Page 10«..9101112..20..»

Archive for the ‘Cell Medicine’ Category

Study by prominent Brigham scientists retracted due to compromised data

A Brigham and Womens Hospital stem cell study, which raised the possibility that the human heart could repair itself, has been retracted after an internal investigation showed the researchers used compromised data.

The retraction comes just a week after a Japanese scientist was accused of fabricating data in a major stem cell paper that was led by a different Brigham scientist.

The authors of the retracted paper claimed they had found evidence that heart muscle can regenerate at a higher rate than previously thought. The work was part of a broad effort to discover the bodys natural regenerative abilities and harness them to create therapies that could repair damaged or diseased hearts.

The paper, published in 2012 in the journal Circulation, was withdrawn Tuesday by the journals publisher, the American Heart Association. An ongoing institutional review by Harvard Medical School and Brigham and Womens Hospital has determined that the data are sufficiently compromised that a retraction is warranted, the journal said.

This retraction is highly significant. In my 30 years in cardiovascular science I cannot recall a paper of similar prominence being retracted from Circulation, Dr. Charles Murry, codirector of the Institute for Stem Cell and Regenerative Medicine at the University of Washington, wrote in an e-mail. This appears to settle the controversy about the rate of cell replacement in the human heart.

Dr. Rose Marie Robertson, chief science officer for the American Heart Association, said that the journal received the retraction request from Harvard Medical School, in a letter that described concerns about several figures in the paper. She declined to elaborate on what the specific problems were.

The journals retraction notice does not specify whether the data irregularities were accidental or intentional, or which researchers were at fault. The authors include several high-profile scientists, including Dr. Piero Anversa, a cardiologist whose research has often raised questions from other scientists, and Dr. Joseph Loscalzo, chief of medicine at the Brigham.

Robertson said that based on the information provided by Harvard, the Heart Association did not have concerns about the role Loscalzo played in the paper. Loscalzo is the editor of the journal Circulation and recused himself from the retraction process, she said.

The study was supported by funds from the National Institutes of Health. In 2013, Anversas lab received $6.9 million from the agency, according to an NIH website. The federal Office of Research Integrity, which reviews allegations of scientific misconduct on federally sponsored research, said because of privacy reasons, it could not confirm or deny an investigation.

The key authors of the paper did not respond to direct requests for comment, and a Brigham spokeswoman declined to make them available. The hospital released a statement saying, Any questions, concerns, or allegations regarding research conducted at BWH are confidentially evaluated per the hospitals policies and federal regulations.

Read more here:
Study by prominent Brigham scientists retracted due to compromised data

NIH stem-cell programme closes

Bradley J. Fikes

Stem-cell biologist Mahendra Rao expected five projects to receive support to set up clinical trials.

Stem-cell researchers at the US National Institutes of Health (NIH) have been left frustrated and confused following the demise of the agencys Center for Regenerative Medicine (CRM). The intramural programmes director, stem-cell biologist Mahendra Rao, left the NIH, in Bethesda, Maryland, on 28March, and the centres website was taken down on 4 April. Although no official announcement had been made at the time Nature went to press, NIH officials say that they are rethinking how they will conduct in-house stem-cell research.

Researchers affiliated with the centre say that they have been left in the dark. When contacted by Nature on 7April, George Daley, a stem-cell biologist at Harvard Medical School in Boston, Massachusetts, and a member of the centres external advisory board, said that he had not yet been told of Raos departure or the centres closure.

The CRM was established in 2010 to centralize the NIHs stem-cell programme. Its goal was to develop useful therapies from induced pluripotent stem (iPS) cells adult cells that have been converted into embryonic-like stem cells and shepherd them towards clinical trials and regulatory approval. Its budget was intended to be $52million over seven years.

Rao took the helm in 2011. Relations seem to have soured last month owing to an NIH decision to award funding to only one project aiming to move iPS cells into a clinical trial. Rao says he resigned after this became clear. He says that he had hoped that five trials would be funded, especially because the centre had already sorted out complex issues relating to tissue sources, patents and informed consent.

James Anderson, director of the NIHs Division of Program Coordination, Planning, and Strategic Initiatives, which administered the CRM, counters that only one application that made by Kapil Bharti of the National Eye Institute in Bethesda and his colleagues received a high enough score from an external review board to justify continued funding. The team aims to use iPS cells to treat age-related macular degeneration of the retina, and hopes to commence human trials within a few years. Several other proposals, which involved the treatment of cardiac disease, cancer and Parkinsons disease, will not receive funding to ready them for clinical trials. Anderson stresses that Bhartis trial will not be affected by the CRMs closure.

NIH

Therapies based on induced pluripotent stem cells, here differentiating into retinal cells on a scaffold, were the focus of the Center for Regenerative Medicine.

Other human iPS-cell trials are further along. For example, one on macular degeneration designed by Masayo Takahashi at the RIKEN Center for Developmental Biology in Kobe, Japan, began recruiting patients last August.

View original post here:
NIH stem-cell programme closes

Bipolar Disorder Stem Cell Study Opens Doors To Potential New Treatments

Image Caption: These colorful neurons, seen forming connections to one another across synapses, were grown from induced pluripotent stem cells -- ones that were derived from skin cells taken from people with bipolar disorder. New research shows they act, and react to the bipolar drug lithium, differently from neurons derived from people without bipolar disorder. Credit: University of Michigan Pluripotent Stem Cell Research Lab

[ Watch the Video: First Stem Cell Study of Bipolar Disorder Yields Promising Results ]

April Flowers for redOrbit.com Your Universe Online

Bipolar disorder affects 200 million people globally, and yet there are so many questions surrounding the condition. Why are individuals with bipolar disorder prone to manic highs and deep, depressed lows? If there is no single gene to blame, why does bipolar disorder run so strongly in families? And why, with the enormous number of people suffering from bipolar disorder, is it so hard to find new treatments?

A new study from the University of Michigan Medical School, funded by the Heinz C. Prechter Bipolar Research Fund, reveals that the answers might actually be found within our stem cells.

To derive the first-ever stem cell lines specific to bipolar disorder, the research team used skin from individuals who suffer from the condition. They transformed these cells into neurons, similar to those found in the brain, then compared them to cells derived from people without the disorder.

Very specific differences in how these neurons behave and communicate with each other were revealed by the comparison, which also identified striking differences in how the neurons respond to lithium, the most common treatment for bipolar disorder.

This study represents the first time researchers have directly measured differences in brain cell formation and function between individuals with and without bipolar disorder.

The type of stem cells used for this study are called induced pluripotent stem cells (iPSCs). The team coaxed the sample cells to turn into stem cells that held the potential to become any type of cell by exposing the small samples of skin cells to carefully controlled conditions. Further coaxing turned the iPSCs into neurons.

This gives us a model that we can use to examine how cells behave as they develop into neurons. Already, we see that cells from people with bipolar disorder are different in how often they express certain genes, how they differentiate into neurons, how they communicate, and how they respond to lithium, says Sue OShea, Ph.D., an experienced U-M stem cell specialist.

Go here to read the rest:
Bipolar Disorder Stem Cell Study Opens Doors To Potential New Treatments

Replacing insulin through stem cell-derived pancreatic cells under the skin

PUBLIC RELEASE DATE:

24-Mar-2014

Contact: Susan Gammon Ph.D. sgammon@sanfordburnham.org 858-795-5012 Sanford-Burnham Medical Research Institute

LA JOLLA, Calif., March 25, 2014 Sanford-Burnham Medical Research Institute (Sanford-Burnham) and UC San Diego School of Medicine scientists have shown that by encapsulating immature pancreatic cells derived from human embryonic stem cells (hESC), and implanting them under the skin in animal models of diabetes, sufficient insulin is produced to maintain glucose levels without unwanted potential trade-offs of the technology. The research suggests that encapsulated hESC-derived insulin-producing cells hold great promise as an effective and safe cell-replacement therapy for insulin-dependent diabetes.

"Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin-dependent diabetes," said Pamela Itkin-Ansari, Ph.D., adjunct assistant professor in the Development, Aging, and Regenerative Program at Sanford-Burnham, with a joint appointment at UC San Diego.

"We have shown that encapsulated hESC-derived pancreatic cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule. These results are important because it means that the encapsulated cells are both fully functional and retrievable," said Itkin-Ansari.

In the study, published online in Stem Cell Research, Itkin-Ansari and her team used bioluminescent imaging to see if encapsulated cells stay in the capsule after implantation.

Previous attempts to replace insulin-producing cells, called beta cells, have met with significant challenges. For example, researchers have tried treating diabetics with mature beta cells, but because mature cells are fragile and scarce, the method is fraught with problems. Moreover, since the cells come from organ donors, they may be recognized as foreign by the recipient's immune systemrequiring patients to take immunosuppressive drugs to prevent their immune system from attacking the donor's cells, ultimately leaving patients vulnerable to infections, tumors, and other adverse events.

Encapsulation technology was developed to protect donor cells from exposure to the immune systemand has proven extremely successful in preclinical studies.

Itkin-Ansari and her research team previously made an important contribution to the encapsulation approach by showing that pancreatic islet progenitor cells are an optimal cell type for encapsulation. They found that progenitor cells were more robust than mature beta cells to encapsulate, and while encapsulated, they matured into insulin-producing cells, which secreted insulin only when needed.

The rest is here:
Replacing insulin through stem cell-derived pancreatic cells under the skin

‘Stem Cell Tourism’ Takes Advantage of Patients, Says Law Professor

Contact Information

Available for logged-in reporters only

Newswise MADISON, Wis. Desperate patients are easy prey for unscrupulous clinics offering untested and risky stem cell treatments, says law and bioethics Professor Alta Charo of the University of Wisconsin-Madison, who is studying stem cell tourism.

Stem cells are cells that can form many types of cells in the body, and that makes them inherently promising and dangerous. Stem cell tourism refers to people traveling, both within the U.S. and abroad, in pursuit of advertised stem cell therapies to purportedly treat a variety of medical conditions.

The evidence for therapeutic use of stem cells is very limited, except for bone marrow stem cells, but patients all over the world are convinced stem cells will cure their disease, says Charo. While there are some very promising results in the early clinical trials for stem cell therapies using embryonic and other kinds of stem cells, the treatments being advertised by these clinics are dubious, mostly ineffective, and sometimes positively harmful.

Patients are being hoodwinked, but there are dilemmas about tackling (the treatments) at regulatory or political levels.

The outrage over failures in stem cell tourism is limited, Charo says. Patients may pay tens of thousands of dollars for procedures that may carry no promise of success or carry grievous risks of failure. Most people have no reason to pay attention, and those who are paying attention are sick, so they are focused on trying anything, Charo says. If it does not work, they are already in a bad position with plenty to think about.

During a search for stem cell therapies on the web, Charo found products that supposedly enhance the natural formation of stem cells in the skin alongside approved and unapproved treatments in the United States, and stem cell clinics outside the United States, like a stem cell treatment for spinal conditions that might be innocuous, but is probably useless.

Some American operators are trying to slip through Food and Drug Administration regulation, says Charo, who served as senior policy advisor in the Office of the Commissioner of the FDA between 2009 and 2011. The FDA regulates medical devices, tissue transplants and drugs, but not organ transplants or the way medicine is practiced.

To sell a product that can heal without claiming it is a drug, some clinics remove stem cells from a patient, grow them with minimal manipulation, and then reinsert the resulting cells back to the same patient. There has been a long-running battle over whether that is a tissue transplant akin to organ transplantation and thus the practice of medicine, or a tissue transplant that is acting like drug, Charo says. If the latter, then what you do is subject to FDA [regulation], so you have to prove that your product is safe and effective, which almost always requires expensive clinical trials.

See original here:
'Stem Cell Tourism' Takes Advantage of Patients, Says Law Professor

Stem cell study finds source of earliest blood cells during development

PUBLIC RELEASE DATE:

20-Mar-2014

Contact: Matthew Inlay minlay@uci.edu 949-824-8226 University of California - Irvine

Irvine, Calif., March 20, 2014 Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic development.

In a study published April 8 in Stem Cell Reports, Matthew Inlay of the Sue & Bill Gross Stem Cell Research Center and Stanford University colleagues created novel cell assays that identified the earliest arising HSC precursors based on their ability to generate all major blood cell types (red blood cells, platelets and immune cells).

This discovery of very early differentiating blood cells, Inlay said, may be very beneficial for the creation of HSC lines for clinical treatments.

"The hope is that by defining a set of markers that will allow us to make purer, cleaner populations of these precursor cells, we'll be able to reveal the key molecular events that lead to the emergence of the first HSCs in development. This could give us a step-by-step guide for creating these cells in a dish from pluripotent stem cell lines" added Inlay, who is an assistant professor of molecular biology & biochemistry at UC Irvine and conducted the study while a postdoctoral researcher in the Irving Weissman lab in the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University.

###

The work was performed in collaboration with Thomas Serwold, now an assistant professor in the Joslin Diabetes Center at Harvard Medical School.

The research reported in this article was supported by the National Institutes of Health (grants 5 T32 AI07290, R01HL058770, R01CA86085 and U01HL09999), the California Institute for Stem Cell Research (grants T1-00001, RT2-02060 to I.L.W.), the Harvard Stem Cell Institute, the Siebel Stem Cell Institute, the Thomas and Stacey Siebel Foundation, and the Virginia and D.K. Ludwig Fund for Cancer Research.

Original post:
Stem cell study finds source of earliest blood cells during development

Stem Cell Training, Inc. and Bioheart, Inc. Complete First U.S.-based Stem Cell Training Course

Miami (PRWEB) March 21, 2014

Stem Cell Training, Inc., a division of the Global Stem Cells Group, and Bioheart, Inc. have announced the successful completion of their first joint stem cell training course held in the U.S.

Titled Adipose Derived Harvesting, Isolation and Re-integration Training Course, for the advancement of stem cell procedures, the two companies hosted 14 students in Miami for the training, conducted by Bioheart CSO Kristin Comella.

The two-day, hands-on intensive training course was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose (fat) tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective in office regenerative medicine techniques.

Comella, Chief Scientific Officer for Bioheart, has more than 15 years experience in cell culturing and developing stem cell therapies for degenerative diseases, and experience in corporate entities, with expertise in regenerative medicine, training and education, research, product development and senior management.

The two companies will conduct 12 stem cell training courses in the U.S. during 2014. For more information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-dimensional company offering coursework and training in 35 cities worldwide. Coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

The companys training courses are designed to make the best use of stem cell technology available to treat various diseases in a manner that is accessible to everyone. Stem Cell Training, Inc.s mission is to introduce the promising world of cellular medicine to everyone who can benefit from its application, and to provide high quality, effective and efficient training that complies with the highest medical standards to physicians worldwide.

About the Global Stem Cells Group:

Excerpt from:
Stem Cell Training, Inc. and Bioheart, Inc. Complete First U.S.-based Stem Cell Training Course

Stem cells from muscle can repair nerve damage after injury, Pitt researchers show

PUBLIC RELEASE DATE:

18-Mar-2014

Contact: Anita Srikameswaran 412-578-9193 University of Pittsburgh Schools of the Health Sciences

PITTSBURGH, March 18, 2014 Stem cells derived from human muscle tissue were able to repair nerve damage and restore function in an animal model of sciatic nerve injury, according to researchers at the University of Pittsburgh School of Medicine. The findings, published online today in the Journal of Clinical Investigation, suggest that cell therapy of certain nerve diseases, such as multiple sclerosis, might one day be feasible.

To date, treatments for damage to peripheral nerves, which are the nerves outside the brain and spinal cord, have not been very successful, often leaving patients with impaired muscle control and sensation, pain and decreased function, said senior author Johnny Huard, Ph.D., professor of orthopaedic surgery, and Henry J. Mankin Chair in Orthopaedic Surgery Research, Pitt School of Medicine, and deputy director for cellular therapy, McGowan Institute for Regenerative Medicine.

"This study indicates that placing adult, human muscle-derived stem cells at the site of peripheral nerve injury can help heal the lesion," Dr. Huard said. "The stem cells were able to make non-neuronal support cells to promote regeneration of the damaged nerve fiber."

The researchers, led by Dr. Huard and Mitra Lavasani, Ph.D., first author and assistant professor of orthopaedic surgery, Pitt School of Medicine, cultured human muscle-derived stem/progenitor cells in a growth medium suitable for nerve cells. They found that, with prompting from specific nerve-growth factors, the stem cells could differentiate into neurons and glial support cells, including Schwann cells that form the myelin sheath around the axons of neurons to improve conduction of nerve impulses.

In mouse studies, the researchers injected human muscle-derived stem/progenitor cells into a quarter-inch defect they surgically created in the right sciatic nerve, which controls right leg movement. Six weeks later, the nerve had fully regenerated in stem-cell treated mice, while the untreated group had limited nerve regrowth and functionality. Twelve weeks later, treated mice were able to keep their treated and untreated legs balanced at the same level while being held vertically by their tails. When the treated mice ran through a special maze, analyses of their paw prints showed eventual restoration of gait. Treated and untreated mice experienced muscle atrophy, or loss, after nerve injury, but only the stem cell-treated animals had regained normal muscle mass by 72 weeks post-surgery.

"Even 12 weeks after the injury, the regenerated sciatic nerve looked and behaved like a normal nerve," Dr. Lavasani said. "This approach has great potential for not only acute nerve injury, but also conditions of chronic damage, such as diabetic neuropathy and multiple sclerosis."

Drs. Huard and Lavasani and the team are now trying to understand how the human muscle-derived stem/progenitor cells triggered injury repair, as well as developing delivery systems, such as gels, that could hold the cells in place at larger injury sites.

Read more:
Stem cells from muscle can repair nerve damage after injury, Pitt researchers show

Stem cell doctors falsifies PRC chairman signature – Video


Stem cell doctors falsifies PRC chairman signature
Anthony Taberna talks about the revocation of the corporate registration of the Philippine Society for Stem Cell Medicine for submitting a falsified document...

By: ABS-CBN News

Here is the original post:
Stem cell doctors falsifies PRC chairman signature - Video

House to study stem cell bills

Members of the House Committee on Health on Tuesday vowed to look into several pending measures on stem cell.

OFW Family Club Partylist Rep. Roy Seneres and Laguna Representative Sol Aragones also called on the public to give doctors led by Philippine Medical Association president Leo Olarte to explain their side after they have been accused of forging the signature of Professional Regulation Commission chairperson Teresita Manzala to obtain a Securities and Exchange Commission registration for their group called the Philippine Society for Stem Cell Medicine.

Seneres called for a deeper probe into the controversy.

SEC has revoked the corporate registration of the PSSCM as various doctors organizations questioned the practice of stem cell medicine in the country.

Seneres and Aragones, both members of the health committee, said at least four bills seeking to regulate stem cell medicine practice in the country are still pending before the health panel.

The two lawmakers said study on the measures will have to be pursued immediately, adding that advocates and oppositions should help Congress decide on the issue.

Reacting to the PSSCM issue, Seneres said Olarte and other founders of the organization should be given the benefit of the doubt.

They are the healers of our society, said Seneres.

Aragones, on the other hand, said accusations against the PSSCM should be proven first before its members are condemned.

Read more from the original source:
House to study stem cell bills

DINUKTOR | 5 stem cell society doctors face raps for submitting falsified PRC endorsement to SEC

By: Jet Villa, InterAksyon.com March 17, 2014 7:45 AM

FILE PHOTO

InterAksyon.com The online news portal of TV5

MANILA - Five doctor-incorporators of the Philippine Society for Stem Cell Medicine (PSSCM) face charges and may have their medical licenses revoked for submitting a fabricated endorsement from the Professional Regulation Commission (PRC) to the Securities and Exchange Commission (SEC).

Among them are chairman of the Philippine Medical Association Leo Olarte, PSSCM treasurer and legal counsel; Bu Castro, secretary; Rey Melchor Santos, president; Oscar Tinio, vice president; and Jose Asa Sabili, chairman.

In a statement, PRC Chairperson Teresita Manzala on Sunday said she directed the Professional Regulatory Board of Medicine (PRBOM) to initiate, investigate, and file charges against the five doctors before the PRCs legal division for unprofessional, dishonorable, and unethical conduct.

Earlier on 10 January 2014, the SEC cancelled the registration of the PSSCM for submitting a fabricated document. In an order signed by SEC Acting Director Ferdinand Sales, the commission said the PSSCM had committed fraud in procuring its Certificate of Incorporation for its application for corporate registration.

Wherefore, premises considered, the Certificate of Registration of Philippine Society for Stem Cell Medicine with SEC Registration No. CN201303986, approved on March 6, 2013 is hereby revoked, the order reads.

Falsified endorsement

SEC said PSSCM submitted a 2ndPRC Indorsement, dated 20 February 2013, supposedly from Manzala. But on14 August 2014, SEC received a letter-complaint from Manzala informing the commission that the signature appearing in the alleged favorable indorsement from PRC was not hers and, thus, falsified.

Read the original here:
DINUKTOR | 5 stem cell society doctors face raps for submitting falsified PRC endorsement to SEC

DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC

By: Jet Villa, InterAksyon.com March 17, 2014 7:45 AM

FILE PHOTO

InterAksyon.com The online news portal of TV5

MANILA - Five doctor-incorporators of the Philippine Society for Stem Cell Medicine (PSSCM) face charges and may have their medical licenses revoked for submitting a fabricated endorsement from the Professional Regulation Commission (PRC) to the Securities and Exchange Commission (SEC).

Among them are chairman of the Philippine Medical Association Leo Olarte, PSSCM treasurer and legal counsel; Bu Castro, secretary; Rey Melchor Santos, president; Oscar Tinio, vice president; and Jose Asa Sabili, chairman.

In a statement, PRC Chairperson Teresita Manzala on Sunday said she directed the Professional Regulatory Board of Medicine (PRBOM) to initiate, investigate, and file charges against the five doctors before the PRCs legal division for unprofessional, dishonorable, and unethical conduct.

Earlier on 10 January 2014, the SEC cancelled the registration of the PSSCM for submitting a fabricated document. In an order signed by SEC Acting Director Ferdinand Sales, the commission said the PSSCM had committed fraud in procuring its Certificate of Incorporation for its application for corporate registration.

Wherefore, premises considered, the Certificate of Registration of Philippine Society for Stem Cell Medicine with SEC Registration No. CN201303986, approved on March 6, 2013 is hereby revoked, the order reads.

Falsified endorsement

SEC said PSSCM submitted a 2ndPRC Indorsement, dated 20 February 2013, supposedly from Manzala. But on14 August 2014, SEC received a letter-complaint from Manzala informing the commission that the signature appearing in the alleged favorable indorsement from PRC was not hers and, thus, falsified.

Here is the original post:
DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC

5 doctors charged with falsifying papers to get certificate for stem cell group

PRC: Stem cell group submitted fake SEC registration. At a press conference in Manila on Monday, March 17, Professional Regulation Commission chairperson Teresita Manzala said the PRC endorsement documents allegedly submitted by the Philippine Society for Stem Cell Medicine (PSSCM) to the Securities and Exchange Commission (SEC) were fabricated and have her tampered signature. The SEC previously revoked the corporate registration of the PSSCM. Danny Pata

In a statement, Professional Regulation Commission (PRC) chair Teresita Manzala said she has asked the Professional Regulatory Board of Medicine (PRBOM) to initiate, investigate and file charges against doctors Leo Olarte, Bu Castro, Rey Melchor Santos, Oscar Tinio and Jose Asa Sabili before the PRCs legal division.

Olarte is the current president of the PMA.

The five doctors are all incorporators of the Philippine Society for Stem Cell Medicine (PSSCM,) which was able to obtain an SEC certificate despite previously being denied corporate registration. They were able to do this, said the statement, by submitting false PRC endorsements to the commission.

The PRBOM eventually got hold of a copy of the SEC Registration. On examination of the supposed PRC Endorsement, it was noted that the reference regulatory law used was the Philippine Veterinary Law of 2004, instead of Republic Act 2382, otherwise known as the Medical Act of 1959, and there appeared a signature of the PRC Chairperson, the PRC statement said.

Manzala said complaints were filed against the doctors for unprofessional, dishonorable and unethical conduct.

According to the statement, the incorporators later denied participation in obtaining the SEC registration, instead naming a Dr. Mike Aragon as the person who obtained the certification.

In a notarized affidavit submitted to the PRBOM, 'Dr. Mike Aragon' declared that he was the person authorized to register a corporation to be called 'Philippine Society for Stem Cell Medicine' and admitted paying 15,000 pesos to a trading company for them to file the necessary documents for incorporation of the PSSCM, the PRC statement said.

But Aragon claimed to have had no participation whatsoever in the actual processing of the SEC papers for incorporating the PSSCM. Patricia Denise Chiu/BM, GMA News

See more here:
5 doctors charged with falsifying papers to get certificate for stem cell group

Turning Stem Cell Biology into Stem Cell Medicine – Video


Turning Stem Cell Biology into Stem Cell Medicine
Mark Noble, Professor of Genetics, Neurology, Neurobiology and Anatomy; Director of the University of Rochester Stem Cell and Regenerative Medicine Institute...

By: UniversityRochester

View original post here:
Turning Stem Cell Biology into Stem Cell Medicine - Video

Registration of PH stem cell group revoked

MANILA - The Securities and Exchange Commission (SEC) revoked the corporate registration of the Philippine Society for Stem Cell Medicine (PSSCM) for submitting fabricated endorsement from the Professional Regulation Commission (PRC).

In a five-page order, SEC acting director Ferdinand Sales said the PSSCM committed fraud in procuring its Certificate of Incorporation.

He said that as required under Section 17 of the Corporation Code, the PSSCM submitted a favorable endorsement from the PRC to support its application for corporate registration.

But he said the SEC found that the 2nd PRC Indorsement dated Feb. 20, 2013 submitted by PSSCM was falsified.

Considering the submission of a falsified PRC endorsement, there is fraud in procurement of respondents certificate of registration. The falsified document was relied upon by this Commission in approving the registration application of the respondent, Sales noted.

He added that had the SEC known about such defect early on, it would have not accepted and approved the registration application of the respondent.

Read more:
Registration of PH stem cell group revoked

New cell line should accelerate embryonic stem cell research

University of Washington researchers have created a line of human embryonic stem cells with the ability to develop into a far broader range of tissues than most existing cell lines.

"These cells will allow us to gain a much greater understanding of normal embryonic development and have the real potential for use in developing ways to grow new tissues and organs for transplantation," said Carol Ware, a professor of comparative medicine. She is the lead author of a paper describing the new cell line.

The findings are reported in the March 10 issue of the journal Proceedings of the National Academy of Sciences. The cells, called nave embryonic stem cells, normally appear at the earliest stages of embryonic development. They retain the ability to turn into any of all the different types of cells of the human body -- a capacity called "pluripotency."

Researchers had been able to develop nave cells using mouse embryonic stem cells, but to create naive human embryonic stem cells has required inserting a set of genes that force the cells to behave like naive cells.

While these transgenic cells are valuable research tools, the presence of artificially introduced genes meant the cells will not develop as normal embryonic cells would nor could they be safely used to create tissues and organs for transplantation.

In an article, Ware and her colleagues from the UW Institute for Stem Cell and Regenerative Medicine describe how they successfully created a line of nave human embryonic stem cells without introducing an artificial set of genes.

They first took embryonic stem cells that are slightly more developed, called primed stem cells, and grew them in a medium that contained factors that switched them back -- or "reverse toggled" them -- to the nave state. They then used the reverse toggled cells to develop a culture medium that would keep them in the nave state and create a stable cell line for study and research.

While the "reverse toggled" cells are much easier to create and will prove valuable research tools, Ware said, the cells that were directly derived from embryos are the more important advance because they are more likely to behave, grow and develop as embryonic cells do in nature.

The new cell line is called Elf1: "El" for the Ellison Foundation, a major supporter of the lab's work; "f" for female, the sex of the stem cell; and "1" for first.

Story Source:

Excerpt from:
New cell line should accelerate embryonic stem cell research

Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy …

Philadelphia, PA (PRWEB) March 13, 2014

Bioquark, Inc., (http://www.bioquark.com) a company focused on the development of combinatorial biologics for regeneration and disease reversion in human organs and tissues, today announces the appointment of Dr. Luis Martinez, MD, MPH, as VP of Global Operations.

We are honored to have someone with Dr. Martinezs experience join us as we execute on a globalized strategy in regenerative medicine, said Ira S. Pastor, CEO, Bioquark Inc. His broad clinical experience in applied regenerative medicine and cellular therapies make him a very valuable addition to the Bioquark team.

Dr. Martinez is a regenerative medicine and cell therapy specialist with over 10 years of experience in the clinical setting. He is currently the President of Elite Regenerative Medicine Group, a premier treatment and research center specializing in cell therapy applications for therapeutic, regenerative and preventive purposes. Dr. Martinez obtained his medical degree, as well as his Master of Public Health, at the Ponce School of Medicine and Health Sciences, and completed his residency at the prestigious University of Pennsylvania. He also completed a fellowship in biosecurity with the UPMC Center for Health Security. He is currently a clinical instructor at the Ponce School of Medicine and Health Sciences and is a board certified physician. Dr. Martinez also serves as vice-president of the XanoGene Anti-Aging Clinic and is President at Xyrion Medical, a biomedical consulting firm. He is a current consultant for multiple biomedical and pharmaceutical companies and conducts clinical research for various clients in the industry. Dr. Martinez is also a renowned international speaker, speaking at multiple venues for professional and academic organizations and he offers training to physicians in multiple applications of regenerative medicine, including Platelet Rich Plasma (PRP) therapy, adipose and bone marrow stem cell derived harvesting, preparation and therapeutic administration, as well as cytokine, growth factor and peptide therapies.

I am very excited about the biologic candidates being developed at Bioquark Inc. and their very novel approach to human regeneration and disease reversion, which has broad clinical applicability towards a range of degenerative disorders," said Dr. Martinez. "I'm pleased to be joining the team and am looking forward to playing a more active role in this truly transformational platform."

About Bioquark, Inc.

Bioquark Inc. is focused on the development of biologic based products that have the ability to alter the regulatory state of human tissues and organs, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

Here is the original post:
Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy ...

Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet …

Boca Raton, Florida (PRWEB) March 12, 2014

The Miami Stem Cell Treatment Center, PC, located in Miami, Ft. Lauderdale, and Boca Raton, Florida, offers a free public seminar on the use of stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief, and, Dr. Nia Smyrniotis, Medical Director. The next upcoming seminar will be held on March 16th at the Comfort Suites Weston, 2201 N. Commerce Parkway, Weston, Florida 33326, at 2pm.

Regenerative Medicine: Our Procedure The Miami Stem Cell Treatment Center uses Autologous Adult Adipose Stem Cells to provide care for patients suffering from chronic conditions that may benefit from adult stem cell-based regenerative medicine.

The Miami Stem Cell Treatment Center follows the regenerative medicine procedures developed by the California Stem Cell Treatment Centers (CSCTC) and Cell Surgical Network (CSN) which involves the initial screening, examination and evaluation of every potential candidate for stem cell investigational therapy by one of our physicians. Once a patient is deemed to be an appropriate candidate, the procedure itself is performed by our Surgeon-in-Chief, who is assisted by a team of experienced surgical team members and surgical technicians. The entire process from start to finish takes less than two hours. It is relatively painless, and recovery time is minimal.

In recent times, the bone marrow has been a source for stem cells. Taking bone marrow, however, is a painful procedure. Fat, however, contains many times more stem cells than bone marrow and is much easier and safer to harvest.

For many disease types such as cardiac pathology, adipose derived cells appear to be showing superiority to bone marrow derived cells. This may be related to the well documented fact that chronic disease causes bone marrow suppression. Fat derived cells are a natural choice for our investigational work considering their easy and rapid availability in extremely high numbers.

With our current technology, we can harvest your own fat cells, digest the fat cells and separate out the stem cells. The most significant advantage of using your fat as a source for the stem cells, is that the procedure can be done in the office in only a few hours, as the stem cells can be ready for injection after only 60 minutes of processing with our state of the art equipment. Your stem cells do NOT need to be sent out for processing and there is no need for you to travel outside of the U.S. to have them injected.

Indeed, adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided pre-clinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in numerous fields of medicine. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported.

Our current areas of study include: Heart Failure, Emphysema, COPD, Asthma, Parkinsons Disease, Stroke, Multiple Sclerosis, and orthopedic joint injections. . The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Research Protections; and the study is registered with http://www.Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information contact: Miami(at)MiamiStemCellsUSA(dot)com or visit our website: http://www.MiamiStemCellsUSA.com.

Here is the original post:
Miami Stem Cell Treatment Center: What The Stem Cell Procedure Entails and An Invitation To MSCTC Public Seminar; Meet ...

DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …

Sarasota, FL (PRWEB) March 12, 2014

Erectile dysfunction (ED) is the most commonly studied disorder when it comes to male sexual dysfunction. It is estimated that 18 million men in the US alone suffer from erectile dysfunction and that it appears to be affecting 1 in 4 males under age 40 according to a study published in The Journal of Sexual Medicine.

While the emphasis of treatments for ED focuses on relieving the symptoms, they only provide a temporary solution rather than a cure or reversing the cause.

The DaSilva Institute is excited to announce the recruitment of males suffering from ED, in an IRB study, which will look at the safety, and efficacy of autologous, adipose derived stem cells (ADSCs) in regenerating the causes of ED.

The evidence shows that ADSCs reverses the pathophysiological changes leading to ED, rather than treating the symptoms of ED. Not only is the data in the literature compelling, but our own, in-house, results on our patients have been phenomenal, states Dr. DaSilva.

The many underlying causes for ED that are being investigated range from those secondary to aging, to injury of the cavernous nerve secondary to injury, surgery and/or radiation of the prostate, to diabetic ED and Peyronies Disease to name a few. According to Dr. DaSilva, the possibilities for ADSCs in reversing ED are limitless.

Currently, there is an expansive and growing body of evidence in the medical literature strongly indicating that ADSCs might be a potential cure for ED, rather than merely symptom relief, which is indicative of the increasing interest in ADSC-regenerative options for sexual medicine over the past decade. The DaSilva Institutes goal is to take this from pre-clinical studies to the clinical world offering it to all males that suffer from intractable ED under an IRB approved protocol.

More information about Dr. DaSilva and the DaSilva Institute Guy DaSilva, MD is currently the medical director of the DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine, located in Sarasota, Florida. Dr. DaSilvas enthusiasm for using autologous stem cells in regenerative medicine comes from his early days as a pathologist in New York City back in 1987 and later as a fellow in hematology in1990 following his residency in internal medicine.

He later brought his expertise in molecular and cellular medicine to the University of Kansas Medical Center where he served as chief of Hematology & Hematopathology. He later became the CEO and medical director of HemePath Institute, a diagnostic leader in diagnosing the most difficult cases of leukemia and lymphomas. Most recently, Dr. DaSilva teamed up with one of the most influential stem cell scientist in the world to bring the highest quality and viability of the harvested stem cells, bar none, to the DaSilva Institute.

Dr. DaSilva is board certified and fellowship trained in Anti-Aging and Regenerative Medicine. For more information about Dr. DaSilva or the DaSilva Institute go to http://www.dasilvainstitute.com.

Read more:
DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men ...

Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Contact Information

Available for logged-in reporters only

Newswise COLUMBUS, Ohio -- Imagine a world where malfunctioning organs are replaced by new ones made from your own tissues, where infected wounds are cured with a signal from your smartphone, where doctors find the perfect medicine for whatever ails you simply by studying your stem cells.

Its a world thats inching closer to reality because of the work of some of the nations top scientists, many of whom will gather March 13-15 at The Ohio State University for the 7th Annual Translational to Clinical (T2C) Regenerative Medicine Conference to discuss their recent successes and challenges in coaxing the body to heal itself in extraordinary ways.

Regenerative medicine will change the way you and I experience sickness, health and healthcare, said Chandan Sen, director of the Center for Regenerative Medicine and Cell Based Therapies at Ohio States Wexner Medical Center. Because the field is so new, we as researchers are also changing the way we work to be synergistic not competitive, so patients are able to access the benefits more quickly.

And the benefits are desperately needed, says keynote speaker Dr. Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine at Wake Forest Baptist Medical Center.

From chronic diseases such as kidney failure that costs billions of dollars each year to the medical needs of our aging population and the significant injuries sustained by military troops in Afghanistan, developing new treatment paradigms is essential, said Atala, who was selected to lead the $75 million Armed Forces Institute of Regenerative Medicine (AFIRM), a consortium of 30 academic and industry partners in applying regenerative medicine techniques to battlefield injuries.

In theory, every tissue in the body has the ability to regenerate and heal itself. Its good to come to this meeting and exchange ideas that will enable us to harness that remarkable ability.

Other speakers include Elaine Fuchs, Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller University in New York, who has advanced multiple areas of stem cell research through her work in skin cells and genetics; and Dr. Michael Longaker, director of the Hagey Laboratory for Stem Cell Biology for Pediatric Regenerative Medicine at Stanford University. Longaker is considered one of the nations experts in using a combination of stem cell- and bioengineering-based technologies for craniofacial reconstruction.

Several Ohio State College of Medicine and Wexner Medical Center clinician-scientists are also sharing research updates during pre-conference lectures and the meeting:

Read the original post:
Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Stem cell therapy | Stem cell treatment | Unique Cell …

Prof. Alexander Smikodub

MD Ph.D

Alexander Smikodub jr.

MD Ph.D

Our clinic offers the advanced and patented methods of fetal stem cell treatment for various conditions and diseases. This method of treatment can be found in wikipedia: Stem cell therapy. Fetal stem cells are non-specialized cells that differentiate (turn) into any other cell type of the body that form organs and tissues. Fetal stem cells that we use for treatment have huge potential for growth, differentiation and are not rejected by the patients body, which allows to achieve unique long-term clinical effects.

We have more than 15 years of experience in stem cell therapy and are the leaders of the industry. Most of the methodic used in the clinic are unique and patent protected in many countries including USA. Since 1994 prof. Alexander Smikodub Sr. was the main researcher, doctor and administrator of the clinic. Now his son, Alexander Smikodub Jr. M.D. continues his fathers venture. During these years more than 6500 patients from all over the world received fetal stem cell treatment, resulting in significant improvement of their conditions, and in case of timely contact with us in complete cure of the diseases still considered lethal by most medical institutions.

Read more...

Stem cells are the new word in the medical science, possibly the new revolution. Their importance can be compared with antibiotics discovery or the first successful heart transplantation. They are the inner restorative and regenerative reserve of your body, found in blood, fat layer and bone marrow. After injection of a big stem cells doze, impaired tissues are recovered, regeneration speed is increased and overall condition is greatly improved. We use only material from healthy patients, which passes multiple security checks. They are a perfect material for treating a wide variety of neural and physical diseases.

Read the original post:
Stem cell therapy | Stem cell treatment | Unique Cell ...

Stem Cell Researcher Suggests Recalling His Own Study

By Maggie Fox

One of the worlds leading stem cell experts has suggested withdrawing a study that made global headlines last January, saying he has questions about some of the images and data in it.

The Japanese team, led by Teruhiko Wakayama, reported that they had created powerful stem cells by doing little more than soaking ordinary cells in an acid solution.

The report, published in the journal Nature, impressed other stem cell researchers and opened the possibility of an easy approach to regenerative medicine. But Japanese television quotes Wakayama as saying he wants to take a closer look.

"When conducting the experiment, I believed it was absolutely right, Reuters news agency quotes Wakayama as telling the television station NHK.

"But now that many mistakes have emerged, I think it is best to withdraw the research paper once and, using correct data and correct pictures, to prove once again the paper is right," he said.

"If it turns out to be wrong, we would need to make it clear why a thing like this happened."

But Charles Vacanti of Harvard Medical School and Brigham and Women's Hospital in Boston, who helped work on the study, said he disagreed. "Some mistakes were made, but they don't affect the conclusions," the Wall Street Journal quoted him as saying.

"Based on the information I have, I see no reason why these papers should be retracted."

Stem cell researchers may be more sensitive than other scientists. In 2006, Seoul National University fired Hwang Woo-Suk after the journal Science retracted two papers he wrote claiming to have cloned human embryos and extracted stem cells from them.

Read the original:
Stem Cell Researcher Suggests Recalling His Own Study

What’s Next for Stem Cells and Regenerative Medicine?

See Inside Mar 19, 2013 |By Christine Gorman

Richard Clark, NIH

Researchers are now experimenting with stem cellsprogenitor cells that can develop into many different types of tissueto coax the bodies of a few individuals to heal themselves. Some of the most advanced clinical trials so far involve treating congestive heart disease and regrowing muscles in soldiers who were wounded in an explosion. But new developments are happening so quickly that investigators have come up with a new nameregenerative medicineto describe the emerging field.

Many of the stem cells being studied are referred to as pluripotent, meaning they can give rise to any of the cell types in the body but they cannot give rise on their own to an entirely new body. (Only the earliest embryonic cells, which occur just after fertilization, can give rise to a whole other organism by themselves.) Other stem cells, such as the ones found in the adult body, are multipotent, meaning they can develop into a limited number of different tissue types.

One of the most common stem cell treatments being studied is a procedure that extracts a few stem cells from a person's body and grows them in large quantities in the laboratorywhat scientists refer to as expanding the number of stem cells. Once a sufficient number have been produced in this manner, the investigators inject them back into the patient.

The bone marrow is a rich source of adult stem cells, containing both the hematopoietic stem cells that give rise to the various types of blood and the so-called mesenchymal cells, which can develop into bone, cartilage and fat. Mesenchymal cells are found in the bone marrow and various other places in the body, although whether all mesenchymal stem cells are truly interchangeable irrespective of origin is unclear.

Scientific American spoke with Mahendra Rao, director of the Center for Regenerative Medicine at the National Institutes of Health in Bethesda, Md., to get a sense of the sorts of new developments that might occur in regenerative medicine in the next five years or so.

[An edited transcript of the interview follows.]

Why is there so much excitement about regenerative medicine? You could say that medicine up until now has been all about replacements. If your heart valve isn't working, you replace it with another valve, say from a pig. With regenerative medicine, you're treating the cause and using your own cells to perform the replacement. The hope is that by regenerating the tissue, you're causing the repairs to grow so that it's like normal.

Read more:
What's Next for Stem Cells and Regenerative Medicine?

Scientists Chafe at Restrictions on New Stem Cell Lines

The California Institute for Regenerative Medicine is rethinking its rules in the wake of a recent breakthrough involving the creation of stem cell lines from a cloned human embryo

OHSU Photos

The announcement last month of a long-awaited breakthrough in stem-cell research the creation of stem-cell lines from a cloned human embryo has revived interest in using embryonic stem cells to treat disease. But US regulations mean that many researchers will be watching those efforts from the sidelines.

The US National Institutes of Health (NIH), which distributes the majority of federal funding for stem-cell research, prohibits research on cells taken from embryos created solely for research a category that includes the six stem-cell lines developed by Shoukhrat Mitalipov, a reproductive-biology specialist at the Oregon Health and Science University in Beaverton, and his colleagues. The team used cloning techniques to combine a donor cell with an unfertilized egg whose nucleus had been removed, creating a self-regenerating stem-cell colony that is genetically matched to the cell donor.

Mitalipovs cell lines are also off limits to researchers funded by the California Institute for Regenerative Medicine (CIRM), which was created in part to support stem-cell work that is restricted by the NIH. CIRM funds cannot be used for studies that pay women for their eggs or rely on cell lines produced using eggs from paid donors. That rules out Mitalipovs lines, because his team paid egg donors US$3,0007,000 each, says Geoffrey Lomax, senior officer to the standards working group at CIRM, which is based in San Francisco. That amount is above and beyond any out-of-pocket costs to donors, he says.

The end result, says Mitalipov, is that a dozen or so universities are struggling to negotiate material transfer agreements to receive the new cell lines without running afoul of CIRM or the NIH. Interest in the new cell lines is high, especially since the identification of errors in images and figures in Mitalipovs research paper shortly after its publication in Cell. But regulations would require laboratories to use only dedicated, privately funded equipment to study the new cells, a condition that only a fewresearchers such as George Daley, a stem-cell expert at Boston Childrens Hospital in Massachusetts will be able to meet.

That concerns Daley, who calls the NIH stem-cell policy a frustrating limitation that will preclude federal dollars being used to ask many important questions about how Mitalipovs cell lines compare with induced pluripotent stem cells (iPS), which are created by reprograming adult cells to an embryonic state. Most labs will take the path of least resistance and continue working with iPS cells unless someone shows that there is a clear and compelling reason to change course, Daley says.

Mitalipov also worries that his cell lines wont be sufficiently analyzed, which he says could hamper efforts to understand how epigenetic changes modifications to chromosomes that determine how genes are expressed affect stem cells' ability to transform into a wide array of mature cell types. We just dont have that much expertise at looking at all aspects of epigenetics, he says.

But some scientists say that the impact of US stem-cell restrictions is overestimated. Alexander Meissner, a developmental biologist at the Harvard Stem Cell Institute in Cambridge, Massachusetts, says Mitalipov's cell lines will not reveal much about how stem cells transform. That work can be done only with eggs that are easy to come by, allowing scientists to examine the reprograming process at many points. In practical terms, that means relying on eggs from mice instead of humans. Everything is over by time you derive those cell lines, he says of Mitalipovs cells. There is no signature that would tell you what has happened. Its the wrong species.

In the meantime, CIRM is re-examining the rules that govern the research its supports. The institute is not likely to alter the restrictions against funding studies that pay cell donors, but it might overturn the rules against using cell lines produced in such studies, Lomax says. The original policy was set in 2006 to address concerns that arose in the wake of fraud and ethical violations by Woo Suk Hwang, then a researcher at Seoul National University.

Follow this link:
Scientists Chafe at Restrictions on New Stem Cell Lines

Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

PUBLIC RELEASE DATE:

27-Feb-2014

Contact: Eric C. Liao cliao@partners.org Society for Experimental Biology and Medicine

Researchers at the Massachusetts General Hospital (MGH)/Harvard Medical School, Drs. Beste Kinikoglu and Yawei Kong, led by Dr. Eric C. Liao, cultured and characterized for the first time multipotent neural crest cells isolated from zebrafish embryos. This important study is reported in the February 2014 issue of Experimental Biology and Medicine. Neural crest is a unique cell population induced at the lateral border of the neural plate during embryogenesis and vertebrate development depends on these multipotent migratory cells. Defects in neural crest development result in a wide range of malformations, such as cleft lip and palate, and diseases, such as melanoma. Dr. Liao's laboratory uses zebrafish as a model vertebrate to study the genetic basis of neural crest related craniofacial malformations. Zebrafish has long been used to study early development and recently emerged as a model to study disease. "Development of in vitro culture of neural crest cells and reproducible functional assays will provide a valuable and complementary approach to the in vivo experiments in zebrafish" said Dr. Eric C. Liao, senior author of the study and an Assistant Professor of Surgery at MGH, and Principal Faculty at the Harvard Stem Cell Institute.

The team took advantage of the sox 10 reporter transgenic model to enrich and isolate the neural crest cells (NCCs), which were subsequently cultured under optimized culture conditions. Cultured NCCs were found to express major neural crest lineage markers such as sox10, sox9a, hnk1, p75, dlx2a, and pax3, and the pluripotency markers c-myc and klf4. The cells could be further differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. Using the functional cell behavior assays that they developed, the team was able to assess the influence of retinoic acid, an endogenously synthesized, powerful, morphogenetic molecule, on NCC behavior. This study showed that retinoic acid had a profound effect on NCC morphology and differentiation, significantly inhibited proliferation and enhanced cell migration. The data implicate NCCs as a target cell population for retinoic acid and suggest that it plays multiple critical roles in NCC development.

"We hope that our novel neural crest system will be useful to gain mechanistic understanding of NCC development and for cell-based high-throughput drug screening applications" said Dr. Beste Kinikoglu, a postdoctoral fellow in Dr. Liao's laboratory and the study's first author. Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Liao and colleagues have provided the first zebrafish embryo derived NCC pure population in vitro model for the study of neural crest development. I believe that this will be a valuable tool for this purpose".

###

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read the original post:
Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

Archives