Archive for the ‘Cardiac Stem Cells’ Category
Exosome Therapeutic Market 2020-2026 to Witness Excellent Growth || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,…
An absolute insights and know-how of the greatest market opportunities into the relevant markets or industry required for successful business growth can be accomplished only with the best market research report. The Exosome Therapeutic Market business report provides market potential for each geographical region based on the growth rate, macroeconomic parameters, consumer buying patterns, their preferences for particular product and market demand & supply scenarios. All the studies performed to generate this industry report are based on large group sizes and also at global level. This Exosome Therapeutic Market research report provides clients with the supreme level of market data and information which is specific to their niche and their business requirements.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:[emailprotected]
Go here to see the original:
Exosome Therapeutic Market 2020-2026 to Witness Excellent Growth || Major Gaints Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH,...
Banking wisdom: Teen saving stem cells in hopes of future treatment – LubbockOnline.com
Staff Writer| Lubbock Avalanche-Journal
By Elizabeth Herbert
A-J Media
A 16-year-old Lubbockite with rheumatoid arthritis recently banked her wisdom teeth for their high concentration of stem cells in the hope of using them in a future procedure.
Stem cells are undifferentiated cells, meaning they can become almost any specialized cell; researchers have been studying these cells to learn more about using them to treat ailments such as rheumatoid arthritis.
The oral and facial surgeon who removed the patients teeth, Dr. Robert Ioppolo, said there was virtually no downside to storing the teeth and cells because the procedure, which is necessary for most, is the same for the patient regardless.
Instead of putting (wisdom teeth) in a baggie, we put them in a vial; we put them in a little freezer-type cryopreservation box and off they go to the processing center, he said, so its very straightforward from our perspective, and it just provides an additional service to patients that we didnt have access to a few years ago.
Once the teeth have been sent to process at the Stemodontics lab, Ioppolo said specialists open the teeth and extrapolate the nerve tissue to obtain the stem cells.
The cool thing is that the stem cell population inside of wisdom teeth, especially in somebody thats young and healthy, is at its peak as far as the amount of cells, so the quantity, and also the quality of those cells, he said, so this is kind of a one-time opportunity that folks have to bank the best stem cells that they possibly can from their wisdom teeth.
Rheumatoid arthritis typically impacts adults. The Centers for Disease Control states 7.1% of people aged 18-44 years old report being diagnosed with arthritis; younger groups are not listed on the main, arthritis-related page.
Jamie Fields, the patients mother, said her daughter has undergone knee surgeries and is on medications but has not seen strong improvements in the seven months she has been receiving treatment.
Doctors tried a technique called microfracture in which tiny holes are drilled into the knee to produce new tissue, but this results in fibrocartilage and is more like scar tissue and less like the cushiony cartilage that joints need to function properly, according to an article from the Stanford Medicine News Center.
Preserving her daughters wisdom teeth and stem cells will cost Fields $2,000, but she said her alternative is to grow cells from the cartilage taken from a previous surgery which would cost about $46,000 for the graft alone and does not account for an accompanying procedure.
When I hear about these stem cells, Im like, Well, what if this would work, she said. If thats the route we have to take, then why not try this first?
Aside from surgeries, Fields said her daughters doctor prescribed medications to help slow or stop the dying cartilage behind her knee. There are many options, but medicines tend to have side effects and Fields said she does not want her daughter to have to use multiple, strong pharmaceuticals long-term.
He has a list, and he started her at the bottom of the list on the medications, and then he said we would just go up from there, but that way we dont do anything too harsh thats not needed, she said.
Rheumatoid arthritis tends to worsen with age, and Fields said her daughter, who already has a history of broken bones and surgeries, is impacted by her rheumatoid arthritis to the extent that she cannot participate in gymnastics, cheerleading or other fun activities she has enjoyed.
Fields could keep working down the line of medications most 16 year olds cannot pronounce, or she said she could save her daughters stem cells and wait for orthopedists to create a procedure that would use her daughters cells to help rejuvenate damaged areas.
This is a once-in-a-lifetime (opportunity), Fields said. If we dont do this now, where is she gonna get them from later, of her own?
Michael Longaker, Deane P. and Louise Mitchell Professor for the Department of Surgery and Co-Director for the Institute of Stem Cell Research and Regenerative Medicine at Stanford University, said using stem cells could help a number of issues due to the cells ability to change.
While we do some things really well, like cardiac bypass surgery or hip replacement et cetera, et cetera, itd be great if we could unlock the power of cells that can become other types of cells so that we could regenerate each of these things before they get to the point where they need a major operation, he said.
Stem cells can be found throughout the body, and removing wisdom teeth is a fairly routine procedure; the WebMD website states over 10 million wisdom teeth are removed annually.
Many of these teeth are disposed of, but Longaker pointed out that stem cells in wisdom teeth are unique to the individual and are great sources of stem cells.
In the soft part, the pulp, of those teeth are stem cells that - God forbid - that healthy, young patient whos having them removed, God forbid anything happens to them and they need something or they have a family history of disease - theyre all set and ready to go, he said.
Longakers teams research began with mice and found skeletal stem cells can be manipulated to become cartilage.
They used two major molecules, bone morphogenetic protein 2 and vascular endothelial growth factor, to help the cells start bone formation after microfracture yet stop the process halfway to create cartilage. Longaker said the next step in the research is to focus on larger animals; then human clinical trials can begin.
Stem cells from wisdom teeth would work best for things in the mouth such as bone and cartilage, but Longaker said the cells can be backed up, de-differentiated and guided in a dish to the point where the cell can become almost anything; once the cell is fully differentiated, or has changed into a specific type of cell the specialist intended, it can be implanted.
You take the stem cells from teeth and back them up, so to speak, so they can become almost any type of cell, and then you would guide them down the exit ramp, so to speak, to where you want them to go, he said.
It may be years before orthopedists use stem cells to improve arthritic conditions, but Longaker, who banked his own sons wisdom teeth, said advances happen regularly and that one never knows when their stem cells will be useful.
As a stem cell biologist, having someone already store stem cells that I could guide to become something else, God forbid they need it, that really makes sense to me, he said. I dont see a reason not to do it if a parent or patient wants to do it.
Although banking her daughters wisdom teeth will not yield immediate results, Fields said she believes god guided her on this path and that she has more to gain than to lose.
Our faith is really strong, and I believe that God has led us on this path to hopefully find something that we can do to help her because weve been on this path for so long and with no answers, she said.
View post:
Banking wisdom: Teen saving stem cells in hopes of future treatment - LubbockOnline.com
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report – Understand Growth Expectations and the Potential Market Size -…
DUBLIN--(BUSINESS WIRE)--The "Cell Based Assay & High Content Screening Markets Market Forecasts by Application, With Executive and Consultant Guides and including Customized Forecasting and Analysis 2020 to 2024" report has been added to ResearchAndMarkets.com's offering.
This updated report will bring the entire management team up to speed, on both the technology and the opportunity.
Cell Based Assays are a mainstay of drug development and scientific research, but growth is now accelerating as new immuno-oncology markets create unprecedented investment in the race to cure cancer. On top of this new technology is allowing Cell Based Assays to be used to measure any aspect of cell function. This market just keeps on growing with no end in sight. The workhorse of the pharmaceutical industry is becoming a central player in biotechnology.
The technology is moving faster than the market. Genomics and Immunology are playing a role too. Find opportunities and pitfalls. Understand growth expectations and the ultimate potential market size.
Key Topics Covered:
1. Introduction and Market Definition
1.1 What are Cell Based Assays?
1.2 Clinical Trial Failures
1.2.1 Immuno-oncology Plays a Leading Role in Cell Based Assays
1.3 Market Definition
1.4 Methodology
1.5 U.S. Medical Market and Pharmaceutical Research Spending - Perspective
1.5.1 U.S. Expenditures for Pharmaceutical Research
2. Cell Based Assays - Guide to Technology
2.1 Cell Cultures
2.1.1 Cell Lines
2.1.2 Primary Cells
2.1.3 Stem Cells
2.1.3.1 iPSC's - The Special Case
2.2 Cell Assays
2.3 Cell Viability Assays
2.3 Cell Proliferation Assays
2.4 Cytotoxicity Assays
2.5 Cell Senescence Assays
2.6 Apoptosis
2.7 Autophagy
2.8 Necrosis
2.9 Oxidative Stress
2.10 2D vs. 3D
2.11 Signalling Pathways, GPCR
2.12 Immune Regulation & Inhibition
2.13 Reporter Gene Technology
2.14 CBA Design & Development
2.15 Cell Based Assays - The Takeaway
3. Industry Overview
3.1 Players in a Dynamic Market
3.1.1 Academic Research Lab
3.1.2 Contract Research Organization
3.1.3 Genomic Instrumentation Supplier
3.1.5 Cell Line and Reagent Supplier
3.1.6 Pharmaceutical Company
3.1.7 Audit Body
3.1.8 Certification Body
4. Market Trends
4.1 Factors Driving Growth
4.1.1 Candidate Growth
4.1.2 Immuno-oncology
4.1.3 Genomic Blizzard
4.1.4 Technology Convergence
4.1.5 The Insurance Effect
4.2 Factors Limiting Growth
4.2.1 CBA Development Challenges
4.2.2 Instrument Integration
4.2.3 Protocols
4.3 Technology Development
4.3.1 3D Assays
4.3.2 Automation
4.3.3 Software
4.3.4 Primary Cells
4.3.5 Signalling and Reporter Genes
4.3.6 The Next Five Years
5. Cell Based Assays Recent Developments
5.1 Recent Developments - Importance and How to Use This Section
5.1.1 Importance of These Developments
5.1.2 How to Use This Section
6. Profiles of Key Cell Based Assay Companies
7. Global Market Size
8. Global Market by User Type
8.1 Pharmaceutical Market
8.2 Basic Research Market
8.3 Industrial/Cosmetic Market
9. Cell Based Assay by Product Class
9.1 Instrument Market
9.2 Reagent Market
9.3 Services Market
9.4 Software Market
10. Appendices
10.1 FDA Cancer Drug Approvals by Year
10.2 Clinical Trials Started 2010 to 2016
10.3 Share of Pharma R&D by Country
For more information about this report visit https://www.researchandmarkets.com/r/1vziyy
Follow this link:
Global Cell Based Assay & High Content Screening Markets to 2024: Updated Report - Understand Growth Expectations and the Potential Market Size -...
Merck Presents Three-Year Survival Data for KEYTRUDA (pembrolizumab) in Combination With Chemotherapy and Updated Phase 1/2 Data for Investigational…
KENILWORTH, N.J.--(BUSINESS WIRE)--Oct 16, 2020--
Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced positive results from two studies from the companys leading lung cancer clinical development program evaluating KEYTRUDA, Mercks anti-PD-1 therapy: KEYTRUDA in combination with chemotherapy (KEYNOTE-021 [Cohort G]) and KEYTRUDA in combination with quavonlimab (MK-1308), Mercks novel investigational anti-CTLA-4 antibody.
In KEYNOTE-021 (Cohort G), first-line treatment with KEYTRUDA in combination with chemotherapy (n=60) demonstrated a significant improvement in objective response rates (58% vs. 33%), progression-free survival (HR=0.54 [95% CI, 0.35-0.83]) and a sustained, long-term survival benefit (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone (n=63) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) regardless of PDL1 expression (Featured Poster #OFP01.02). Patients in Cohort G had no EGFR or ALK genomic tumor aberrations. These findings represent the longest follow-up data for an anti-PD-1/PDL1 therapy in combination with chemotherapy for the first-line treatment of NSCLC. Additionally, updated follow-up data from a Phase 1/2 study of quavonlimab in combination with KEYTRUDA showed encouraging anti-tumor activity and an acceptable safety profile as first-line treatment in patients with advanced NSCLC (Poster #TS01.02).
Over the last five years, KEYTRUDA has become foundational in the treatment of metastatic lung cancer. The long-term data from KEYNOTE-021 (Cohort G) reinforce the use of KEYTRUDA in combination with chemotherapy in certain advanced lung cancer patients, while data from our oncology pipeline reflect our commitment to exploring a number of new combinations with KEYTRUDA that we believe could have a meaningful impact for more lung cancer patients, said Dr. Vicki Goodman, vice president, oncology clinical research, Merck Research Laboratories. Updated data from our anti-CTLA-4 antibody quavonlimab in combination with KEYTRUDA support the continued development of this new combination and a Phase 3 study of quavonlimab coformulated with KEYTRUDA in advanced non-small cell lung cancer is planned.
Results from both studies were presented at the IASLC 2020 North America Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer on Friday, Oct. 16. Follow Merck on Twitter via @Merck and keep up to date with NACLC news and updates by using the hashtag #NACLC20.
KEYTRUDA in Combination With Chemotherapy: Long-Term Data in Advanced NSCLC From KEYNOTE-021 (Cohort G) (Featured Poster #OFP01.02)
New data from Cohort G of KEYNOTE-021 ( NCT02039674 ) demonstrated a significant improvement in objective response rates (ORR), progression-free survival (PFS) and a sustained, long-term survival benefit with KEYTRUDA in combination with pemetrexed (ALIMTA ) and platinum chemotherapy versus pemetrexed and platinum chemotherapy alone after four years of median study follow-up (49.4 months; range, 43.5 to 55.4). Cohort G of the Phase 1/2, multi-cohort, multi-center, open-label trial evaluated KEYTRUDA in combination with chemotherapy (n=60) versus chemotherapy alone (n=63) as first-line treatment in patients with advanced nonsquamous NSCLC. Patients in Cohort G had no EGFR or ALK genomic tumor aberrations.
Findings from KEYNOTE-021 (Cohort G) showed that 50% of patients treated with KEYTRUDA in combination with chemotherapy were alive at three years versus 37% of patients who received chemotherapy alone. KEYTRUDA in combination with chemotherapy also reduced the risk of death by 29% (HR=0.71 [95% CI, 0.45-1.12]) versus chemotherapy alone, with a median overall survival (OS) of 34.5 versus 21.1 months. The OS benefit was observed despite a 70% (n=43/61) effective crossover rate from chemotherapy to antiPD1/PDL1 therapy, including 28 patients who were treated with KEYTRUDA as part of the on-study crossover.
The ORR was 58% for KEYTRUDA in combination with chemotherapy versus 33% for chemotherapy alone. KEYTRUDA also reduced the risk of disease progression or death by 46% (HR=0.54 [95% CI, 0.35-0.83]) versus chemotherapy, with a median PFS of 24.5 months (range, 9.7 to 36.3) versus 9.9 months (range, 6.2 to 15.2). The estimated three-year PFS rate was 37% for patients who received KEYTRUDA in combination with chemotherapy versus 16% for those who received chemotherapy alone. The median duration of response (DOR) was more than one year longer with KEYTRUDA in combination with chemotherapy (36.3 months; range, 1.4+ to 49.3+) versus chemotherapy alone (22.8 months; range, 2.8+ to 47.2+). Additionally, 51% of patients treated with KEYTRUDA in combination with chemotherapy had responses lasting three years versus 47% with chemotherapy alone.
Notably, 92% of patients who completed two years of treatment with KEYTRUDA were alive at three years (n=11/12). All 12 patients experienced an objective response and the estimated three-year DOR rate was 100% (median DOR not reached [NR]; range, 11.7+ to 49.3+ months).
No new safety signals for KEYTRUDA in combination with chemotherapy were identified with long-term follow-up. Among all those treated, 39% of those who received KEYTRUDA in combination with chemotherapy and 31% of those who received chemotherapy alone experienced Grade 3-5 treatment-related adverse events (TRAEs). Grade 3-5 TRAEs that led to discontinuation occurred in 17% of patients who received KEYTRUDA in combination with chemotherapy and 16% of those who received chemotherapy alone. Grade 3-5 TRAEs that led to death occurred in 2% (n=1) of patients who received KEYTRUDA in combination with chemotherapy and 3% (n=2) of those who received chemotherapy alone.
The KEYNOTE-021 (Cohort G) trial was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA ).
Quavonlimab (anti-CLTA-4) in Combination With KEYTRUDA: Phase 1/2 Results in Advanced NSCLC (Poster #TS01.02)
In this first-in-human, open-label, multi-arm Phase 1/2 study ( NCT03179436 ), quavonlimab, Mercks novel anti-CTLA-4 therapy, was evaluated in combination with KEYTRUDA as a first-line treatment in patients with advanced NSCLC. In the dose-confirmation phase, patients received quavonlimab (25 mg or 75 mg) every three weeks (Q3W) or every six weeks (Q6W) in combination with KEYTRUDA (200 mg Q3W for up to 35 cycles). The primary objective of the study was safety and tolerability; secondary and exploratory objectives included ORR per RECIST v1.1 by blinded independent central review (BICR), PFS, OS and DOR. Response based on PD-L1 status was retrospectively evaluated using tumor proportion score (TPS) as a continuous variable.
Findings showed that quavonlimab in combination with KEYTRUDA had an acceptable safety profile with no unexpected toxicities and suggested encouraging anti-tumor activity. Any-grade adverse events occurred in 98% of patients; TRAEs occurred 85% of patients. Grade 3 TRAEs occurred in 36% of patients across all treatment arms and the most common TRAEs ( > 10% in any arm) were increased alanine aminotransferase (8%), pneumonitis (8%) and increased aspartate aminotransferase (6%).
With 16.9 months of median follow-up (range, 7.0 to 21.3), results from the study showed the effect of quavonlimab in combination with KEYTRUDA across secondary and exploratory endpoints, including ORR, PFS, OS and DOR. Responses to quavonlimab in combination with KEYTRUDA were observed regardless of PD-L1 expression with higher TPS scores significantly associated with better response (one-sided p=0.015). These safety and efficacy data support the 25 mg Q6W dose as the recommended Phase 2 dose of quavonlimab when used in combination with KEYTRUDA.
Quavonlimab25 mg Q6W + KEYTRUDAn=40
Quavonlimab25 mg Q3W + KEYTRUDAn=40
Quavonlimab75 mg Q6W + KEYTRUDAn=40
Quavonlimab75 mg Q3W + KEYTRUDAn=14
TotalN=134
ORR, %(95%, CI)
37.5(22.7-54.2)
40(24.9-56.7)
27.5(14.6-43.9)
35.7(12.8-64.9)
35.1(27.0-43.8)
PFS, median(95%, CI), mo
7.8(4.2-14.8)
6.0(2.0-8.3)
6.0(3.5-8.1)
3.4(1.8-NE)
6.1(4.2-7.3)
OS, median(95%, CI), mo
18.1(14.2-NE)
18.1(9.1-21.8)
17.1(9.0-NE)
13.7(3.5-NE)
16.5(14.2-21.8)
DOR, median(95%, CI), mo
NR(4.0 to 21.6+)
7.9(2.8 to 21.4+)
15.9(3.4 to 21.4+)
NR(8.8+ to 16.3+)
13.6(2.8 to 21.6+)
About Lung Cancer
Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10% to 15% of all lung cancers. Before 2014, the five-year survival rate for patients diagnosed in the U.S. with NSCLC and SCLC was estimated to be 5% and 6%, respectively.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
About Quavonlimab (MK-1308)
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes – Anti Aging News
Recovery from experimental heart attacks can be improved with an injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, but results are limited by poor engraftment and retention, plus there are concerns about potential tumorigenesis and heart arrhythmia.
Recent animal research in pigs has shown that using the exosomes naturally produced from a mixture of heart muscle cells, endothelial cells, and smooth muscle cells derived from human induced pluripotent stem cells yielded regenerative benefits that were the equivalent to the injected hiPSC-CCs.
Exosomes are membrane-bound extracellular vesicles that contain biologically active proteins, RNAs and microRNAs that are well known to participate in cell to cell communication, and are actively studied as potential clinical therapies for a wide range of conditions.
The hiPSC-CC exosomes are acellular and, consequently, may enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding the complexities associated with tumorigenic risks, cell storage, transportation and immune rejection, said Ling Gao, Ph.D., and Jianyi Jay Zhang, M.D., Ph.D., University of Alabama at Birmingham corresponding authors of the study, published in Science Translational Medicine. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Studies involving large animals are required to identify, characterize and quantify all responses to potential treatments, prior to this study the feasibility of hiPSC-CC exosomes for cariad therapy had only been shown to be effective in mouse models and in vitro work.
The UAB studies involving juvenile pigs with experimental heart attacks had 1 of 3 treatments injected into the damaged myocardium: a mixture of cardiomyocytes, endothelial cells, and smooth muscle cells derived from human induced pluripotent stems cells, exosomes extracted from three cell types, and homogenized fragments from the cell types.
There were 2 primary findings from this study. Measurements of left ventricle function, infarct size, wall stress, cardiac hypertrophy apoptosis and angiogenesis in the animals treated with hiPSC-CCS, hiPSC-cc fragments or hiPSC-cc exosomes were found to be similar and significantly improved compared to those that recovered without any of the 3 treatments. Additionally, exosome therapy was found not to increase the frequency of arrhythmia.
During experiments with cells or aortic rings that were grown in culture, exosomes produced by hiPSC-CCs were found to promote blood vessel growth in cultured endothelial cells and isolated aortic rings. The exosomes also protected the cultured hiPSC-cardiomyocytes from the cytotoxic effect of serum-free lox oxygen media by reducing the programmed apoptosis cell death and by maintaining intracellular calcium homeostasis which had a direct beneficial effect on heart conductivity. Additionally, the exosomes also increased cellular ATP content which is beneficial as deficiencies in cellular ATP metabolism are believed to contribute to the progressive decline in heart function in those with left ventricle hypertrophy and heart failure.
Some of the in vitro beneficial effects were found to also be mediated by synthetic mimics of the 15 most abundant microRNAs that were found in the hiPSC-cc exosomes. It was noted that knowledge of the potential role of microRNAs in clinical application requires more research as it is far from complete.
The study: Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine, co-authors with Gao and Zhang are Lu Wang, Yuhua Wei, Prasanna Krishnamurthy, Gregory P. Walcott and Philippe Menasch, UAB Department of Biomedical Engineering. Menasch also has an appointment at the Universit de Paris, France. Gao is now at Tongji University School of Medicine, Shanghai, China.
Read the original here:
Preclinical Study Shows Improvement In Recovery From Heart Attack With Exosomes - Anti Aging News
Autologous Stem Cell Based Therapies Market Size, Business Revenue Forecast, Leading Competitors And Growth Trends 2026| Regeneus, Mesoblast,…
Autologous Stem Cell Based Therapies Market Report Delivering Growth Analysis with Key Trends of Top Companies (2020-2026)
A comprehensive research study on the Autologous Stem Cell Based Therapies Marketwas recently published by Market Report Expert. This is an up-to-date report, covering the current COVID-19 impact on the market. The Coronavirus (COVID-19) has affected every aspect of life globally and thus altering the global market scenario. The changes in the market conditions are drastic. The swiftly changing market scenario and initial and future assessment of the impact on Autologous Stem Cell Based Therapies market is covered in the report.The Autologous Stem Cell Based Therapies Market report is a precise and deep-dive study on the current state that aims at the major drivers, market strategies, and imposing growth of the key players. Worldwide Autologous Stem Cell Based Therapies Industry also offers a granular study of the dynamics, segmentation, revenue, share forecasts, and allows you to make superior business decisions. The report serves imperative statistics on the market stature of the prominent manufacturers and is an important source of guidance and advice for companies and individuals involved in the Autologous Stem Cell Based Therapies industry.
The Global Autologous Stem Cell Based Therapies Market poised to grow from US$ XX million in 2020 to US$ XX million by 2026 at a compound annual growth rate (CAGR) of XX% during the projection period of 2020-2026.
An Outline of the Major Key Players covered in this Report:
Regeneus, Mesoblast, Pluristem Therapeutics Inc, U.S. STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe
Get Free LatestPDF Template of this Report(Including Covid-19 impact analysis on overall industry Forecast, Size, Share, CAGR and more.)@ https://www.marketreportexpert.com/report/Autologous_Stem_Cell_Based_Therapies_/13849/sample
Note: We can also provide market report in German/French Language.
The report puts together a succinct analysis of the growth drivers influencing the current business scenario across various regions and countries. Substantial information pertaining to the industry analysis size, share, application, and statistics are summed in the report in order to present a collaborative prediction. Additionally, this report encompasses a precise competitive analysis of major market players, innovative companies, and their strategies during the projection timeline.
The latest report on the Autologous Stem Cell Based Therapies Market consists of an analysis of this industry and its type, application, and other segments. As per the report, the market is estimated to gain significant returns and register substantial y-o-y growth during the forecast period of 2020-2026.
Majortype, primarily split into
Embryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells
Major applications/end users, including
Neurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases
According to the report, the study offers details regarding the valuable estimations of the market such as market size, sales capacity, and profit projections. The report documents factors such as drivers, restraints, and opportunities that impacts the remuneration of this market.
Feel Free! Ask Our Industry Expert For Discount on this Report(Note: Our reports include the analysis of the impact of COVID-19 on this industry. Our updated sample pages shows impact of Covid-19 on Industry trends. Also we are offering 20% discount.): https://www.marketreportexpert.com/report/Autologous_Stem_Cell_Based_Therapies_/13849/inquiry
The research offers an analysis of the geographical landscape of the Autologous Stem Cell Based Therapies Market, which is divided into regions such as North America, Europe, Asia Pacific, South America, and the Middle East & Africa. The segment includes data about several parameters related to the regional contribution such as market share, application share, type share, key companies in respective regions, market share of key companies in regional market, growth rate and revenue of the regional market, sales, production, and consumption of the respective Autologous Stem Cell Based Therapies market.
Major Highlights of TOC Covers:
Autologous Stem Cell Based Therapies Market 2020, Autologous Stem Cell Based Therapies Market size, Autologous Stem Cell Based Therapies Market share, Autologous Stem Cell Based Therapies Market analysis, Autologous Stem Cell Based Therapies Market forecast, Autologous Stem Cell Based Therapies Market trends, Autologous Stem Cell Based Therapies Market Research report, Autologous Stem Cell Based Therapies application, Autologous Stem Cell Based Therapies Trends, Autologous Stem Cell Based Therapies Market growing CAGR, Autologous Stem Cell Based Therapies Market Competitive Landscape, Autologous Stem Cell Based Therapies Market Growth
Information related to the growth rate, revenue, sales, production, consumption, during the forecast period is included in the report. The Autologous Stem Cell Based Therapies Market report claims that the industry is projected to generate significant revenue and sales during the forecast period. The report consists of information related to the market dynamics such as challenges involved in this vertical, growth opportunities, and driving factors affecting the market.
About Us
Market Report Expert is a futuristic market intelligence company, helping customers flourish their business strategies and make better decisions using actionable intelligence. With transparent information pool, we meet clients objectives, commitments on high standard and targeting possible prospects for SWOT analysis and market research reports.
Contact USJames ThompsonMarket Report ExpertPhone: +1-816-301-6258Email inquiry@marketreportexpert.comWeb:-https://www.marketreportexpert.com
Follow this link:
Autologous Stem Cell Based Therapies Market Size, Business Revenue Forecast, Leading Competitors And Growth Trends 2026| Regeneus, Mesoblast,...
Recording thousands of nerve cell impulses at high resolution – Newswise
Newswise For over 15 years, ETH Professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can be used to precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips located at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail. Alternative methods for conducting such measurements have some clear limitations. They are either very time-consuming - because contact to each cell has to be individually established - or they require the use of fluorescent dyes, which influence the behaviour of the cells and hence the outcome of the experiments.
Now, researchers from Hierlemann's group at the Department of Biosystems Science and Engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.
Stronger signal required
As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimetres. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells, derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).
However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.
Background noise reduced
In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the time points, at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.
In first experiments, which the researchers published in the journalNature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells and neuronal spheroids.
Application in drug development
With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons. "The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once," Hierlemann says.
Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology thus also helps to reduce the number of animal experiments.
The ETH spin-off MaxWell Biosystems is already marketing the existing microelectrode technology, which is now in use around the world by over a hundred research groups at universities and in industry. At present, the company is looking into a potential commercialisation of the new chip.
###
Read more here:
Recording thousands of nerve cell impulses at high resolution - Newswise
Wisconsin Medicine Livestream: The future of medicine – Wisbusiness.com
MADISON,WI(September 30, 2020) From bone marrow transplants to discoveries about skin cancer to human stem cells, UWMadison has fostered many of the developments that shaped modern medicine. And Robert Golden, dean of the School of Medicine and Public Health, is certain that the UW will be home to the developments that shape the future of medicine, too.
The UW is perfectly positioned to build further on our traditions of excellence, he says, because our collaborative environment creates synergies across the domains of basic science, clinical, and translational research, bringing new discoveries from the bench to the bedside and ultimately into communities.
Golden hosted a conversation on the future of medicine as part of the Wisconsin Medicine livestream series on September 29. His guests included Dhanansayan Shanmuganayagam, director of the UWs Biomedical and Genomic Research Group; David Gamm, director of the McPherson Eye Research Institute; and Petros Anagnostopoulos, chief of the pediatric cardiothoracic surgery section at American Family Childrens Hospital. Each of the doctors described new developments in their area.
Organ transplantation is one of the greatest advances in modern medicine, but the need for organs for transplantation is far greater than the available donor organs, said Shanmuganayagam. He noted that more than 109,000 Americans are currently waiting for an organ transplant, and every 20 minutes one of them dies for lack of a donor. How do we plan to solve this crisis? We believe the answer is something called xenotransplantation: the transplant of organs from one species to another.
Shanmuganayagam then described how his group has learned to genetically engineer pigs even engineering a new breed, the Wisconsin Miniature Swine to grow organs that may eventually be transplanted to patients.
Gamm has been involved in using human stem cells to address vision loss and blindness. He believes that stem cells may help address or even reverse diseases of the retina, such as macular degeneration and retinitis pigmentosa.
We are looking for ways we can use the cells that we grow in the laboratory dish not just as model systems, he says, but actually to replace those cells that have died in the course of a disease, to act sort of as spare parts for the retina and so potentially restore vision.
Anagnostopoulos discussed the expertise of UW surgeons in treating cardiac conditions, particularly among children. For the patient complexity that we see, and the breadth of surgery that we see, our outcomes are statistically superior than they should be expected to be, he said
After the three doctors presented, Golden brought forward questions from some of the hundreds of viewers who watched the event live on YouTube. To hear more from Golden and the members of the panel,view a recording of Wisconsin Medicine. This was the fourth installment in the series, which ran through September.
Continued here:
Wisconsin Medicine Livestream: The future of medicine - Wisbusiness.com
Measuring chips amplify and record nerve cells – Futurity: Research News
Share this Article
You are free to share this article under the Attribution 4.0 International license.
New microelectrode-array chips for measuring nerve impulses could reveal how thousands of nerve cells interact with each other.
For over 15 years, ETH Zurich professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail.
Alternative methods for conducting such measurements have some clear limitations. They are either very time-consumingbecause contact to each cell has to be individually establishedor they require the use of fluorescent dyes, which influence the behavior of the cells and so the outcome of the experiments.
Now, researchers from Hierlemanns group at the department of biosystems science and engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.
As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimeters. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).
However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.
In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the points in time at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.
In first experiments, which the researchers report in Nature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells, and neuronal spheroids.
With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons.
The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once, Hierlemann says.
Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology then also helps to reduce the number of animal experiments.
MaxWell Biosystems is marketing the existing microelectrode technology, which university and industry research groups around the world are using.
Source: ETH Zurich
Visit link:
Measuring chips amplify and record nerve cells - Futurity: Research News
Recording thousands of nerve cell impulses at high resolution – ScienceDaily – Up News Info
For over 15 years, ETH Professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can be used to precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips located at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail. Alternative methods for conducting such measurements have some clear limitations. They are either very time-consuming because contact to each cell has to be individually established or they require the use of fluorescent dyes, which influence the behaviour of the cells and hence the outcome of the experiments.
Now, researchers from Hierlemanns group at the Department of Biosystems Science and Engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.
Stronger signal required
As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimetres. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells, derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).
However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.
Background noise reduced
In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the time points, at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.
In first experiments, which the researchers published in the journal Nature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells and neuronal spheroids.
Application in drug development
With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons. The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once, Hierlemann says.
Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology thus also helps to reduce the number of animal experiments.
The ETH spin-off MaxWell Biosystems is already marketing the existing microelectrode technology, which is now in use around the world by over a hundred research groups at universities and in industry. At present, the company is looking into a potential commercialisation of the new chip.
Story Source:
Materials provided by ETH Zurich. Original written by Fabio Bergamin. Note: Content may be edited for style and length.
Read this article:
Recording thousands of nerve cell impulses at high resolution - ScienceDaily - Up News Info
Kyoto University project aims to supply iPS cells widely at low cost – The Japan Times
Kyoto A project to make induced pluripotent stem cells, known as iPS cells, promptly and widely available at lower cost will get underway next year.
The My iPS Project will feature the creation of iPS cells, which can change into various types of functional cells, from the blood or other tissues of the patients themselves, to avoid rejection when a transplant is performed.
The project will be led by the CiRA Foundation at Kyoto University, which has taken over the business of stockpiling iPS cells from the university's Center for iPS Research and Application.
Headed by Shinya Yamanaka, a stem cell researcher and professor at the university who was awarded the Nobel Prize in Physiology or Medicine in 2012 for his pioneering work in iPS cell technology, the foundation was set up in September 2019 to make the business an independent operation financed by earnings and donations. It became a public interest foundation in April.
When a transplant is performed, the rejection of cells occurs if human leukocyte antigen, or HLA, from the donor is different from that of the recipient.
But with iPS cells produced from a person who has inherited the same type of HLA from his or her parents, rejection is considered rare for cells transplanted in another person with the same type of the antigen.
Using this knowledge, CiRA at Kyoto University has produced 27 kinds of iPS cells from the blood of seven healthy people and supplied them to research institutions and private companies for use in clinical studies and trials to facilitate regenerative medicine.
In 2017, research institutions such as Riken transplanted retina cells produced from the iPS cells in five patients suffering from intractable eye diseases. The first transplants of their kind in the world were followed by the transplants of nerve cells to the brain of a Parkinson's disease patient at Kyoto University and of a cardiac muscle sheet to a cardiac patient at Osaka University.
But the iPS cells stored by CiRA are of four kinds in terms of HLA type, estimated to eliminate rejection for only about 40 percent of all transplants for Japanese people. At CiRA, furthermore, iPS cells are manually cultivated by three well-trained people who are also responsible for preventing the entry of impurities and checking quality.
CiRA, therefore, can produce iPS cells only for three patients per year and transplants cost 40 million per person.
To reduce rejection, the foundation will develop technology to culture iPS cells from the blood or other tissues of the patients themselves and lower the cost of transplants. Starting in 2021, it will build a facility for automated processes from cultivation to inspection to stockpiling.
The project will be financed from the 5 billion that Tadashi Yanai, president and chairman of Fast Retailing Co., has pledged to donate to Kyoto University over 10 years.
The facility, with a total floor space of 1,500 square meters, will have many cylindrical, automated incubators as tall as human beings. It is planned to be completed in January 2025 so that its technology can be exhibited at the World Exposition to be held in Osaka in the year. To show appreciation for the donation, the facility will carry the name Yanai.
The project will realize the "ideal use" of iPS cells, Yamanaka said, declaring the aim of supplying them to 1,000 patients per year at 1 million per person.
Read this article:
Kyoto University project aims to supply iPS cells widely at low cost - The Japan Times
Heart attack patches may save lives in US and beyond – Galveston County Daily News
A promising therapy for heart attacks uses stem cells to repair the damaged areas of the heart. However, getting the transplanted cells to stay at the site is a challenge. Now scientists have created a new type of off-the-shelf cardiac patch that overcomes these limitations.
The leading cause of death in the United States is coronary heart disease, which kills about 360,000 per year. Heart attacks result from the loss of blood flow to part of the heart muscle. This can be caused by fat, cholesterol and other substances forming plaque in the coronary arteries that supply oxygenated blood to the heart.
When the plaque breaks, a clot forms around it, which can prevent blood flow to a part of the heart and kill cells. The degree of damage depends on the area of the heart supplied by the blocked artery.
Treatments for a heart attack include limiting the original damage and blocking the secondary damage, which reduces long-term consequences and saves lives. As the heart heals, the damaged area forms scar tissue, which cannot pump blood like normal heart tissue, and it can affect the performance of the rest of the heart.
Cell therapy for heart attacks involves using cardiac stromal cells to encourage the heart to heal with muscle cells rather than scar tissue. Cardiac stromal cells interact with muscle cells and release chemical signals to encourage muscle cell growth.
This approach has only moderate benefits, because cardiac stromal cells are fragile and must be carefully stored and transported. Making matters worse, some stem cells can grow out of control and become tumors. Using a patients own cells has some advantages, but its expensive and time consuming. Theres also the problem of preventing the beating heart from washing the cells away.
Several types of scaffolds have been developed to keep the cardiac stromal cells at the proper location. However, these scaffolds dont overcome the cost and difficulties of isolating and expanding the stem cells.
Now a group of scientists has created a new type of artificial cardiac patch. It consists of a scaffolding matrix made from pig cardiac tissue, from which all cells have been removed. They then created artificial cardiac stromal cells by putting the important healing components from cardiac stromal cells into biodegradable microparticles within that matrix. The synthetic cardiac stromal cells mimic the therapeutic features of live stem cells while overcoming their storage and survival problems, and the matrix preserves the structures and activity found in cardiac tissue.
The artificial cardiac patch was shown to hold the synthetic cardiac stromal cells in place on the heart. In heart attack experiments in both rodents and pigs, the patch resulted in a 50 percent improvement in heart function and a 30 percent reduction in scarring when compared to no treatment.
Medical Discovery News is hosted by professors Norbert Herzog at Quinnipiac University, and David Niesel of the University of Texas Medical Branch. Learn more at http://www.medicaldiscoverynews.com.
Continued here:
Heart attack patches may save lives in US and beyond - Galveston County Daily News
Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Global Briefing, Growth Analysis And Opportunities Outlook | Major Giants …
Autologous Stem Cell and Non-Stem Cell Based Therapies Market research report assists the business in every sphere of trade to easily take the unmatched decisions, to tackle the toughest business questions and diminish the risk of failure. Competitive analysis performed in this market report puts forth the moves of the key players in the industry such as new product launches, expansions, agreements, joint ventures, partnerships, and recent acquisitions. By precisely understanding and keeping into thought customer requirement, one step or combination of many steps has been employed to make out this most excellent Autologous Stem Cell and Non-Stem Cell Based Therapies Market report.
For In depth Information Get Sample Copy of this Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
TheGlobalAutologous Stem Cell and Non-Stem Cell Based Therapies Marketis expected to reach USD113.04 billion by 2025, from USD 87.59 billion in 2017 growing at a CAGR of 3.7% during the forecast period of 2018 to 2025. The upcoming market report contains data for historic years 2015 & 2016, the base year of calculation is 2017 and the forecast period is 2018 to 2025.
Some of the major players operating in the globalautologous stem cell and non-stem cell based therapies marketareAntria (Cro), Bioheart, Brainstorm Cell Therapeutics, Cytori, Dendreon Corporation, Fibrocell, Genesis Biopharma, Georgia Health Sciences University, Neostem, Opexa Therapeutics, Orgenesis, Regenexx, Regeneus, Tengion, Tigenix, Virxsys and many more.
Browse Detailed TOC Herehttps://www.databridgemarketresearch.com/toc/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
Market Definition:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
In autologous stem-cell transplantation persons own undifferentiated cells or stem cells are collected and transplanted back to the person after intensive therapy. These therapies are performed by means of hematopoietic stem cells, in some of the cases cardiac cells are used to fix the damages caused due to heart attacks. The autologous stem cell and non-stem cell based therapies are used in the treatment of various diseases such as neurodegenerative diseases, cardiovascular diseases, cancer and autoimmune diseases, infectious disease.
According to World Health Organization (WHO), cardiovascular disease (CVD) causes more than half of all deaths across the European Region. The disease leads to death or frequently it is caused by AIDS, tuberculosis and malaria combined in Europe. With the prevalence of cancer and diabetes in all age groups globally the need of steam cell based therapies is increasing, according to article published by the US National Library of Medicine National Institutes of Health, it was reported that around 382 million people had diabetes in 2013 and the number is growing at alarming rate which has increased the need to improve treatment and therapies regarding the diseases.
Market Segmentation:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
Major Autologous Stem Cell and Non-Stem Cell Based Therapies Market Drivers and Restraints:
Introduction of novel autologous stem cell based therapies in regenerative medicine
Reduction in transplant associated risks
Prevalence of cancer and diabetes in all age groups
High cost of autologous cellular therapies
Lack of skilled professionals
Reasons to Purchase this Report
Customization of the Report:
Speak to Author of the report @https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
About Data Bridge Market Research:
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475Mail:[emailprotected]
See original here:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020-2025 Global Briefing, Growth Analysis And Opportunities Outlook | Major Giants ...
Exosome Therapeutic Market Latest Industry Size, Growth, Share, Emerging Demands, and Competitive Landscape || Major Gaints Jazz Pharmaceuticals,…
Exosome Therapeutic Market analysis report encompasses infinite knowledge and information on what the markets definition, classifications, applications, and engagements are and also explains the drivers & restraints of the market which is obtained from SWOT analysis. Gathered market data and information is denoted very neatly with the help of most appropriate graphs, charts or tables in the entire report. Utilization of well established tools and techniques in this Exosome Therapeutic Market document helps to turn complex market insights into simpler version. Competitive analysis studies of this market report provides with the ideas about the strategies of key players in the market.
A large scale Exosome Therapeutic Market report endows with the data and statistics on the current state of the industry which directs companies and investors interested in this market. By applying market intelligence for this market research report, industry expert measure strategic options, summarize successful action plans and support companies with critical bottom-line decisions. The most appropriate, unique, and creditable global market report has been brought to important customers and clients depending upon their specific business needs. Businesses can accomplish great benefits with the different & all-inclusive segments covered in the Exosome Therapeutic Market research report hence every bit of market is tackled carefully.
Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp
Market Analysis and Insights:Global Exosome Therapeutic Market
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
The major players covered in theExosome Therapeutic Marketreport areevox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global.Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.
Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.
Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.
Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.
Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.
The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Customization Available:Global Exosome Therapeutic Market
Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.
Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp
About Data Bridge Market Research :
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us :
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Mail:[emailprotected]
The rest is here:
Exosome Therapeutic Market Latest Industry Size, Growth, Share, Emerging Demands, and Competitive Landscape || Major Gaints Jazz Pharmaceuticals,...
James T. Willerson, Revered Clinician, Editor, and Mentor, Dies at 81 – TCTMD
Esteemed cardiologist James T. Willerson, MD, of the Texas Heart Institute, who pioneered research in unstable atherosclerotic plaques and was the longest-serving editor of Circulation, died after a long illness on September 16, 2020, at age 81.
It's very easy to find his scientific contributions, which have been countless, said longtime friend and colleague Mohammad Madjid, MD (University of Texas Health Science Center, Houston). But if you knew him and saw how he worked, the thing that really stood out was how compassionate and genuine he was with his patients. He had an amazing rapport with them, and they knew he meant it when he said he was only one phone call away from them, 24-7, Madjid added. Over all the years that I knew him, I never saw him getting angry. He had a cool, gentle manner even under the most serious of circumstances.
Paul Ridker, MD (Harvard Medical School, Boston, MA), told TCTMD Willerson will be greatly missed.
Jim Willersons reach and influence were simply exceptional, he said. Early in my career, Jim reached out and was both supportive and inspirational. Over the years he became a friend and treasured research colleague.
Renu Virmani, MD (CVPath Institute, Gaithersburg, MD), said she got to know Willerson through his passion to advance the field of atherosclerosis and his desire to figure out how to predict future cardiac events so as to treat them before catastrophe occurred.
"While editor of Circulation, he encouraged everyone involved in research in this area, and I was one of the lucky ones whose career benefited from his passion, his curiosity, and his mentorship. I will always remember him as among the kindest and most humble leaders in our field," she said in an email. "His foresight did so much to advance knowledge in that field and I am deeply saddened by his passing."
In 2005, Willerson was the recipient of the TCT Career Achievement Award. Jim Willerson was a towering figure in medicine, Martin B. Leon, MD (NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY), TCTs founder and director, told TCTMD. He had a legendary work ethic, set new standards as editor-in-chief of Circulation, and always reverted to his patient-centered origins as a revered clinician. Jim was soft-spoken and extremely humble, which belied his raging intellect, thirst for knowledge, and commitment to excellence. He will be remembered as a true giant in cardiology, setting the stage for the modern era.
Gregg W. Stone, MD (Icahn School of Medicine at Mount Sinai, New York, NY), also a TCT director, called Willerson one of the true giants of medicine, as well as the consummate scientist, educator, editor, academician and caregiver.
He was also a warm person, inherently humble, but knew when to be outspoken and motivated generations of cardiologists. He will be greatly missed but always remembered, Stone remarked.
A Texas-Sized Life
Willerson was born on the edge of the Texas Hill Country in Lampasas to parents who were both physicians. He attended school in San Antonio and Austin before receiving his medical degree from Baylor College of Medicine in Houston. A championship swimmer in his college days, Willerson has a swimming scholarship named in his honor at his alma mater, the University of Texas at Austin.
In an interview published in 2018 in the European Heart Journal, he explained that a meeting arranged by his mother when he was just 14 years old, with the renowned cardiovascular surgeon Denton Cooley, MD, changed the arc of his life. Rather than a quick hello, Willerson recalled that the two spent 30 minutes speaking about Willersons interest in becoming a physician. The meeting was the start of an enduring friendship and collaboration with Cooley, who founded the Texas Heart Institute (THI) and performed the first successful artificial heart transplantation there in 1969. When Cooley stepped aside as president of THI at age 86, he chose Willerson to take the job. Willerson continued on, serving as president emeritus until his death.
He was the best role model that anyone could have, and the most lovable human you could ever want to be around. Mohammad Madjid
For many years, Madjid said, Willerson and Cooley worked in offices next-door to each other, remaining close until Cooleys death in 2016.
Throughout his long career, Willerson pioneered research on the detection and treatment of vulnerable atherosclerotic plaques, as well as genes and abnormal proteins. As a result of his research, he was awarded 15 patents, and his institution became the site of the first US Food and Drug Administration-approved trial of human stem cells to treat ischemic cardiomyopathies and congestive HF. Over his career, he published an estimated 1,000 scientific papers and wrote one of the first textbooks on nuclear cardiology.
Juan Granada, MD, CEO of the Cardiovascular Research Foundation (CRF), who spent time as a fellow atBaylor College of Medicine and worked closely with Willerson, said they shared an interest in vulnerable plaque research and translational medicine.
He was very entrepreneurial, very innovative, and one of the hardest working people that I ever met in my life, Granada noted. He recalled that during Willersons long tenure as editor of Circulation, he would often personally contact authors to sort through problems that cropped up during the review process.
This is essentially unheard of nowadays, but he would actually call you on the phone and say, Hey, I got this comment. Lets talk it through. He was amazing and unique in what he did, and he was a beautiful, caring person on top of it, Granada added.
To TCTMD, Madjid said of his mentor, He had my back through everything. When I was down, he was there. When I needed help or to talk, he was always there. He was the best role model that anyone could have, and the most lovable human you could ever want to be around.
Following the Texas Heart Institutes announcement of Willersons death, colleagues and friends took to Twitter to share their memories.
Photo Credit: Mohammad Madjid
Read more:
James T. Willerson, Revered Clinician, Editor, and Mentor, Dies at 81 - TCTMD
Researchers Discover a Way To Create Induced Tropoblast Stem Cells – Technology Networks
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that may lead to new treatments for placenta complications during pregnancy.
While it is widely known that adult skin cells can be reprogrammed into cells similar to human embryonic stem cells that can then be used to develop tissue from human organs - known as induced pluripotent stem cells (iPSCs) - the same process could not create placenta tissue.
iPSCs opened up the potential for personalised cell therapies and new opportunities for regenerative medicine, safe drug testing and toxicity assessments, however little was known about exactly how they were made.
An international team led by ARC Future Fellow Professor Jose Polo from Monash University's Biomedicine Discovery Institute and the Australian Research Medicine Institute, together with Assistant Professor Owen Rackham from Duke-NUS in Singapore, examined the molecular changes the adult skin cells went through to become iPSCs. It was during the study of this process that they discovered a new way to create induced trophoblast stem cells (iTSCs) that can be used to make placenta cells.
This exciting discovery, also involving the expertise of three first authors, Dr. Xiaodong Liu, Dr. John Ouyang and Dr. Fernando Rossello, will enable further research into new treatments for placenta complications and the measurement of drug toxicity to placenta cells, which has implications during pregnancy.
"This is really important because iPSCs cannot give rise to placenta, thus all the advances in disease modelling and cell therapy that iPSCs have brought about did not translate to the placenta," Professor Polo said.
"When I started my PhD five years ago our goal was to understand the nuts and bolts of how iPSCs are made, however along the way we also discovered how to make iTSCs," said Dr Liu.
"This discovery will provide the capacity to model human placenta in vitro and enable a pathway to future cell therapies," commented Dr Ouyang.
"This study demonstrates how by successfully combining both cutting edge experimental and computational tools, basic science leads to unexpected discoveries that can be transformative," Professor Rackham said.
Professors Polo and Rackham said many other groups from Australian and international universities contributed to the study over the years, making it a truly international endeavour.
Reference:Liu, X., Ouyang, J.F., Rossello, F.J. et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature (2020). https://doi.org/10.1038/s41586-020-2734-6
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Original post:
Researchers Discover a Way To Create Induced Tropoblast Stem Cells - Technology Networks
What Is Covid-19 Doing to Our Hearts? – The New Republic
Brady Feeney hadnt even taken any classes at Indiana University when he fell ill with Covid-19. Three weeks after he moved to Bloomington, the incoming freshman was in the emergency room, struggling to breathe. Before his illness, Feeney had been a perfectly healthy teenager, with no preexisting conditions. In high school, he was a three-time all-state football player and won two state titles in Missouri. But after two weeks of hell fighting the virus, his mother said, his bloodwork indicated possible heart problems.
When SARS-CoV-2 first struck the United States, the medical community had two working assumptions: First, this was primarily a respiratory disease, and second, it seemed to hit older people much harder than younger people, with eight out of 10 confirmed Covid-19 deaths in the U.S. happening in adults 65 or older. But now, new research is challenging both of these assumptions.
Growing evidence suggests that SARS-CoV-2 doesnt only infect the lungs. It also affects the brain, kidneys, and heart. At first, doctors and researchers wondered if these issues beyond the lungs came just from the stress of having Covid-19 and being on a ventilator or life support. But increasingly, research indicates that the virus may be attacking other organs in the body directlyand this may be more common than previously thought, even among those who arent sick enough to be hospitalized. Some have suggested that Covid-19 is actually a blood vessel disease; the lungs are merely the way the virus enters the body, but from there it gets into the bloodstream and takes up residence in major organs, leaving patients with complex, long-lasting symptoms. Moreover, experts now believe, healthy young people can get mild cases of the coronaviruseven not knowing they were sickthat could leave them with lasting cardiovascular damage. Even those who seem to have recovered from the deadly respiratory illness are not free of its complications.
Heart failure could be the next chapter of the coronavirus illness, Dr. Gregg C. Fonarow, interim chief of UCLAs Division of Cardiology, recently argued in a co-authored editorial in the journal JAMA Cardiology. Even if in younger adults Covid-19 may not be fatal, there still may be important health consequences, he told me.
Myocarditis, or inflammation of the heart, is usually a rare condition that can occur with viral infections, including the flu. But from the start of the pandemic, doctors were seeing heart inflammation among patients hospitalized with serious cases of Covid-19, Fonarow said: Early research showed that 20 to 30 percent of those hospitalized had heart issues. Left untreated, myocarditis can damage the heart and lead to heart attacks and arrhythmias, among other complications.
Read the original here:
What Is Covid-19 Doing to Our Hearts? - The New Republic
Astellas and Seattle Genetics Announce PADCEV (enfortumab vedotin-ejfv) Significantly Improved Overall Survival in Phase 3 Trial in Previously Treated…
TOKYO and BOTHELL, Wash., Sept. 18, 2020 /PRNewswire/ --Astellas Pharma Inc.(TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") and Seattle Genetics, Inc. (Nasdaq:SGEN) today announced that a phase 3 trial of PADCEV (enfortumab vedotin-ejfv) met its primary endpoint of overall survival compared to chemotherapy. The results were reviewed by an independent Data Monitoring Committee following a planned interim analysis. The global EV-301 clinical trial compared PADCEV to chemotherapy in adult patients with locally advanced or metastatic urothelial cancer who were previously treated with platinum-based chemotherapy and a PD-1/L1 inhibitor.
In the trial, PADCEV significantly improved overall survival (OS), with a 30 percent reduction in risk of death (Hazard Ratio [HR]=0.70; [95% Confidence Interval (CI): 0.56, 0.89]; p=0.001). PADCEV also significantly improved progression-free survival (PFS), a secondary endpoint, with a 39 percent reduction in risk of disease progression or death (HR=0.61 [95% CI: 0.50, 0.75]; p<0.00001).
For patients in the PADCEV arm of the trial, adverse events were consistent with those listed in the U.S. Prescribing Information, with rash, hyperglycemia, decreased neutrophil count, fatigue, anemia and decreased appetite as the most frequent Grade 3 or greater adverse event(s) occurring in more than 5 percent of patients.Data from EV-301 will be submitted for presentation at an upcoming scientific congress. Patients in the chemotherapy arm of the trial will be offered the opportunity to receive PADCEV.
The results will be submitted to the U.S. Food and Drug Administration (FDA) as the confirmatory trial following the drug's accelerated approval in 2019. EV-301 is also intended to support global registrations.
"EV-301 is the first randomized trial to show overall survival results compared to chemotherapy in patients with locally advanced or metastatic urothelial cancer who previously have received platinum-based treatment and a PD-1 or PD-L1 inhibitor, and we are encouraged by the potential this may have in helping patients who have otherwise limited alternatives," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head, Astellas. "We look forward to discussing these results with global health authorities."
"These survival results from the confirmatory trial for PADCEV are welcome news for patients whose cancer has progressed after platinum-based chemotherapy and immunotherapy," said Roger Dansey, M.D., Chief Medical Officer at Seattle Genetics. "We continue to explore PADCEV's activity across the spectrum of urothelial cancer including its potential for use in earlier lines of therapy."
Globally, approximately 580,000 people will be diagnosed with bladder cancer in 2020.1Urothelial cancer accounts for 90 percent of all bladder cancers and can also be found in the renal pelvis (where urine collects inside the kidney), ureter (tube that connects the kidneys to the bladder) and urethra.2Approximately 80 percent of people do not respond to PD-1 or PD-L1 inhibitors after a platinum-containing therapy has failed as an initial treatment for advanced disease.3
About the EV-301 TrialThe EV-301 trial (NCT03474107) is a global, multicenter, open-label, randomized phase 3 trial designed to evaluate PADCEV versus physician's choice of chemotherapy (docetaxel, paclitaxel or vinflunine) in approximately 600 patients with locally advanced or metastatic urothelial cancer who were previously treated with a PD-1 or PD-L1 inhibitor and platinum-based therapies. The primary endpoint is overall survival of participants treated with PADCEV compared to those treated with chemotherapy. Secondary endpoints include progression-free survival, duration of response, and overall response rate, as well as assessment of safety/tolerability and quality-of-life parameters.
For more information about the EV-301 clinical trial, please visit http://www.clinicaltrials.gov.
About PADCEV (enfortumab vedotin-ejfv)PADCEV was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.4
PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.4,5 Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).4 PADCEV is co-developed by Astellas and Seattle Genetics.
PADCEV Important Safety Information
Warnings and Precautions
Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).
Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).
The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).
Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased (10%), hemoglobin decreased (10%), phosphate decreased (10%), lipase increased (9%), sodium decreased (8%), glucose increased (8%), urate increased (7%), neutrophils decreased (5%).
Drug Interactions
Specific Populations
For more information, please see the full Prescribing Information for PADCEV here.
About Astellas Astellas Pharma Inc. is a pharmaceutical company conducting business in more than 70 countries around the world. We are promoting the Focus Area Approach that is designed to identify opportunities for the continuous creation of new drugs to address diseases with high unmet medical needs by focusing on Biology and Modality. Furthermore, we are also looking beyond our foundational Rx focus to create Rx+ healthcare solutions that combine our expertise and knowledge with cutting-edge technology in different fields of external partners. Through these efforts, Astellas stands on the forefront of healthcare change to turn innovative science into value for patients. For more information, please visit our website at https://www.astellas.com/en/.
About Seattle Genetics Seattle Genetics, Inc. is a global biotechnology company that discovers, develops and commercializes transformative medicines targeting cancer to make a meaningful difference in people's lives. The company is headquartered in the Seattle, Washington area, with locations in California, Switzerland and the European Union. For more information on our robust pipeline, visit http://www.seattlegenetics.comand follow @SeattleGeneticson Twitter.
About the Astellas and Seattle Genetics CollaborationAstellas and Seattle Genetics are co-developing PADCEV (enfortumab vedotin-ejfv) under a 50:50 worldwide development and commercialization collaboration that was entered into in 2007 and expanded in 2009.
Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.
Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.
Seattle Genetics Forward Looking Statements Certain statements made in this press release are forward looking, such as those, among others, relating to the submission of data from the EV-301 trial for presentation at an upcoming scientific congress; intended regulatory actions, including plans to submit the results of the EV-301 trial to the FDA as the confirmatory trial following the drug's accelerated approval in the U.S. and plans to discuss the results with global health authorities and seek global registrations; conduct of a comprehensive clinical development program for PADCEV, which includes exploring PADCEV's activity in other types of urothelial cancer and its potential for use in earlier lines of therapy;the therapeutic potential of PADCEV,including its efficacy, safety and therapeutic uses, and anticipated development activities, including ongoing and future clinical trials. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include that the data from the EV-301 trial may not be selected for presentation at scientific congresses; the possibility of delays in the submission of results to the FDA; that the results from the EV-301 trial may not be enough to convert PADCEV's accelerated approval in the U.S. to regular approval or to support any other global registrations; that, even if PADCEV receives regular approval in the U.S. or any other global registrations, the product labeling may not be as broad or desirable as anticipated; the possibility that ongoing and subsequent clinical trials may fail to establish sufficient activity; the risk of adverse events or safety signals; and the possibility that adverse regulatory actions may occur. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption "Risk Factors" included in the company's Quarterly Report on Form 10-Q for the quarter ended June 30, 2020 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.
1 International Agency for Research on Cancer. Cancer Tomorrow: Bladder. http://gco.iarc.fr/tomorrow. Accessed 07-31-2020.2 American Society of Clinical Oncology. Bladder cancer: introduction (10-2017).3 Shah, Manasee V., et al "Targeted Literature Review of the Burden of Illness in UC" (PCN108), Nov 2018.4PADCEV [package insert] Northbrook, IL: Astellas, Inc.5Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.
SOURCE Astellas Pharma Inc.
See the original post:
Astellas and Seattle Genetics Announce PADCEV (enfortumab vedotin-ejfv) Significantly Improved Overall Survival in Phase 3 Trial in Previously Treated...
Alexion and Caelum Biosciences Announce Start of Phase 3 Studies of CAEL-101 in AL Amyloidosis – BioSpace
Sept. 14, 2020 12:00 UTC
BOSTON & BORDENTOWN, N.J.--(BUSINESS WIRE)-- Alexion Pharmaceuticals Inc.. (NASDAQ:ALXN) and Caelum Biosciences, Inc. today announced the initiation of the Cardiac Amyloid Reaching for Extended Survival (CARES) Phase 3 clinical program to evaluate CAEL-101, a first-in-class amyloid fibril targeted therapy, in combination with standard-of-care (SoC) therapy in AL amyloidosis. The CARES clinical program includes two parallel Phase 3 studies one in patients with Mayo stage IIIa disease and one in patients with Mayo stage IIIb disease and will collectively enroll approximately 370 patients globally. Enrollment is underway in both studies. The primary objective of the clinical program is to assess overall survival.
This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200914005234/en/
In AL amyloidosis, misfolded amyloid proteins can build up in many organs throughout the body, including the heart and kidneys, causing significant damage to these organs and impairing their function. While current treatments address the bone marrow disorder that creates the misfolded amyloid proteins, there are no approved therapies for the significant organ damage the disease causes, said John Orloff, M.D., Executive Vice President and Head of Research and Development at Alexion. CAEL-101 has the potential to be the first treatment to target and remove the amyloid deposits from these organs. Data from Phase 1 studies suggest that this treatment approach may improve organ function and long-term survival. We look forward to investigating this further in the Phase 3 clinical program.
AL amyloidosis is particularly devastating when it affects the heart, with median survival in these patients of less than one year following diagnosis, said Michael Spector, President and Chief Executive Officer of Caelum. Long-term survival data from AL amyloidosis patients treated with CAEL-101 in the Phase 1a/1b study showed that 78 percent were still alive after a median follow-up time of more than three years. We recognize the urgent need for new treatments that address the organ damage caused by AL amyloidosis and are working together with the AL amyloidosis community and Alexion to advance the Phase 3 clinical program as quickly as possible.
About the CARES Phase 3 Clinical Program
The CARES clinical program consists of two parallel double-blind, randomized, event-driven global Phase 3 studies, which are evaluating the efficacy and safety of CAEL-101 in AL amyloidosis patients who are newly diagnosed and nave to standard of care (SoC) treatment (cyclophosphamide-bortezomib-dexamethasone (CyBorD) chemotherapy). One study is enrolling approximately 260 patients with Mayo stage IIIa disease and one study is enrolling approximately 110 patients with Mayo stage IIIb disease. The studies will be conducted at approximately 70 sites across North America, the United Kingdom, Europe, Israel, Japan, and Australia.
In each study, participants are being randomized in a 2:1 ratio to receive either CAEL-101 plus SoC or placebo plus SoC once weekly for four weeks. This will be followed by a maintenance dose administered every two weeks until the last patient enrolled completes at least 50 weeks of treatment. Patients will continue follow-up visits every 12 weeks.
The primary study objectives are overall survival and the safety and tolerability of CAEL-101. Key secondary objectives will assess functional improvement in the six-minute walk test (6MWT), quality of life measures (Kansas City Cardiomyopathy Questionnaire Overall Score & Short Form 36 version 2 Physical Component Score) and cardiac improvement (Global Longitudinal Strain, or GLS).
Phase 2 Study Results
The Phase 2 open-label dose escalation study was conducted to investigate higher doses of CAEL-101 than had been evaluated in Phase 1 studies with a primary objective to identify the best dose to advance into Phase 3 development. The study evaluated the safety and tolerability of CAEL-101 in 13 AL amyloidosis patients at three study sites who received up to 1000 mg/m2 of CAEL-101 (two times the Phase 1 dose) administered in combination with SoC treatment. The study met its primary objectives, supporting the safety and tolerability of CAEL-101 and the selection of the 1000 mg/m2 dose for the Phase 3 study.
Phase 1a/1b Long-Term Follow-Up Results Presented at ISA 2020
As previously reported, the Phase 1a/1b study of CAEL-101 was the first clinical trial to demonstrate improvement in cardiac function via GLS after treatment with an amyloid fibril targeted therapy in AL amyloidosis patients with amyloid cardiac involvement. New long-term follow-up data from the Phase 1a/1b study will be presented at the virtual International Symposium on Amyloidosis (ISA), September 14 to 18, 2020, in the poster titled, Long term follow-up of patients with AL amyloidosis treated on a phase 1 study of Anti-Amyloid Monoclonal Antibody CAEL-101 (Abstract #342, Divaya Bhutani, M.D., et. al, Columbia University Medical Center). These data demonstrate 78 percent survival (15/19) at a median follow-up of more than three years (37 months) in AL amyloidosis patients treated with CAEL-101 as well as durable organ response among evaluable patients, further supporting the advancement of CAEL-101 into Phase 3 development.
About CAEL-101
CAEL-101 is a first-in-class monoclonal antibody (mAb) designed to improve organ function by reducing or eliminating amyloid deposits in the tissues and organs of patients with AL amyloidosis. The antibody is designed to bind to misfolded light chain protein and amyloid and shows binding to both kappa and lambda subtypes. In a Phase 1a/1b study, CAEL-101 demonstrated improved organ function, including cardiac and renal function, in 27 patients with relapsed and refractory AL amyloidosis who had previously not had an organ response to standard of care therapy. CAEL-101 has received Orphan Drug Designation from both the U.S. Food and Drug Administration and European Medicine Agency as a therapy for patients with AL amyloidosis.
About AL Amyloidosis
AL amyloidosis is a rare systemic disorder caused by an abnormality of plasma cells in the bone marrow. Misfolded immunoglobulin light chains produced by plasma cells aggregate and form fibrils that deposit in tissues and organs. This deposition can cause widespread and progressive organ damage and high mortality rates, with death most frequently occurring as a result of cardiac failure. Current standard of care includes plasma cell directed chemotherapy and autologous stem cell transplant, but these therapies do not address the organ dysfunction caused by amyloid deposition, and up to 80 percent of patients are ineligible for transplant.
AL amyloidosis is a rare disease but is the most common form of amyloidosis. There are approximately 22,000 patients across the United States, France, Germany, Italy, Spain and the United Kingdom. AL amyloidosis has a one-year mortality rate of 47 percent, 76 percent of which is caused by cardiac amyloidosis.
About Alexion
Alexion is a global biopharmaceutical company focused on serving patients and families affected by rare diseases and devastating conditions through the discovery, development and commercialization of life-changing medicines. As a leader in rare diseases for more than 25 years, Alexion has developed and commercializes two approved complement inhibitors to treat patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), as well as the first and only approved complement inhibitor to treat anti-acetylcholine receptor (AchR) antibody-positive generalized myasthenia gravis (gMG) and neuromyelitis optica spectrum disorder (NMOSD). Alexion also has two highly innovative enzyme replacement therapies for patients with life-threatening and ultra-rare metabolic disorders, hypophosphatasia (HPP) and lysosomal acid lipase deficiency (LAL-D) as well as the first and only approved Factor Xa inhibitor reversal agent. In addition, the company is developing several mid-to-late-stage therapies, including a copper-binding agent for Wilson disease, an anti-neonatal Fc receptor (FcRn) antibody for rare Immunoglobulin G (IgG)-mediated diseases and an oral Factor D inhibitor as well as several early-stage therapies, including one for light chain (AL) amyloidosis, a second oral Factor D inhibitor and a third complement inhibitor. Alexion focuses its research efforts on novel molecules and targets in the complement cascade and its development efforts on the core therapeutic areas of hematology, nephrology, neurology, metabolic disorders and cardiology. Headquartered in Boston, Massachusetts, Alexion has offices around the globe and serves patients in more than 50 countries. This press release and further information about Alexion can be found at: http://www.alexion.com.
[ALXN-P]
About Caelum Biosciences
Caelum Biosciences, Inc. (Caelum) is a clinical-stage biotechnology company developing treatments for rare and life-threatening diseases. Caelums lead asset, CAEL-101, is a novel antibody for the treatment of patients with amyloid light chain (AL) amyloidosis. In 2019, Caelum entered a collaboration agreement with Alexion under which Alexion acquired a minority equity interest in Caelum and an exclusive option to acquire the remaining equity in the company based on Phase 3 CAEL-101 data. Caelum was founded by Fortress Biotech, Inc. (NASDAQ: FBIO). For more information, visit http://www.caelumbio.com.
Forward-Looking Statement
This press release contains forward-looking statements that involve risks and uncertainties relating to future events and the future performance of Alexion and Caelum, including statements related to: the safety and efficacy CAEL-101 as a treatment for AL amyloidosis; CAEL-101 has the potential to be the first treatment to target and remove the amyloid deposits from the heart, kidney and other organs; data from the Phase 1 studies suggest that the treatment approach may improve organ function and long-term survival and enrollment of the Phase 3 trials. Forward-looking statements are subject to factors that may cause Alexion's and Caelums results and plans to differ materially from those expected by these forward looking statements, including for example: the anticipated safety profile and the benefits of the CAEL-101 may not be realized (and the results of the clinical trials may not be indicative of future results); the inability to enroll and complete the Phase 3 trial; results of clinical trials may not be sufficient to satisfy regulatory authorities; results in clinical trials may not be indicative of results from later stage or larger clinical trials (or in broader patient populations); the possibility that results of clinical trials are not predictive of safety and efficacy and potency of our products (or we fail to adequately operate or manage our clinical trials) which could cause us to discontinue sales of the product (or halt trials, delay or prevent us from making regulatory approval filings or result in denial of approval of our product candidates); the severity of the impact of the COVID-19 pandemic on Alexions or Caelums business, including on commercial and clinical development programs; unexpected delays in clinical trials; unexpected concerns regarding products and product candidates that may arise from additional data or analysis obtained during clinical trials or obtained once used by patients following product approval; future product improvements may not be realized due to expense or feasibility or other factors; delays (expected or unexpected) in the time it takes regulatory agencies to review and make determinations on applications for the marketing approval of our products; inability to timely submit (or failure to submit) future applications for regulatory approval for our products and product candidates; inability to timely initiate (or failure to initiate) and complete future clinical trials due to safety issues, IRB decisions, CMC-related issues, expense or unfavorable results from earlier trials (among other reasons); future competition from biosimilars and novel products; decisions of regulatory authorities regarding the adequacy of our research, marketing approval or material limitations on the marketing of our products; delays or failure of product candidates to obtain regulatory approval; delays or the inability to launch product candidates due to regulatory restrictions, anticipated expense or other matters; interruptions or failures in the manufacture and supply of our products and our product candidates; failure to satisfactorily address matters raised by regulatory agencies regarding our products and product candidates; uncertainty of long-term success in developing, licensing or acquiring other product candidates or additional indications for existing products; the adequacy of our pharmacovigilance and drug safety reporting processes; failure to protect and enforce our data, intellectual property and proprietary rights and the risks and uncertainties relating to intellectual property claims, lawsuits and challenges against us; the risk that third party payors (including governmental agencies) will not reimburse for the use of our products at acceptable rates or at all; delay of collection or reduction in reimbursement due to adverse economic conditions or changes in government and private insurer regulations and approaches to reimbursement; adverse impacts on supply chain, clinical trials, manufacturing operations, financial results, liquidity, hospitals, pharmacies and health care systems from natural disasters and global pandemics, including COVID-19 and a variety of other risks set forth from time to time in Alexion's filings with the SEC, including but not limited to the risks discussed in Alexion's Quarterly Report on Form 10-Q for the period ended June 30, 2020 and in their other filings with the SEC. Alexion disclaims any obligation to update any of these forward-looking statements to reflect events or circumstances after the date hereof, except when a duty arises under law.
View source version on businesswire.com: https://www.businesswire.com/news/home/20200914005234/en/
David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -…
The MemorialCare Heart & Vascular Institute at Long Beach Medical Centeris expanding its leadership team with accomplishedSouthern Californiacardiologist,David Shavelle, M.D., being named medical director of adult cardiology. Dr. Shavelle is bringing his extensive leadership experience in cardiology to this new role that will provide leadership and strategic direction for adult cardiology programs, as well as oversight for the interventional catheterization laboratories.
Dr. Shavelle, a Millikan High School (Long Beach, Calif.) graduate, is returning toLong Beachwith more than 20 years of cardiology practice, research leadership, and teaching experience. He joins Long Beach Medical Center from KeckMedical Center at the University of Southern California, where he served as the Director of Interventional Cardiology while leading a multitude of clinical research trials, including several focused on implanted devices for heart failure. He plans on increasing the availability ofclinical research trialsfor cardiology patients at Long Beach Medical Center.
The MemorialCare Heart & Vascular Institute has a rich history of research and pioneering new treatment techniques, says Ike Mmeje, chief operating officer, Long Beach Medical Center.
Dr. Shavelles passion for research makes him a perfect fit to continue that legacy and find the next cutting-edge treatment for our cardiology patients.
MemorialCare Heart & Vascular Institute facilities are among the most comprehensive centers for diagnosis, treatment and rehabilitation of cardiac disease, providing groundbreaking care for complex heart conditions, including myocardial infarction, heart failure, arrhythmias and peripheral vascular disease. In addition to his hopes to expand research opportunities, Dr. Shavelle plans on expanding the programs for heart failure and structural heart disease.
I am excited to join the MemorialCare Heart & Vascular Institute at Long Beach Medical Center, says Dr. Shavelle. My dad was a physician here, and many of my mentors and fellows are at Long Beach Medical Center. Im looking forward to creating more collaboration among cardiologists, surgeons, residents and the entire team to expand the already comprehensive cardiology care available to the community.
After earning his medical degree from theUniversity of California, Los Angeles(UCLA), Dr. Shavelle completed his internal medicine internship and residency at Harbor-UCLA Medical Center. He completed General Cardiology Fellowship at theUniversity of Washingtonand Interventional Cardiology Fellowship at Harbor-UCLA Medical Center/Good Samaritan Hospital. Dr. Shavelle served as Associate Professor at both the David Geffen School of Medicine atUCLAand the Keck School of Medicine at theUniversity of Southern California. He alsoserveson the editorial boards for theJournal of Cardiovascular Pharmacology and Therapeutics, Current Medical Research and Opinion and Cardiology Clinics.
The MemorialCare Heart & Vascular Institute delivering nearly 20,000 cardiovascular diagnostic tests and treatments last year continues to push the boundaries of discovery with many firsts. These began 70 years ago when world-renowned cardiologist, researcher and educator, the lateMervyn Ellestad, M.D., co-invented at Long Beach Medical Center the modern-day maximum stress test to detect heart disease. Today, millions of exercise stress tests performed annually save hundreds of thousands of lives globally.
It is amazing how the field of cardiology has grown and how many treatment options are available through minimally invasive techniques, says Dr. Shavelle. Many of these new treatment options have come from research trials, and Im looking forward to expanding the opportunities for patients in theLong Beacharea. The studies we have in the pipeline include trials with stem cells and heart failure devices.
Read more here:
David Shavelle, MD, Named Medical Director of Adult Cardiology for the MemorialCare Heart & Vascular Institute at Long Beach Medical Center -...
Seattle Genetics and Merck Announce Two Strategic Oncology Collaborations – BioSpace
Sept. 14, 2020 10:45 UTC
BOTHELL, Wash. & KENILWORTH, N.J.--(BUSINESS WIRE)-- Seattle Genetics, Inc. (Nasdaq: SGEN) and Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced two new strategic oncology collaborations.
This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200914005237/en/
The companies will globally develop and commercialize Seattle Genetics ladiratuzumab vedotin, an investigational antibody-drug conjugate (ADC) targeting LIV-1, which is currently in phase 2 clinical trials for breast cancer and other solid tumors. The collaboration will pursue a broad joint development program evaluating ladiratuzumab vedotin as monotherapy and in combination with Mercks anti-PD-1 therapy KEYTRUDA (pembrolizumab) in triple-negative breast cancer, hormone receptor-positive breast cancer and other LIV-1-expressing solid tumors. Under the terms of the agreement, Seattle Genetics will receive a $600 million upfront payment and Merck will make a $1.0 billion equity investment in 5.0 million shares of Seattle Genetics common stock at a price of $200 per share. In addition, Seattle Genetics is eligible for progress-dependent milestone payments of up to $2.6 billion.
Separately, Seattle Genetics has granted Merck an exclusive license to commercialize TUKYSA (tucatinib), a small molecule tyrosine kinase inhibitor, for the treatment of HER2-positive cancers, in Asia, the Middle East and Latin America and other regions outside of the U.S., Canada and Europe. Seattle Genetics will receive $125 million from Merck as an upfront payment and is eligible for progress-dependent milestones of up to $65 million.
Collaborating with Merck on ladiratuzumab vedotin will allow us to accelerate and broaden its development program in breast cancer and other solid tumors, including in combination with Mercks KEYTRUDA, while also positioning us to leverage our U.S. and European commercial operations, said Clay Siegall, Ph.D., President and Chief Executive Officer of Seattle Genetics. The strategic collaboration for TUKYSA will help us reach more patients globally and benefit from the established commercial strength of one of the worlds premier pharmaceutical companies.
These two strategic collaborations will enable us to further diversify Mercks broad oncology portfolio and pipeline, and to continue our efforts to extend and improve the lives of as many patients with cancer as possible, said Dr. Roger M. Perlmutter, President, Merck Research Laboratories. We look forward to working with the team at Seattle Genetics to advance the clinical program for ladiratuzumab vedotin, which has shown compelling signals of efficacy in early studies, and to bring TUKYSA to even more patients with cancer around the world.
Ladiratuzumab Vedotin Collaboration Details
Under the terms of the agreement, Seattle Genetics and Merck will collaborate and equally share costs on the global development of ladiratuzumab vedotin and other LIV-1-targeting ADCs. The companies have agreed to jointly develop and share future costs and profits for ladiratuzumab vedotin on a 50:50 basis worldwide. Merck will pay Seattle Genetics $600 million upfront and make a $1.0 billion equity investment in 5.0 million shares of Seattle Genetics common stock at a price of $200 per share. In addition, Seattle Genetics will be eligible to receive up to $2.6 billion in milestone payments, including $850 million in development milestones and $1.75 billion in sales milestones.
The companies will jointly develop and commercialize ladiratuzumab vedotin and equally share profits worldwide. The companies will co-commercialize in the U.S. and Europe. Seattle Genetics will be responsible for marketing applications for approval in the U.S. and Canada, and will record sales in the U.S., Canada and Europe. Merck will be responsible for marketing applications for approval in Europe and in countries outside the U.S. and Canada, and will record sales in countries outside the U.S., Europe and Canada. Including the upfront payment, equity investment proceeds and potential milestone payments, Seattle Genetics is eligible to receive up to $4.2 billion.
The closing of the equity investment is contingent on completion of review under the Hart-Scott-Rodino Antitrust Improvements Act of 1976 (HSR Act).
TUKYSA Collaboration Details
Under the terms of the agreement, Merck has been granted exclusive rights to commercialize TUKYSA in Asia, the Middle East and Latin America and other regions outside of the U.S., Canada and Europe. Seattle Genetics retains commercial rights and will record sales in the U.S., Canada and Europe. Merck will be responsible for marketing applications for approval in its territory, supported by the positive results from the HER2CLIMB clinical trial.
Merck will also co-fund a portion of the TUKYSA global development plan, which encompasses several ongoing and planned trials across HER2-positive cancers, including breast, colorectal, gastric and other cancers set forth in a global product development plan. Seattle Genetics will continue to lead ongoing TUKYSA global development planning and operational execution. Merck will solely fund and conduct country-specific clinical trials necessary to support anticipated regulatory applications in its territory.
Seattle Genetics will receive from Merck $125 million as an upfront payment and is eligible to receive progress-dependent milestones of up to $65 million. Seattle Genetics will also receive $85 million in prepaid research and development payments to be applied to Mercks global development funding obligations. In addition, Seattle Genetics would receive tiered royalties on sales of TUKYSA in Mercks territory.
The financial impact of these collaborations is not included in Seattle Genetics 2020 guidance.
Seattle Genetics Conference Call Details
Seattle Genetics management will host a conference call to discuss these collaborations today at 6:00 a.m. Pacific Time (PT); 9:00 a.m. Eastern Time (ET). The event will be simultaneously webcast and available for replay from the Seattle Genetics website at http://www.seattlegenetics.com, under the Investors section. Investors may also participate in the conference call by calling 844-763-8274 (domestic) or +1 412-717-9224 (international). The conference ID is 10147850.
About Ladiratuzumab Vedotin
Ladiratuzumab vedotin is a novel investigational ADC targeted to LIV-1. Most metastatic breast cancers express LIV-1, which also has been detected in several other cancers, including lung, head and neck, esophageal and gastric. Ladiratuzumab vedotin utilizes Seattle Genetics proprietary ADC technology and consists of a LIV-1-targeted monoclonal antibody linked to a potent microtubule-disrupting agent, monomethyl auristatin E (MMAE) by a protease-cleavable linker. This novel ADC is designed to bind to LIV-1 on cancer cells and release the cell-killing agent into target cells upon internalization. Ladiratuzumab vedotin may also cause antitumor activity through other mechanisms, including activation of an immune response by induction of immunogenic cell death.
About TUKYSA (tucatinib)
TUKYSA is an oral, small molecule tyrosine kinase inhibitor (TKI) of HER2, a protein that contributes to cancer cell growth. TUKYSA in combination with trastuzumab and capecitabine was approved by the U.S. Food and Drug Administration (FDA) in April 2020 for adult patients with advanced unresectable or metastatic HER2-positive breast cancer, including patients with brain metastases, who have received one or more prior anti-HER2-based regimens in the metastatic setting. In addition, TUKYSA received approval in Canada, Singapore, Australia and Switzerland under the Project Orbis initiative of the FDA Oncology Center of Excellence that provides a framework for concurrent submission and review of oncology products among international partners. A marketing application is under review in the European Union.
TUKYSA is being evaluated in several ongoing clinical trials and additional studies are planned. Current trials include the following:
For additional information, visit http://www.clinicaltrials.gov.
TUKYSA Important Safety Information
Warnings and Precautions
If diarrhea occurs, administer antidiarrheal treatment as clinically indicated. Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea. Based on the severity of the diarrhea, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Monitor ALT, AST, and bilirubin prior to starting TUKYSA, every 3 weeks during treatment, and as clinically indicated. Based on the severity of hepatoxicity, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Adverse Reactions
Serious adverse reactions occurred in 26% of patients who received TUKYSA. Serious adverse reactions in 2% of patients who received TUKYSA were diarrhea (4%), vomiting (2.5%), nausea (2%), abdominal pain (2%), and seizure (2%). Fatal adverse reactions occurred in 2% of patients who received TUKYSA including sudden death, sepsis, dehydration, and cardiogenic shock.
Adverse reactions led to treatment discontinuation in 6% of patients who received TUKYSA; those occurring in 1% of patients were hepatotoxicity (1.5%) and diarrhea (1%). Adverse reactions led to dose reduction in 21% of patients who received TUKYSA; those occurring in 2% of patients were hepatotoxicity (8%) and diarrhea (6%).
The most common adverse reactions in patients who received TUKYSA (20%) were diarrhea, palmar-plantar erythrodysesthesia, nausea, fatigue, hepatotoxicity, vomiting, stomatitis, decreased appetite, abdominal pain, headache, anemia, and rash.
Lab Abnormalities
In HER2CLIMB, Grade 3 laboratory abnormalities reported in 5% of patients who received TUKYSA were: decreased phosphate, increased ALT, decreased potassium, and increased AST. The mean increase in serum creatinine was 32% within the first 21 days of treatment with TUKYSA. The serum creatinine increases persisted throughout treatment and were reversible upon treatment completion. Consider alternative markers of renal function if persistent elevations in serum creatinine are observed.
Drug Interactions
Use in Specific Populations
For more information, please see the full Prescribing Information for TUKYSA here.
About KEYTRUDA (pembrolizumab) Injection, 100 mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Small Cell Lung Cancer
KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High or Mismatch Repair Deficient Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.
Cervical Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).
Tumor Mutational Burden-High
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.
Cutaneous Squamous Cell Carcinoma
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.
Selected Important Safety Information for KEYTRUDA
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.
Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)
Immune-Mediated Hepatitis
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
Hepatotoxicity in Combination With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.
Immune-Mediated Endocrinopathies
KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.
Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
Immune-Mediated Nephritis and Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.
The rest is here:
Seattle Genetics and Merck Announce Two Strategic Oncology Collaborations - BioSpace
How the coronavirus causes ‘carnage’ in the heart – The Daily Briefing
New research shows that the novel coronavirus can essentially dice the muscle fibers of the human heart into pieces, sparking concerns about the potential for heart failure among Covid-19 survivors, Elizabeth Cooney reports for STAT News.
Resources to support your CV telehealth strategy
For the study, which was published preprint on bioRxiv and has not yet been peer reviewed, researchers added the new coronavirus, SARS-CoV-2, to three types of human heart cellscardiomyocytes, cardiac fibroblasts, and endothelial cellsthat were grown in lab dishes from stem cells.
Only the cardiomyocytes, which are muscle cells, showed indication of viral infection that spread to other muscle cells, the researchers said. However, what they found in the infected cells was remarkable: The sarcomeres, which are the long muscle fibers that keep the heart beating, had been sliced into small bits. According to the researchers, the fibers looked as if they had been surgically sliced.
The researchers also found black holes where DNA was supposed to be in the nucleus of the infected cells. The researchers said they found similar, but not identical, changes when they observed autopsy specimens from patients with Covid-19, the disease caused by the novel coronavirus.
It's unclear whether the heart is able to reassemble the sarcomeres after they're severed, but that might be possible after the coronavirus infection clears, the researchers said. However, the researchers said they felt an urgency to share their results as quickly as possible, because their findings may help to further scientists' understanding of how the coronavirus causes heart damagesand possibly how to prevent or treat the injuries.
"When we saw this disruption in those microfibers that was when we made the decision to pull the trigger and put out this preprint," Todd McDevitt, a senior investigator at Gladstone Institutes and a co-author of the study, said. "I'm not a scientist who likes to stoke these things [but] I did not sleep, honestly, while we were finishing this paper and putting it out there."
Bruce Conklin, also a senior investigator at Gladstone and a co-author of the study, said the virus caused "carnage in the human cells" unlike anything seen with other diseases. "Nothing that we see in the published literature is like this in terms of this exact cutting and precise dicing," he explained.
Conklin said the findings should alter the way providers and scientists think about the novel coronavirus and Covid-19. "We should think about this as not only a pulmonary disease, but also potentially a cardiac one."
Gregg Fonarow, interim chief of the UCLA Division of Cardiology and director of the Ahmanson-UCLA Cardiomyopathy Center, said the study is "really important and elegant work, helping to define the potential mechanisms by which SARS-CoV-2 is leading to the observed heart damage and clinical manifestations."
Sahil Parikh, an interventional cardiologist at Columbia University Irving Medical Center, called findings "provocative," but added, "[t]he challenge here is that this paper has not been peer-reviewed by people who are experts in cardiology, who have not had a chance to tear it apart." She said, "I am reluctant to make a lot out of a pre-publication manuscript, no matter how provocative the finding."
The researchers who worked on the study agreed that their work should be reviewed, and they've submitted the study to a leading scientific journal (Cooney, STAT News, 9/4).
Read this article:
How the coronavirus causes 'carnage' in the heart - The Daily Briefing
Innovative treatments for heart failure – Open Access Government
Concerning heart failure (HF), the current COVID-19 pandemic is having a dramatic effect on the daily life of each individual, ranging from social distancing measures applied in most countries to getting severely diseased due to the virus. Cardiovascular Disease (CVD) is among the most common conditions in people that die of the infection. The burden of CVD accounts for over 60 million people in the EU alone, therefore, it is the leading cause of death in the world.
Although COVID-19 shows us the direct impact of a potential treatment for peoples health, CVD is a stealthy pandemic killer. HF is a chronic disease condition in which the heart is not able to fill properly or efficiently pump blood throughout your body, caused by different stress conditions including myocardial infarction, atherosclerosis, diabetes and high blood pressure. Several measures are commonly used to treat heart disease, such as lifestyle changes and medications like beta-blockers and ACE inhibitors, yet these typically only slow down the progression of the disease.
Biomedical research is exploring new avenues by combining scientific insights with new technologies to overcome chronic diseases like HF. Among the most appealing and promising technologies are the use of cardiac tissue engineering and extracellular vesicles-mediated repair strategies.
Upon an initial cell loss post-infarction, it is appealing to replace this massive loss in contractile cells for new cells and thereby not treating patients symptoms, but repairing the cause of the disease. Cardiac cell therapy has been pursued for many years with variable results in small initial trials upon injection into patients. Different cell types have been used to help the myocardium in need, but the most promising approaches aim to use induced pluripotent cells (iPS) from reprogrammed cells from the patient themselves that can be directed towards contractile myocardial cells. These cells in combination with natural materials, in which the cells are embedded in the heart, can be used for tissue engineering strategies (1). Together with different international partners, Sluijters team are trying to develop strategies to use these iPS-derived contractile cells for myocardial repair via direct myocardial injection (H2020-Technobeat-66724) or to make a scaffold that can be used as a personalised biological ventricular assist device (H2020-BRAV-874827). A combination of engineering and biology to mimic the native myocardium aims to replace the chronically ill tissue for healthy and well-coupled heart tissue that can enhance the contractile performance of the heart.
Recently, a Dutch national programme started, called RegMedXB, in which the reparative treatment of the heart is aimed to be performed outside the patients body. During the time the heart is outside the body; the patient is connected to the heart-lung machine, and after restoring function, it will be re-implanted. The so-called Cardiovascular Moonshot aims to create a therapy that best suits the individual patient, by having their heart beating in a bioreactor, outside the body. Although it sounds very futuristic, many small lessons will be learned to feet novel therapeutic insights.
The initial injection of stem cells did result in a nice improvement of myocardial performance. We have now learned that rather than these delivered cells helping the heart themselves, the release of small lipid carriers called extracellular vesicles (EVs) (2) from these cells occur. These EVs carry different biological molecules, including nucleotides, proteins and lipids, and are considered to be the bodies nanosized messengers for communication. The use of stem cell-derived EVs are now being explored as a powerful means to change the course of the disease. Via these small messengers, natural biologics are delivered to diseased cells and thereby help them to overcome the stressful circumstances. EVs carry reparative signals that can be transferred to the diseased heart and thereby change the course of heart disease in some patients.
Within the EVICARE program (3) (H2020-ERC-725229), Sluijters team are using stem cell-derived EVs to change the response of the heart to injury. Also, to understand which heart cells and processes are being affected, they use materials to facilitate a slow release of biomaterials over an extended period rather than a single dose, which is probably essential for a chronic disease like HF. For now, improved blood flow is the main aim but the team have seen other effects as well, such as cardiovascular cell proliferation (4) by which the heart cells themselves start to repair the organ.
The use of EVs basically aims to enhance the endogenous repair mechanisms of the heart. These natural carriers can be mimicked with synthetic materials, or used as a hybrid of the two, thereby creating an engineered nanoparticle, that is superior in the intracellular delivery of genetic materials. The possibility of loading different biological materials allows a further tuning of its effectiveness and use in different disease conditions, creating a new off-the-shelf delivery system for nanomedicine to treat cancer and CVD (H2020-Expert-825828).
As is true of the current COVID-19 pandemic, HF is also a growing chronic disease that affects millions of people worldwide. The chronic damaged myocardium needs reparative strategies in the future to lower the social burden for patients, but also to keep the economic consequences affordable. New scientific insights with cutting edge technological developments will help to address these needs of CVD patients and their families.
References
(1) Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasch P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res. 2019 Mar 1;115(3):488-500.
(2) Sluijter JPG, Davidson SM, Boulanger, CM, Buzs EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018 Jan 1;114(1):19-34.
(3) https://www.sluijterlab.com/extracellular-vesicle-inspired-ther
(4) Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits, AM, Sluijter JPG, Goumans MJ. Cardiac Progenitor Cell-Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. J Cardiovasc Transl Res. 2019 Feb;12(1):5-17.
Please note: this is a commercial profile.
Editor's Recommended Articles
Read the rest here:
Innovative treatments for heart failure - Open Access Government
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Scope And Price Analysis 2020 | Major Giants Fibrocell, Genesis Biopharma, Georgia…
A proficient data and brilliant forecasting techniques used in this Autologous Stem Cell and Non-Stem Cell Based Therapies Market report are synonymous with accurateness and correctness. The document is a meticulous analysis of existing scenario of the market, which covers several market dynamics. This market research report endows with the plentiful insights and business solutions that will support to stay ahead of the competition. The most precise way to forecast what future holds is to understand the trend today and hence Autologous Stem Cell and Non-Stem Cell Based Therapies Marketing report has been structured by chewing over numerous fragments of the present and upcoming market scenario.
For In depth Information Get Sample Copy of this Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
This Autologous Stem Cell and Non-Stem Cell Based Therapies Market report is the consequence of incessant efforts lead by clued-up forecasters, innovative analysts and bright researchers who indulge in detailed and attentive research on different markets, trends and emerging opportunities in the consecutive direction for the business needs. Company snapshot, geographical presence, product portfolio, and recent developments are taken into account for studying the company profiles that are part of this report. Quality and transparency has been strictly maintained while carrying out research studies to offer an exceptional market research report for a niche. A thoughtful knowledge of industrial unanimity, market trends and incredible techniques via this Autologous Stem Cell and Non-Stem Cell Based Therapies Market report gives an upper hand in the market.
TheGlobalAutologous Stem Cell and Non-Stem Cell Based Therapies Marketis expected to reach USD113.04 billion by 2025, from USD 87.59 billion in 2017 growing at a CAGR of 3.7% during the forecast period of 2018 to 2025. The upcoming market report contains data for historic years 2015 & 2016, the base year of calculation is 2017 and the forecast period is 2018 to 2025.
Some of the major players operating in the globalautologous stem cell and non-stem cell based therapies marketareAntria (Cro), Bioheart, Brainstorm Cell Therapeutics, Cytori, Dendreon Corporation, Fibrocell, Genesis Biopharma, Georgia Health Sciences University, Neostem, Opexa Therapeutics, Orgenesis, Regenexx, Regeneus, Tengion, Tigenix, Virxsys and many more.
Browse Detailed TOC Herehttps://www.databridgemarketresearch.com/toc/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
Market Definition:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
In autologous stem-cell transplantation persons own undifferentiated cells or stem cells are collected and transplanted back to the person after intensive therapy. These therapies are performed by means of hematopoietic stem cells, in some of the cases cardiac cells are used to fix the damages caused due to heart attacks. The autologous stem cell and non-stem cell based therapies are used in the treatment of various diseases such as neurodegenerative diseases, cardiovascular diseases, cancer and autoimmune diseases, infectious disease.
According to World Health Organization (WHO), cardiovascular disease (CVD) causes more than half of all deaths across the European Region. The disease leads to death or frequently it is caused by AIDS, tuberculosis and malaria combined in Europe. With the prevalence of cancer and diabetes in all age groups globally the need of steam cell based therapies is increasing, according to article published by the US National Library of Medicine National Institutes of Health, it was reported that around 382 million people had diabetes in 2013 and the number is growing at alarming rate which has increased the need to improve treatment and therapies regarding the diseases.
Market Segmentation:Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market
Major Autologous Stem Cell and Non-Stem Cell Based Therapies Market Drivers and Restraints:
Introduction of novel autologous stem cell based therapies in regenerative medicine
Reduction in transplant associated risks
Prevalence of cancer and diabetes in all age groups
High cost of autologous cellular therapies
Lack of skilled professionals
Reasons to Purchase this Report
Customization of the Report:
Speak to Author of the report @https://www.databridgemarketresearch.com/speak-to-analyst/?dbmr=global-autologous-stem-cell-and-non-stem-cell-based-therapies-market
About Data Bridge Market Research:
Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.
Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.
Contact Us
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475Mail:[emailprotected]
Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation – Science…
Abstract
Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.
Fibrosis is implicated in nearly 45% of all deaths in the developed world and plays a role in numerous pathologies, including pulmonary fibrosis, cardiac disease, atherosclerosis, and cancer (1). In particular, interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF), are fatal and incurable with a median survival of only 2 to 5 years (2). Often described as dysregulated or incessant wound healing, fibrosis involves persistent cycles of tissue injury and deposition of extracellular matrix (ECM) by myofibroblasts (MFs). These critical cellular mediators of fibrogenesis are primarily derived from tissue-resident fibroblasts (1). MFs drive eventual organ failure through excessive fibrous ECM deposition, force generation and tissue contraction, and eventual disruption of parenchymal tissue function (1). As organ transplantation remains the only curative option for late-stage disease, effective antifibrotic therapeutics that slow MF expansion or even reverse fibrosed tissue remain a major unmet clinical need. Undoubtedly, the limited efficacy of antifibrotic drugs at present underscores limitations of existing models for identifying therapeutics, the complexity of the disease, and an incomplete understanding of MF biology.
A strong correlation between lung tissue stiffening and worse patient outcomes suggests an important role for matrix mechanosensing in fibrotic disease progression (3). Preclinical models of fibrosis in mice have supported the link between tissue stiffening and disease progression. However, a precise understanding of how physical cues from the microenvironment influence MF differentiation in vivo is confounded by concurrent structural (e.g., collagen density and laminin/elastin degradation) and biochemical (e.g., matrix composition and inflammatory) changes to the microenvironment (4). Consequently, natural and synthetic in vitro tissue models have provided great utility for the study of MF mechanobiology. Seminal studies using natural type I collagen gels have elucidated the role of profibrotic soluble cues [e.g., transforming growth factor1 (TGF-1)] in promoting cell contractility, ECM compaction, and MF differentiation, and more recently, precision-cut lung slices, have emerged as a powerful tool to study the complexity of the pulmonary microenvironment in IPF (4, 5). However, their utility in identifying physical microenvironmental determinants of MF differentiation suffers from an intrinsic coupling of multiple biochemical and mechanical material properties (6). Rapid degradation kinetics (1 to 3 days) and resulting issues with material stability (1 to 2 weeks) further impede the use of natural materials for studying fibrogenic events and drug responses, which occur over weeks to months in in vivo models or years in patients (7, 8).
Synthetic hydrogels that are more resistant to cell-mediated degradation have provided a better controlled setting for long-term studies of disease-related processes (9). For example, synthetic hydrogel-based cell culture substrates with tunable stiffness have helped establish a paradigm for mechanosensing during MF differentiation in two-dimensions (2D), where compliant matrices maintain fibroblast quiescence in contrast to stiffer matrices that promote MF differentiation (10, 11). Extensive findings in 2D suggest a causal role for matrix mechanics (e.g., stiffness) during MF differentiation in vitro and potentially in human disease, but these models lack the 3D nature of interstitial spaces where fibrosis originates (12). The interstitium surrounding alveoli is structurally composed of two key components: networks of fibrous ECM proteins (namely, type I collagen fibers) and interpenetrating ground substance, an amorphous hydrogel network rich in glycosaminoglycans such as heparan sulfate proteoglycan. Mechanical cues from fibrotic ECM that promote MF differentiation may arise from changes to the collagen fiber architecture or the gel-like ground substance; whether matrix stiffness is a prerequisite for MF differentiation in 3D fibrous interstitial spaces remains unclear (13). Furthermore, the limited efficacy of antifibrotic therapies identified in preclinical and in vitro models of IPF motivates the development of 3D tissue-engineered systems with improved structural and mechanical biomimicry, relevant pharmacokinetics, and the potential to incorporate patient cells (9). Furthermore, recapitulating key features of the fibrotic progression in an in vitro setting that better approximates interstitial tissues could (i) improve our current understanding of MF mechanobiology and (ii) serve as a more suitable test bed for potential antifibrotic therapeutics.
Accordingly, here, we describe a microengineered pulmonary interstitial matrix that recapitulates mechanical and structural features of fibrotic tissue as well as key biological events observed during IPF progression. Design parameters of these engineered microenvironments were informed by mechanical and structural characterization of fibrotic lung tissue from a bleomycin mouse model. We then investigated the influence of dimensionality, matrix cross-linking/stiffness, and fiber density on TGF-1induced MF differentiation in our pulmonary interstitial matrices. Increased hydrogel cross-linking/stiffness substantially hindered MF differentiation in 3D in contrast to findings in 2D, while fibrotic matrix architecture (i.e., high fiber density) potently promoted fibroblast proliferation and differentiation into MFs. Long-term (21 days) culture of hydrogels with a fibrotic architecture engendered tissue stiffening, collagen deposition, and secretion of profibrotic cytokines, implicating fiber density as a potent fibrogenic cue in 3D microenvironments. Pharmacologic screening in fibrotic pulmonary interstitial matrices revealed matrix metalloproteinase (MMP) activity and hydrogel remodeling as a key step during 3D fibrogenesis, but not in traditional 2D settings. To explore the clinical relevance of our findings, we leveraged a multistep bioinformatics analysis of transcriptional profiles from 231 patients, highlighting increased MMP gene expression and enriched signaling domains associated with matrix degradation in patients with IPF. Together, these results highlight the utility of studying fibrogenesis in a physiologically relevant 3D hydrogel model, underscore the requirement of matrix remodeling in IPF, and establish a new platform for screening antifibrotic therapies.
To inform key design criteria for our pulmonary interstitial matrices, we began by characterizing mechanical properties of fibrotic interstitial tissue in a bleomycin-induced lung injury model in mouse. Nave C57BL/6 mice were intratracheally challenged with bleomycin to induce lung injury and subsequent fibro-proliferative repair, with saline-treated animals maintained as a control group. After 2 weeks, animals were sacrificed and lung tissue was dissected out, sectioned and stained, and then mechanically tested by atomic force microscopy (AFM) nanoindentation to map the stiffness of interstitial tissue surrounding alveoli. While single-dose bleomycin administration does not recapitulate human IPF, the fibro-proliferative response is well characterized and leads to MF differentiation, collagen deposition, and lung stiffening events that are reminiscent of what occurs in human disease over longer time scales. As previously documented (14), bleomycin treatment corresponded to an increase in the thickness of interstitial tissue regions surrounding alveoli, a structural change that occurred alongside matrix stiffening (Fig. 1, A and B); bleomycin-treated lungs had elastic moduli nearly fivefold greater than healthy control tissues. To generate synthetic hydrogels with elastic moduli tunable over this range, we functionalized a biocompatible and protein-resistant polysaccharide, dextran, with pendant vinyl sulfone groups amenable to peptide conjugation (termed DexVS; Fig. 1C). To permit cell-mediated proteolytic hydrogel degradation and thus spreading of encapsulated cells, we cross-linked DexVS with a bifunctional peptide (GCVPMSMRGGCG, abbreviated VPMS) primarily sensitive to MMP9 and MMP14, two MMPs implicated in fibrosis-associated matrix remodeling (15, 16). Tuning input VPMS cross-linker concentration yielded stable hydrogels spanning the full range of elastic moduli we measured by AFM nanoindentation of lung tissue (Fig. 1D). Additional functionalization with cell-adhesive moieties (CGRGDS, abbreviated RGD) facilitated adhesion of primary normal human lung fibroblasts (NHLFs) (Fig. 1E).
(A) Histological preparations of healthy control and bleomycin-treated murine lung tissue (n = 3 mice per group) stained for collagen by picrosirius red (scale bar, 100 m). (B) Youngs modulus of mouse lung tissue as measured by AFM nanoindentation, with data fit to the Hertz contact model to determine Youngs modulus (n = 3 mice per group, n = 50 indentations per group on n = 9 tissue sections). (C) Schematic of proteolytically sensitive, cell-adhesive DexVS-VPMS bulk hydrogels. (D) Youngs modulus determined by AFM nanoindentation of DexVS-VPMS hydrogels formed with different concentrations of VPMS cross-linker (n = 4 samples per group, n = 20 total indentations per group). (E and F) Representative images of F-actin (cyan), nuclei (yellow), and -SMA (magenta); image-based quantification of -SMA expression (left axis, magenta bars, day 9) and nuclear Ki67 (right axis, gray bars, day 5) in 2D and 3D (n = 4 samples per group, n = 10 fields of view per group, n > 50 cells per field of view; scale bars, 200 m). All data presented are means SDs with superimposed data points; asterisk denotes significance with P < 0.05 determined by one-way analysis of variance (ANOVA). AU, arbitrary units.
To confirm the role of matrix mechanics on cell proliferation and MF differentiation, we seeded patient-derived NHLFs on 2D DexVS protease-sensitive hydrogel surfaces varying in VPMS cross-linker density and resulting stiffness and stimulated cultures with TGF-1 to promote MF differentiation. In accordance with previous literature, we observed a stiffness-dependent stepwise increase in cell proliferation (day 5) and MF differentiation (day 9) as measured by Ki67 and -smooth muscle actin (-SMA) immunofluorescence, respectively (Fig. 1E) (11). As the influence of matrix elasticity on MF differentiation in 3D synthetic matrices has not previously been documented, we also encapsulated NHLFs in 3D within identical DexVS hydrogels. The opposing trend with respect to stiffness was noted for cells encapsulated in 3D; compliant (E = 560 Pa) hydrogels that limited -SMA expression in 2D plated cells instead exhibited the highest levels of MF differentiation in 3D (Fig. 1F). Decreasing proliferation and cell-cell contact formation as a function of increasing hydrogel stiffness were also noted in 3D matrices and may be one reason why rigid hydrogels limit differentiation in 3D. Similar findings have been reported for mesenchymal stem cells encapsulated in hyaluronic acid matrices, where compliant gels promoted stem cell proliferation and yes-associated protein (YAP) activity in 3D, yet inhibited YAP activity and proliferation in 2D (17). These results suggest that while stiff, cross-linked 2D surfaces promote cell spreading, proliferation, and MF differentiation, an equivalent relationship does not directly translate to 3D settings. High cross-linking and stiffness (E = 6.1 kPa) in 3D matrices sterically hinder cell spreading, proliferation, and the formation of cell-cell contacts, all well-established promoters of MF differentiation (18).
Cell-degradable synthetic hydrogels with elastic moduli approximating that of fibrotic tissue proved nonpermissive to MF differentiation in 3D. Although matrix cross-linking and densification of ground substance has previously been implicated in fibrotic tissue stiffening, remodeled collagenous architecture can also engender changes in tissue mechanics and may modulate MF development in IPF independently. To characterize the fibrous matrix architecture within healthy and fibrotic lung interstitium, we used second-harmonic generation (SHG) microscopy to visualize collagen microstructure in saline- and bleomycin-treated lungs, respectively. Per previous literature, saline-treated lungs contained limited numbers of micrometer-scale (~1-m-diameter) collagen fibers, primarily localized to the interstitial spaces supporting the alveoli (Fig. 2A) (19). In contrast, bleomycin-treated lungs had, on average, fourfold higher overall SHG intensity, with collagen fibers localized to both an expanded interstitial region and in disrupted alveolar networks. While no difference in fiber diameter was noted with bleomycin treatment, we did observe thick (~2- to 5-m) collagen bundles containing numerous individual fibers in fibrotic lungs, potentially arising from physical remodeling by resident fibroblasts (Fig. 2A and fig. S1). Given that typical synthetic hydrogels amenable to cell encapsulation (as in Fig. 1) lack fibrous architecture, we leveraged a previously established methodology for generating fiber-reinforced hydrogel composites (20). Electrospun DexVS fibers approximating the diameter of collagen fibers characterized by SHG imaging (fig. S1) were co-encapsulated alongside NHLFs in DexVS-VPMS hydrogel matrices, yielding a 3D interpenetrating network of DexVS fibers ensconced within proteolytically cleavable DexVS hydrogel (Fig. 2B). To recapitulate the adhesive nature of collagen and fibronectin fibers within interstitial tissues, we functionalized DexVS fibers with RGD to support integrin engagement and 3D cell spreading. While increasing the weight % of type I collagen matrices increases collagen fiber density and simultaneously increases hydrogel stiffness (fig. S2), our synthetic matrix platform enables changes to fiber density (0.0 to 5.0%) without altering mechanical properties assessed by AFM nanoindentation (Fig. 2C), likely due to the constant weight percentage of DexVS and VPMS cross-linker within the bulk hydrogel.
(A) SHG imaging of collagen microstructure within healthy and bleomycin-treated lungs on day 14, with quantification of average signal intensity (arrows indicate interstitial tissue regions adjacent to alveoli; n = 3 mice per group, n = 10 fields of view per group; scale bar, 100 m). (B) Schematic depicting polymer cross-linking and functionalization for generating fibrous DexVS hydrogel composites to model changes in fiber density within lung interstitial tissue ECM. (C) Images and intensity quantification of fluorophore-labeled fibers within composites varying in fiber density (n = 4 samples per group, n = 10 fields of view per group; scale bar, 100 m). Youngs modulus determined by AFM nanoindentation of fibrous composites formed with different concentrations of VPMS cross-linker (n = 4 samples per group, n = 20 measurements per group). (D) Representative high-resolution images of NHLFs on day 1 in fibrous composites formed with bulk hydrogels (12.5 mM VPMS) functionalized with integrin ligand arginylglycylaspartic acid (RGD) or heparin-binding peptide (HBP) [F-actin (cyan), nuclei (yellow), and DexVS fibers (magenta); scale bar, 50 m]. Quantification of fiber recruitment as measured by contact between cells and DexVS fibers (n = 10 fields of view per group, n > 25 cells analyzed). (E) Representative high-resolution images of NHLF on day 1 fibrous composites formed with bulk hydrogels functionalized with integrin ligand RGD or HBP [F-actin (cyan), fibronectin (yellow), and DexVS fibers (magenta); scale bar, 5 m]. Quantification of fibronectin deposition into tshe hydrogel matrix as measured by immunostain intensity (n = 10 fields of view per group, n > 25 cells analyzed). All data presented are means SDs with superimposed data points; asterisk denotes significance with P < 0.05 determined by one-way ANOVA or Students t test, where appropriate; NS denotes nonsignificant comparison.
Beyond recapitulating the multiphase structural composition of interstitial ECM, we also sought to mimic the adhesive ligand presentation and protein sequestration functions of native interstitial tissue. More specifically, the gel-like ground substance within fibrotic tissue intrinsically lacks integrin-binding moieties and is increasingly rich in heparan sulfate proteoglycans, primarily serving as a local reservoir for nascent ECM proteins, growth factors, and profibrotic cytokines. In contrast, synthetic hydrogels are often intentionally designed to have minimal interactions with secreted proteins and require uniform functionalization with a cell-adhesive ligand to support cell attachment and mechanosensing. We hypothesized that RGD-presenting fibers alone would support cell spreading (20), enabling the use of a nonadhesive bulk DexVS hydrogel functionalized with heparin-binding peptide (HBP; CGFAKLAARLYRKAG) (21). While both RGD- and HBP-functionalized bulk DexVS gels supported cell spreading upon incorporation of RGD-presenting fibers, HBP-functionalized hydrogels encouraged matrix remodeling in the form of cell-mediated fiber recruitment (Fig. 2D) and enhanced the deposition of fibronectin fibrils into the adjacent matrix (Fig. 2E). Given the multiphase structure of lung interstitium, changes in collagen fiber density noted with fibrotic progression, and the importance of physical and biochemical matrix remodeling to fibrogenesis, we used HBP-tethered 560-Pa DexVS-VPMS bulk hydrogels with tunable density of RGD-presenting fibers in all subsequent studies.
We next investigated whether changes in fiber density reflecting fibrosis-associated alterations to matrix architecture could influence MF differentiation in our 3D model. NHLFs were encapsulated in compliant DexVS-VPMS hydrogels ranging in fiber density (E = 560 Pa, 0.0 to 5.0 volume % fibers). Examining cell morphology after 3 days of culture, we noted increased cell spreading (Fig. 3, A and B) and evident F-actin stress fibers (fig. S3) in fibrous conditions compared to nonfibrous controls. Increased frequency of direct cell-cell interactions was also observed as a function of fiber density, as evidenced by higher area:perimeter ratios and the number of fibroblasts per contiguous multicellular cluster (Fig. 3A and fig. S3). As evidenced by changes in the ratio of nuclear to cytosolic YAP localization, we detected changes in mechanosensing as a function of fiber density, with the highest nuclear ratio measured in samples containing the highest fiber density examined. Given that nuclear YAP activity (a transcriptional coactivator required for downstream mechanotransduction) has been implicated as a promoter of MF differentiation (22), we also assayed other markers associated with fibroblast activation. With increases in fiber density, we found significant increases in cell proliferation and local fibronectin deposition (Fig. 3, A and B). Luminex quantification of cytokine secretion at this time point revealed elevated secretion of inflammatory and profibrotic cytokines (Fig. 3C), suggesting that matrix fibers may modulate the soluble milieu known to regulate the response to tissue damage and repair in vivo (2325). While no -SMA expression or collagen deposition was observed at this early time point, F-actin stress fibers, YAP activity, and fibronectin expression have been previously established as proto-MF markers in vivo (26), suggesting that physical interactions with matrix fibers prime fibroblasts for activation into MFs. Supplying the profibrotic soluble factor TGF-1 prompted increases in the expression of various profibrotic YAP-target genes (ACTA2, COL1A1, FN1, CD11, and CTGF) relative to nonfibrous (FD 0.0%) controls at day 5 (Fig. 3D). Together, these data suggest that heightened fiber density promotes a fibrotic phenotype (Fig. 3, A to C) and gene expression (Fig. 3D), despite the absence of a stiff surrounding hydrogel.
(A) Immunofluorescence images of NHLFs in hydrogel composites over a range of fiber densities after 3 days of culture [F-actin (cyan), fibronectin (FN, yellow), YAP (magenta), Ki67 (white), and nuclei (blue); scale bars, 100 m (F-actin), 20 m (FN), 20 m (YAP), and 100 m (Ki67/nuclei)]. (B) Corresponding image-based quantification of cell area, deposited FN, YAP nuclear to cytosolic ratio, and % of proliferating cells (n = 4 samples per group; for cell spread area analysis, n > 50 cells per group; for FN, YAP, and Ki67 analyses, n = 10 fields of view per group and n > 25 cells per field of view). (C) Cytokine secretion into culture medium on day 3 (all data were normalized to background levels in control medium, n = 4 samples per condition). (D) Expression of MF-related genes in NHLFs stimulated with TGF-1 on day 3, in either highly fibrous (FD 5.0%) or nonfibrous (FD 0.0%) hydrogels (data presented are GAPDH-normalized fold changes relative to NHLFs within an FD 0% hydrogel lacking TGF-1 supplementation). All data presented are means SDs with superimposed data points; asterisk denotes significance with P < 0.05 determined by one-way ANOVA or Students t test where appropriate.
To explore whether fibrotic matrix cues in the form of heightened fiber density could promote 3D MF differentiation over longer-term culture, NHLFs were encapsulated within hydrogels varying in fiber density and maintained in medium supplemented with TGF-1 beginning on day 1. Immunofluorescent imaging and cytokine quantification were performed on days 3, 5, 7, and 9 to capture dynamic changes in cellular phenotype and secretion, respectively. No -SMApositive stress fibers or changes in total cytokine secretion were observed on day 3 or 5. On day 7, we noted the sparse appearance of -SMApositive cells alongside increased total cytokine secretion (Fig. 4D) in FD 5.0% conditions containing TGF-1, indicating the beginning of a potential phenotypic shift. Extensive MF differentiation (designated by -SMApositive cells) and a sixfold increase in total cytokine secretion occurred rapidly between days 7 and 9 (Fig. 4, B, D, and E) in the highest fiber density (FD 5.0%) condition. Despite the high proliferation within high fiber density hydrogels (Fig. 4C), -SMApositive cells were not evident in samples lacking exogenous TGF-1 supplementation. Moreover, -SMApositive cells were also absent in TGF-1 supplemented conditions that lacked fibrous architecture, indicating a requirement for both soluble and physical fibrogenic cues in 3D. Furthermore, inhibiting integrin engagement by incorporating fibers lacking RGD also abrogated MF differentiation and proliferation despite the presence of TGF-1 (Fig. 4, A and B), suggesting that a fibrotic matrix architecture drives -SMA expression primarily through integrin engagement and downstream mechanosensing pathways. These results were replicated with primary human dermal fibroblasts and mammary fibroblasts, where similar trends with -SMA expression as a function of fiber density were observed (fig. S4). While high fiber density promoted proliferation in dermal fibroblasts, mammary fibroblasts underwent MF differentiation in the absence of higher proliferation rates, demonstrating intrinsic differences between cell populations originating from different tissues. Nevertheless, these results suggest that fibrotic matrix architecture may be promoting MF differentiation in other pathologies, namely, dermal scarring in systemic sclerosis and desmoplasia in breast cancer.
(A) Representative immunofluorescence images of NHLFs in microenvironmental conditions leading to low (top row) or high (bottom row) MF differentiation after 9 days in culture [-SMA (magenta) and nuclei (cyan); n = 4 samples per group, n = 10 fields of view per group, and n > 50 cells per field of view; scale bar, 200 m], with corresponding image-based quantification in (B) and (C). Insets depict representative fiber densities. (D) Measurement of total cytokine secretion over time as a function of fiber density (n = 4 samples per condition; * indicates significant differences between FD 5.0% and all other groups at a given time point; NS denotes nonsignificant comparison). (E) Secretion of specific cytokines and chemoattractants as a function of fiber density on day 9 (n = 4 samples per condition). (F) Representative images and quantification of tissue contraction within day 14 fibroblast-laden hydrogels of varying fiber density (n = 4 samples per group, dashed line indicates initial diameter of 5 mm). Photo credit: Daniel Matera, University of Michigan. (G) AFM measurements of day 14 fibroblast-laden hydrogels of varying fiber density (n = 20 measurements from n = 4 samples per group). Dashed line indicates original hydrogel stiffness. (H) SHG images of fibrous collagen within fibroblast-laden hydrogels after 21 days of culture in medium supplemented with ascorbic acid (scale bar, 100 m). (I) Measurement of total collagen content within digested DexVS hydrogels at day 21 as measured by biochemical assay (n = 4 samples per group). All data presented are means SDs with superimposed data points; asterisk denotes significance with P < 0.05 determined by one-way ANOVA; NS denotes nonsignificant comparison.
While proliferation and -SMA expression are accepted markers of activated fibroblasts, fibrotic lesions contribute to patient mortality through airway inflammation, collagen secretion, tissue contraction, and lung stiffeningpathogenic events that hinder the physical process of respiration (27). Luminex screening of 41 cytokines and chemokines within hydrogel supernatant revealed elevated total cytokine secretion as a function of fiber density over time (Fig. 4D), many of which were soluble mediators known to regulate airway inflammation (Fig. 4E) (23). Numerous other cytokines were additionally secreted at day 9 but did not change as a function of fiber density despite differences in cell number at this time point (fig. S5), suggesting that cell number alone cannot account for the increased cytokine secretion in high fiber density conditions. By generating free-floating hydrogels that allow contraction over time, we also examined macroscale changes in tissue geometry. Consistent with the influence of fiber density on -SMA expression, hydrogels containing high fiber densities underwent greater hydrogel contraction compared to nonfibrous or low fiber density conditions (Fig. 4F). Day 14 fibrotic hydrogels (FD 5.0%) were also fourfold stiffer (2.0 versus 0.5 kPa) as measured by AFM nanoindentation (Fig. 4G) compared to conditions that yielded low rates of MF differentiation in shorter-term studies (i.e., FD 0.0 or FD 0.5% in Fig. 4, A and B). When medium was supplemented with ascorbic acid to permit procollagen hydroxylation, collagen deposition into the surrounding matrix was evident by SHG microscopy by day 21 in high fiber density hydrogels (Fig. 4H) as compared to nonfibrous controls. Further biochemical analysis of hydrogel collagen content confirmed a stepwise increase in collagen production as a function of fiber density (Fig. 4I). Together, these findings demonstrate a clear influence of fiber density on MF differentiation and phenotype in 3D and furthermore suggest that this in vitro model recapitulates key pathogenic events associated with the progression of fibrosis in vivo.
Having established microenvironmental cues that promote robust 3D MF differentiation, we next evaluated the potential of our fibrous hydrogel model for use as an antifibrotic drug screening platform. Nintedanib, a broad-spectrum receptor tyrosine kinase inhibitor, and pirfenidone, an inhibitor of the mitogen-activated protein kinase (MAPK)/nuclear factor B (NF-B) pathway, were selected due to their recent Food and Drug Administration approval for use in patients with IPF (28). We also included dimethyl fumarate, an inhibitor of the YAP/TAZ pathway clinically approved for treatment of systemic sclerosis, and marimastat, a broad-spectrum MMP inhibitor that has shown efficacy in murine preclinical models of fibrosis (29, 30). We generated fibrotic matrices (560-Pa DexVS-VPMS-HBP bulk hydrogels containing 5.0 volume % DexVS-RGD fibers) that elicited the highest levels of MF differentiation, matrix contraction, and collagen secretion in our previous studies (Fig. 4). As a comparison to the current standard for high-throughput compound screening, we also seeded identical numbers of NHLFs on 2D tissue culture plastic in parallel. Cultures were stimulated with TGF-1 on day 1, and pharmacologic treatments were added on day 3, following extensive fibroblast spreading, cell-cell junction formation, and proliferation (Fig. 3A).
As in our earlier studies, TGF-1 supplementation promoted proliferation and -SMA expression within 3D constructs as well as on rigid tissue culture plastic (Fig. 5A). Nintedanib and pirfenidone had differential effects on NHLFs depending on culture format; NHLFs on 2D tissue culture plastic were resistant to pirfenidone/nintedanib treatment with no difference in proliferation or -SMA expression relative to vehicle controls, whereas modest but significant decreases in -SMA expression (pirfenidone and nintedanib) and proliferation (nintedanib) were detected in 3D (Fig. 5, A to E). Combined treatment with pirfenidone and nintedanib provided an antifibrotic effect only in fibrotic matrices, supporting ongoing clinical studies exploring their use as a combinatorial therapy (ClinicalTrials.gov identifier NCT03939520). Dimethyl fumarate abrogated cell proliferation and -SMA expression across all conditions, suggesting that inhibition of downstream mechanosensing inhibits MF differentiation in both 2D and 3D contexts in support of the general requirement for mechanosensing during MF differentiation independent of culture substrate (11). Inhibition of YAP activity in vivo has been shown to mitigate fibrosis and may be an advantageous therapeutic target (22). Blockade of MMP activity via marimastat treatment proved ineffectual in reducing -SMA expression or proliferation on 2D tissue culture plastic, but surprisingly fully abrogated the proliferation and differentiation response in 3D fibrotic matrices (Fig. 5, A to E). Given the role of protease activity in tissue remodeling in vivo (30) and in cellular outgrowth within 3D hydrogels (17, 31), our data suggest that degradative matrix remodeling is a requirement for MF differentiation in 3D, but not in more simplified 2D settings. To summarize, multiple antifibrotic agents (pirfenidone, nintedanib, dimethyl fumarate, and marimastat) demonstrating efficacy in clinical literature elicited an antifibrotic effect in our engineered fibrotic pulmonary interstitial matrices, but not in the 2D tissue culture plastic contexts traditionally used for compound screening.
(A) Representative confocal images stained for -SMA (magenta), F-actin (cyan), and nuclei (yellow) of NHLFs after 9 days of culture on tissue culture plastic (TCP) (top row) or 3D fibrotic matrices (bottom row) with pharmacologic treatment indicated from days 3 to 9 (scale bar, 100 m). Imaged regions were selected to maximize the number of -SMA+ cells per field of view within each sample. (B) Quantification of -SMA and (C) total cell count within 2D NHLF cultures. (D) Quantification of -SMA and (E) total cell count within 3D fibrotic matrices (n = 4 samples per group, n = 10 fields of view per group, and n > 50 cells per field of view). All data presented are means SDs with superimposed data points; asterisk denotes significance with P < 0.05 determined by one-way ANOVA; NS denotes nonsignificant comparison.
As the protease inhibitor marimastat fully ablated TGF-1induced -SMA expression and proliferation in our 3D fibrotic matrices, we leveraged bioinformatics methodologies to investigate the role of matrix proteases in patients with IPF on a network (Reactome) and protein (STRING) basis. Differential expression analysis of microarray data within the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (dataset #GSE47460) was used to generate an uncurated/unbiased dataset composed of the top 1000 differentially regulated genes in IPF, revealing MMP1 as the most up-regulated gene in patients with IPF, with other matrix proteases (MMP1, MMP3, MMP7, MMP9, MMP10, MMP11, and MMP12) and matrix remodeling proteins (COL1A2, LOX, ACAN, DCN, and HS6ST2) similarly up-regulated (Fig. 6B, table S1, and data file S1). To focus on genes associated with MF differentiation for subsequent analyses, we performed Gene Ontology (GO) term enrichment (via GEO2R) to compile a curated dataset containing 188 key genes associated with MF differentiation (data file S1) and used Reactome and STRING analyses to investigate network signaling within both the uncurated and curated datasets. Analyses revealed 103 (uncurated) and 89 (curated) enriched signaling pathways in IPF (data file S1). The top 3/5 (uncurated) and 5/5 (curated) significantly enriched pathways in IPF involved matrix degradation and remodeling (Fig. 6C). Subsequent STRING protein-protein interaction analysis of datasets revealed that top signaling nodes were MMPs (uncurated: MMP1 and MMP3; Fig. 6D), fibrous collagens (uncurated: COL1A2 and COL3A1), or cytokines (curated: IL6, VEGFA, IL1B, and IGF1; Fig. 6D) known to increase MMP expression in fibroblasts (3235). These results emphasize the interdependence between MMP activity and systems-level pathogenic signaling in IPF and, in combination with our 3D drug screening results, highlight fibroblast-specific protease activity as a potential therapeutic target. Furthermore, given that protease inhibition had no effect on MF differentiation in 2D culture, these data also support the growing sentiment that simplified 2D screening models may be masking the identification of potentially viable antifibrotics.
(A) Schematic representation of bioinformatics workflow: Whole-genome transcriptomes from 91 healthy and 140 patients with lung fibrosis were fetched from the NCBI GEO. Differential expression analysis was used to assemble an uncurated list of the top 1000 differentially expressed genes. GO enrichment of choice biological pathways was used to assemble a curated list of genes associated with MF differentiation. Datasets were fed through a previous knowledgebased analysis pipeline to identify enriched signaling pathways (Reactome) and key protein signaling nodes (STRING) within patients with IPF. (B) Heatmaps of the top 20 differentially expressed genes within specified GO categories, which were manually selected for curated analysis. CN values indicate a high degree of interaction between proteins selected for curated analysis. Colors are based on differential expression values that were not log-normalized. (C) Summary of the top 5 significantly enriched pathways in the curated and uncurated gene set. (D) Representative STRING diagram depicting protein interactions within the curated dataset, with summary of the top 5 signaling nodes in the uncurated and curated gene set. Blue nodes and edges represent interactions within the top 5 signaling nodes for the curated dataset.
Despite fibrosis widely contributing to mortality worldwide, inadequate understanding of fibrotic disease pathogenesis has limited the development of efficacious therapies (12). Preclinical studies in vivo, while indispensable, often fail to translate to clinical settings as evidenced by the failure of ~90% of drugs identified in animal studies (36). In addition, limitations in current technologies (e.g., the embryonic lethality of many genetic ECM knockouts and the limited resolution/imaging depth of intravital microscopy) have hindered the application of preclinical in vivo models for the study of cell-ECM interactions that underlie fibrogenesis (37). In contrast, existing in vitro models use patient-derived cells that are affordable, scalable, and amenable to microscopy, but often fail to recapitulate the complex 3D matrix structure of the interstitial tissue regions where fibrotic diseases such as IPF originate. We leveraged electrospinning and bio-orthogonal chemistries to engineer novel pulmonary interstitial matrices that are 3D and have fibrous architecture with biomimetic ligand presentation. In the presence of profibrotic soluble factors, these settings reproduce hallmarks of fibrosis at cellular and tissue levels (Figs. 2 to 4). Examining the influence of physical microenvironmental cues (cross-linking/stiffness and fiber density) on MF differentiation, we find that cross-linking/stiffness has opposing effects on MF differentiation in 2D versus 3D (Fig. 1) and that incorporation of a fibrous architecture in 3D is a prerequisite to MF differentiation (Fig. 4). Furthermore, supported by the importance of protease signaling in IPF (Fig. 6), we performed proof-of-concept pharmacologic screening within our 3D fibrotic matrices (Fig. 5) and highlighted enhanced biomimicry as compared to traditional 2D drug screening substrates where matrix remodeling appears to be dispensable for MF differentiation.
While tunable synthetic hydrogels have identified mechanosensing pathways critical to MF differentiation in 2D, these observations have yet to be translated to 3D fibrous settings relevant to the interstitial spaces where fibrosis originates. Given that late-stage IPF progresses in the absence of external tissue damage, current dogma implicates fibrotic matrix stiffness as the continual driver of MF differentiation in vivo (10, 11, 38). While we cannot disregard this hypothesis, our work elucidates a contrasting MMP-dependent mechanism at play in 3D, whereby a compliant, degradable, and fibrous matrix architecture supports MF differentiation, with matrix contraction and stiffening occurring downstream of -SMA expression, nearly a week later. Given numerous 2D studies indicating matrix stiffness as a driver of MF differentiation, the finding that a compliant matrix promotes MF differentiation may appear counterintuitive (10, 11). However, MF accumulation has been documented before tissue stiffening in human disease (3), and a recent phase 2 clinical trial (ClinicalTrials.gov Identifier: NCT01769196) targeting the LOX pathway (the family of enzymes responsible for matrix stiffening in vivo) failed to prevent disease progression in patients with IPF and was terminated due to lack of efficacy (39). Furthermore, compelling recent work by Fiore et al. (3) combined immunohistochemistry with high-resolution AFM to characterize human IPF tissue mechanics and found that regions of active fibrogenesis were highly fibrous but had a similar Youngs modulus as healthy tissue. In concert with our in vitro data, these findings suggest that MF differentiation is possible within soft provisional ECM in vivo and that the initiation of fibrogenesis may not be dependent on heightened tissue stiffness so long as matrix fibers and appropriate soluble cues (e.g., TGF-1) are present.
Consequently, understanding the source of profibrotic soluble cues in vivo is of critical importance when identifying therapeutic targets for IPF. Luminex screening of supernatant from 3D fibrotic matrices revealed sixfold increases in cytokine secretion during fibrogenesis, most of which were potent inflammatory factors [e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), IL-8, and vascular endothelial growth factor A (VEGF-A)] and chemoattractants (e.g., CCL2, CCL7, CCL11, and CXCL1) (Fig. 4E). Furthermore, IL-6 and VEGF-A were found to be major signaling nodes in patients with IPF (Fig. 6D). While not typically regarded as an immunomodulatory cell population, these findings suggest that MFs may maintain localized inflammation to support continual fibrogenesis. Mitogens such as IL-6 and IL-8 promote endothelial- and epithelial-to-mesenchymal transition, a process that gives rise to matrix-producing MF-like cells in IPF (40). CCR2 (CCL2 and CCL7) and CXCR1 (CXCL1 and IL-8) ligation facilitates macrophage chemotaxis, potentially leading to a sustained influx of TGF-1producing cells in IPF, and glycoproteins such as GM-CSF inhibit caspase activity in mononuclear cells, potentially preventing apoptotic events required for the resolution of wound repair and return to homeostasis (23, 41). In addition, secretion of nearly all cytokines was increased as a function of fiber density, highlighting a potential feed-forward loop distinct from canonical TGF-1 signaling. Further model development (e.g., coculture platforms) will be required to examine these hypotheses and the role of MF-derived cytokines in persistent inflammation and fibrosis.
In addition to documenting the role of fibrotic matrix architecture in 3D fibrogenesis, we demonstrate proof-of-concept pharmacologic screening within our synthetic pulmonary interstitial matrices and highlight their improved relevance to human disease. Previous work in vitro has documented profound reductions in MF differentiation after treatment with clinically approved antifibrotics (pirfenidone and nintedanib), whereas in the clinic, pirfenidone and nintedanib impede disease progression but are far from curative (4, 28, 42, 43). Pirfenidone or nintedanib had insignificant effects in 2D settings in our hands and only modest effects in 3D (Fig. 5). One reason for this discrepancy may be the use of supraphysiologic pirfenidone and nintedanib concentrations in previous in vitro studies, whereas we selected dosages based on plasma concentrations in patients with IPF (44). Differences in pharmacokinetics, nutrient/growth factor diffusion, and cell metabolism between 2D and 3D tissue constructs likely also play a role. Furthermore, as evidenced by the preventative effect of the protease inhibitor marimastat in 3D hydrogels but not 2D settings (Fig. 5), pharmacologics that influence matrix degradation and remodeling are likely to have a minimized effect in 2D settings due to the less dynamic nature of tissue culture plastic and flat hydrogels (45). Nintedanib and pirfenidone have been shown to influence protease activity and matrix remodeling in vivo (16), and may be mediating their effects within fibrotic matrices through modulation of ECM remodeling. Given the identification of numerous potential antifibrotic agents (microRNA, TGF-1 inhibitors, IL-4, IL-13 neutralizing antibodies, and integrin blockers) in preclinical models, application of the system described here could elucidate how choice pharmacologics affect MF differentiation and matrix remodeling processes that are difficult to recapitulate in 2D culture. Further development of our interstitial matrices as an arrayed platform, as has been elegantly implemented with collagen matrices (42), is a critical next step to moving this technology toward high-throughput screening applications.
It is important to note that this work has several potential limitations. Our material approach allows facile control of initial microenvironmental conditions (e.g., dimensionality, fiber density, ligand density, and elastic modulus), and of note, composites of RGD-bearing nondegradable fibers and degradable bulk hydrogel decouple degradation-induced changes in matrix mechanics and ligand availability. However, we have no experimental control over subsequent dynamic cell-driven remodeling events (e.g., MMP-mediated hydrogel softening, fibronectin and collagen deposition, and hydrogel contraction/stiffening from resident cells) that likely affect local matrix mechanics, cellular mechanosensing, and MF differentiation. Exciting recent technologies such as 3D traction force microscopy (TFM) and magnetic bead microrheology could enable future examination of how these dynamic changes in cell-scale mechanics potentiate MF differentiation in 3D. Along similar lines, although our study suggests a requirement for initial adhesion to the surrounding matrix, how the dynamics of ligand presentation due to matrix remodeling regulates mechanosensing was not explored here. We present this platform as a reductionist approach to modeling the activation of fibroblasts within the 3D fibrous interstitia associated with fibrosis, a pathology that develops over years in vivo and involves multiple cell types. Human pulmonary tissue and fibrotic foci, in particular, also have viscoelastic and nonlinear mechanical behaviors (3, 46) that were not explored in our AFM measurements of murine lung or hydrogel composites. Given the important role such mechanical features can play in ECM mechanosensing, incorporating new synthetic material strategies in combination with cell-scale mechanical measurements will be essential to modeling physiologic complexity. Given that the development of lung organoids is still in its infancy, decellularized precision-cut lung slices currently represent the best culture platform to capture the full complexity of the lung microenvironment (5).
In summary, we designed a tunable 3D and fibrous hydrogel model that recapitulates dynamic physical (e.g., stiffening and contraction) and biochemical (e.g., secretion of fibronectin, collagen, and cytokines) alterations to the microenvironment observed during the progression of IPF. Implementation of our model allowed us to establish a developing mechanism for MF differentiation in 3D compliant environments, whereby cell spreading upon matrix fibers drives YAP activity, cytokine release, and proteolysis-dependent MF differentiation. Furthermore, we leveraged bioinformatics techniques to explore protease signaling in clinical IPF and, in concert with our therapeutic screening data, establish a strong role for proteases during IPF pathogenesis and in 3D MF differentiation. Whether protease activity promoted MF differentiation directly through modulation of intracellular signaling or indirectly through affects on the local matrix environment has yet to be explored in these settings but will be the focus of future efforts. Consequently, these results highlight critical design parameters (3D degradability and matrix architecture) frequently overlooked in established synthetic models of MF differentiation. Future work incorporating macrophages, endothelial cells, and epithelial cells may expand current understanding of how developing MF populations influence otherwise homeostatic cells and how matrix remodeling influences paracrine signaling networks and corresponding drug response. Given the low translation rate of drugs identified in high-throughput screening assays, we show that the application and development of engineered biomimetics, in combination with preclinical models, can improve drug discovery and pathophysiological understanding.
All reagents were purchased from Sigma-Aldrich and used as received, unless otherwise stated.
Dextran vinyl sulfone. A previously described protocol for vinyl sulfonating polysaccharides was adapted for use with linear highmolecular weight (MW) dextran (MW 86,000 Da; MP Biomedicals, Santa Ana, CA) (20). Briefly, pure divinyl sulfone (12.5 ml; Thermo Fisher Scientific, Hampton, NH) was added to a sodium hydroxide solution (0.1 M, 250 ml) containing dextran (5 g). This reaction was carried out at 1500 rpm for 3.5 min, after which the reaction was terminated by adjusting the pH to 5.0 via the addition of hydrochloric acid. A lower functionalization of DexVS was used for hydrogels, where the volume of divinyl sulfone reagent was reduced to 3.875 ml. All reaction products were dialyzed for 5 days against Milli-Q ultrapure water, with two water exchanges daily, and then lyophilized for 3 days to obtain the pure product. Functionalization of DexVS was characterized by 1H nuclear magnetic resonance (NMR) spectroscopy in D2O and was calculated as the ratio of the proton integral [6.91 parts per million (ppm)] and the anomeric proton of the glucopyranosyl ring (5.166 and 4.923 ppm); here, vinyl sulfone/dextran repeat unit ratios of 0.376 and 0.156 were determined for electrospinning and hydrogel DexVS polymers, respectively.
DexVS was dissolved at 0.6 g ml1 in a 1:1 mixture of Milli-Q ultrapure water and dimethylformamide with 0.015% Irgacure 2959 photoinitiator. Methacrylated rhodamine (0.5 mM; Polysciences Inc., Warrington, PA) was incorporated into the electrospinning solution to fluorescently visualize fibers under 555 laser. This polymer solution was used for electrospinning within an environment-controlled glovebox held at 21C and 30% relative humidity. Electrospinning was performed at a flow rate of 0.3 ml hour1, gap distance of 5 cm, and voltage of 10.0 kV onto a grounded collecting surface attached to a linear actuator. Fiber layers were collected on glass slabs and primary cross-linked under ultraviolet light (100 mW cm2) and then secondary cross-linked (100 mW cm2) in an Irgacure 2959 solution (1 mg ml1). After polymerization, fiber segments were resuspended in a known volume of phosphate-buffered saline (PBS) (typically 3 ml). The total volume of fibers was then calculated via a conservation of volume equation: total resulting solution volume = volume of fibers + volume of PBS (3 ml). After calculating total fiber volume, solutions were re-centrifuged, supernatant was removed, and fiber pellets were resuspended to create a 10 volume % fiber solution, which were then aliquoted and stored at 4C. To support cell adhesion, 2.0 mM RGD was coupled to vinyl sulfone groups along the DexVS backbone via Michael-type addition chemistry for 30 min, followed by quenching of excess VS groups in a 300 mM cysteine solution for 30 min.
DexVS gels were formed via a thiol-ene click reaction at 3.3% (w/v) (pH 7.4, 37C, 45 min) with VPMS cross-linker (12.5, 20, and 27.5 mM) (GCRDVPMSMRGGDRCG, GenScript, George Town, KY) in the presence of varying amounts of arginylglycylaspartic acid (RGD, CGRGDS, 2.0 mM; GenScript, George Town, KY), HBP (GCGAFAKLAARLYRKA, 1.0 mM; GenScript, George Town, KY), and fiber segments (0.0 to 5.0%, v/v). For experiments comparing hydrogels of varying ligand type (1 mM HBP versus 2 mM RGD), cysteine was added to precursor solutions to maintain a final vinyl sulfone concentration of 60 mM. All hydrogel and peptide precursor solutions were made in PBS containing 50 mM Hepes. To create fibrous hydrogels, a defined stock solution (10% v/v) of suspended fibers in PBS/Hepes was mixed into hydrogel precursor solutions before gelation. By controlling the dilution of the fiber suspension, fiber density was readily tuned within the hydrogel at a constant hydrogel weight percentage. For gel contraction experiments, DexVS was polymerized within a 5-mm-diameter polydimethylsiloxane (PDMS) gasket to ensure consistent hydrogel area on day 0.
NHLFs (University of Michigan Central Biorepository), normal human dermal fibroblasts (Lonza, Basel, Switzerland), and normal human mammary fibroblasts (Sciencal, Carlsbad, CA) were cultured in Dulbeccos modified Eagles medium containing 1% penicillin/streptomycin, l-glutamine, and 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA). NHLFs derived from three separate donors were used for experiments. Cells were passaged upon achieving 90% confluency at a 1:4 ratio and used for studies until passage 7. For all hydrogel studies, cells were trypsinized, counted and either encapsulated into or seeded onto 25-l hydrogels at a density of 1,000,000 cells ml1 of hydrogel, and subsequently cultured at 37C and 5% CO2 in serum-containing medium. For studies comparing 3D hydrogels to tissue culture plastic, the number of cells seeded into 2D conditions was analogous to the total cell number within hydrogel matrices. Medium was refreshed the day after encapsulation and every 2 days after. In selected experiments, recombinant human TGF-1 (5 ng/ml; PeproTech, Rocky Hill, NJ) was supplemented into the medium at 5 ng ml1. For pharmacological studies, nintedanib (50 nM; Thermo Fisher Scientific, Hampton, NH), pirfenidone (100 M; Thermo Fisher Scientific, Hampton, NH), marimastat (1.0 M), and dimethyl fumarate (100 nM) were supplemented in serum-containing medium and refreshed every 2 days.
Cultures were fixed with 4% paraformaldehyde for 30 min at room temperature. To stain the actin cytoskeleton and nuclei, samples were permeabilized in PBS solution containing Triton X-100 (5%, v/v), sucrose (10%, w/v), and magnesium chloride (0.6%, w/v); blocked in 1% bovine serum albumin (BSA); and stained simultaneously with phalloidin and 4,6-diamidino-2-phenylindole (DAPI). For immunostaining, samples were permeabilized, blocked for 8 hours in 1% (w/v) BSA, and incubated with mouse monoclonal anti-YAP antibody (1:1000; Santa Cruz Biotechnology, SC-101199), mouse monoclonal anti-fibronectin antibody (FN, 1:2000; Sigma-Aldrich, #F6140), rabbit monoclonal anti-Ki67 (1:500; Sigma-Aldrich #PIMA514520), or mouse monoclonal anti-SMA (1:2000; Sigma-Aldrich, #A2547) followed by secondary antibody for 6 hours each at room temperature with 3 PBS washes in between. High-resolution images of YAP, FN, and actin morphology were acquired with a 40 objective. Unless otherwise specified, images are presented as maximum intensity projections of 100-m Z-stacks. Hydrogel samples were imaged on a Zeiss LSM 800 laser scanning confocal microscope. SHG imaging of lung tissue was conducted on a Leica SPX8 laser scanning confocal microscope with an excitation wavelength of 820 nm and a collection window of 400 to 440 nm. Single-cell morphometric analyses (cell spread area) were performed using custom Matlab scripts with sample sizes >50 cells per group, while YAP, -SMA, Ki67, and FN immunostains were quantified on an image basis with a total of 10 frames of view. MFs were denoted as nucleated, F-actin+, -SMA+ cells. For cell density (number of nuclei) calculations, DAPI-stained cell nuclei were thresholded and counted in six separate 600 m 600 m 200 m image volumes, allowing us to calculate a total number of cells per mm3 of gel. Fiber recruitment analysis was conducted via a custom Matlab script; briefly, cell outlines were created via actin masking and total fiber fluorescence was quantified under each actin mask on a per-cell basis. A similar analysis method using Matlab was used for cell-cell junction analysis as published previously, with higher area:perimeter ratios and clusters/cell indicative as more pronounced network formation (47).
For all experiments, additional hydrogel replicates were finely minced and degraded in dextranase solution (4 IU/ml; Sigma-Aldrich) for 20 min and homogenized in buffer RLT (Qiagen, Venlo, The Netherlands), and RNA was isolated according to the manufacturers protocols. Complementary DNA (cDNA) was generated from deoxyribonuclease (DNase)free RNA and amplified, and gene expression was normalized to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Experiments were run with technical triplicates across three individual biological experiments. For a complete list of primers, see table S2.
To determine the elastic modulus of lung tissue and DexVS hydrogels, indentation tests were used with a Nanosurf FlexBio AFM (Nanosurf, Liestal, Switzerland). Samples were indented via a 5-m bead at a depth of 10 m and an indentation rate of 0.333 m/s. Resulting force-displacement curves were fit to a spherical Hertz model using AtomicJ. Poissons ratios of 0.5 and 0.4 were used for hydrogels and lung tissue, respectively.
All animal studies were approved by the Animal Care and Use Committee at the University of Michigan. Bleomycin (0.025 U; Sigma-Aldrich) was instilled intratracheally in C57BL6 mice (8 weeks of age; The Jackson Laboratory, Bar Harbor, ME, USA) on day 0. Briefly, mice were anesthetized with sodium pentobarbital, the trachea was exposed and entered with a 30-gauge needle under direct visualization, and a single 30-l injection containing 0.025 U of bleomycin (Sigma-Aldrich) diluted in normal saline was injected. Lungs were collected on day 14 for mechanical and histological analysis. For histology samples, lungs were perfused with saline and inflated with 4% paraformaldehyde, sectioned, and stained with picrosirius red. For mechanical characterization via AFM, lungs were perfused with saline, infused with OCT (optimal cutting temperature) compound (Thermo Fisher Scientific), and flash-frozen in a slurry of dry ice and ethanol. Sections were mechanically tested via AFM nanoindentation immediately upon thawing.
To characterize the inflammatory secretome associated with various DexVS-VPMS environments, medium was collected from NHLF cultures 3, 5, 7, and 9 days after encapsulation. A Luminex FlexMAP 3D (Luminex Corporation, Austin, TX) systems technology was used to measure 41 cytokines/chemokines (HCTYMAG-60 K-PX41, Milliplex, EMD Millipore Corporation) in the medium samples according to the manufacturers instructions. Total secretion was reported as the sum of all 41 analytes measured for each respective condition. Cell-secreted collagen was measured using the established colorimetric Sircol assay in hydrogels cultured with serum-free medium in the presence of ascorbic acid (25 g ml1).
The NCBI GEO database was consulted [dataset GSE47460 (GP14550)] to fetch gene expression data from 91 healthy patients and 140 patients with IPF; patients with chronic obstructive pulmonary disease and nonidiopathic fibrotic lung diseases were excluded from the analysis (48). GEO2R (www.ncbi.nlm.nih.gov/geo/geo2r/) software was used for GO term enrichment, with keywords ECM, MMP, integrin, cytoskeleton, cytokine, chemokine, and MAPK used as search terms for dataset curation (48). Noncurated datasets were composed of the top 1000 differentially expressed genes between healthy and interstitial lung disease (ILD) conditions. Differential expression was calculated on the basis of subtracting normalized expression values between diseased and healthy patients. All genes were normalized before analysis with GEO2R via a pairwise cyclic losses approach. For pathway and protein-protein enrichment analyses, a curated pathway database [Reactome (49)] and Search Tool for Retrieval of Interacting Genes/Proteins [STRING (50)] methodology were consulted, respectively. For STRING analyses, up-regulated genes within the druggable genome were focused upon. A tabulated list of top genes, pathways, and nodes can be seen in data file S1.
Statistical significance was determined by one-way analysis of variance (ANOVA) or Students t test where appropriate, with significance indicated by P < 0.05. All data are presented as means SD.
Acknowledgments: We thank E. S. White (University of Michigan) for providing patient-derived lung fibroblasts used in these studies. Funding: This work was supported, in part, by the NIH (HL124322, R35HL144481). D.L.M. and C.D.D. acknowledge financial support from the NSF Graduate Research Fellowship Program (DGE1256260). Author contributions: D.L.M. and B.M.B. conceived and supervised the project. D.L.M. designed and performed the experiments. K.M.D. and K.B.A. performed and aided in analysis of the Luminex experiments. M.R.S. and C.D.D. helped with data analysis. R.P. and M.S. aided in polymer syntheses and microfiber fabrication. I.M.L. provided equipment for and assisted in polymerase chain reaction experiments. C.A.W. and B.B.M. helped perform the animal experiments for the bleomycin-induced lung fibrosis model. All authors edited and approved the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.