may help heal damaged tissue. They do this by secreting local hormones to rescue damaged heart cells and occasionally turning into heart muscle cells themselves. Stem cells do a fairly good job. But they could do better for some reason, the heart stops signaling for heart cells after only a week or so after the damage has occurred, leaving the repair job mostly undone. The partially repaired tissue becomes a burden to the heart, forcing it to work harder and less efficiently, leading to heart failure.

Initial research used a patients own stem cells, derived from the bone marrow, mainly because they were readily available and had worked in animal studies. Careful study revealed only a very modest benefit, so researchers have moved on to evaluate more promising approaches, including:

No matter what you may read, stem cell therapy for damaged hearts has yet to be proven fully safe and beneficial. It is important to know that many patients are not receiving the most current and optimal therapies available for their heart failure. If you have heart failure, and wondering about treatment options, an evaluation or a second opinion at a Center of Excellence can be worthwhile.

Randomized clinical trials evaluating these different approaches typically allow enrollment of only a few patients from each hospital, and hence what may be available at the Cleveland Clinic varies from time to time. To inquire about current trials, please call 866-289-6911 and speak to our Resource Nurses.

Cleveland Clinic is a large referral center for advanced heart disease and heart failure we offer a wide range of therapies including medications, devices and surgery. Patients will be evaluated for the treatments that best address their condition. Whether patients meet the criteria for stem cell therapy or not, they will be offered the most advanced array of treatment options.

Reviewed: 04/13

Read more from the original source:
Stem-Cell Therapy and Repair after Heart Attack and Heart Failure

Administration of cardiac stem cells in patients with ischemic …

BACKGROUND:

SCIPIO is a first-in-human, phase 1, randomized, open-label trial of autologous c-kit(+) cardiac stem cells (CSCs) in patients with heart failure of ischemic etiology undergoing coronary artery bypass grafting (CABG). In the present study, we report the surgical aspects and interim cardiac magnetic resonance (CMR) results.

A total of 33 patients (20 CSC-treated and 13 control subjects) met final eligibility criteria and were enrolled in SCIPIO. CSCs were isolated from the right atrial appendage harvested and processed during surgery. Harvesting did not affect cardiopulmonary bypass, cross-clamp, or surgical times. In CSC-treated patients, CMR showed a marked increase in both LVEF (from 27.5 1.6% to 35.1 2.4% [P=0.004, n=8] and 41.2 4.5% [P=0.013, n=5] at 4 and 12 months after CSC infusion, respectively) and regional EF in the CSC-infused territory. Infarct size (late gadolinium enhancement) decreased after CSC infusion (by manual delineation: -6.9 1.5 g [-22.7%] at 4 months [P=0.002, n=9] and -9.8 3.5 g [-30.2%] at 12 months [P=0.039, n=6]). LV nonviable mass decreased even more (-11.9 2.5 g [-49.7%] at 4 months [P=0.001] and -14.7 3.9 g [-58.6%] at 12 months [P=0.013]), whereas LV viable mass increased (+11.6 5.1 g at 4 months after CSC infusion [P=0.055] and +31.5 11.0 g at 12 months [P=0.035]).

Isolation of CSCs from cardiac tissue obtained in the operating room is feasible and does not alter practices during CABG surgery. CMR shows that CSC infusion produces a striking improvement in both global and regional LV function, a reduction in infarct size, and an increase in viable tissue that persist at least 1 year and are consistent with cardiac regeneration.

This study is registered with clinicaltrials.gov, trial number NCT00474461.

Visit link:
Administration of cardiac stem cells in patients with ischemic ...

Stem Cells and Diseases [Stem Cell Information]

The Promise of Stem Cells

Studying stem cells will help us understand how they transform into the dazzling array of specialized cells that make us what we are. Some of the most serious medical conditions, such as cancer and birth defects, are due to problems that occur somewhere in this process. A better understanding of normal cell development will allow us to understand and perhaps correct the errors that cause these medical conditions.

Another potential application of stem cells is making cells and tissues for medical therapies. Today, donated organs and tissues are often used to replace those that are diseased or destroyed. Unfortunately, the number of people needing a transplant far exceeds the number of organs available for transplantation. Pluripotent stem cells offer the possibility of a renewable source of replacement cells and tissues to treat a myriad of diseases, conditions, and disabilities including Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury, burns, heart disease, diabetes, and arthritis.

Scientists have been able to do experiments with human embryonic stem cells (hESC) since 1998, when a group led by Dr. James Thomson at the University of Wisconsin developed a technique to isolate and grow the cells. Although hESCs are thought to offer potential cures and therapies for many devastating diseases, research using them is still in its basic stages. hESCs are thought to offer potential cures and therapies for many devastating diseases, and we are now seeing the first clinical trials using cells derived from hESCs.

The NIH funded its first basic research study on hESCs in 2002. Since that time, biotechnology companies have built upon those basic foundations to begin developing stem cell-based human therapies. There are currently two active clinical trials using cells derived from human embryonic stem cells, both being conducted by a biotechnology company called ACT. The company has laboratories in Marlborough, Massachusetts and corporate offices in Santa Monica, California. ACT has begun enrolling patients for Phase I (safety and tolerability) clinical trials of two hESC-derived stem cell products:

In January, 2012, the investigators published a preliminary report on the first two patients treated with hESC-derived cells: http://www.ncbi.nlm.nih.gov/pubmed/22281388. A third patient was treated on April 20, 2012.

Late in 2007, scientists reported that they had been able to reprogram adult human skin cells to behave like hESCs. This type of stem cells is known as induced pluripotent stem cells, or iPSCs. Since these first reports, researchers have rapidly improved the techniques to generate iPSCs, creating a powerful new way to "de-differentiate" cells whose developmental fates were thought to be determined. In July 2013, Japans health minister approved the first clinical trial using cells derived from iPSCs. Masayo Takahashiin Kobe, Japan will use the cells to attempt to treat a form of blindness - age-related macular degeneration.

Bone marrow contains blood-forming stem cells (hematopoietic stem cells) that have been used for decades to treat blood cancers and other blood disorders. Umbilical cord blood is another source of hematopoietic stem cells that is being used in treatment. You can see a list of diseases that may currently be treated with hematopoietic stem cells at the website of the National Marrow Donor Program. You may also search for clinical trials testing "bone marrow stem cells" or "umbilical cord blood" on the ClinicalTrials.gov website.

A biotechnology company called Neuralstem (corporate headquarters in Rockville, Maryland) is conducting a clinical trial testing the use of human spinal cord stem cells to treat Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrigs Disease. The company obtained FDA approval to conduct a Phase I trial (safety and tolerability study) and began enrolling patients in January 2010. Twelve participants have received lumbar transplants, and in March 2012, the second participant received an injection in the cervial region. Details about this trial are listed on the ClinicalTrials.gov website.

Osiris Therapeutics (Columbia, Maryland) is conducting three different Phase 2 clinical trials with a product from adult mesenchymal cells (called Prochymal). The three trials are for:

Read more here:
Stem Cells and Diseases [Stem Cell Information]

9. Can Stem Cells Repair a Damaged Heart? [Stem Cell Information]

Heart attacks and congestive heart failure remain among the Nation's most prominent health challenges despite many breakthroughs in cardiovascular medicine. In fact, despite successful approaches to prevent or limit cardiovascular disease, the restoration of function to the damaged heart remains a formidable challenge. Recent research is providing early evidence that adult and embryonic stem cells may be able to replace damaged heart muscle cells and establish new blood vessels to supply them. Discussed here are some of the recent discoveries that feature stem cell replacement and muscle regeneration strategies for repairing the damaged heart.

For those suffering from common, but deadly, heart diseases, stem cell biology represents a new medical frontier. Researchers are working toward using stem cells to replace damaged heart cells and literally restore cardiac function.

Today in the United States, congestive heart failurethe ineffective pumping of the heart caused by the loss or dysfunction of heart muscle cellsafflicts 4.8 million people, with 400,000 new cases each year. One of the major contributors to the development of this condition is a heart attack, known medically as a myocardial infarction, which occurs in nearly 1.1 million Americans each year. It is easy to recognize that impairments of the heart and circulatory system represent a major cause of death and disability in the United States [5].

What leads to these devastating effects? The destruction of heart muscle cells, known as cardiomyocytes, can be the result of hypertension, chronic insufficiency in the blood supply to the heart muscle caused by coronary artery disease, or a heart attack, the sudden closing of a blood vessel supplying oxygen to the heart. Despite advances in surgical procedures, mechanical assistance devices, drug therapy, and organ transplantation, more than half of patients with congestive heart failure die within five years of initial diagnosis. Research has shown that therapies such as clot-busting medications can reestablish blood flow to the damaged regions of the heart and limit the death of cardiomyocytes. Researchers are now exploring ways to save additional lives by using replacement cells for dead or impaired cells so that the weakened heart muscle can regain its pumping power.

How might stem cells play a part in repairing the heart? To answer this question, researchers are building their knowledge base about how stem cells are directed to become specialized cells. One important type of cell that can be developed is the cardiomyocyte, the heart muscle cell that contracts to eject the blood out of the heart's main pumping chamber (the ventricle). Two other cell types are important to a properly functioning heart are the vascular endothelial cell, which forms the inner lining of new blood vessels, and the smooth muscle cell, which forms the wall of blood vessels. The heart has a large demand for blood flow, and these specialized cells are important for developing a new network of arteries to bring nutrients and oxygen to the cardiomyocytes after a heart has been damaged. The potential capability of both embryonic and adult stem cells to develop into these cells types in the damaged heart is now being explored as part of a strategy to restore heart function to people who have had heart attacks or have congestive heart failure. It is important that work with stem cells is not confused with recent reports that human cardiac myocytes may undergo cell division after myocardial infarction [1]. This work suggests that injured heart cells can shift from a quiescent state into active cell division. This is not different from the ability of a host of other cells in the body that begin to divide after injury. There is still no evidence that there are true stem cells in the heart which can proliferate and differentiate.

Researchers now know that under highly specific growth conditions in laboratory culture dishes, stem cells can be coaxed into developing as new cardiomyocytes and vascular endothelial cells. Scientists are interested in exploiting this ability to provide replacement tissue for the damaged heart. This approach has immense advantages over heart transplant, particularly in light of the paucity of donor hearts available to meet current transplantation needs.

What is the evidence that such an approach to restoring cardiac function might work? In the research laboratory, investigators often use a mouse or rat model of a heart attack to study new therapies (see Figure 9.1. Rodent Model of Myocardial Infarction). To create a heart attack in a mouse or rat, a ligature is placed around a major blood vessel serving the heart muscle, thereby depriving the cardiomyocytes of their oxygen and nutrient supplies. During the past year, researchers using such models have made several key discoveries that kindled interest in the application of adult stem cells to heart muscle repair in animal models of heart disease.

Figure 9.1. Rodent Model of Myocardial Infarction.

( 2001 Terese Winslow, Lydia Kibiuk)

Recently, Orlic and colleagues [9] reported on an experimental application of hematopoietic stem cells for the regeneration of the tissues in the heart. In this study, a heart attack was induced in mice by tying off a major blood vessel, the left main coronary artery. Through the identification of unique cellular surface markers, the investigators then isolated a select group of adult primitive bone marrow cells with a high capacity to develop into cells of multiple types. When injected into the damaged wall of the ventricle, these cells led to the formation of new cardiomyocytes, vascular endothelium, and smooth muscle cells, thus generating de novo myocardium, including coronary arteries, arterioles, and capillaries. The newly formed myocardium occupied 68 percent of the damaged portion of the ventricle nine days after the bone marrow cells were transplanted, in effect replacing the dead myocardium with living, functioning tissue. The researchers found that mice that received the transplanted cells survived in greater numbers than mice with heart attacks that did not receive the mouse stem cells. Follow-up experiments are now being conducted to extend the posttransplantation analysis time to determine the longer-range effects of such therapy [8]. The partial repair of the damaged heart muscle suggests that the transplanted mouse hematopoietic stem cells responded to signals in the environment near the injured myocardium. The cells migrated to the damaged region of the ventricle, where they multiplied and became "specialized" cells that appeared to be cardiomyocytes.

The rest is here:
9. Can Stem Cells Repair a Damaged Heart? [Stem Cell Information]

Cardiac Stem Cell Research – Cedars-Sinai

Results from a ground-breaking Cedars-Sinai Heart Institute clinical trial show that an infusion of cardiac stem cells helps damaged hearts regrow healthy muscle.

The first-in-man clinical trial, based on technologies and discoveries made by Eduardo Marbn, MD, PhD, and led by Raj Makkar, MD, explored the safety of harvesting, growing and giving patients their own cardiac stem cells to repair heart tissue injured by heart attack.

The studys findings, published in The Lancet, show that heart attack patients who received stem cell treatment demonstrated a significant reduction in the size of the scar left on the heart muscle; this is a pioneering stem cell result, says Marban, who notes the study shows actual regeneration of tissues. With support from the California Institute for Regenerative Medicine, the Heart Institute team is now planning future clinical trials to treat advanced heart disease patients with stem cells.

The process to grow cardiac-derived stem cells involved in the study was developed earlier by Marbn when he was on the faculty of Johns Hopkins University. The university has filed for a patent on that intellectual property, and has licensed it to a company in which Marbn has a financial interest. No funds from that company were used to support the clinical study. All funding was derived from the National Institutes of Health and Cedars-Sinai Medical Center.

Since the Cedars-Sinai team completed the worlds first cardiac stem cell infusion in 2009, additional insights have emerged from this and related work, including the discovery in animals that iron-infused cardiac stem cells can be guided with a magnet to damaged areas of the heart, dramatically increasing their retention and healing potential.

Another finding to emerge from Marbns cardiac stem cell lab may have implications for many peoples health: Stem cells exposed to high doses of supplemental antioxidants can develop genetic abnormalities that predispose them to cancer formation.

Click here to watch a CBS Evening News story about the clinical trials results.

Read the original:
Cardiac Stem Cell Research - Cedars-Sinai

Grant Funds Research Into Cardiac Stem Cells as Treatment for Heart Disease Related to Duchenne Muscular Dystrophy

Newswise LOS ANGELES May 30, 2013 Newport Beach-based nonprofit Coalition Duchenne has awarded a $150,000 grant to a Cedars-Sinai Heart Institute team investigating whether an experimental cardiac stem cell treatment could be used to treat Duchenne muscular dystrophy patients who have developed heart disease.

Coalition Duchenne is led by Catherine Jayasuriya, a mother whose 20-year-old son, Dusty Brandom, has cardiomyopathy associated with Duchenne muscular dystrophy. She was inspired to underwrite cardiac stem cell research at Cedars-Sinai after reading about a successful clinical trial led by Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute and the Mark S. Siegel Family Professor.

The experimental stem cell therapy, developed by Marbn, is the only treatment shown in clinical trials to regenerate healthy heart muscle. In the clinical trial, patients underwent biopsies during which doctors removed a piece of heart muscle about the size of half a raisin. The heart tissue was then used to grow specialized heart stem cells, which then were injected back into the patients heart. Results published in The Lancet showed that patients experienced an average 50 percent reduction in muscle damaged by heart attack.

I immediately sensed the potential for applying this rapidly evolving treatment to Duchenne, said Jayasuriya. I made it my personal quest to help get this kind of therapy for Duchenne patients.

Jayasuriyas commitment was further cemented when she discovered that Ron Victor, MD, associate director of the Cedars-Sinai Heart Institute, has been working with Duchenne patients as part of his investigation of the cardiac benefits of sildenafil (Viagra) and tadalafil (Cialis).

We know that boys with Duchenne are born with a small scar in the base of their heart, said Victor, the Burns and Allen Chair in Cardiology Research at the Cedars-Sinai Heart Institute. The damage to hearts in boys with Duchenne increases over time. If we can use stem cells to slow or stop heart damage, it could help stall progression of the disease.

The first step in the study is to examine the effect of injecting cardiac stem cells into the hearts of mice with Duchenne. If the data is positive, the experimental treatment could be rapidly approved for use in humans with Duchenne because of cardiac stem cell treatments have been approved for other patient populations, including those with advanced heart disease.

Each year, 20,000 boys are born with Duchenne, Jayasuriya said, who founded Coalition Duchenne in 2010 to raise global awareness for Duchenne muscular dystrophy, fund research and find a cure for Duchenne. Many do not live into their 20s and we lose many to cardiac issues. We need to focus on changing the course of the disease. We hope that working with cardiac stem cells is one way we will eventually change that outcome.

Duchenne muscular dystrophy is a progressive muscle-wasting disease and the most common fatal disease that affects children. Duchenne occurs in one in 3,500 male births, across all races, cultures and countries. Duchenne is caused by a defect in the gene that produces the protein dystrophin, which helps connect the muscle fiber to the cell membranes. Without dystrophin, muscle cells become unstable, are weakened and lose their functionality. Life expectancy of boys and young men with Duchenne ranges from the mid-teens to the mid-20s. Their minds are unaffected.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From cardiac imaging and advanced diagnostics to surgical repair of complex heart problems to the training of the heart specialists of tomorrow and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Go here to read the rest:
Grant Funds Research Into Cardiac Stem Cells as Treatment for Heart Disease Related to Duchenne Muscular Dystrophy

Newborn With Congential Heart Disease Undergoes Successful Surgery – Video


Newborn With Congential Heart Disease Undergoes Successful Surgery
Collin Ripple was diagnosed with congenital heart disease when he was just a few days old. Collin #39;s parents, Susie and Kenny Ripple, sought the expertise of the Children #39;s Heart Program at UMMC. Susie and Kenny discussed Collin #39;s condition thoroughly with Dr. Rosenthal, a pediatric cardiologist, and Dr. Kaushal, a pediatric cardiac surgeon, who put their minds at ease about Collin #39;s condition. It was decided that Collin should undergo surgery to repair the damaged parts of this heart. The surgery went well, and Susie could not have been happier with the Children #39;s Heart doctors and staff, saying that they treated Collin "like family." Related Links: Maryland Heart Center http://www.umm.edu Children #39;s Heart Program http://www.umm.edu University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Mend Children #39;s Broken Hearts http://www.umm.edu Your Health: Critical Congenital Heart Disease http://www.umm.eduFrom:UMMCVideosViews:5 0ratingsTime:02:58More inScience Technology

Read the original post:
Newborn With Congential Heart Disease Undergoes Successful Surgery - Video

R. Bolli – Interim Results of the SCIPIO Trial Up to 2 Years After Therapy – Video


R. Bolli - Interim Results of the SCIPIO Trial Up to 2 Years After Therapy
R. Bolli - Effect of Cardiac Stem Cells in Patients with Ischemic Cardiomyopathy: Interim Results of the SCIPIO Trial Up to 2 Years After Therapy SCIPIO: (Cardiac) Stem Cell Infusion in Patients with Ischemic cardiomyopathy Annual Session of the American Heart Association November 5, 2012, Los AngelesFrom:CardioletterViews:0 0ratingsTime:09:07More inScience Technology

Read more here:
R. Bolli - Interim Results of the SCIPIO Trial Up to 2 Years After Therapy - Video

Two Years On, Stem Cells Still Healing Damaged Hearts

By E.J. Mundell HealthDay Reporter

TUESDAY, Nov. 6 (HealthDay News) -- Updated two-year results from a small trial using cardiac stem cells to repair damaged hearts suggest the treatment's healing effect persists.

Patients with heart failure caused by prior heart attacks who got the treatment continue to see reductions in cardiac scar tissue, improvements in the heart's pumping ability and even a boost in their quality of life, researchers said.

These improvements seem to be continuing as time goes on, suggesting that stem cell therapy's healing power hasn't diminished.

"Now we need to perform larger and randomized, blinded studies ... to confirm this data," said study lead author Dr. Roberto Bolli, director of the Institute of Molecular Cardiology at the University of Louisville.

His team presented its results Tuesday at the American Heart Association's annual meeting, in Los Angeles.

According to the AHA, more than 6 million Americans suffer from heart failure, a gradual weakening of the heart often caused by damage from a prior heart attack. Despite its prevalence and lethality, virtually no advance has been made over the past few decades in doctors' ability to treat or reverse heart failure.

That's why the advent of stem cell therapy has encouraged researchers. Stem cells have the ability to turn into myriad living cells, and the hope is that once infused into the heart they can help repair it.

This trial is the first human trial to test this theory using the patient's own cardiac stem cells. The cells used in the trial were harvested from 33 heart failure patients who were undergoing bypass surgery. The cells were then coaxed to multiply into the millions in the lab and then transplanted back into 20 of the patients. The remaining 13 patients did not receive a stem cell infusion and are the "control" group for comparison purposes.

Results gathered one year after treatment showed improvements for the treated patients, but experts questioned whether those gains would fade over time.

Follow this link:
Two Years On, Stem Cells Still Healing Damaged Hearts

Cardiac Stem Cells May Help Treat Heart Failure

Study Highlights:

LOS ANGELES, Nov. 6, 2012 (GLOBE NEWSWIRE) -- Cardiac stem cells may one day be an effective treatment for heart failure caused by muscle scarring after a heart attack, according to late-breaking clinical trial results presented at the American Heart Association's Scientific Sessions 2012.

In the Effect of Cardiac Stem Cells In Patients with Ischemic CardiOmyopathy (SCIPIO) trial, heart function and quality of life improved in 20 people treated with their own cardiac stem cells (CSCs).

"This is exciting," said Roberto Bolli, M.D., lead author of the trial, chief of Cardiovascular Medicine and director of the Institute of Molecular Cardiology at the University of Louisville in Kentucky. "The effect of these cells has continued for up to two years, and has gotten stronger. There was also a major reduction in heart scarring."

In 33 patients with heart failure who had undergone coronary artery bypass surgery, researchers removed a tiny piece of heart tissue and isolated heart stem cells called c-kit CSCs. Researchers then grew additional cells to infuse into 20 volunteers assigned to treatment.

Among outcomes found two years after treatment:

"We have not seen any deaths among the patients, or any adverse effects that can be ascribed to the stem cells," Bolli said.

About 6.6 million Americans suffer from heart failure, according to the American Heart Association. Life expectancy is about five years after diagnosis. Ischemic heart attacks cause most of the 57,000 U.S. deaths a year due to heart failure.

Larger, multi-center studies are needed to confirm the findings, Bolli said.

The Jewish Hospital, University of Louisville, and the National Institutes of Health funded the study. Co-authors' names are on the abstract.

See the original post here:
Cardiac Stem Cells May Help Treat Heart Failure

Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? – Video


Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional?
Sunjay Kaushal USA More videos from the AHC 2011 conference are available here: river-valley.tvFrom:rivervalleytvViews:10 0ratingsTime:20:40More inScience Technology

See the original post here:
Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? - Video

Building a Self-Asembled Biobot using cardiac stem cells – Video


Building a Self-Asembled Biobot using cardiac stem cells
Self-Assembly of micro scale Biobots using cardiac stem cells and MEMs structures. This technology was developed by Carlo Montemagno, currently Dean of the College of Engineering and Applied Science at the University of Cincinnati and his student Jianshong XiFrom:Carlo MontemagnoViews:99 1ratingsTime:01:07More inScience Technology

Here is the original post:
Building a Self-Asembled Biobot using cardiac stem cells - Video

BCVS 2012 – SCIPIO–Cell Therapy and Ischemic Cardiomyopathy – Video


BCVS 2012 - SCIPIO--Cell Therapy and Ischemic Cardiomyopathy
Roberto Bolli, MD and Jianyi Zhang, MD, PhD discuss the Use of Cardiac Stem Cells in Patients with Ischemic Cardiomyopathy: The SCIPIO TrialFrom:AHAScienceNewsViews:170 1ratingsTime:08:10More inScience Technology

See the original post here:
BCVS 2012 - SCIPIO--Cell Therapy and Ischemic Cardiomyopathy - Video

University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function – Video


University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function
Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in pre-clinical models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation. n this video the study #39;s senior author, Dr. Sunjay Kaushal, MD, Ph.D., director of pediatric cardiac surgery at the University of Maryland Medical Center, discusses the findings in more detail. Related Links: Maryland Heart Center http://www.umm.edu Children #39;s Heart Program http://www.umm.edu A Mission to Ecuador for Pediatric Heart Surgeon medcenterblog.org Your Health: Congenital Heart Disease http://www.umm.eduFrom:UMMCVideosViews:89 4ratingsTime:05:44More inScience Technology

Read the rest here:
University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function - Video

Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? – Video


Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional?
Sunjay Kaushal USA More videos from the AHC 2011 conference are available here: river-valley.tvFrom:rivervalleytvViews:10 0ratingsTime:20:40More inScience Technology

Read more from the original source:
Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? - Video

Building a Self-Asembled Biobot using cardiac stem cells – Video


Building a Self-Asembled Biobot using cardiac stem cells
Self-Assembly of micro scale Biobots using cardiac stem cells and MEMs structures. This technology was developed by Carlo Montemagno, currently Dean of the College of Engineering and Applied Science at the University of Cincinnati and his student Jianshong XiFrom:Carlo MontemagnoViews:99 1ratingsTime:01:07More inScience Technology

See the original post:
Building a Self-Asembled Biobot using cardiac stem cells - Video

BCVS 2012 – SCIPIO–Cell Therapy and Ischemic Cardiomyopathy – Video


BCVS 2012 - SCIPIO--Cell Therapy and Ischemic Cardiomyopathy
Roberto Bolli, MD and Jianyi Zhang, MD, PhD discuss the Use of Cardiac Stem Cells in Patients with Ischemic Cardiomyopathy: The SCIPIO TrialFrom:AHAScienceNewsViews:166 1ratingsTime:08:10More inScience Technology

Go here to read the rest:
BCVS 2012 - SCIPIO--Cell Therapy and Ischemic Cardiomyopathy - Video

University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function – Video


University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function
Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in pre-clinical models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation. n this video the study #39;s senior author, Dr. Sunjay Kaushal, MD, Ph.D., director of pediatric cardiac surgery at the University of Maryland Medical Center, discusses the findings in more detail. Related Links: Maryland Heart Center http://www.umm.edu Children #39;s Heart Program http://www.umm.edu A Mission to Ecuador for Pediatric Heart Surgeon medcenterblog.org Your Health: Congenital Heart Disease http://www.umm.eduFrom:UMMCVideosViews:88 4ratingsTime:05:44More inScience Technology

Read more here:
University of Maryland Study Suggests Neonatal Cardiac Stem Cells May Help Restore Heart Function - Video

Bioheart Extends Licenses of Electrical Stimulation Patents With Airspeed

SUNRISE, FL--(Marketwire - Oct 17, 2012) - Bioheart, Inc. ( OTCQB : BHRT ) today announced that they have agreed to extend the license agreement with Airspeed for four separate Bioheart patents.The patents include methods of electrical stimulation and biological pacing, which are marketed under the MyoStim product line.Airspeed holds exclusive rights to these patents and all products associated with the patents and pays Bioheart milestone payments and royalties based on future sales of products.MyoStim is pursuing initial safety and efficacy trials in both wound care and heart failure using the Wound Healing and Regeneration Accelerator units (MWHA-1).

Mike Tomas, President and CEO, said, "Bioheart is currently focused on our core assets for heart failure patients and is enthusiastic about Airspeeds ability to bring Bioheart's electrical stimulation technologies to market."

Alan Remen, Airspeed Holdings' Managing Director and MyoStim's Co-Founder and CEO, said, "This technology may help to stimulate the body's own bio-electric 'homing' signal to recruit stem cells to the site of injury and grow new blood vessels, which can be an effective therapy for critical wounds and heart failure."

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues.Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com, or visit us on Facebook: Bioheart and Twitter @BioheartInc.

About Airspeed Holdings, LLC

Headquartered in San Diego, Airspeed is a private investment, entrepreneurial capital management firm and leading edge, multi-project business development enterprise that creates and nurtures new technology companies.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

Read more:
Bioheart Extends Licenses of Electrical Stimulation Patents With Airspeed

Researchers discover new blood vessel-generating cell with therapeutic potential

Public release date: 16-Oct-2012 [ | E-mail | Share ]

Contact: Bryan Ghosh bghosh@plos.org 44-122-344-2837 Public Library of Science

Researchers at the University of Helsinki believe they have discovered stem cells that play a decisive role in the growth of new blood vessels. If researchers learn to isolate and efficiently produce these stem cells found in blood vessel walls, the cells could offer new opportunities for developing therapeutics to treat diseases, such as cardiovascular disease and cancer. The study reporting the discovery of these stem cells is published in the open access journal PLOS Biology on October 16.

The growth of new blood vessels, known as neoangiogenesis, occurs during the repair of damaged tissue and organs in adults. However, malignant tumours also grow new blood vessels in order to receive oxygen and nutrients. As such, neoangiogenesis is both beneficial and detrimental to health, depending on the context, requiring therapeutic approaches that can either help to stimulate or prevent it. Therapeutics that aim to prevent the growth of new blood vessels are already in use, but the results are often more modest than predicted.

Adjunct Professor Petri Salvn and his team, from the University of Helsinki, now report that these stem cells can be found among the cellsso-called endothelial cellsthat line the inside of blood vessel walls. He explains, "we succeeded in isolating endothelial cells with a high rate of division in the blood vessel walls of mice. We found these same cells in human blood vessels and blood vessels growing in malignant tumours in humans. These cells are known as vascular endothelial stem cells, abbreviated as VESC. In a cell culture, one such cell is capable of producing tens of millions of new blood vessel wall cells".

From their studies in mice, the team are able to show that the growth of new blood vessels weakens, and the growth of malignant tumours slows, if the amount of these cells is below normal. Conversely, new blood vessels form where these stem cells are implanted.

"The identification and isolation of an entirely new adult stem cell type is a significant discovery in stem cell biology." explains Salvn. "Endothelial stem cells in blood vessels are particularly interesting, because they offer great potential for applications in practical medicine and the treatment of patients."

If an efficient method of vascular endothelial stem cell production could be developed, it could offer new treatment opportunities in situations where damaged tissue or diseases call for new blood vessel growth, or where the constriction or dysfunction of blood vessels deprives tissues of oxygen, for example in cardiac disease. These cells also offer new opportunities for developing therapeutics that seek to prevent new blood vessel growth in malignant tumours.

###

Funding: The work was supported by the Finnish Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish,or preparation of the manuscript.

Continued here:
Researchers discover new blood vessel-generating cell with therapeutic potential

Archives