Page 20«..10..19202122..»

Archive for the ‘Cell Medicine’ Category

Cryo-Cell Reports Financial Results for Fiscal 2011

OLDSMAR, Fla., Feb. 29, 2012 /PRNewswire/ --Cryo-Cell International, Inc. (OTC:QB Markets Group Symbol: CCEL) (the "Company"), the world's first private cord blood bank to separate and store stem cells in 1992, today announced results for its fiscal year 2011.

"Cryo-Cell fiscal 2011 results are indicative of a company that is in the process of making many organizational and operational improvements," stated David Portnoy, Cryo-Cell's Chairman and Co-CEO. "Although the implementation of these steps is still in the early stages, we are encouraged in our belief that our goals will be achieved."

Mark Portnoy, Cryo-Cell's Co-CEO, added, "With the transition of the new Board of Directors last year, the Company made significant changes over the last six months. We are continuing to improve the IT systems and website, and have embarked on a major rebranding/marketing effort. Although these efforts have increased our expenses, we have balanced that somewhat with cost reductions. We feel these are appropriate and necessary investments for the Company's future. In addition, the Company has implemented its previously announced stock repurchase plan, and to date, has repurchased 415,117 shares on the open market and in private transactions."

Financial Results

Consolidated revenues for fiscal year ended 2011 were approximately $17.9 million compared to approximately $17.7 million for fiscal 2010. The revenues for fiscal 2011 consisted of approximately $16.5 million in processing and storage fee revenue and approximately $1.4 million in licensee income compared to approximately $16.2 million in processing and storage fee revenue and approximately $1.5 million in licensee income for fiscal 2010. Licensee income for the fiscal year ended November 30, 2011 primarily consisted of approximately $1.3 million in royalty income earned on the processing and storage of cord blood stem cell specimens in geographic areas where the Company has license agreements. The remaining licensee income of approximately $41,000 related to installment payments of non-refundable up-front license fees from the licensees of the Company's umbilical cord blood program in Costa Rica, Nicaragua and Germany. Licensee income for the fiscal year ended November 30, 2010 primarily consisted of approximately $1.3 million in royalty income earned on the processing and storage of cord blood stem cell specimens in geographic areas where the Company has license agreements. The remaining licensee income of $175,000 related to installment payments of non-refundable up-front license fees from the licensees of the Company's umbilical cord blood program in Chile, Colombia, Peru, Nicaragua, Pakistan, Curacao, Bonaire, St. Maarten, Aruba and Suriname.

The Company reported a net loss in fiscal 2011 of approximately ($2.1 million), or ($0.18) per basic and diluted share, compared to net income of approximately $3.5 million, or $0.29 per basic and diluted share in fiscal 2010. The decrease in net income for fiscal 2011 principally resulted from a 31% increase in marketing, general and administrative expenses. The increase was due in part to an increase in fees associated with the annual meeting. The total fees expended for the 2011 Annual Meeting were approximately $957,000. The increase was also due to a write-off of approximately $211,000 for abandoned patents and trademarks due to the decision of management to discontinue pursuing certain patents and trademarks and an approximate $627,000 impairment of previously capitalized costs associated with the development of internal use computer software. Also, included in marketing, general and administrative expenses is approximately $950,000 related to an accrual of severance in accordance with the employment agreement of Mercedes Walton, the Company's former Chairman and CEO dated August 15, 2005, as amended July 16, 2007 because the circumstances relating to her termination are in dispute. Per the employment agreement, Ms. Walton would be entitled to severance in the amount up to $950,000 related to lost salary, bonuses and benefits if she had not been terminated for Cause, as defined in the agreement. The Company believes that Ms. Walton has not earned the right to this severance and intends to defend this position. Excluding all one-time charges noted above, the Company had net income before one-time charges in fiscal 2011 of approximately $645,000, or $0.05 per basic and diluted share before one-time charges. Included in the net income of $3.5 million for fiscal 2010 was the reversal of approximately $1.7 million of the Company's valuation allowance for income taxes. The decision to reverse a portion of the allowance was based on the Company's historical operating performance and future projections of taxable income.

As of November 30, 2011, the Company had approximately $7.3 million in cash, cash equivalents, marketable securities and other investments compared to $9.5 million as of November 30, 2010, representing a 23% decrease. The decrease is primarily attributable to the funding of a Grantor trust in the amount of $2,500,000 to escrow amounts that may become payable to the Company's former Chief Executive Officer and other executive officers of the Company under their respective Employment Agreements as a result of a change in control. The Company had no long-term debt at the end of fiscal 2011.

About Cryo-Cell International, Inc.

Cryo-Cell International, Inc. was founded in 1989 and was the world's first private cord blood bank to separate and store stem cells in 1992. Today, Cryo-Cell has over 240,000 clients worldwide from 87 countries. Cryo-Cell's mission is to provide our clients with the premier stem cell cryopreservation service and to support the advancement of regenerative medicine.

Cryo-Cell operates in a state-of-the-art Good Manufacturing Practice and Good Tissue Practice (cGMP/cGTP)-compliant facility, is ISO 9001:2008 certified and accredited by the AABB. Cryo-Cell is a publicly traded company. OTC:QB Markets Group Symbol: CCEL. Expectant parents or healthcare professionals may call 1-800-STOR-CELL (1-800-786-7235) or visit http://www.cryo-cell.com.

Originally posted here:
Cryo-Cell Reports Financial Results for Fiscal 2011

Stem Cell Pioneers Converge in Portland to Discuss and Celebrate a Revolutionary New Stem Cell Entering Human Clinical …

SAN DIEGO, CA and PORTLAND, OR--(Marketwire -02/28/12)- Medistem Inc. (Pinksheets: MEDS.PK - News) announced today its Annual "Evening with Medistem" Event will take place in Portland, Oregon on March 7th, 2012. The event is being hosted by Vladimir Zaharchook, Vice Chairman at Medistem, Inc., and will feature stem cell luminaries and pioneers working with Medistem including Dr. Amit Patel, Director of Regenerative Medicine at University of Utah and the first person to administer stem cells into patients with heart failure, Dr. Michael Murphy, Vascular Surgeon at Indiana University and Principal Investigator for Medistem's FDA clinical trial in patients with risk of amputation, and Dr. Alan Lewis, former CEO of the Juvenile Diabetes Research Foundation, advisory board member of Medistem.

In 2007 Medistem discovered an entirely new type of stem cell, the Endometrial Regenerative Cell (ERC). This cell has proven it is a "universal donor" and can be used to treat many more conditions compared to other types of stem cells. The company received FDA clearance to begin clinical trials in September of 2011 for critical limb ischemia, a condition that is associated with amputation. Medistem is also running a Phase II clinical trial for heart failure using the new stem cell. The ERC stem cell does not involve the highly controversial use of fetal tissue, can be produced very economically and administered to the patient in a very simple manner. Medistem is exploring ways to expand clinical trials of its stem cell into other diseases.

"Stem cells and regenerative medicine offer hope in clinical conditions in which hope previously did not exist," said Dr. Stanley Cohan, Head of Neurology at the St Vincent's Hospital, the largest center for treatment of multiple sclerosis in the Pacific Northwest, who will be attending the event. "We are honored in the Portland community to have this distinguished team of accomplished researchers and medical doctors convene here and discuss with us possible collaborations."

"As a long-time member of the Portland academic community, it is exciting to have companies such as Medistem to visit us and share their experiences 'from the trenches' of what it takes to push a cellular drug through the FDA," said Dr. Shoukrat Milipotiv, Associate Scientist in the Division of Reproductive & Developmental Sciences of ONPRC, Oregon Stem Cell Center and Departments of Obstetrics & Gynecology and Molecular & Medical Genetics, and co-director of the ART/ESC core at the Center. He is an internationally recognized researcher in the area of stem cells.

"The Event is an annual celebration to honor our team and collaborators for the successes of the previous year, while at the same time educate the local business and medical community on the latest research on stem cells not just at Medistem but internationally," said Thomas Ichim, Ph.D Chief Executive Officer of Medistem Inc. "2012 is particularly exciting for us due to approvals for two clinical trials, and the initiation of patient treatments within this context."

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia and heart failure.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Original post:
Stem Cell Pioneers Converge in Portland to Discuss and Celebrate a Revolutionary New Stem Cell Entering Human Clinical ...

Bioheart Announces University of Miami as Clinical Site for ANGEL Trial of LipiCell(TM)

SUNRISE, Fla., Feb. 28, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced that the company will conduct the ANGEL trial using adipose (fat) derived stem cell technology or LipiCell(TM) at the University of Miami Miller School of Medicine. Bioheart recently applied to the FDA to begin trials using adipose derived stem cells in patients with chronic ischemic cardiomyopathy.

"Dr. Joshua Hare and the University of Miami are world leaders in the field of stem cell research," said Mike Tomas, President and CEO of Bioheart. "We look forward to working with these acclaimed experts and bringing the LipiCell(TM) technology to patients in the U.S."

The clinical protocol of the ANGEL trial is designed to assess the safety and cardiovascular effects of intramyocardial implantation of autologous adipose derived stem cells (LipiCell(TM)) in patients with chronic ischemic cardiomyopathy. Joshua Hare, MD, Director of the Interdisciplinary Stem Cell Institute at the University of Miami Miller School of Medicine is the principle investigator of the clinical program.

The Interdisciplinary Stem Cell Institute was established to capitalize on pioneering work in the use of adult stem cells for the repair of malfunctioning human organs. The goal of the Institute is to find new treatments for heart disease, neurological disease, bone disease, diabetes, cancer, eye diseases and other chronic, debilitating, or incurable diseases. University of Miami scientists have led in the development of procedures to extract adult stem cells and have conducted ground breaking research in cell-based therapy for the diseased human heart.

About Bioheart, Inc.

Bioheart is committed to maintaining our leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Our goals are to cause damaged tissue to be regenerated, if possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, we are focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Our leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2010, and its Quarterly Report on Form 10-Q for the quarter ended September 30, 2011.

Go here to see the original:
Bioheart Announces University of Miami as Clinical Site for ANGEL Trial of LipiCell(TM)

StemCells, Inc. to Participate in Qatar International Conference on Stem Cell Science and Policy 2012

NEWARK, Calif., Feb. 27, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (Nasdaq:STEM - News) today announced that it will participate in the Qatar International Conference on Stem Cell Science and Policy, which is being held in Qatar from February 27 to March 1, 2012. The Company, which is the leader in development of cell-based therapeutics for central nervous system disorders, was specifically invited by the conference's sponsors, the State of Qatar and Amir of Qatar His Highness Sheikh Hamad bin Khalifa Al-Thani, as well as the James A. Baker III Institute for Public Policy of Rice University, and is the only company to be invited.

Ann Tsukamoto, Ph.D., StemCells' Executive Vice President, Research and Development, will make a presentation on the clinical translation of human neural stem cells. StemCells was the first company to receive authorization from the US Food and Drug Administration to conduct a clinical trial of purified human neural stem cells, and the Company is currently conducting two clinical trials with a third anticipated to start later this year. Dr. Tsukamoto will also be the moderator of the panel session on neurological disorders, which is scheduled to be held on March 1 from 9:30 a.m. to 11:00 a.m. Arabian Standard Time (AST).

In addition, Irving Weissman, M.D., Chairman of StemCells' Scientific Advisory Board, will make a keynote presentation to the conference on Tuesday, February 28 at 9:00 a.m. AST. Dr. Weissman, who is Virginia and Daniel K. Ludwig Professor of Cancer Research, Professor of Pathology and Professor of Developmental Biology at the Stanford School of Medicine, and Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine, will speak on normal and neoplastic stem cells. Dr. Weissman will also participate in a panel discussion on the opportunities and challenges for stem cell research, and will moderate a panel discussion on pluripotent stem cells.

The Qatar International Conference on Stem Cell Science and Policy will bring together more than 400 international participants from industry, academia and public policy, including leading experts from each of these sectors. The conference's objectives are to showcase the latest stem cell research from around the world, while promoting discussion and awareness of scientific, ethical and regulatory issues related to this innovative and dynamic field.

About StemCells, Inc.

StemCells, Inc. is engaged in the research, development, and commercialization of cell-based therapeutics and tools for use in stem cell-based research and drug discovery. The Company's lead therapeutic product candidate, HuCNS-SC(R) cells (purified human neural stem cells), is currently in development as a potential treatment for a broad range of central nervous system disorders. The Company recently completed a clinical trial in Pelizaeus-Merzbacher disease (PMD), a fatal myelination disorder in children, and expects to report the trial results soon. The Company is also conducting a Phase I/II clinical trial in chronic spinal cord injury, and expects to initiate a Phase I/II clinical trial in dry age- related macular degeneration in the near future. In addition, the Company is pursuing preclinical studies of its HuCNS-SC cells in Alzheimer's disease. StemCells also markets stem cell research products, including media and reagents, under the SC Proven(R) brand, and is developing stem cell-based assay platforms for use in pharmaceutical research, drug discovery and drug development. Further information about StemCells is available at http://www.stemcellsinc.com.

The StemCells, Inc. logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=7014

Apart from statements of historical fact, the text of this press release constitutes forward-looking statements within the meaning of the U.S. securities laws, and is subject to the safe harbors created therein. These statements include, but are not limited to, statements regarding the clinical development of its HuCNS-SC cells; the Company's ability to commercialize drug discovery and drug development tools; and the future business operations of the Company. These forward-looking statements speak only as of the date of this news release. The Company does not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. Such statements reflect management's current views and are based on certain assumptions that may or may not ultimately prove valid. The Company's actual results may vary materially from those contemplated in such forward-looking statements due to risks and uncertainties to which the Company is subject, including those described under the heading "Risk Factors" in the Company's Annual Report on Form 10-K for the year ended December 31, 2010 and in its subsequent reports on Form 10-Q and Form 8-K.

Read the original here:
StemCells, Inc. to Participate in Qatar International Conference on Stem Cell Science and Policy 2012

Stem cell fertility treatments could be risky for older women

Harvard scientists are challenging traditional medical logic that dictates that women are born with a finite amount of eggs.  The scientists said they have discovered the ovaries of young women harbor rare stem cells that are in fact capable of producing new eggs.

If properly harnessed, those stem cells may someday lead to new treatments for women suffering from infertility due to cancer or other diseases – or for those who are simply getting older, according to the researchers.  Lead researcher Jonathan Tilly of Harvard's Massachusetts General Hospital has co-founded a company, OvaScience Inc., to try to develop the findings into fertility treatments.

The idea that women are born with all the egg cells – called oocytes – they’ll ever have has been called into question by past research, which found egg-producing stem cells in adult mice.

In this latest study, Harvard researchers, in collaboration with Japanese scientists, used donated frozen ovaries from 20 year olds and ‘fished out’ the purported stem cells.  

The researchers inserted a gene into the stem cells, which caused them to glow green.  If the cells produced eggs, those would glow green, too.

The researchers first watched through a microscope as new eggs grew in a lab dish.  They then implanted the human tissue under the skin of mice to provide a nourishing blood supply.  Within two weeks, they observed green-tinged cells forming.

While the work of the Harvard scientists does show potential, there are still questions as to whether the cells are capable of growing into mature, usable eggs.

If so, researchers said, it might be possible one day to use the stem cells in order to grow eggs in lab dishes to help preserve cancer patients’ fertility, which can be harmed by chemotherapy.

Now, I just want to say, while this would be a remarkable discovery – if it pans out – I do have a few concerns. 

I think for specific patients in prime, childbearing ages, who are at risk of losing their fertility for one reason or another, this could be a fruitful discovery for them.

Be that as it may, I am totally against commercializing this technology to the point where women going through menopause look at this as another way of getting pregnant.  For many, this could create incredibly high-risk pregnancies, among other medical problems.

While science is capable of great discovery and innovation – particularly in the field of stem cells – I believe that with reproductive medicine, we should move forward with great caution to minimize any risk to mother and baby.

Read the rest here:
Stem cell fertility treatments could be risky for older women

‘Scope for innovation in genetic medicine’

There is a tremendous opportunity in genetic medicine for innovation and for new players to make significant contributions, because it is still experimental, noted biologist and Nobel Laureate Dr David Baltimore said yesterday.
“Today, it is mainly the province of biotechnology companies and universities, not big pharmaceutical companies,” he observed in a keynote presentation at the Qatar International Conference on Stem Cell Science and Policy 2012.
There are new genetic tools available – though they are still experimental - to treat diseases which involve adding, subtracting or modifying genes in the cells of the body.
“However, they are powerful tools and I am confident they will be an important part of the medicine of the future,” he said.
Speaking on ‘The hematopoietic stem cell (HSC) as a target for therapy against cancer and Aids,’ Dr Baltimore explained that HSCs are one of the few cell types routinely used for bone marrow transplant.
The HSCs are easily accessible, retroviruses can be used to carry genes into these stem cells, the genes are then expressed in all of cells that derive from the HSC and can correct inherited defects and bring genes that perform therapy under a programme called engineering immunity.
“Though the human immune system is a wondrous creation of evolution yet it is not without certain limitations. One, in particular, is its poor ability to stop the growth of cancer cells– another is its hosting of HIV.
“In the case of cancer, the machinery of immunity can attack cancers but it rarely attacks with the necessary power. For HIV, the ability of the virus to use the CD4 and CCR5 proteins as receptors means that CD4 cells are the major cell type in which the virus grows.
“We have been trying to supply genes to the immune system by gene transfer methods that would improve its ability to block cancer and block infection of CD4 cells by HIV.
“For cancer, we have focused on T cell receptor genes. For HIV, we have used a small interfering ribonucleic acid (siRNA) targeted to CCR5. We have been quite successful in mice with both strategies and are now moving to humans.
“In both cases, our experiments with mice have focused on putting genes into HSCs as, once these cells are altered, they provide modified blood cells to the body for life.
“In our human cancer trials we first used peripheral T cells for modification with dramatic effect but it has been transient.
“We are now moving to stem cells. For the siRNA against CCR5, we plan to initiate trials within six months using autologous, gene-modified stem cells,” he added.
The ensuing panel discussion on ‘Opportunities and challenges for stem cell research,’ saw Prof Irving Weissman (Stanford Institute for Stem Cell Biology and Regenerative Medicine) cautioning against ‘phoney organisations engaged in stem cell therapy.’
Prof Juan Carlos Izpisua Belmonte (Salk Institute for Biological Studies, US) stated that stem cells derived from umbilical cord blood should be considered as one of the key cells for use in regenerative medicine.
The session also featured Dr Alan Trounson (California Institute of Regenerative Medicine), Prof Roger Pedersen (The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge), Dr Lawrence Corey (University of Washington) and with Dr Richard Klausner (managing partner of biotechnology venture capital firm The Column Group) as moderator.
Earlier, Ambassador Edward P Djerejian (founding director, James A Baker III Institute for Public Policy, Rice University, Houston, Texas, US) spoke about the collaboration with Qatar Foundation on stem cell research.

View post:
‘Scope for innovation in genetic medicine’

Massachusetts General researchers discover stem cell that makes eggs

Massachusetts General Hospital researchers reported today they have discovered a rare stem cell in women???s ovaries that they hope one day might be used to make eggs, a claim already generating vigorous debate among scientists familiar with the research.

For decades, it has been thought that women are born with a finite supply of eggs, limiting their reproductive years. Doctors have sought ways of extending the fertility of women, especially as many wait later in life to begin having children.

The research, led by Jonathan Tilly of Mass. General and appearing in the journal Nature Medicine, opens the door to the possibility of taking tissue from a woman???s ovaries, harvesting stem cells from that tissue, and then creating eggs.

But scientists not involved with the Mass. General research said such an approach -- if it is even possible -- sits far in the future and will require considerably more work. Several scientists said Tilly, who co-founded a company focused on developing novel infertility treatments, had not yet made a convincing case that the stem cells he discovered can yield viable eggs, a critical first step.

Tilly has been a lightning rod in the field of fertility medicine since 2004, when he challenged the orthodoxy that women do not produce new eggs. In a research paper published that year, Tilly laid the foundation for the findings reported yesterday.

???There was a lot of backlash. It wasn???t surprising, given the magnitude of the paradigm shift that was being proposed -- this was one of the fundamental beliefs in our field,?? Tilly said. ???The subsequent eight years have been a long haul.??

In his new study, Tilly extended research by Chinese scientists published in 2009. He developed a technique that allowed scientists to sift out rare stem cells within the ovaries of mice that were tagged and implanted into the ovaries of normal mice. In the mouse ovaries, the stem cells produced eggs, which were removed and fertilized in a laboratory dish. They developed into embryos, although scientists did not use the embryos to produce mice.

Tilly and his team then wanted to know if such cells existed in humans, too.

The research team obtained ovarian tissue removed from young women undergoing sex change operations in Japan and performed the same experiment they???d done with the mouse ovaries. Much to their excitement, they discovered the rare, egg-producing cells in humans.

In later experiments, the human stem cells were used to produce cells that appeared to be eggs. In part because of ethical limitations, researchers were not able to show that the eggs could be used to create human embryos.

Tilly said that he has patented the stem cells and licensed the technology to OvaScience, the startup he co-founded.

Outside researchers described the findings as intriguing and provocative but also raised many questions. Scientists said it was still far from certain that the eggs created in the experiments could be used to produce babies. And they expressed concern that the findings could falsely inflate the hopes of women struggling with infertility.

Dr. David Keefe, chairman of obstetrics and gynecology at New York University Langone Medical Center, said he and other clinicians who see patients would like more than anything to have greater options for women to overcome infertility. But he said the Mass. General researcher had a history of leaping ahead from basic research findings to suggest clinical possibilities.

???Those of us who take care of patients are extremely protective of their hopes,?? Keefe said. He noted that a few years ago, he saw half-a-dozen patients who wanted to delay their fertility decisions because of earlier research at Mass. General.

Even if the new findings are immediately replicated in labs around the world, Keefe said, ???it???s so far from being clinical that it???s predatory to not be circumspect about it. Humility is an absolute requirement in this field. You???re dealing with people???s hopes and dreams.??

A 2005 study led by Tilly and done in mice suggested bone marrow transplants might offer a way to restore fertility. A year later, a separate group of Harvard researchers showed that this was unlikely to be true. Tilly himself no longer believes this is a way to restore fertility.

???The big difference in that work, now in retrospect, is these non-ovarian sources [of stem cells] don???t appear to do the job,?? he said.

Tilly???s work in the past has divided researchers and failed to persuade many in the field that his interpretations are correct.

Teresa Woodruff, a professor of obstetrics and gynecology at the Feinberg School of Medicine at Northwestern University said she had already drawn up a chart of the claims made in the paper, the evidence to support those claims, and the questions they raise. Still, she said, ???I do think he???s pushing the envelope in a way that does push all of us to think more broadly.??

Evelyn Telfer, a cell biologist at the University of Edinburgh, who criticized some of Tilly???s earlier work, said she is excited about the new findings. Tilly said that next month, he will fly to Scotland to begin a collaboration with Telfer.

???What he???s saying is we can get these cells,?? Telfer said, ???and I think it???s pretty convincing.??

The new paper doesn???t offer evidence that such stem cells are active in the ovary, supplying eggs during a woman???s lifetime. But the powerful cells could provide new insights into the important and poorly understood process in biology of egg-formation and allow scientists to look for drugs that might increase the activities of these stem cells, in order to overcome fertility problems.

Skeptics and supporters agreed on one thing: much work lies ahead.

???That???s science,?? said Hugh Clarke, a professor in the department of obstetrics and gynecology at McGill University. ???Of course, dogma should be challenged, but we shouldn???t assume dogma has been overturned based on a single report.??

Carolyn Y. Johnson can be reached at cjohnson@globe.com. Follow her on Twitter @carolynyjohnson.

See more here:
Massachusetts General researchers discover stem cell that makes eggs

Seminar to focus on stem cell research development

The latest discoveries and promises of stem cell research and the development of new therapeutic approaches for a variety of diseases will be in focus at the Qatar International Conference on Stem Cell Science and Policy 2012 which begins today.
The four-day event, being held at Qatar National Convention Centre, is a milestone in Qatar Foundation???s ongoing collaboration with the James A Baker III Institute for Public Policy at Rice University, Houston, Texas, US.
The aim of QF???s joint initiative with the Baker Institute???s International Programme on Stem Cell Science Policy is to develop stem cell research in Qatar as well as to find ways to address the shared challenges of community support for stem cell research in Doha and Houston.
To accomplish this goal, the programme has supported several events since its inception, including meetings, workshops, and training programmes in both cities.
The conference, which brings together eminent international as well as regional scientists, ethicists and policymakers, will also present the developed policy options that account for cultural, ethical and religious factors.
The event will draw attention to Qatar???s position in the development of stem cell research in the region and the world, given that research on stem cell as a national priority has already been initiated in the country???s best research institutions.
The conference objectives are to raise the awareness about Qatar???s initiative in promoting stem cell research, present the latest developments, and highlight the different religious views regarding stem cell research specifically the Islamic view.
The pros and cons of various options for regulating stem cell research and how scientists should address conflicting and confusing national policies and assess the different models of international collaboration will be discussed.
The conference also intends to interface with other institutions outside Qatar and contribute to the exchange of scientific knowledge to enhance the promotion of a scientific culture in the region and globally.
The keynote speakers are ambassador Edward P Djerejian (Baker Institute), Irving Weissman (Stanford University), Alan Trounson (president, California Institute for Regenerative Medicine), David Baltimore (president emeritus, Robert Andrews Millikan Professor of Biology, California Institute of Technology), Roger Pedersen (Department of Surgery, University of Cambridge) and Lawrence Corey (president and director, Fred Hutchinson Cancer Research Centre).
The conference, supported by Qatar Biomedical Research Institute, will also feature a number of invited speakers from across the world.

Go here to see the original:
Seminar to focus on stem cell research development

Stem Cell Finding Could Expand Women’s Lifetime Supply of Eggs

SUNDAY, Feb. 26 (HealthDay News) -- Researchers report that they've isolated stem cells from adult human ovaries that can mature into eggs that may be capable of fertilization.

The lab findings, which upend longstanding scientific theory, could potentially lead to new reproductive technologies and possibly extend the years of a woman's fertility.

It was long believed that women were born with a lifetime supply of eggs, which was depleted by menopause. But a growing body of research -- including a new paper from Massachusetts General Hospital -- suggests egg production may continue into adulthood. The study is published in the March issue of Nature Medicine.

"Fifty years of thinking, in every aspect of experiments, of interpreting the results, and of the clinical management of ovarian function and fertility in women was dictated by one simple belief that turns out to be incorrect," said lead study author Jonathan Tilly, director of the hospital's Vincent Center for Reproductive Biology. "That belief was the egg cell pool endowed at birth is a fixed entity that cannot be renewed."

Dr. Avner Hershlag, chief of the Center for Human Reproduction at North Shore-LIJ Health System in Manhasset, N.Y., said the study is "exciting" but emphasized the work is still very preliminary.

"This is experimental," Hershlag said. "This is a beginning of perhaps something that could bring in new opportunities, but it's going to be a long time in my estimation until clinically we'll be able to actually have human eggs created from stem cells that make babies."

The same team at Mass General caused a stir in 2004 when it published a paper in Nature reporting that female mice retain the ability to make new egg cells well into adulthood.

In both mice and humans, the vast majority of egg cells die through a process called programmed cell death, or apoptosis, the body's way of eliminating unneeded or damaged cells. For humans, that process is dramatic. Female fetuses have about 6 to 7 million eggs at about 20 weeks' gestation, a little more than 1 million at birth, and about 300,000 by puberty.

Studying mice egg cells and follicles, the tiny sacs in which stem cells become eggs, the Mass General researchers discovered something that didn't make mathematical sense.

Most prior research had focused on counting the healthy eggs in the ovaries, and then made assumptions about how many had died from that, Tilly said. But his lab looked at it the opposite way and focused on cell death.

"We found far too many eggs were dying than could be accounted for by the net change in the healthy egg pool," Tilly said. "We reasoned that maybe the field had missed something." They wondered if stem, or precursor cells, were repopulating the ovaries with new eggs.

Initially, the findings were met with skepticism, according to the study authors, but subsequent research bolstered the conclusions.

Those included a 2009 study from a team in China, published in Nature Cell Biology, that isolated, purified and cultured egg stem cells from adult mice, and subsequently introduced them into mice ovaries that were rendered infertile. The infertile mice eventually produced mature oocytes that were fertilized and developed into healthy baby mice.

Studies showing that women had the same capacity as mice were lacking, however.

In this study, Tilly's team used tissue from Japanese women in their 20s and 30s with gender identity disorder, who had their ovaries removed as part of gender reassignment surgery.

The researchers isolated the egg precursor cells and inserted into them a gene from a jellyfish that glows green, then inserted the treated cells into biopsied human ovarian tissue. They then transplanted the human tissue into mice. The green fluorescence allowed researchers to see that the stem cells generated new egg cells.

Tilly said the process makes evolutionary sense. "If you look at this from an evolutionary perspective, males have sperm stem cells that continually make sperm. Because species propagation is so important, we want to make sure it's the best sperm, so don't want sperm sitting around for 60 years waiting to get used," he said. It makes no sense from an evolutionary perspective that "females will be born with all the eggs they will have and let them sit there," he noted.

Hershlag, meanwhile, said much remains to be overcome.

"Ultimately, in our field only one thing counts," he said, "and that is if you can make an egg that can make a healthy baby."

More information

The U.S. National Library of Medicine has more on how human embryos develop.

Read the original:
Stem Cell Finding Could Expand Women's Lifetime Supply of Eggs

Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los …

LOS ANGELES, CA--(Marketwire -02/24/12)- A2Z Health Expo today announced it will hold its 5th annual Health Expo at the Skirball Cultural Center in Los Angeles, CA on Thursday, March 22, 2012 from 4pm to 10pm. According to Dr. Ben Drillings, Director, the keynote speaker for the event will be the co-founder of the Samueli Foundation, Susan Samueli, PhD. Mrs. Samueli serves on the Board and Advisory Board of the Susan Samueli Center for Integrated Medicine (SSCIM) at UC Irvine. SSCIM promotes integrative medicine by providing education, scientific research and a model of clinical care that emphasizes healing of the whole person. Mrs. Samueli was honored with the UCI Medal in March 2000, the 2002 Ellen Cooperman Angel Award Recipient from the John Wayne Cancer Institute and the 2005 General William Lyon Crystal Vision Philanthropy Award from the Orangewood Children's Foundation. In 2006, Susan and Henry Samueli became the owners of the NHL franchise the Anaheim Ducks. The topic of Mrs. Samueli at the expo is: "Integrated Clinic in the 21st Century: Innovations, New Models & Challenges."

The A2Z Health Expo event is focusing on bringing together healthcare professionals, philanthropists, academicians, that are interested in learning more about the integrated clinic model. The expo aims to build a network relationship and sharing of ideas within the health community. Attendees include MDs, Chiropractors, Massage Therapists, Nutritionists, Schools & Spa owners, and general public.

Joining Mrs. Samueli are a bevy of prestigious speakers: Kerry Crofton, PhD., the author of the award-winning book, Wireless Radiation Rescue, and co-founder and executive Director of the International Advisory Board Doctors for Safer Schools; Dr. Nathan Newman, innovator of Stem Cell Lift -- cutting edge cosmetic surgery, without cutting;
And Ms. Alexa Zaledonis, who is the current chair of the National Certification Board for Therapeutic Massage & Bodywork as well as the owner of Even Keel Wellness Spa.

Dr. Drillings is urging the healthcare community to come and learn about the integrated clinic model. This is a must see expo!

The Skirball Cultural Center is located at 2701 N. Sepulveda Blvd., Los Angeles, CA 90049. To register to the event, please visit http://www.a2zhealthexpo.com or email us at expo@a2zhealthexpo.com or call (818) 700-0286.

See the original post here:
Susan Samueli, PhD of the Susan Samueli Center for Integrative Medicine UC Irvine to Headline A2Z Health Expo in Los ...

First researcher joins The Jackson Lab for Genomic Medicine in Conn.

Bar Harbor – Yijun Ruan, Ph.D., an American geneticist who has pioneered new techniques to sequence and map DNA to better understand cancer growth and stem cell properties, will be the first scientist to join the new Jackson Laboratory for Genomic Medicine (JAX Genomic Medicine) in Farmington, Conn.

Ruan is currently associate director and senior group leader at the Genome Institute of Singapore and professor of biochemistry at the National University of Singapore. He is also an investigator with the Encyclopedia of DNA Elements (ENCODE) project, an international consortium of research groups funded by the National Human Genome Research Institute.
Ruan said he was attracted by The Jackson Laboratory’s famously collaborative research environment, and plans to “take a community approach to tackle genomic questions through intensive collaboration.” Through innovating new technologies and studying how the human and mouse genomes are regulated, he said his goal is to translate research findings into personalized medicine. Ruan has also been appointed director of JAX Genomic Sciences, and will be bringing his current research program and team with him to JAX Genomic Medicine.
JAX Genomic Medicine will unite doctors, patients, scientists and industry to find new ways to tailor disease diagnosis, prevention and treatment to each person’s unique genetic makeup, or genome. Ruan and other recruits will begin initial operations this year in leased space while a 173,000-square-foot permanent facility is designed and built. Construction will begin in 2013, and the new facility will open in 2014.
“Yijun’s broad interests in genome biology, coupled with his innovative approach to developing new research techniques, make him an ideal member of the new JAX Genomic Medicine research team,” said Bob Braun, Ph.D., Jackson’s associate director and chair of research.
After earning BS and MS degrees in microbiology from Huazhong Agricultural University in Wuhan, China, Ruan obtained his Ph.D. in plant molecular biology from the University of Maryland, College Park, where he also conducted postgraduate research. Following scientific appointments at Monsanto Co. in St. Louis and Large Scale Biology Corp. in Vacaville, Calif., Ruan was recruited to the Genome Institute of Singapore (GIS) in 2002. Edison Liu, M.D., former director of GIS and now president and CEO of The Jackson Laboratory, credits Ruan for building the institute’s state-of-the-art genomic technology platforms and its award-winning genome biology programs.
Ruan is an author of 70 research papers and holds patents in Japan, Singapore and the United Kingdom for the DNA analysis techniques he helped to develop. A U.S. citizen, Ruan is married and has two children.
In addition to recruiting research faculty, JAX Genomic Medicine is currently hiring a site director, science coordinator, senior human resources manager, facilities manager and senior financial analyst in Connecticut. Job announcements are on The Jackson Laboratory’s website at http://www.jax.org/careers/connecticut.html.
Braun notes that The Jackson Laboratory is expanding the research faculty at its headquarters campus in Bar Harbor, Maine, as well as recruiting faculty in Connecticut.
The Jackson Laboratory is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, Calif., afuture institute in Farmington, Conn., and a total staff of about 1,400. Its mission is to discover the genetic basis for preventing, treating and curing human disease, and to enable research and education for the global biomedical community.

For more health news, pick up a copy of the Mount Desert Islander.

Here is the original post:
First researcher joins The Jackson Lab for Genomic Medicine in Conn.

ISSCR Honors Stem Cell Research Pioneer with Prestigious McEwen Award for Innovation

Newswise — The International Society for Stem Cell Research (ISSCR) is pleased to announce the winner of the 2012 McEwen Award for Innovation, a coveted prize in the field of stem cell research and regenerative medicine. The 2012 recipient is Rudolf Jaenisch, MD, Founding Member of the Whitehead Institute for Biomedical Research and Professor of Biology at the Massachusetts Institute of Technology in recognition of his pioneering discoveries in the areas of genetic and epigenetic control of development in mice that directly impact the future potential of embryonic stem cells and induced pluripotent stem cells for therapeutic utility.

The McEwen Award for Innovation is supported by the McEwen Centre for Regenerative Medicine in Toronto, Ontario, Canada. The $100,000 award honors original thinking and groundbreaking research pertaining to stem cells or regenerative medicine that opens new avenues of exploration towards the understanding or treatment of human disease or affliction.

“Rudolf Jaenisch has consistently contributed new and groundbreaking discoveries to stem cell biology and regenerative medicines that have changed the way stem cell research is conducted, said Fred H. Gage, PhD, ISSCR President. “Importantly, Rudolf not only has an uncanny sense of the next big question, but also conducts his experiments with such thoughtful and critical experimental design that his results have an immediate impact. This critical attention to detail and experimental design has greatly benefited the many gifted students that have passed through his lab and now populate many of the major stem cell centers throughout the world. Rudolf is very deserving of this award.”

Winner of the inaugural McEwen Award for Innovation in 2011, Shinya Yamanaka, MD, PhD, ISSCR President-Elect agrees. “Dr. Rudolf Jaenisch has always been on the cutting-edge of our field and his research has been a source of inspiration not only for myself, but has influenced the careers of some of our most esteemed colleagues.”

Dr. Jaenisch will be presented with the award at the ISSCR 10th Annual Meeting, in Yokohama, Japan, on Wednesday, June 13, 2012.
***
The International Society for Stem Cell Research is an independent, nonprofit membership organization established to promote and foster the exchange and dissemination of information and ideas relating to stem cells, to encourage the general field of research involving stem cells and to promote professional and public education in all areas of stem cell research and application.

Comment/Share

Visit link:
ISSCR Honors Stem Cell Research Pioneer with Prestigious McEwen Award for Innovation

Waisan Poon, “Clinical trial of umbilical cord blood stem cells in spinal cord injury” – Video

22-02-2012 05:16 Waisan Poon, Chinese U, Hong Kong, speaking on, "Clinical trial of umbilical cord blood stem cells in spinal cord injury" at the International Conference of Stem Cells and Regenerative Medicine for Neurodegenerative Diseases to be held at the Tzu-Chi Hospital in Hualien, Taiwan on April 22-24, 2010.

See the original post here:
Waisan Poon, "Clinical trial of umbilical cord blood stem cells in spinal cord injury" - Video

Alok Sharma, “Clinical trial of bone marrow stem cells in spinal cord injury” – Video

22-02-2012 05:41 Alok Sharma, LTMG Hospital, Bombay, "Clinical trial of bone marrow stem cells in spinal cord injury" at the International Conference of Stem Cells and Regenerative Medicine for Neurodegenerative Diseases to be held at the Tzu-Chi Hospital in Hualien, Taiwan on April 22-24, 2010.

See more here:
Alok Sharma, "Clinical trial of bone marrow stem cells in spinal cord injury" - Video

Novo Energies Corporation Announces Dr. Michael Har-Noy’s Seminar to The Johns Hopkins Institute for Cell Engineering

NEW YORK, NY--(Marketwire -02/21/12)- Novo Energies Corporation ("Novo") (OTC.BB: NVNC.OB - News) today announced that Dr. Michael Har-Noy, Founder and Chief Executive Officer of Immunovative Therapies, Ltd. ("Immunovative"), was invited to present Immunovative's technologies to The Johns Hopkins Institute for Cell Engineering on February 14, 2012.

Immunovative is developing a new class of immunotherapy drugs designed to harness the power of the immune system to treat cancer and has 10 U.S. patents granted, 15 U.S. patents pending, 26 corresponding applications pending internationally and two experimental product candidates for the treatment of cancer in clinical development: AlloStim™ and AlloVax™.

The Johns Hopkins Institute for Cell Engineering represents the stem cell and immunotherapy research effort at The Johns Hopkins University School of Medicine, where faculty, fellows, postdocs and students and staff study some of the most exciting problems in stem cell science and immunotherapy today.

On December 15, 2011, Novo signed an exclusive License Agreement with Immunovative, pursuant to which Novo has been granted an exclusive, worldwide license to commercialize any products covered under Immunovative's current issued and pending patent application portfolio, as well as the rights to any future patent applications, including improvements or modifications to the existing applications and any corresponding improvements or new versions of the existing products including AlloStim™ and AlloVax™. Novo intends to change its name and symbol to better reflect its new direction.

About Immunovative Therapies, Ltd.:

Immunovative Therapies, Ltd. is an Israeli biopharmaceutical company that was founded in May 2004 with financial support from the Israel Office of the Chief Scientist. Immunovative is a graduate of the Misgav Venture Accelerator, a member of the world-renowned Israel technological incubator program. The company was the Misgav Venture Accelerator's candidate for the prize for the outstanding incubator project of 2006, awarded by the Office of the Chief Scientist. Immunovative specializes in the development of novel immunotherapy drug products that incorporate living immune cells as the active ingredients for treatment of cancer and infectious disease. Please visit Immunovative's website at: http://www.immunovative.co.il

About Novo Energies Corporation:

Novo Energies Corporation is in the process of transforming into the cancer therapy area and intends to institute a name and symbol change to better reflect the new direction of the Company.

DISCLAIMER

Forward-Looking Statements: Except for statements of historical fact, this news release contains certain "forward-looking statements" as defined by the Private Securities Litigation Reform Act of 1995, including, without limitation expectations, beliefs, plans and objectives regarding the development, use and marketability of products. Such forward-looking statements are based on present circumstances and on Novo's predictions with respect to events that have not occurred, that may not occur, or that may occur with different consequences and timing than those now assumed or anticipated. Such forward-looking statements involve known and unknown risks, uncertainties and other factors, and are not guarantees of future performance or results and involve risks and uncertainties that could cause actual events or results to differ materially from the events or results expressed or implied by such forward-looking statements. Such factors include general economic and business conditions, the ability to successfully develop and market products, consumer and business consumption habits, the ability to fund operations and other factors over which Novo has little or no control. Such forward-looking statements are made only as of the date of this release, and Novo assumes no obligation to update forward-looking statements to reflect subsequent events or circumstances. Readers should not place undue reliance on these forward-looking statements. Risks, uncertainties and other factors are discussed in Novo's Form 10-K for its fiscal year ended March 31, 2011, and other documents filed from time to time by Novo with the Securities and Exchange Commission.

Originally posted here:
Novo Energies Corporation Announces Dr. Michael Har-Noy's Seminar to The Johns Hopkins Institute for Cell Engineering

Renato Dulbecco dies at 97; 1975 Nobel Prize winner in medicine

Dr. Renato Dulbecco, an Italian American virologist who shared the 1975 Nobel Prize in physiology or medicine for demonstrating how certain types of viruses invade mammalian cells to cause cancer, died of natural causes Sunday at his home in La Jolla. He was 97.

Dulbecco developed a method for measuring the quantity of virus in animal cells in tissue culture, a finding that greatly facilitated the study of such viruses and paved the way for the development of the Sabin polio vaccine. He was a faculty member at Caltech from 1949 to 1963 before moving to the Salk Institute for Biological Studies in La Jolla. He later served as president of the institute.

Dulbecco was also one of the first proponents of the human genome project, which many researchers initially thought would be both excessively expensive and relatively useless but which has since proved invaluable in biological research.

"Renato was one of the most brilliant scientific minds of our generation," current Salk Institute President William R. Brody said in a statement. "His contributions have truly made this a better world for all of us."

It has been known since the early 1900s that certain viruses can cause tumors in animals. The best-known example was the Rous sarcoma virus, which causes cancer in chickens. But it was not clear how the viruses produced this effect and what proportion of human cancers might be attributed to them.

In experiments carried out at Caltech in the 1950s, Dulbecco showed that a viral infection can have two outcomes: the virus can multiply inside the cell, killing the cell and releasing thousands of new viruses into the host animal; or it could alter the cell so that the cell would continue to divide and grow indefinitely, a process called transformation.

In the latter case, no new virus particles appear and the infecting virus seemingly disappears.

Through an elegant series of experiments, Dulbecco showed that the DNA from the polyoma virus became integrated into the DNA of the host cell, where it was replicated intact every time the cell replicated. Moreover, the viral DNA served as the blueprint for a small number of proteins that subverted cellular machinery, causing the cells to reproduce repeatedly — the hallmark of tumor formation.

Additionally, this feat was achieved before it was possible to sequence the DNA of either viruses or animal cells.

For his achievement, Dulbecco shared the 1975 Nobel Prize with Howard Temin and David Baltimore, who demonstrated the existence of an enzyme — reverse transcriptase — that allowed RNA viruses to integrate their genes into a host cell in the same fashion as the DNA viruses studied by Dulbecco. Both were former students of his.

In his Nobel address, Dulbecco called for increased restrictions on tobacco use because of its carcinogenic potential and urged governments to make greater efforts to limit the introduction of dangerous chemicals.

"While we spend our life asking questions about the nature of cancer and ways to prevent or cure it," he said, "society merrily produces oncogenic substances and permeates the environment with them."

Renato Dulbecco was born Feb. 22, 1914, in Catanzaro, Italy, the son of a civil engineer. He enrolled at the University of Turin, where he had meant to study physics and chemistry but soon became interested in biology instead.

He received his medical degree in 1936 and during World War II served in France and Russia, where he was injured in 1942 during a major Russian offensive along the Don River.

After several months of hospitalization, he returned home, hiding out in a small village near Turin when German forces occupied Italy after Mussolini's fall. He served as a medical officer for partisan forces resisting the occupation.

In medical school, Dulbecco had worked in the laboratory of noted anatomist Giuseppi Levi, along with fellow students Salvador Luria and Rita Levi-Montalcini, both of whom also became Nobel laureates. In 1946, Luria invited Dulbecco to join his small laboratory at the Indiana University and Dulbecco immigrated the following year, becoming a U.S. citizen in 1953. At IU, he shared bench space with James Watson, another eventual Nobel laureate.

Dulbecco was working with bacteriophage, small viruses that invade only bacteria cells. He showed that bacteriophage that had been disabled by exposure to ultraviolet light could be reactivated by exposing them to bursts of white light.

That work attracted the attention of microbiologist Max Delbruck, who invited Dulbecco to join him at Caltech. In the summer of 1949, Dulbecco and his then-wife, the former Giuseppina Salvo, drove an old car cross-country. He wrote in his Nobel autobiography that he was struck by "the beauty and immensity of the U.S.A. and the kindness of its people" and vowed to continue to live here forever.

While at Caltech, Dulbecco adapted a technique he had used with bacteriophage to count the number of virus particles that are present in a tissue sample. Dubbed the plaque assay technique, the assay relies on the fact that viruses added to a culture of cells kill small areas of cells, producing clear circles that can be counted.

This technique enabled researchers for the first time to measure the concentrations of virus in a sample and was crucial to Albert Sabin's work in inventing an attenuated virus polio vaccine. Dulbecco, in fact, originally isolated the mutant polio virus used by Sabin in his vaccine.

In 1962, Dulbecco became a founding member of the Salk Institute, where he remained for the rest of his career. He also spent time at the Imperial Cancer Fund Research Laboratories in London, where he worked on human cancer viruses, although he remained on the staff at Salk. In his later years, he researched breast cancer and concluded that breast cancer stem cells gone awry might be responsible for certain types of breast tumors.

In 1988, he became interim president at Salk, a position that soon became permanent. He held the post until he returned to his laboratory research in 1992.

During the 1980s, Dulbecco had argued passionately in favor of a human genome project. After his retirement as Salk president he was asked by the Italian National Research Council to develop an Italian human genome project, and he spent about half his time each year in that country. The project was abandoned after five years, however, because of lack of funding and facilities.

Dulbecco was a classically trained pianist who was passionate about music and performed opera. He was also a dedicated do-it-yourself handyman and once told The Times, "If I can get a week off to work on the house, that's the best vacation I can get." He remodeled his kitchen and added about 1,000 square feet of space to his home in La Jolla, performing all the work — including plumbing and electrical — himself.

Dulbecco is survived by his second wife, Maureen, whom he married in 1962; a brother, two daughters and four grandchildren. A son predeceased him.

Maugh is a former Los Angeles Times staff writer.

news.obits@latimes.com

Link:
Renato Dulbecco dies at 97; 1975 Nobel Prize winner in medicine

BioTime CEO Michael D. West to Present at New York Stem Cell Summit

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex: BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Executive Officer Michael D. West, Ph.D. will present at the 7th Annual New York Stem Cell Summit at Bridgewaters New York City on Tuesday, February 21, 2012 at 8:48 a.m. ET. Dr. West will provide an update and new information on the Company's manufacturing technologies and cell-based therapeutics in development. The presentation will be available online at http://www.biotimeinc.com.

The annual New York Stem Cell Summit provides investors, industry, practitioners, and analysts with the latest developments and investment opportunities in the stem cell marketplace.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate™ cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen™ retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend®, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:
http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

More:
BioTime CEO Michael D. West to Present at New York Stem Cell Summit

Histogenics to Present at 7th Annual New York Stem Cell Summit

WALTHAM, Mass.--(BUSINESS WIRE)--

Histogenics Corporation, a privately held regenerative medicine company, today announced that the Company will present at the 7th Annual New York Stem Cell Summit on February 21st at Bridgewaters New York City. Kirk Andriano, Ph.D., Vice President of Research and Development for Histogenics, will speak about current and future cell therapies being developed by the Company as it works toward commercialization. Lead candidates include NeoCart®, an autologous bioengineered neocartilage grown outside the body using the patient’s own cells for the regeneration of cartilage lesions, and VeriCart™, a three-dimensional cartilage matrix designed to stimulate cartilage repair in a simple, one-step procedure. NeoCart recently entered a Phase 3 clinical trial after reporting positive Phase 2 data, in which all primary endpoints were met and a favorable safety profile was demonstrated.

Dr. Andriano earned his BS in chemistry and biology from Utah State University and his MS and Ph.D. in bioengineering from the University of Utah. Prior to his work at Histogenics, he was the Chief Technology Officer for ProChon Biotech, Ltd. which was acquired by Histogenics in May 2011.

About Histogenics

Histogenics is a leading regenerative medicine company that combines cell therapy and tissue engineering technologies to develop highly innovative products for tissue repair and regeneration. In May of 2011, Histogenics acquired Israeli cell-therapy company ProChon BioTech. Histogenics’ flagship products focus on the treatment of active patients suffering from articular cartilage derived pain and immobility. The Company takes an interdisciplinary approach to engineering neocartilage that looks, acts and lasts like hyaline cartilage. It is developing new treatments for sports injuries and other orthopaedic conditions, where demand is growing for long-term alternatives to joint replacement. Histogenics has successfully completed Phase 1 and Phase 2 clinical trials of its NeoCart autologous tissue implant and is currently in a Phase 3 IND clinical study. Based in Waltham, Massachusetts, the company is privately held. For more information, visit http://www.histogenics.com.

Excerpt from:
Histogenics to Present at 7th Annual New York Stem Cell Summit

World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic

World Stem Cells, LLC Stem Cell Therapy at a state of the art clinic in beautiful Cancun. The clinic is staffed by top specialist in the field of stem cell implants and a new laboratory to support the stem cell treatments given.

(PRWEB) February 16, 2012

World Stem Cells, LLC. contract laboratory Advanced Cellular Engineering Lab (Ingenieria Celular Advanzada S.A. de C.V.) a new adult stem cell laboratory being built in Cancun, Mexico to support Stem Cell research, stem cell clinical trials and stem cell treatments. This was accomplished by private funding in conjunction with World Stem Cells, LLC worldstemcells.com a US patient management company, Medicina Biocelular Avanzada , S.E. de C.V. a Mexican patient management company and Advanced Cellular Medicine Clinic of Cancun, a Stem Cell treatment Clinic owned and operated by Dr. Sylvia M. Abblitt a well known board certified hematologist and oncologist, in Cancun.

Uniquely, Dr. Abblitt is one of a limited number of physicians licensed to perform autologous and allogeneic stem cell transplants. Dr. Abblitt has been utilizing stem cell therapies with successes for many years.

She is the president and lab director of Advanced Cellular Engineering Lab (Ingenieria Celular Advanzada S.A. de C.V.). Her extensive background includes having been the laboratory director and head of hematology for Hospital Fernando Quiroz for 11 years. As a pioneer in the stem cell transplant field, she brings a vast array of knowledge to the lab. Her memberships include the american association of blood banks (aabb), Mexican society of transfusional medicine, interamerica society of transfusional medicine, Mexican association) for studies of hematologyandicms and ICMS (international cellular medical society and all patients are monitored by ICMS an independent agency for a period of between 2-20 years on a quarterly basis. Dr. abblitt has had a 26-year clinical practice history.

The laboratory construction is complete and operations were transferred to our new facility. This facility provides Cancun, and patient around the world, a state of the art GLP laboratory to support their stem cell treatments in a beautiful, and positive environment. The lab was designed and constructed to provide one ISO7 lab, one wet lab along with a treatment area. This will allow stem cell retrieval, testing, culturing, selection, counting, analyses and sorting along with cryopreservation, without removal from the lab. This all in house capability reduces the possibility of contamination and errors. Dr. M. Abblitt will operate the Lab under cGMP/cGLP guidelines and use the state of the art facility to provide quality care to her stem cell transplant patients.

Working under the guidelines set forth by ICMS world stem cells, LLC ( http://worldstemcells.com/ ) provides stem cell treatment for ankylosing spondylitis, autism, cerebral palsy, charcot-marie-tooth disease (cmt), crohn’s diseases, copd, fuch’s disease, guillain-barre’ syndrome, hashimoto’s thryroiditis, itp, kidney diseases, macular degeneration, lupus (sle), multiple sclerosis, pad, parkinson’s disease, rheumatoid arthritis, scleroderma, stroke, ulcerative colitis

The laboratory will be engaged in private clinical trials, IRB’s and joint studies with US companies, Mexican Educational Institutes, US universities and doctors to better understand the benefits and precaution to be taken in the stem cell treatment process.

###

Charles Newcomer

727-421-4359
Email Information

Read this article:
World Stem Cells, LLC. Stem Cell Treatments In Cancun at Advanced Cellular Medicine Clinic

Stem Cell Stocks Skyrocket in 2012 — Cytori Therapeutics and Cord Blood America on the Upswing

NEW YORK, NY--(Marketwire -02/15/12)- Stem cell stocks have performed well of late, outperforming the S&P 500 by a large margin over the last three months. Since mid-November, TickerSpy's Stem Cell Stocks index (RXSTM) has returned more than 20 percent, as favorable news from some of stem cell industry heavyweights has boosted investor optimism in the sector. The Paragon Report examines investing opportunities in the Biotechnology Industry and provides equity research on Cytori Therapeutics, Inc. (NASDAQ: CYTX - News) and Cord Blood America, Inc. (OTC.BB: CBAI.OB - News). Access to the full company reports can be found at:

http://www.paragonreport.com/CYTX

http://www.paragonreport.com/CBAI

Shares of Cytori Therapeutics have skyrocketed nearly 70 percent year-to-date. The company develops, manufactures, and sells medical products and devices to enable the practice of regenerative medicine. The Company's technology is the Celuion family of products, which processes patients' adipose-derived stem and regenerative cells (ADRCs) at the point of care.

In late January, Cytori received an Investigational Device Exemption (IDE) approval from the U.S. FDA to begin the "ATHENA" trial. ATHENA will investigate the use of the Celution System to treat a form of coronary heart disease, chronic myocardial ischemia (CMI).

The Paragon Report provides investors with an excellent first step in their due diligence by providing daily trading ideas, and consolidating the public information available on them. For more investment research on the biotechnology industry register with us free at http://www.paragonreport.com and get exclusive access to our numerous stock reports and industry newsletters.

Cord Blood America, Inc. is a holding company that, through its subsidiaries, is engaged in the business of collecting, testing, processing and preserving umbilical cord blood, thereby allowing families to preserve cord blood at the birth of a child for potential use in stem cell therapy.

USA Today recently reported that umbilical cord blood stem cells have been successfully used to treat individuals with type 1 diabetes, highlighting the importance of storing stem cells at birth. The USA Today article says that stem cells from cord blood have been used to "reeducate" the immune system T cells of people with type 1 diabetes so their pancreas started producing insulin again - thereby reducing the amount of insulin they needed to inject.

The Paragon Report has not been compensated by any of the above-mentioned publicly traded companies. Paragon Report is compensated by other third party organizations for advertising services. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at http://www.paragonreport.com/disclaimer

Continue reading here:
Stem Cell Stocks Skyrocket in 2012 -- Cytori Therapeutics and Cord Blood America on the Upswing

Verastem to Present at Molecular Medicine Tri-Conference Symposium “Targeting Cancer Stem Cells in Oncology”

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Verastem, Inc., (NASDAQ: VSTM - News) a biopharmaceutical company focused on discovering and developing drugs to treat breast and other cancers by targeting cancer stem cells, announced that the company will present at the 2012 Molecular Medicine Tri-Conference Symposium “Targeting Cancer Stem Cells in Oncology.” The presentation is on February 19, 2012 at 2:00pm PT at the InterContinental San Francisco Hotel.

About Verastem, Inc.

Verastem, Inc. (NASDAQ: VSTM - News) is a biopharmaceutical company focused on discovering and developing drugs to treat breast and other cancers by targeting cancer stem cells. Cancer stem cells are an underlying cause of tumor recurrence and metastasis. Verastem is translating discoveries in cancer stem cell research into new medicines for the treatment of major cancers such as breast cancer.

Forward-looking statements:

Any statements in this press release about future expectations, plans and prospects for the Company constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by such forward-looking statements. The Company anticipates that subsequent events and developments will cause the Company’s views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so.

Continued here:
Verastem to Present at Molecular Medicine Tri-Conference Symposium “Targeting Cancer Stem Cells in Oncology”

Bone Repair Stem Cell Breakthrough Shows Promise

Editor's Choice
Main Category: Stem Cell Research
Article Date: 15 Feb 2012 - 8:00 PST

email to a friend   printer friendly   opinions  

Current Article Ratings:

Patient / Public:

5 (3 votes)

Healthcare Prof:
According to a study published in the February issue of the STEM CELL Translational Medicine Journal , a world-first technique for generating adult stem cells (mesenchymal stem cells [MSCs]) has been developed by researchers at the University of Queensland. This new method can be used to repair bone and possibly other organs, and will considerably affect individuals suffering from a variety of serious diseases.

Professor Nicholas Fisk, who leads the collaborative study between the UQ Clinical Research Center (UQCCR) and the UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN), explained:

"We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature.

The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumors.

Because only small numbers of MSCs exist in the bone marrow, and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

Ernst Wolvetang, co-researcher on the study and AIBN Associate Professor, explained that the technique had overcome a considerable obstacle in the translation of stem cell-based therapy.

Wolvetang said: "We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN."

Written by: Grace Rattue

Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today

Visit our stem cell research section for the latest news on this subject. UniQuest, The University of Queensland's main commercialization company, invites parties interested in licensing the intellectual property relating to this discovery to contact UniQuest on 3365 4037 or lifesciences@uniquest.com.au.

Source: University of Queensland

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Grace Rattue. "Bone Repair Stem Cell Breakthrough Shows Promise." Medical News Today. MediLexicon, Intl., 15 Feb. 2012. Web.
15 Feb. 2012. <http://www.medicalnewstoday.com/articles/241706.php&gt;

APA

Please note: If no author information is provided, the source is cited instead.


Rate this article:
(Hover over the stars then click to rate) Patient / Public:
or Health Professional:

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


Here is the original post:
Bone Repair Stem Cell Breakthrough Shows Promise

Favorable News From Advanced Cell Technology and StemCells Inc Boosts Optimism in Regenerative Medicine Industry

NEW YORK, NY--(Marketwire -02/15/12)- Stem cell stocks have performed well of late, outperforming the S&P 500 by a large margin over the last three months. Since mid-November, TickerSpy's Stem Cell Stocks index (RXSTM) has returned more than 20 percent, as favorable news from some of stem cell industry heavyweights has boosted investor optimism in the sector. The Paragon Report examines investing opportunities in the Biotechnology Industry and provides equity research on Advanced Cell Technology, Inc. (OTC.BB: ACTC.OB - News) and StemCells Inc. (NASDAQ: STEM - News). Access to the full company reports can be found at:

http://www.paragonreport.com/ACTC

http://www.paragonreport.com/STEM

Shares of StemCells Inc. have skyrocketed nearly 20 percent year-to-date. StemCells Inc. is focused on cellular medicine, or the use of stem and progenitor cells as the basis for therapeutics and therapies, and enabling technologies for stem cell research, or the use of cells and related technologies to enable stem cell-based research and drug discovery and development.

Earlier this month the company released a statement saying that it received U.S. Food and Drug Administration authorization to start a clinical trial of the company's potential treatment for dry age-related macular degeneration, or AMD. AMD is the leading cause of vision loss and blindness in people over 55 years old and about 30 million people worldwide are affected by the disease, the company said

The Paragon Report provides investors with an excellent first step in their due diligence by providing daily trading ideas, and consolidating the public information available on them. For more investment research on the biotechnology industry register with us free at http://www.paragonreport.com and get exclusive access to our numerous stock reports and industry newsletters.

Shares of Advanced Cell Technology are up more than 30 percent this year - although they are down more than 20 percent over the last month. Advanced Cell Technology has acquired, developed and maintained a portfolio of patents and patent applications that forms the base for its research and development efforts in the area of embryonic and adult stem cell research.

Earlier this week Advanced Cell Technology announced that a third patient has been treated for Stargardt's macular dystrophy in its US. Phase I/II clinical trial. The therapy uses retinal pigment epithelial cells derived from human embryonic stem cells. Stargardt's disease or Stargardt's Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age.

The Paragon Report has not been compensated by any of the above-mentioned publicly traded companies. Paragon Report is compensated by other third party organizations for advertising services. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at http://www.paragonreport.com/disclaimer

More:
Favorable News From Advanced Cell Technology and StemCells Inc Boosts Optimism in Regenerative Medicine Industry

Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for …

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (“ACT”; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the Wills Eye Institute in Philadelphia has received institutional review board (IRB) approval as a site for the company’s Phase I/II clinical trial for Stargardt’s Macular Dystrophy (SMD), a form of juvenile macular degeneration, using human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells. Earlier this year, the Company also announced that the IRB at Wills Eye Institute had approved the participation of the institution as a site for ACT’s clinical trial for dry age-related macular degeneration (dry AMD).

“We thank Wills Eye Institute once more for providing their IRB and their invaluable contribution to our macular degeneration studies,” said Gary Rabin, ACT’s chairman and CEO. “We are very happy that we can now report that Wills Eye Institute has been approved as a clinical trial site for both our SMD and dry AMD clinical trials. Ranked as one of the best ophthalmology hospitals in the country by U.S. News & World Report, the Wills Eye Institute is a truly world-class institution. Our team is eagerly anticipating working with Dr. Carl Regillo, a renowned retinal surgeon and director of clinical retina research at Wills Eye Institute, as well as a professor of ophthalmology at Thomas Jefferson University, along with the rest of his team as we move forward with these ground-breaking trials.”

The Phase I/II trial for SMD is a prospective, open-label study designed to determine the safety and tolerability of the hESC-derived RPE cells following sub-retinal transplantation into patients with SMD. The trial will ultimately enroll 12 patients, with cohorts of three patients each in an ascending dosage format. Preliminary results relating to both early safety and biological function for the first two patients in the U.S., one SMD patient and one dry AMD patient, were recently reported in The Lancet.

Specific patient enrollment for both trials at the Wills Eye Institute will be determined in the near future. Further information about patient eligibility for the SMD study and the concurrent study on dry AMD is also available on http://www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 and NCT01344993.

About Stargardt's Disease

Stargardt’s disease or Stargardt’s Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium.

About hESC-derived RPE Cells

The retinal pigment epithelium (RPE) is a highly specialized tissue located between the choroids and the neural retina. RPE cells support, protect and provide nutrition for the light-sensitive photoreceptors. Human embryonic stem cells differentiate into any cell type, including RPE cells, and have a similar expression of RPE-specific genes compared to human RPE cells and demonstrate the full transition from the hESC state.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

About Wills Eye Institute

Wills Eye Institute is a global leader in ophthalmology, established in 1832 as the nation’s first hospital specializing in eye care. U.S. News & World Report has consistently ranked Wills Eye as one of America’s top three ophthalmology centers since the survey began in 1990. Wills Eye is a premier training site for all levels of medical education. Its resident and post-graduate training programs are among the most competitive in the country. One of the core strengths of Wills is the close connection between innovative research and advanced patient care. Wills provides the full range of primary and subspecialty eye care for improving and preserving sight, including cataract, cornea, retina, emergency care, glaucoma, neuro-ophthalmology, ocular oncology, oculoplastics, pathology, pediatric ophthalmology and ocular genetics, refractive surgery and retina. Ocular Services include the Wills Laser Correction Center, Low Vision Service, and Diagnostic Center. Its 24/7 Emergency Service is the only one of its kind in the region. Wills Eye also has a network of nine multi-specialty, ambulatory surgery centers throughout the tri-state area. To learn more, please visit http://www.willseye.org.

Forward-Looking Statements

Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,” and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the company’s periodic reports, including the report on Form 10-K for the year ended December 31, 2010. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Company’s clinical trials will be successful.

Follow this link:
Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for ...

Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling …

Dentists can be at the forefront of the emerging field of regenerative medicine by offering Store-A-Tooth™ dental stem cell banking.

This service enables families to save their own adult stem cells from teeth that are naturally coming out or being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

Provia Laboratories, LLC will be exhibiting its Store-A-Tooth™ dental stem cell preservation service during the Chicago Midwinter Meeting at booth # 3346.

Lexington, MA (PRWEB) February 15, 2012

Provia Laboratories, LLC will be exhibiting during the Chicago Midwinter Meeting at booth # 3346 to showcase its Store-A-Tooth™ dental stem cell preservation service.

The Store-A-Tooth service enables families to save their own adult stem cells – from baby teeth ready to fall out; teeth pulled for orthodontic reasons; and wisdom teeth being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

The company partners with dental offices to make it easy to educate and inform patients about the option to preserve their family’s dental stem cells. For those interested in the service, Provia works with the dental team to provide high quality tooth collection, and arranges for the sample to be sent overnight to the lab, where the stem cells are harvested, tested and cryopreserved for future potential use.

“New stem cell therapies are going to change medicine as we know it, and dentists will play a leading role in enabling this transformation,” states Howard Greenman, Provia Labs CEO. “There’s been a lot of media buzz about stem cell research in general, but most people are unaware that a very potent and plentiful source of viable stem cells exits in the dental pulp of healthy teeth.”

Dental stem cells have already successfully been used in people to regenerate alveolar jaw bone and to treat periodontal disease. “One of the first routine applications in the oral cavity for the use of mesenchymal stem cells from teeth will be to promote bone growth around implants so they integrate more quickly, similar to how cellular bone matrix products are used today,” says Dr. Nicholas Perrotta, DMD, who started providing the Store-A-Tooth service in 2011.

“In addition to potential applications in regenerative dentistry, dental stem cell research may lead to new treatments for a wide range of medical conditions, including type 1 diabetes, stroke, cardiovascular disease, spinal cord injuries, and Parkinson’s disease, to name a few,” explains Peter Verlander, PhD, Chief Scientific Officer for Provia Labs. “Dental stem cell collection and preservation gives parents the peace of mind that they are now equipped to take advantage of the breakthroughs in stem cell therapies that will arise from the research community.”

“Store-A-Tooth is less expensive than collecting stem cells from umbilical cord blood. In fact, we hear from many of our customers that they are thankful to have this opportunity to store their stem cells, especially if they missed the chance to save cord blood,” states Greenman. “Our mission is to make stem cell banking accessible to the millions of children losing teeth every year.”

There are no fees or costs to dentists who wish to become an authorized Store-A-Tooth provider; in fact dentists can generate incremental revenue for assisting with tooth collection. Provia Labs supplies all participating practices with patient education materials, practice tools and dedicated support; training is simple and there is minimal impact to existing workflow.

Dental professionals share Store-A-Tooth educational materials with their patients, who enroll directly with Provia Labs. The day of the appointment, the dentist simply places the extracted tooth into the Store-A-Tooth collection kit, which includes a proven transport device called Save-A-Tooth®. In use by thousands of dentists for over 20 years, the Save-A-Tooth is an FDA-approved and ADA-accepted device for transporting avulsed teeth for reimplantation. The Store-A-Tooth collection kit is shipped overnight to the Provia Laboratories facility, where the stem cells are processed and stored.

The Store-A-Tooth service is currently available to dental offices throughout the United States and internationally. To become a provider, visit http://www.store-a-tooth.com or call 877-867-5753.

About Provia Laboratories, LLC

Headquartered in Lexington, MA, Provia Laboratories, LLC (http://www.provialabs.com) is a healthcare services company specializing in high quality biobanking (preservation of biological specimens). The company’s Store-A-Tooth™ service platform enables the collection, transport, processing, and storage of dental stem cells for potential use in future stem-cell therapies. The company advises industrial, academic, and governmental clients on matters related to the preservation of biological specimens for research and clinical use. In addition, Provia offers a variety of products for use in complex biobanking environments to improve sample logistics, security, and quality. For more information on dental stem cells, call 1-877-867-5753, visit http://www.store-a-tooth.com or http://www.facebook.com/storeatooth, or follow via twitter @StoreATooth.

###

Store-A-Tooth
Provia Laboratories, LLC
877-867-5753
Email Information

Follow this link:
Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling ...

Archives