Page 79«..1020..78798081..90100..»

Archive for the ‘Gene Therapy Research’ Category

Insightful Growth of Cancer Gene Therapy Market 2019- 2025| Research Methodologies Offers High Business Outlook growth – Daily Watch Reports

Crystal Market Research Provides Comprehensive Outlook Vital Information About Global Cancer Gene Therapy Market 2019-2025 includes massive data relating to the recent product and technological developments observed in the Industryt, complete with an analysis of the impact of these advancements on the markets future development. It likewise examines at the job of the main market players engaged with the business including their Cancer Gene Therapy corporate review, financial summary and SWOT examination.

In Order To Request For Free Sample Copy Click @https://www.crystalmarketresearch.com/report-sample/AT012401

Continue

The Cancer Gene Therapy market study is a well-researched into report encompassing a point by point investigation of this industry concerning certain parameters, for example, the Product limit just as the general Cancer Gene Therapy market compensation. The report lists insights regarding generation and utilization designs in the business too, in addition to the present situation of the Cancer Gene Therapy advertise and the patterns that will prevail in this industry.

Get Discount of This Precious Report @ https://www.crystalmarketresearch.com/check-discount/AT012401

Geographically, this Cancer Gene Therapy report studies market share and growth opportunity in these key regions, covering:

Get Customised Research Report: https://www.crystalmarketresearch.com/customization/AT012401

Contacts Us:

Judy | 304 South Jones Blvd, Suite 1896

Las Vegas NV 89107

United States

E-mail: sales@crystalmarketresearch.com | Ph: +1-888-213-4282

Original post:
Insightful Growth of Cancer Gene Therapy Market 2019- 2025| Research Methodologies Offers High Business Outlook growth - Daily Watch Reports

Edited Transcript of OTIC earnings conference call or presentation 5-Nov-19 9:30pm GMT – Yahoo Finance

SAN DIEGO Nov 10, 2019 (Thomson StreetEvents) -- Edited Transcript of Otonomy Inc earnings conference call or presentation Tuesday, November 5, 2019 at 9:30:00pm GMT

Otonomy, Inc. - President, CEO & Director

* Paul E. Cayer

Otonomy, Inc. - Chief Financial & Business Officer

H.C. Wainwright & Co, LLC, Research Division - MD & Senior Healthcare Analyst

* Tara A. Bancroft

Good afternoon, ladies and gentlemen, and welcome to the Q3 2019 Otonomy, Inc. Earnings Conference Call.

I would now like to turn the conference over to your host, Mr. Stephen Jasper from Westwicke Partners, please go ahead.

Good afternoon and welcome to Otonomy's Third Quarter 2019 Financial Results and Business Update Conference Call. Joining me on the call from Otonomy are Dr. David Weber, President and Chief Executive Officer; and Paul Cayer, Chief Financial and Business Officer.

Before I turn the call over to Dr. Weber, I would like to remind you that today's call will include forward-looking statements based on current expectations. Such statements represent management's judgment as of today and may involve risks and uncertainties that could cause actual results to differ materially from expected results. Such statements include but are not limited to timing of results, patient's recruitment and enrollment plans for and designing conduct of the Phase III clinical trial for OTIVIDEX, the Phase I/II clinical trial for OTO-313 and the Phase I/II clinical trial for OTO-413. Expectations regarding preclinical development, including but not limited to the potential benefits of activities under the collaboration agreement between AGTC and Otonomy, expectations regarding the benefits and value potential of Otonomy's programs, expectations regarding funding of clinical development program advancement and company operations into 2021 and expectations regarding financial guidance, including operating expenses for 2019 and 2020.

Please refer to Otonomy's filings with the SEC, which are available from the SEC or on the Otonomy website for information concerning the risk factors that could affect the company.

I will now turn the call over to Dave Weber, President and CEO of Otonomy.

David Allen Weber, Otonomy, Inc. - President, CEO & Director [3]

Thank you, Stephen. Good afternoon, everyone and thank you for joining us on this call to discuss Otonomy's business updates and third quarter 2019 financial results.

We made significant progress in the third quarter toward our goal of reporting results from 3 clinical trials in 2020. Most importantly, we advanced enrollment in the Phase III trial of OTIVIDEX in Mnire's disease with all participating countries actively enrolling patients. For OTO-313, we successfully completed the initial safety cohort and initiated enrollment in the exploratory efficacy cohort of the Phase I/II trial in tinnitus patients.

And finally, we received FDA clearance to initiate the Phase I/II trial of OTO-413 in patients with hearing loss, which was an important milestone for this innovative program. The successful completion of these trials is our highest priority and greatest focus. In parallel, we continue to advance multiple preclinical programs addressing important unmet needs in neurotology, including a recently announced gene therapy collaboration targeting the most common cause of congenital hearing loss. I'll provide an update on our clinical programs and an overview of this collaboration in my brief comments.

I will also highlight the financial results from the quarter and lower spending guidance for the year. It is important to note that our existing capital will fund the company through the 3 clinical catalysts next year and into 2021. I plan to keep my remarks brief, and we can then open up the call for any questions.

Beginning with the OTIVIDEX Phase III trial in Mnire's disease, we updated the timing in our earnings release today. We expect results in the third quarter of 2020, which is a slight adjustment from our original timing of data late in the first half of 2020. We are pleased with the progress we have made on enrollment of the trial and the timing reflects the care and methodical approach we've taken in site selection and patient recruitment. We have 60 sites enrolling patients across all participating countries. As a reminder, the conduct and design of this study is based on the successful AVERTS-2 trial, and we plan to enroll approximately 160 patients in the United States and Europe.

The next product candidate in our clinical development pipeline is OTO-313, a sustained exposure formulation of the NMDA receptor antagonist gacyclidine in development for the treatment of tinnitus. We have successfully completed the initial safety cohort of the Phase I/II trial and are now enrolling patients in the second cohort, which is the exploratory efficacy part of the study.

Cohort 2 will enroll approximately 50 patients with persistent tinnitus who will be assessed across a number of endpoints, including the Tinnitus Functional Index or TFI, which is a validated clinical instrument that measures tinnitus severity and its impact on patients. Importantly for entry into cohort 2, patients must have a TFI score that exceeds a specified level to ensure adequate disease severity at baseline.

Patients in cohort 2 receive a single intratympanic injection of OTO-313 or placebo, randomized 1:1 and are followed for 2 months. We expect results in the second quarter of 2020.

Our third clinical stage program is OTO-413, a sustained exposure formulation of brain-derived neurotrophic factor or BDNF that we are developing for the repair of cochlear synaptopathy. Recent research has identified damage to synaptic connections as the underlying pathology in noise and age-related hearing loss that manifests as speech-in-noise hearing difficulty. Neurotrophic factors, including BDNF have potential therapeutic effects in the cochlea by promoting the survival of spiral ganglion neurons, increasing neurite outgrowth and reconnecting neurons with cochlea hair cells after damage.

As I mentioned in my opening comments, we have recently initiated a Phase I/II clinical trial and expect to have results in the second half of 2020. This is an ascending dose safety and exploratory efficacy study that will enroll up to 40 patients with speech-in-noise hearing difficulty. Patients will receive a single intratympanic injection of OTO-413 or placebo and be followed for 3 months. A number of efficacy endpoints will be evaluated, including electrophysiological measurements of hearing function and speech-in-noise hearing test.

We are excited to be the first company conducting a clinical trial of a therapeutic for synaptopathy, which has been an active area of neurotology research during the past decade. We believe that OTO-413 will not only provide clinical benefits for the many patients with impaired hearing in a noisy environment but more generally for the large population of patients with loss of hearing function due to aging or noise exposure.

In addition to OTO-413 for synaptopathy, we have -- I have also have ongoing preclinical development for OTO-6XX, which is our hair cell regeneration program to treat patients with severe hearing loss. Cochlea hair cells play a central role in hearing by converting sound waves into electrical signals that are then transmitted to the brain via auditory nerves. It is well-established that damage to hair cells through aging, excessive noise or exposure to ototoxic chemicals leads to hearing loss. Unfortunately for humans, we cannot naturally regenerate hair cells like non-mammalian species, such as birds and chickens. However, it is possible to activate regenerative path waves via drug intervention, thereby providing an approach to treat this pathology.

We have demonstrated hair cell regeneration in a nonclinical proof-of-concept model using a class of small molecules and have identified a candidate for further development. Between our OTO-413 and OTO-6XX programs, we addressed 2 of the critical pathologies believed to underlie acquired forms of hearing loss, and with our recently announced strategic collaboration with AGTC, we extend the reach of our pipeline to now also include genetic hearing loss.

The goal of this program is to develop an AAV based gene therapy to restore hearing in patients with sensorineural hearing loss caused by mutation in the gap junction protein beta 2 gene, otherwise known as GJB2. Mutations in this gene are the most common cause of congenital hearing loss, accounting for approximately 30% of all genetic hearing loss cases. Patients born with this mutation can have severe to profound deafness in both ears as identified in screening test now performed routinely in newborns.

The collaboration leverages the expertise, technology and capabilities of each partner, allowing each of us to do what we do best. In addition, the structure is highly cost efficient by utilizing each partner's existing resources, sharing the workload and splitting the cost. We look forward to sharing more information about this program in the future.

Taken together, our clinical and preclinical programs comprise the broadest and most advanced product pipeline in the emerging field of neurotology, and we have the cash on hand to support the rich advancement. As you all know from our financial statements in the earnings release and 10-Q, we finished the third quarter with $68 million in cash and short-term investments. We continue to manage our spending levels carefully and are in fact lowering our non-GAAP operating expense guidance by $5 million for full year 2019.

We also expect as we previously stated that 2020 operating expenses will be lower than 2019 and that our current capital will fund the company's operation through the 3 clinical trial readouts and into 2021.

In summary, we have positioned Otonomy for a breakout year in 2020. The OTIVIDEX Phase III trial, OTO-313 Phase I/II trial and OTO-413 Phase I/II trial provide multiple value creation catalysts for the company, and we are laser focused on their successful completion. We look forward to bringing this message to investors through an expanded set of outreach activities beginning this quarter and continuing into 2020.

To this point, we will be attending the Piper Jaffray Health Care Conference on December 3 in New York and participating in a hearing loss panel at investor meetings at the Evercore ISI Conference in Boston on December 4.

Operator, we are now ready for questions.

================================================================================

Questions and Answers

--------------------------------------------------------------------------------

Operator [1]

--------------------------------------------------------------------------------

(Operator Instructions) Your first question comes from line of Tyler Van Buren from Piper Jaffray.

--------------------------------------------------------------------------------

Tara A. Bancroft, Piper Jaffray Companies, Research Division - Research Analyst [2]

--------------------------------------------------------------------------------

This is Tara on for Tyler. So in thinking ahead to the OTIVIDEX Phase III readout, can you kind of set the bar for us as far as expectations and what are meaningful changes in these patients? Should we expect a similar vertigo day benefit like we saw on AVERTS-2? And what about percent of vertigo decrease?

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [3]

--------------------------------------------------------------------------------

Thank you, Tara. Yes, what you can expect is similar to what we reported for AVERTS-2 and the Phase IIb trial that's in our corporate deck. We continue to focus in the primary outcome, is on definitive vertigo days, and change in definitive vertigo days. And importantly, achieving the p value that we've discussed with the agency. We have, as you know, one successful trial with AVERTS-2. So it really is duplicating that trial to provide two separate successful Phase III trials for submission of the NDA. So the data would be consistent with what we've shown previously, the trail design is the same, the endpoints are the same, and the data that we would expect to present both to investors and to the FDA are the same as AVERTS-2.

--------------------------------------------------------------------------------

Tara A. Bancroft, Piper Jaffray Companies, Research Division - Research Analyst [4]

--------------------------------------------------------------------------------

Okay. Can I ask then similarly for the Phase II and 313. Can you explain more about how the TFI questionnaire will maybe inform future registration endpoints and approval? Like what specifics are you looking for regarding changes in hearing quality there?

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [5]

--------------------------------------------------------------------------------

Yes, thank you. So the TFI is a validated -- considered a validated instrument. It was actually developed by a consortium of researchers and it plays out in that testing, which is represented by 25 questions that cover things like intrusiveness of the tinnitus, a sense of control that the patients have, their cognition, their ability to sleep, their auditory function and more quality of life like their emotional state is in that TFI through those 25 questions. It's established through the validation of that work of what represents generally a meaningful change is 13 points and based on the work that has been done there, and we also understand the classification of patients. So patients that typically are less than 25 on the TFI score are considered mild, whereas 25 to 50 are moderate, and higher than that are 50 and severe. Generally, physicians consider any patient that has 25 and higher to be patients in need of treatment. That will be our primary outcome because we do believe that, as I've said, a very measurable and validated instrument, we are also assessing separately other types of rating scales, such as tentative loudness and annoyance and then also a patient global impression of change, basically where we are asking the patients of how they perceive their tinnitus since the beginning of the study to understand their overall perception of change.

--------------------------------------------------------------------------------

Tara A. Bancroft, Piper Jaffray Companies, Research Division - Research Analyst [6]

--------------------------------------------------------------------------------

Yes, that's super helpful. If I can ask one more question about the gene therapy pipeline?

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [7]

--------------------------------------------------------------------------------

Sure.

--------------------------------------------------------------------------------

Tara A. Bancroft, Piper Jaffray Companies, Research Division - Research Analyst [8]

--------------------------------------------------------------------------------

Okay. So you mentioned in the press release regarding the AGTC collaboration that you are targeting the patients with GJB2 mutation that has been identified from the routine hearing screens in newborns. So I'm assuming your target population will include like newborns and infants with hearing loss due to that mutation, but we also know that the same genes that are responsible for homogenic deafness may also contribute to environmental hearing loss due to like drug exposure, noise and aging. So will those patient also be included in your target population for this gene therapy?

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [9]

--------------------------------------------------------------------------------

No, not initially at least. This will be focused more on the pediatric population because they are the most severely threatened with hearing loss and progressive hearing loss. So typically, this can be picked up on newborn screening and patients will continue to progress from there. So it's very important to catch them at an early stage and so that will be our initial focus for the gene therapy.

--------------------------------------------------------------------------------

Operator [10]

--------------------------------------------------------------------------------

Your next question comes from the line of Oren Livnat from H.C. Wainwright.

--------------------------------------------------------------------------------

Oren Gabriel Livnat, H.C. Wainwright & Co, LLC, Research Division - MD & Senior Healthcare Analyst [11]

--------------------------------------------------------------------------------

I have a few. With the OTIVIDEX Phase III that's enrolling little bit slower than we had modeled, can you just remind us what you're doing differently in this trial maybe from AVERTS-1 such that a more deliberate enrollment speed is potentially an indicator of improved likelihood of success? And I have a couple of others.

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [12]

--------------------------------------------------------------------------------

Yes, thanks Oren. I'm taking one at a time, that's fine. So great question, and that actually is the key, as we are very focused on being very careful here, and very deliberate in our enrollment. We think that its very key to the success of the trial based on our learnings from AVERTS-1. As we've discussed previously, the real learnings was around AVERTS-1 so as to control the placebo response and manage the patient expectation bias. And that was really kind of focused on 3 major areas and one of those was careful site selection. So we have gone through, obviously, now we have 60 centers enrolling across all participating countries, that took time. We needed to make sure we got it right, the right clinical centers, and right investigators, and we feel very confident in the group that we've assembled that are now all participating and enrolling. So that was the first.

From there it's really careful selection of the patients. In this case, there are no -- there is no advertising going on direct to patients, unlike with the AVERTS-1, where there were investigators who were reaching out in the general population. This is all very controlled and targeted patient enrollment and so it's very -- in that regard, it does take time and it is important that investigators are identifying these patients and carefully selecting them.

So we're not putting pressure on the investigators in terms of trying to advertise or increase the enrollment, we want to be very deliberate in that patient population. So we think that the few weeks to few months that we're talking about here in extending is just a safeguard to make sure we get -- ultimately are able to deliver a successful trial as well step.

--------------------------------------------------------------------------------

Oren Gabriel Livnat, H.C. Wainwright & Co, LLC, Research Division - MD & Senior Healthcare Analyst [13]

--------------------------------------------------------------------------------

All right. And just a follow-up on the tinnitus question. You mentioned that the TFI improvement of more than 13 is believed to be clinically meaningful. Is that what you're targeting? Are you expecting any statistical significance in this small study? Or are you just looking for any signal? And if so, if you do see a signal, what do you think the next steps are? Should we expect another Phase II before jumping into the more advanced?

--------------------------------------------------------------------------------

David Allen Weber, Otonomy, Inc. - President, CEO & Director [14]

--------------------------------------------------------------------------------

Well, let's take that one at a time there. In terms of Phase II to Phase III, but I think first of all, this is not size for power. It is the exploratory efficacy trial because it is the first of its kind. We have no prior clinical data to base sizing and powering on, it is what we consider exploratory and so we are looking for signals through these different endpoints, including the TFI. The TFI, as I mentioned, when the instrument was developed and validated by the consortium, they identified 13 point difference as being clinically meaningful, but I should point out that's in the absence of a therapeutic that really is through other types of both behavioral treatment of tinnitus and even some devices that have been tried in tinnitus. So I think it'll be up to -- as we look at the data to understand what do we see with the TFI but clearly that gives us the benchmark at least based on some prior work, even if it was in a pharmaceutical treatment. I think clearly the patient global impression of change and the other endpoints that I mentioned of loudness perception and annoyance perception are also very key to these patients given that it is the loudness and that annoyance that is the most debilitating for them in this disorder. So that's how we look at the study, and we would look to utilize the Phase I/II trial for then powering the future study. With regards to Phase II, additional Phase II, Phase III, I think that is something that we will consider based on that data.

One of the things -- so clearly with very strong signals, the opportunity is to do what I will call a larger Phase II type Phase III trial or obviously based on the data if we had confidence to go into a Phase III from there, I think one of the things that we also will want to look at, however, in addition to this patient population we are currently studying is to look at bilateral patients as well. So it's something that we're interested in because there are many patients that have bilateral tinnitus and that potentially be eligible, but that is something we want to look at probably in a separate study before including those patients.

Currently, we're focused on unilateral patients and that is because there has been concern clinically and working with our KOLs of whether patients can really tell the difference if they have bilateral, can they really talk and understand the difference in their tinnitus between one ear and the other or is there a confusion there because of both ears. And so that's why we're being very careful here using unilateral patients, but I think one of the things you can probably expect from us in future work is to also include some bilateral patients to look at the ability to detect changes in those patients as well. I'd say detect because I think that's the key. We and our KOLs all believe that showing an effect in a single ear will equate to treatment of both ears, ultimately that you'd be able to treat both ears mechanistically. It's more ability to differentiate the signaling for their patient reported outcome here. Can they report the outcome very carefully between one ear versus the other is something I think we have to look at clinically if that makes sense.

--------------------------------------------------------------------------------

Oren Gabriel Livnat, H.C. Wainwright & Co, LLC, Research Division - MD & Senior Healthcare Analyst [15]

--------------------------------------------------------------------------------

All right. And at the risk of abusing my time, it was lost to me that there was a recent IPO of Frequency Therapeutics and other therapeutic company working I think on hair cell regeneration, and I'm just curious, obviously you can't speak too much to what they're doing but maybe you can just highlight how similar or different your approaches are? And if you think that there will be any key learnings from what they are doing?

--------------------------------------------------------------------------------

Read this article:
Edited Transcript of OTIC earnings conference call or presentation 5-Nov-19 9:30pm GMT - Yahoo Finance

Harvard study advances gene therapy in fighting age-related diseases – The Boston Globe

If you hit enough specific diseases, youre getting at the core aging components that are common to all of them, Church, a Wyss core faculty member, said in an interview Monday. Gene therapy gives you a testable therapy at scale in mice. And we can move from mice to dogs and then to humans. Were focusing on the reversal of age-related diseases so well be more healthy and youthful later in life.

The research is part of a broader emerging field, sometimes called geroscience. Its advocates believe that the best way to treat a variety of illnesses from cancers and heart disease to Alzheimers and macular degeneration is to attack the aging process itself.

Were taking a holistic approach, said Noah Davidsohn, a former research scientist in Churchs lab who is first author of the study. Rather than attack specific diseases, were trying to make patients generally healthier and, in the process, getting rid of as many age-related diseases as possible. Nobody wants to be old and in a wheelchair and not doing anything.

Bostons biomedical hub has become a hotbed of geroscience research.

Last winter, 16 of the worlds top longevity scientists, including Harvard scientist David Sinclair, professor of genetics and director of the Paul F. Glenn Center for the Biology of Aging, formed a Boston-based academy that will seek to spotlight medical research on extending human life and developing drugs to slow the aging process. The nonprofit Academy for Health and Lifespan Research will share research and lobby governments in the United States, Europe, and elsewhere to increase funding and create new paths to approve age-slowing therapies.

Previous studies in the field have also sought to slow aging and extend healthy life spans through small molecules that increase blood flow and endurance, or weed out zombie cells that send out toxins causing age-related maladies. But the Wyss Institute is the first to use therapy that combines genes to boost protein levels that diminish with aging. The genes were selected from a database developed over the past decade at Churchs lab.

We looked at the ones that had the biggest impact individually and then wanted to see if they would work more effectively in pairs and triples, Church said. Such an approach, he said, had the greatest potential to target multiple diseases through a one-and-done injection into the blood or muscle, a simple procedure akin to getting an influenza vaccine shot.

When deployed against obesity, type II diabetes, heart failure, and renal failure, a single formulation ... was able to treat all four diseases, according to the study published in PNAS. These results emphasize the promise of gene therapy for treating diverse age-related ailments, and demonstrate a new approach of combination gene therapy that may improve healthspan and longevity by addressing multiple diseases at once.

San Diego-based biotech startup Rejuvenate Bio, founded by Church and a pair of coauthors of the PNAS study, Davidsohn and Daniel Oliver, is pursuing a gene therapy to fight age-related diseases. The company has already begun working with the Cummings School of Veterinary Medicine at Tufts University in North Grafton to test the gene therapy combination in dogs.

Davidsohn, chief technology officer at Rejuvenate, said the company is focused for now on developing and marketing a treatment that can extend the health span of dogs, which can suffer from a range of age-related illnesses including heart and kidney problems, obesity, dementia, and hearing and vision loss similar to those afflicting humans.

His own 5-year-old dog, Bear, whom Davidsohn adopted while working in the Wyss Institute lab, was an inspiration and now holds the honorary title of chief inspiration officer at Rejuvenate. The company was launched in stealth mode about a year ago and now has eight employees.

While dogs will be an important market in their own right for the combination gene therapy, Davidsohn said, We would be happy if this ended up in humans.

Church said testing the experimental therapy in dogs is likely to take about two years. Then, if regulators approve it, clinical trials could begin in humans. But even if all goes well, he said, the gene therapy probably wont be available as a marketed product for more than a decade.

By then, he said, the cost of a gene therapy which now can top $1 million per patient for rare diseases could drop to thousands of dollars per patient in what would be a much larger market to treat multiple age-related diseases.

Some supporters of age-slowing research, such as Jay Olshansky, public health professor at the University of Illinois at Chicago, have cautioned against expectations that scientists can radically lengthen life spans. Instead, they believe, the goal should be, as Olshansky puts it, pushing out the red zone, the time of frailty and disability at the end of life.

Church, however, has a more ambitious vision.

The important thing is getting good at age reversal, he said. If age reversal truly works, there is no upper limit on how long healthy lives can be extended.

Robert Weisman can be reached at robert.weisman @globe.com. Follow him on Twitter @GlobeRobW.

Correction: An earlier version of this story incorrectly characterized the status of the collaboration between Rejuvenate Bio and George Churchs Wyss Institute Lab.

Go here to see the original:
Harvard study advances gene therapy in fighting age-related diseases - The Boston Globe

Combination Gene Therapy Could Treat Multiple Age-related Diseases – Technology Networks

As people age, they tend to develop diseases such as heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. Traditional drug treatments, however, each target one condition. That means patients often have to take multiple medications, increasing both the risk of negative side effects and the likelihood of forgetting one.

New research from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) suggests that it may be possible someday to tend to multiple ailments with one treatment.

In the Wyss study, a single administration of an adeno-associated virus (AAV)-based gene therapy, which delivered combinations of three longevity-associated genes to mice, dramatically improved or completely reversed multiple age-related diseases, suggesting that a systems-level approach to treating such diseases could improve overall health and lifespan. The research is reported in PNAS.

The results we saw were stunning and suggest that holistically addressing aging via gene therapy could be more effective than the piecemeal approach that currently exists, said first author Noah Davidsohn, a former research scientist at the Wyss Institute and HMS who is now chief technology officer of Rejuvenate Bio. Everyone wants to stay as healthy as possible for as long as possible, and this study is a first step toward reducing the suffering caused by debilitating diseases.

The study was conducted in the lab of Wyss core faculty member George Church as part of Davidsohns postdoctoral research into the genetics of aging. Davidsohn, Church, and their co-authors homed in on three genes that had been shown to confer increased health and lifespan benefits in mice that were genetically engineered to overexpress them: FGF21, sTGFR2, and Klotho. They hypothesized that providing extra copies of those genes to nonengineered mice via gene therapy would similarly combat age-related diseases and bring health benefits.

The team created separate gene therapy constructs for each gene using the AAV8 serotype as a delivery vehicle, and injected them into mouse models of obesity, Type 2 diabetes, heart failure, and renal failure both individually and in combination with the other genes to see whether there was a positive synergistic effect.

FGF21 caused complete reversal of weight gain and Type 2 diabetes in obese, diabetic mice following a single gene therapy administration, and its combination with sTGFR2 reduced kidney atrophy by 75 percent in mice with renal fibrosis. Heart function in mice with heart failure improved by 58 percent when they were given sTGFR2 alone or in combination with either of the other two genes, showing that a combined therapeutic treatment of FGF21 and sTGFR2 could successfully treat all four age-related conditions, therefore improving health and survival. Administering all three genes together resulted in slightly worse outcomes, likely from an adverse interaction between FGF21 and Klotho, which remains to be studied.

Importantly, the injected genes remained separate from the animals native genomes, did not modify their DNA, and could not be passed to future generations or between living animals.

Achieving these results in nontransgenic mice is a major step toward being able to develop this treatment into a therapy, and co-administering multiple disease-addressing genes could help alleviate the immune issues that could arise from the alternative of delivering multiple, separate gene therapies for each disease, said Church, who is also a professor of genetics at HMS and professor of health sciences and technology at Harvard and MIT. This research marks a milestone in being able to effectively treat the many diseases associated with aging, and perhaps could lead to a means of addressing aging itself.

Church, Davidsohn, and co-author Daniel Oliver are co-founders of Rejuvenate Bio, a biotechnology company that is pursuing gene-therapy treatments for dogs. Each holds equity in Rejuvenate Bio.

The finding that targeting one or two key genes has therapeutic effects in multiple diseases makes enormous sense from the perspective of pathophysiology, but this is not how drugs are normally developed. This ability to tackle several age-related diseases at once using gene therapy offers a potential path to make aging a more manageable and less debilitating process, said Wyss Founding Director Donald Ingber, who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Childrens Hospital, as well as professor of bioengineering at Harvards John A. Paulson School of Engineering and Applied Sciences.

Reference: Davidsohn et al. 2019.A single combination gene therapy treats multiple age-related diseases. PNAS.https://doi.org/10.1073/pnas.1910073116.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

The rest is here:
Combination Gene Therapy Could Treat Multiple Age-related Diseases - Technology Networks

Gene therapy to fend off aging? Buzzy Harvard startup Rejuvenate Bio says it works in mice – FierceBiotech

Harvard synthetic biology pioneer George Church generated some buzz last year when he co-founded Rejuvenate Bio with the goal of reversing aging with gene therapy. Now, he and his co-founders say they have compelling early evidence in mice that they can use the technology to reverse multiple age-related diseases at once.

The researchers gave the mice three genes associated with longevity, either alone or in various combinations. The genes were FGF21, sTGF2betaR and alpha-Klotho. In previous experiments, they had shown that mice genetically engineered to overexpress the genes experienced benefits in both their health and life spans.

This time, they used mice that were not genetically engineered but rather models of obesity, Type 2 diabetes, heart failure and kidney failure. They wanted to prove their hypothesis that giving the mice extra copies of the genes might confer similar health benefits. They found that some combinations did improve or reverse symptoms, they reported in the journal Proceedings of the National Academy of Sciences.

De-Risking the Solid Form Landscape of an API

Attend to hear about two case studies exemplifying the importance of understanding the hydration space of an API and how hydrate formation may be avoided by development of a robust crystallization procedure.

The Harvard team discovered that a combination of FGF21 and sTGF2betaRcould treat all four diseases. FGF21 administered on its own reversed weight gain and Type 2 diabetes, and, when it was combined with sTGF2betaR in mouse models of kidney failure, it lowered kidney atrophy by 75%.

Administering all three genes together turned out to be an unsuccessful strategy, however. Mice that received that combination had worse outcomes than the other animals did, the team reported. The researchers believe there may have been an adverse reaction between FGF21 and alpha-Klotho, but they said further experiments would need to be designed to confirm that.

RELATED: George Church founds cryptocurrency-fueled genomics firm

Rejuvenate Bio was launched from Churchs lab at Harvard Medical School and the Wyss Institute for Biologically Inspired Engineering in 2017 but is still largely in stealth mode. It generated some attention last year, after it started reaching out to dog owners with the opportunity to enroll their pets in a trial of a gene therapy to treat mitral valve disease. The heart condition affects some breeds in outsized numbers, including Cavalier King Charles spaniels.

The potential benefits of the three genes Churchs team investigated for the newly published study are well known. FGF21, for one, has been shown to play a beneficial role in insulin resistance and fat metabolism. And last year, researchers partially funded by diabetes drug maker Novo Nordisk discovered that a variant in the gene is present in some people with naturally low levels of body fat.

Last year, Yale researchers discovered that beta-Klotho promotes weight loss, glucose metabolism and insulin sensitivity by binding to FGF21. And a separate team led by New York University published their discovery that alpha-Klotho facilitates FGF23 signaling, which in turn modulates the aging process.

Rejuvenate Bios Church said in a statement that a one-time gene therapy to address multiple age-related diseases could offer several benefits for patients and that the mouse trial was a major step toward the companys efforts to develop gene therapies for human use.

"This research marks a milestone in being able to effectively treat the many diseases associated with aging, and perhaps could lead to a means of addressing aging itself," Church said.

Continue reading here:
Gene therapy to fend off aging? Buzzy Harvard startup Rejuvenate Bio says it works in mice - FierceBiotech

Cancer Gene Therapy Market Value to Hit $2.5 Billion by 2025: Global Market Insights, Inc. – PRNewswire

SELBYVILLE, Del., Nov. 5, 2019 /PRNewswire/ -- The global Cancer Gene therapy market'srevenue is expected to surpass USD $2.5 billion by 2025, according to a new research report by Global Market Insights, Inc. Rising government initiatives in emerging economies for promoting developments in gene therapies will positively impact the cancer regenerative medicine market's growth. The government often implements several laws and initiatives to motivate scientists and researchers to perform extensive analysesof gene therapies. Furthermore, the government also funds various studies that are carried out for developing molecular therapies utilized in the treatment of cancer. The aforementioned factors should escalate the industry's growth.

There have been several advancements in the biotechnology sector that have proven beneficial for the industry's growth. Several viral vectors have been introduced in the market that work efficiently for carrying out gene transfers. Researchers vigorously work on studying the efficacy and efficiency of the viral, as well as non-viral, vectors that are utilized in gene therapy. Newly developed viral vectors are capable of inhibiting the growth of tumor-inducing genes and are preferred by biopharmaceutical companies. Moreover, healthcare professionals working on gene therapy have started trusting and preferring these viral vectors for treating cancer patients. Therefore, growing advancements will ensure the availability of superior quality vectors for gene transfer, which will foster the market's growth.

Request for a sample of this research report athttps://www.gminsights.com/request-sample/detail/763

The types in the cancer gene market are categorized into in-vivo and ex-vivo. The in-vivo segment of the cancer gene therapy market was valued over USD $350 million in 2018 and will experience substantial growth throughout the analysis period. In-vivo gene therapy is a cost-effective option since it avoids the tedious process of removing cells from a patient's body. Furthermore, in-vivo cancer gene therapy is widely expected to treatcystic fibrosis, which positively influences business growth. However, in recent times, several high-profile, adverse events pertaining to gene therapies were recorded that has reduced its demand, therebylowering the pace of segmental growth.

Based on product, the global market is bifurcated into viral vectors and non-viral vectors. The viral vectors segment of cancer gene therapy is anticipated to foresee around 23% growth throughout the analysis timeframe. Adenovirus is one of the highly preferred viral vectors that has commendable transductional efficiency that raises its adoption. Moreover, theadenovirus vector reduces the risk of mutagenesis. Besides, other viral vectors are also efficient and enable long-term DNA expression, reducing the mortality rate in patients suffering from cancer. The aforementioned factors will spur the viral vectors' segment growth.

Cancer Gene Therapy Market Growth, By Product

5.1. Key segment trends

5.2. Viral vectors5.2.1. Market size, by region, 2014 2025 (USD Million)5.2.2. Adenoviruses5.2.2.1. Market size, by region, 2014 2025 (USD Million)5.2.3. Lentiviruses5.2.3.1. Market size, by region, 2014 2025 (USD Million)5.2.4. Retrovirus5.2.4.1. Market size, by region, 2014 2025 (USD Million)5.2.5. Adeno associated virus5.2.5.1. Market size, by region, 2014 2025 (USD Million)5.2.6. Herpes simplex virus5.2.6.1. Market size, by region, 2014 2025 (USD Million)5.2.7. Vaccinia virus5.2.7.1. Market size, by region, 2014 2025 (USD Million)5.2.8. Others5.2.8.1. Market size, by region, 2014 2025 (USD Million)

5.3. Non-viral vectors5.3.1. Market size, by region, 2014 2025 (USD Million)

5.4. Others5.4.1. Market size, by region, 2014 2025 (USD Million)

Browse key industry insights spread across 95 pages, with 120 market data tables and eight figures and charts from the report,Cancer Gene Therapy Market Size By Type (Ex-vivo, In-vivo), By Product (Viral Vectors {Adenoviruses, Lentiviruses, Retrovirus, Adeno Associated Virus, Herpes Simplex Virus, Vaccinia Virus}, Non-viral Vectors), By End-use (Biopharma Companies, Research Institutes), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, U.K., France, Italy, Spain, Japan, China), Price Trends, Application Potential, Competitive Market Share & Forecast, 2019 2025," in detail, along with the table of contents:

https://www.gminsights.com/industry-analysis/cancer-gene-therapy-market

The end-use segment of cancer gene therapy includes biopharmaceutical companies, research institutes and others. The research institutes segment held around a 40% revenue share in 2018. Significant segmental growth can be attributed to the increasing demand for viral vectors by research institutes that work on cancer gene therapies. Research institutes constantly focus on assessing the efficacy of gene therapies by using different vectors. Moreover, vector manufacturing companies develop superior quality viral, as well as non-viral, vectors that will positively influence the segmental growth.

The U.K. market accounted for around USD $35 million in 2018 and is projected to witness momentous growth during the analysis timeframe. The increasing adoption of cancer gene therapy due to considerably high purchasing power has augmented the cancer gene therapy market growth in the country. Furthermore, the increasing prevalence of cancer has positively influenced the industry's growth. According to a study, in 2017, around 164,901 people died from cancer in the U.K., which creates demand for advanced gene therapies for treating cancer.

Make an inquiry for purchasing this report athttps://www.gminsights.com/inquiry-before-buying/763

Browse Related Reports:

Cancer Diagnostics Market Statistics 2025: Breast cancer is one of the most frequent cancers among womenacross the globe. According to the World Health Organization (WHO), about 2.1 million women are suffering from breast cancer each year. Also, breast cancer rates are higher among women in more developed countries than in developing and under-developed economies. A few prominent players operating in the global market are Abbott, Roche, Siemens Healthcare, Danaher Corporation, Becton, GE Healthcare, Dickinson and Company (BD), Janssen Diagnostics among others.

https://www.gminsights.com/industry-analysis/cancer-diagnostics-market

About Global Market Insights

Global Market Insights, Inc., headquartered in Delaware, U.S., is a global market research and consulting service provider, offering syndicated and custom research reports along with growth consulting services. Our business intelligence and industry research reports offer clients with penetrative insights and actionable market data specially designed and presented to aid strategic decision making. These exhaustive reports are designed via a proprietary research methodology and are available for key industries such as chemicals, advanced materials, technology, renewable energy and biotechnology.

Contact Us:

Arun HegdeCorporate Sales, USAGlobal Market Insights, Inc.Phone:1-302-846-7766Toll Free:1-888-689-0688Email:sales@gminsights.com

Related Images

cancer-gene-therapy-market.jpg Cancer Gene Therapy Market Forecasts 2025 Cancer Gene Therapy Market is set to register over a 22% CAGR up to 2025, driven by the rising prevalence of cancer in developed, as well as developing, economies.

Related Links

Cancer Gene Therapy Market size

Cervical Cancer Diagnostic Market

SOURCE Global Market Insights, Inc.

https://www.gminsights.com

Read this article:
Cancer Gene Therapy Market Value to Hit $2.5 Billion by 2025: Global Market Insights, Inc. - PRNewswire

Heres Why the First Cure for HIV Could Emerge from Maryland – BioBuzz

These Five Life Science Organizations are Striving to Cure HIV

For those that lived through the devastation and horror of the HIV/AIDS epidemic of the early 1980s, effective treatment, let alone a cure for Human Immunodeficiency Virus (HIV), seemed unimaginable.

Some three decades later, a host of Maryland life science companies and research organizations are getting closer to making what was once unthinkable, real.

So little was known about this devastating immune disorder in the early phases of the HIV/AIDS epidemic.

In the early days of the HIV/AIDS crisis, the BioHealth Capital Region was the epicenter of HIV/AIDS research, with much of this groundbreaking research occurring within the lab of the now famed NIH researcher, Dr. Robert Gallo. In 1983 and 1984 Gallo and his collaborators co-discovered and confirmed that the virus responsible for the killer disease known as AIDS was human T lymphotropic virus type III (HTLV-III). Gallo and the company went on to develop the first test that identified the virus in humansthe HIV-antibody blood test.

By 1983 the disease had started to spread globally. By 1999, approximately 33 million people across the globe were living with HIV and an estimated 14,000,000 million people had died from AIDS since the epidemic began.

The 1995 approval of Highly Active Antiretroviral Treatment (HAART), which was the result of the remarkable, collaborative efforts of the scientific community, led to the reduction of AIDS-related deaths and hospitalizations by 60-80%. A short time later what was once a three-drug cocktail had been transformed into a pill taken once daily by HIV sufferers.

As of 2017, 19.5 million people are estimated to be receiving antiretroviral treatment globally. While one of the greatest achievements in medical history, HAART and subsequent treatment forms do not cure HIV. Within just weeks of stopping treatment, the virus returns to full strength and chronic inflammation caused by suppressed HIV can lead to adverse health effects over the long term. Current HIV treatments control it but do not cure it; in fact, research shows that those being treated for HIV are more susceptible to other diseases and health risks at an earlier age.

Despite the amazing advancements in HIV/AIDS treatments, HIV/AIDS continues to be a major global health threat.

It would be a fitting conclusion for an HIV cure to emerge from the state where the virus was first linked to AIDS and where the first human diagnostic was developed.

Multiple Maryland companies and research institutions are on the leading-age of HIV research and development, making the state a hotbed of potential next-generation HIV therapies and, possibly, the source of a cure for this devastating global health issue. Some of the most promising cure candidates are coming out of Marylands thriving cell and gene therapy cluster.

Lets take a look at some of the amazing progress thats happening right now across Maryland and take a deeper dive into five of the leading organizations that are on a mission to develop the first HIV cure.

AGT is a gene and cell therapy company with a proprietary gene-delivery platform to rapidly develop gene and cell therapies to cure infectious diseases, cancers and monogenic disorders.

One of its lead gene therapy products is a potential functional cure for HIV. AGT just announced that it has submitted the IND to the FDA for a Phase I trial of its autologous cell therapy for HIV.

While HIV has become a manageable chronic virus for many, in less developed countries HIV/AIDS is still a devastating illness. Developing an HIV cure would relieve millions from the side effects of antiretrovirals used to suppress HIV and prevent AIDS, avoid the serious quality-of-life issues of long-term treatment, and potentially save the lives of countless others.

AGT is currently developing a highly innovative HIV treatment strategy that uses the tools of genetic medicine for immunotherapy to potentially create a functional cure for HIV.

If we are successful, patients will be able to throw away their medication, will not progress to AIDS, and will be immune to future HIV exposures.

The potential single-dose treatment would be delivered as a genetically-modified cell product made from a patients own cells. AGTs strategy is unique because it focuses on the key immune cells responsible for catalyzing strong immunity against a virus. AGTs treatment strategy seeks to protect these cells; one of the first cell subsets to be disabled by HIV. This subset of cells is understood to be critical to building an immune response to any virus. If achieved, the cells natural process of immunity is restored and any future rise of HIV in the body will be attacked by an individuals own immune system.

AGTs treatment includes the production of an autologous cell product that is highly enriched for HIV-specific CD4+ T cells that are then transduced with a lentivirus vector known as AGT103 to protect against HIV-mediated T cell depletion. The combination of these enriched cells and the lentiviral vector forms a cell product AGT has dubbed AGT103-T. This cell product is delivered intravenously to HIV patients. AGT103-T should control viremia and work to remove infected cells from the body, thus eliminating the need for lifelong antiretroviral treatment.

AGT is currently collaborating with the Institute of Human Virology, University of Maryland Baltimore to collect leukapheresis specimens from HIV positive individuals for an ongoing observational study performing and qualifying the cell process, which is explained in greater detail here. The company expects its potential HIV cure to move into clinical trials in the next six months.

IHV is part of the University of Maryland School of Medicine and is a recognized leader in the virology field. IHV was founded by Dr. Robert C. Gallo who co-discovered HIV and developed the first HIV blood test.

IHV is heavily focused on HIV/AIDS research and the organization is currently progressing a promising HIV/AIDS vaccine through its pipeline. IHV01 (FLSC-001) has completed a Phase I trial and was supported, in part, from funding provided by the Bill and Melinda Gates Foundation.

This potential HIV/AIDS treatment seeks to neutralize the different strains of HIV found across the globe from the moment of infection. IHVs HIV/AIDS research is focused on the CCR5 chemokine receptor that plays a crucial role in HIV-1 infection and as such offers an important potential therapeutic target. (IHV Website). IHV is striving to develop biological HIV/AIDS treatments that are less expensive, have fewer adverse impacts and are more accessible to patients around the globe.

Lentigen is a leading provider of custom lentiviral vectors used in cell and gene therapy research and development. For HIV, Lentigen is at the forefront of efforts to use Chimeric Antigen Receptors (CAR) T-Cell therapy to improve the treatment of HIV and possibly cure it.

Lentigen, along with researchers at the University of Pittsburgh in Pennsylvania and the Albert Einstein School of Medicine, has been conducting a promising study of the use of CAR T in the treatment of HIV. The researchers developed duoCAR T cells that were able to kill white blood cells infected with a range of HIV variants. Testing in mice also produced promising results. Mice with humanized immune systems were simultaneously injected with CAR T cell and HIV-infected human cells into their spleens. When the spleens were examined a week later, five of the six mice had no identifiable HIV DNA and their viral levels had decreased by 97.5% (source: Science).

The study hopes to test the duoCAR T approach in HIV-infected people in the near future.

IBBR is a joint research enterprise of the University of Maryland, College Park and the National Institute of Standards and Technology (NIST). Last year IBBR received $3.9M from the National Institutes of Health (NIH) to develop a multi-specific, single-agent antibody therapeutic against HIV-1 to block virus infection and to clear the reservoir of HIV-infected cells from the body, according to an IBBR press release from November 2018.

The project is led by Dr. Yuxing Li, Associate Professor, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Fellow at the Institute for Bioscience and Biotechnology Research (IBBR), in collaboration with Dr. Qingsheng Li, University of Nebraska-Lincoln, and Dr. Keith Reeves, Harvard Medical School/Beth Israel Deaconess Medical Center.

IBBRs research has focused on overcoming some of the limitations of existing antiretroviral (ARV) HIV treatments, including adverse side effects, ARV treatment drug resistance and how HIV integrates into the human genome, creating pockets of HIV that ARV cannot eliminate. Dr. Li and his group have produced bi and tri-specific antibodies that demonstrated neutralization of 95% of circulating HIV-1 viruses. These bi and tri-specific antibodies can also bind to multiple locations on the HIV-1 surface glycoprotein Env, which could potentially thwart treatment resistance via mutation. The team is now working to optimize their multivalent antibody constructs to recognize Env proteins on the surface of latently infected host cells, and to signal other immune system components to destroy those cells that contain the hard-to-reach viral pockets, or as the team calls them, a viral reservoir. (IBBR press release)

NIAID has been at the forefront of HIV research for decades and continues to be a major player in the research and development of possible HIV treatments and potential cures. NIAIDs research into HIV played a critical role in developing ARV drugs that transformed HIV into a chronic condition rather than a fatal infection.

NIAID-supported research has led to many ARV drug improvements, including reducing the number of pills required, diminishing adverse impacts and identifying the best drug combinations. The organization works with many leading global HIV/AIDS research organizations to identify and develop better HIV treatments.

NIAID is focused on both developing new HIV treatments as well as supporting other researchers and research organizations investigating new therapies. The ultimate goal is to potentially make HIV treatment a single dose, lifetime treatment, and, eventually, the complete eradication of HIV. NIAID is involved in many research and development projects focused on HIV and there are too many to dig into in a single article. Some of their current HIV research and development efforts are focused on investigational long-acting HIV drugs, rilpivirine LA and cabotegravir LA, for patients that have had difficulty following conventional antiretroviral therapy programs. Another NIAID study will test combining monthly injections of cabotegravir LA and infusions of an NIAID-discovered broadly neutralizing antibody called VRC01LS to see if the combination can keep HIV suppressed in people whose infection was previously controlled by antiretroviral therapy.

The organizations support has also helped in the discovery of the experimental drug islatravir (also known as EFdA or MK-8591) and maturation inhibitors. NIAID also has partnered with the Maryland industry, including a research collaboration agreement with AGT for research studies on the companys cell and gene therapy for HIV/AIDS.

A partnership between NIAID, Frederick National Labs for Cancer Research (operated by Leidos Biomedical Research, Inc.) and a team of collaborators recently developed 38 new simian/human immunodeficiency viruses (SHIVs) for prevention and treatment studies. These new SHIVs have closed a gap that previously existed in HIV research. These SHIVs are pathogens engineered in the lab that can help in the investigation of potential new HIV therapies as well as other treatments and vaccines.

These SHIVs target HIV subtype C, which causes approximately half of all HIV infections, and were created using HIV samples from people recently infected, allowing better modeling of more current forms of HIV subtype C circulating globally. The stronger modeling will increase pre-clinical researchs ability to predict effectiveness. Other SHIVs had used samples acquired from patients that had been infected long before the sample was pulled, limiting the SHIVs effectiveness against more current strains of HIV. While improvements are still needed, including challenges with replication, these new tools for HIV research and discovery hold tremendous promise.

In the late 1970s and early 1980s finding a cure for HIV/AIDS wasnt even on the radar. The scientific community was racing to understand the fundamentals of a virus that was rapidly spreading devastation and death across the globe. The speed with which the medical community came to understand the disease and to develop treatments like HAART is one of the truly amazing stories of the 20th century.

One or several of these Maryland companies and research institutions have a real chance to achieve what was once unthinkablefinding a cure for HIV that could help tens of millions of people across the globe live better, healthier and longer lives.

If an HIV cure emerges from Maryland, the BHCR community will have helped write the final chapter of HIV/AIDS terrible yet hopeful story.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

See the original post:
Heres Why the First Cure for HIV Could Emerge from Maryland - BioBuzz

Why Didnt She Get Alzheimers? The Answer Could Hold a Key to Fighting the Disease – The New York Times

When you have delayed onset of Alzheimers by three decades, you say wow, said Dr. Bu, chairman of the neuroscience department at the Mayo Clinic in Jacksonville, Fla., who was not involved in the study.

He said the research suggests that instead of drugs attacking amyloid or tau, which have failed in many clinical trials, a medication or gene therapy targeting APOE could be promising.

Dr. Reiman, who led another newly published study showing that APOE has a bigger effect on a persons risk of getting Alzheimers than previously thought, said potential treatments could try to reduce or even silence APOE activity in the brain. People born without APOE appear to have no cognitive problems, but they do have very high cholesterol that requires treatment.

Dr. Huang, who co-wrote a commentary about the study and is affiliated with two companies focusing on potential APOE-related treatments, said the findings also challenge a leading Alzheimers theory about the role of amyloid.

Since the woman had huge amounts of amyloid but few other Alzheimers indicators, it actually illustrates, to my knowledge for the first time, a very clear dissociation of amyloid accumulation from tau pathology, neurodegeneration and even cognitive decline, he said.

Dr. Lopera said the woman is just beginning to develop dementia, and he recently disclosed her genetic profile to her four adult children, who each have only one copy of the Christchurch mutation.

The researchers are also evaluating a few other members of the Colombian family, who appear to also have some resistance to Alzheimers. They are not as old as the woman, and they do not have the Christchurch mutation, but the team hopes to find other genetic factors from studying them and examine whether those factors operate along the same or different biological pathways, Dr. Reiman said.

Read more:
Why Didnt She Get Alzheimers? The Answer Could Hold a Key to Fighting the Disease - The New York Times

A Woman’s High Risk of Developing Early-Onset Alzheimer’s Was Delayed, Thanks to This Genetic Mutation – Being Patient

In the latest step toward development of potential treatments for Alzheimers disease, researchers have identified a rare gene mutation that seemingly prevented a Colombian woman from developing Alzheimers for decades.

Scientists said the research, published in the journal Nature Medicine, presents a tantalizing clue for why some people are resistant to developing Alzheimers.

Like many members of her extended family, the woman, from Medelln, Colombia, carried a gene mutation called presenilin 1. This gene is known to cause younger-onset Alzheimers. In fact, researchers said family members with the gene mutation have a 99.9 percent risk of developing the disease as early as their 30s.

However, the woman did not develop Alzheimers until her late 70s. Scientists suspect the disease was held at bay by another extremely rare gene mutation the woman had called APOE3 Christchurchor APOE3chnamed after Christchurch, New Zealand, where it was first identified.

Sometimes close analysis of a single case can lead to discovery that could have broad implications for the field, said Richard Hodes, Director of the National Institute on Aging (NIA), which provided funding for the research.

Dr. Guojun Bu, chairman of the neuroscience department at the Mayo Clinic in Jacksonville, FL, told The New York Times that the findings could be profound, although he stressed that much more additional research is needed.

When you have delayed onset of Alzheimers by three decades, you say wow, Bu said, adding that the research suggests a medication or gene therapy targeting APOE could be promising.

Yadong Huang, a neuroscientist at the Gladstone Institutes in San Francisco, called the case very special.

This may open up a very promising new avenue in both research and therapy, he told Science Magazine.

Neither Huang nor Bu were involved in the research, which was led by scientists at the Massachusetts General Hospital in Boston and the University of Antioquia in Medelln, Columbia, and the Banner Alzheimers Institute in Phoenix.

The NIA said that experiments undertaken as part of the study showed that the APOE3ch variant may inhibit the development of amyloid and tau protein deposits that destroy the brain.

Earlier this year, another set of researchers found that a gene linked to a rare neurological disorder may play a role in the development of Alzheimers.

For further background on genetic research and Alzheimers, watch a Being Patient video interview with Nathaniel Chin, Director of Medical Services at the Wisconsin Alzheimers Disease Research Center.

Link:
A Woman's High Risk of Developing Early-Onset Alzheimer's Was Delayed, Thanks to This Genetic Mutation - Being Patient

Poseida Therapeutics to Present Update on Approach in Allogeneic CAR-T at Society for Immunotherapy of Cancer 34th Annual Meeting – BioSpace

SAN DIEGO, Nov. 5, 2019 /PRNewswire/ -- Poseida Therapeutics, Inc., a clinical-stage biopharmaceutical company leveraging proprietary non-viral gene engineering technologies to create life-saving therapeutics, today announced it will present preclinical research findings during the Society for Immunotherapy of Cancer (SITC)34th Annual Meeting on its lead allogeneic product candidate, P-BMCA-ALLO1, in multiple myeloma.

At SITC 2019, preclinical results will highlight the potential of Poseida's gene engineering technologies in addressing current challenges with earlier generation autologous CAR-T therapies. Poseida leverages its proprietary piggyBac DNA Modification System in combination with Cas-CLOVER gene editing technology to create P-BCMA-ALLO1, an off-the-shelf allogeneic CAR-T cell product candidate. These technologies enable the development of allogeneic CAR-T therapies with a variety of benefits to patients and the medical community including greater safety and duration of response, as well as manufacturing and patient cost savings.

Poseida will present the following research at SITC 2019:

"Broad adoption of earlier generation CAR-T therapies have been curtailed by serious safety concerns, limited duration of response and difficulty supporting access within the current healthcare system," said Eric Ostertag, M.D., Ph.D., chief executive officer of Poseida. "We are actively problem-solving to address these challenges and our new findings indicate that we are making progress with our allogeneic approach powered by our piggyBac DNA Modification System and Cas-CLOVER gene editing technology."

About P-BCMA-ALLO1P-BCMA-ALLO1 is an allogeneic CAR-T therapy being developed by Poseida for multiple myeloma. It is designed to have the benefits of scale and administration efficiency that come from an allogeneic product. Poseida expects to file an IND for P-BCMA-ALLO1 in 2020. Approximately 32,110 people were diagnosed with multiple myeloma and 12,960 died from the condition in the United States in 2019.

Click to Tweet: Poseida Therapeutics to Present Update on Approach in Allogeneic CAR-T at Society for Immunotherapy of Cancer 34th Annual Meeting #celltherapy #genetherapy

About Poseida Therapeutics, Inc.Poseida Therapeutics is a clinical-stage biotechnology company translating best-in-class technology into lifesaving cell and gene therapies for patients with high unmet medical need. The company is developing a wholly-owned pipeline of non-viral, allogeneic and autologous CAR-T product candidates and in vivo gene therapies for orphan genetic diseases. Poseida has assembled a suite of industry-leading gene editing technologies, including the piggyBacDNA Modification System and Cas-CLOVER and TAL-CLOVER site-specific nucleases. For more information, visitwww.poseida.com.

View original content to download multimedia:http://www.prnewswire.com/news-releases/poseida-therapeutics-to-present-update-on-approach-in-allogeneic-car-t-at-society-for-immunotherapy-of-cancer-34th-annual-meeting-300951220.html

SOURCE Poseida Therapeutics, Inc.

Follow this link:
Poseida Therapeutics to Present Update on Approach in Allogeneic CAR-T at Society for Immunotherapy of Cancer 34th Annual Meeting - BioSpace

PTC, Aldevron Partner to Advance Angelman and Other Gene Therapy Candidates – Angelman Syndrome News

PTC Therapeutics announced a strategic partnership with Aldevronto ensure the production of high-quality plasmid DNA to be used with PTCs investigational gene therapies, including AGIL-AS for the treatment of Angelman syndrome (AS).

PTCs growing gene therapy pipeline for genetic disorders of the central nervous system (CNS) also includes an investigational gene therapy for AADC deficiencythats nearing submission to the U.S. Food and Drug Administration (FDA), as well as candidates for Friedreichs ataxiaand Angelman syndrome that are at earlier development stages. Other candidates for cognitive disorders and inherited retinal disorders are in preclinical research.

Our strategic collaboration with Aldevron represents our continued commitment to produce and provide the highest quality product to patients, Neil Almstead, PhD, PTCs chief technical operations officer, said in a press release.

Our gene therapy pipeline is addressing the unmet needs of multiple patient populations, and we feel an urgent need to develop safe products with the utmost speed. The development of relationships with top-tier companies like Aldevron aligns with our goal of partnering with the best collaborators as we drive meaningful improvements in the lives of patients, Almstead said.

PTCs gene therapy candidate for Angelmans syndrome is called AGIL-AS. It uses a modified virus that does not cause infection called an adeno-associated virus (AAV) to deliver a working copy of the UBE3Agene, the faulty gene in Angelman syndrome, to the brain and spinal cord of patients. The process is designed to restore production of the E6-AP protein produced by the UBE3A gene, this way improving cell function and rescuing neurological defects in Angelman syndrome.

Preclinical studieshave shown that AGIL-AS targets nerve cells in the brain, increases levels of E6-AP, and eases AS-like cognitive deficits in animal models of the disease.

AGIL-AS was granted orphan drug designationfrom the U.S. Food and Drug Administration in 2015, followed by a similar designation from theEuropean Commission in 2016.

Under the agreement, Aldevron will manufacture the plasmid DNA (circular molecules of DNA) where the functional version of UBE3A gene will be enclosed for delivery. The company ensures the materials are produced under Good Manufacturing Practice (GMP), a set of guidelines allowing products to be consistently made and controlled according to quality standards.

It is truly an honor to work with PTCs motivated team of experts. They are making enormous contributions to the future of genetic medicine, saidMichael Chambers, founder and CEO of Aldevron.

This is Aldevrons mission to serve scientists and researchers who are relentlessly pursuing cures for people who need them, he added.

Ana is a molecular biologist enthusiastic about innovation and communication. In her role as a science writer she wishes to bring the advances in medical science and technology closer to the public, particularly to those most in need of them. Ana holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she focused her research on molecular biology, epigenetics and infectious diseases.

Total Posts: 11

Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.

View original post here:
PTC, Aldevron Partner to Advance Angelman and Other Gene Therapy Candidates - Angelman Syndrome News

Allogene Therapeutics and Notch Therapeutics Announce Collaboration to Research and Develop Induced Pluripotent Stem Cell (iPSC)-Derived Allogeneic…

Collaboration Includes Exclusive Rights and Targets for Initial Applications in Non-Hodgkin Lymphoma, Leukemia and Multiple Myeloma

Notch to Receive Upfront Payment, Research Funding and an Equity Investment Plus Development and Commercial Milestones and Royalties on Net Sales

SOUTH SAN FRANCISCO, Calif. and TORONTO, Nov. 05, 2019 (GLOBE NEWSWIRE) -- Allogene Therapeutics, Inc. (Nasdaq: ALLO), a clinical-stage biotechnology company pioneering the development of allogeneic CAR T (AlloCAR T) therapies for cancer, and Notch Therapeutics Inc., an immune cell therapy company creating universally compatible, allogeneic T cell therapies for the treatment of diseases of high unmet need, today announced an exclusive worldwide collaboration and license agreement to research and develop induced pluripotent stem cell (iPSC) AlloCAR therapy products for initial application in non-Hodgkin lymphoma, leukemia and multiple myeloma. Under the partnership, Allogene and Notch will create allogeneic cell therapy candidates from T cells or natural killer (NK) cells using Notchs Engineered Thymic Niche (ETN) platform.

Notch was established in 2018 by Juan Carlos Ziga-Pflcker, Ph.D. and Peter Zandstra, Ph.D., recognized pioneers in iPSC and T cell differentiation technology. Notch is developing a next-generation approach to differentiating mature immune cells from iPSCs. The Notch ETN technology platform offers potential flexibility and scalability for the production of stem cell-derived immune cell therapies. iPSCs may provide renewable starting material for AlloCAR T therapies that could allow for improved efficiency of gene editing, greater scalability of supply, product homogeneity and more streamlined manufacturing.

This collaboration exemplifies Allogenes long-term commitment to advancing the field of cancer treatment as we continue to expand and progress our innovative pipeline of off-the-shelf AlloCAR candidates, said David Chang, M.D., Ph.D., President, CEO and Co-Founder of Allogene Therapeutics. The scientific founders of Notch Therapeutics are among the most respected experts in the field of stem cell biology and its applications to generating T cells and other functional immune cells. We are confident that their technology and expertise, combined with Allogenes leadership in AlloCAR therapies, has the potential to unlock future generations of cell therapy treatments for patients.

Renewable-source, off-the-shelf cell therapies that may produce cells with greater consistency and at industrial scale have long been the dream for people working in this field, said Ulrik Nielsen, Ph.D., Executive Chairman of Notch. We are delighted to spring into the research collaboration for iPSC-based AlloCAR therapies with Allogene, a leader in the allogeneic CAR T field, with the goal of expanding options for patients.

Under the terms of the agreement, Notch will be responsible for preclinical research of next-generation iPSC AlloCAR T cells. Allogene will clinically develop the product candidates and holds exclusive worldwide rights to commercialize resulting products. Allogene will provide to Notch an upfront payment of $10 million. Notch will be eligible to receive up to $7.25 million upon achieving certain agreed research milestones, up to $4.0 million per exclusive target upon achieving certain pre-clinical development milestones, and up to $283 million per exclusive target and cell type upon achieving certain clinical, regulatory and commercial milestones as well as tiered royalties on net sales in the mid to high single digits. In addition to this collaboration and license agreement, Allogene has acquired a 25 percent equity position in Notch and will assume a seat on Notchs Board of Directors.

Master cell banks of genetically modified, induced pluripotent stem cells could provide an inexhaustible source of cell therapies that may improve outcomes and expand applicability to new areas, said Notch Co-Founder Juan Carlos Ziga-Pflcker, Ph.D., a senior scientist at Sunnybrook Research Institute and a Professor and Chair of the Department of Immunology at the University of Toronto.

This work with Allogene may also pave the way for additional off-the-shelf cell therapeutics that are custom-designed to treat other immunity-related diseases such as infectious diseases, autoimmune diseases and aging, said Notch Co-Founder and Chief Scientific Officer Peter Zandstra, Ph.D., a Professor at the University of British Columbia and University of Toronto.

About Notch Therapeutics (www.notchtx.com)Notch is an immune cell therapy company creating universally compatible, allogeneic (off-the-shelf) T cell therapies for the treatment of diseases of high unmet medical need. Notchs technology platform uses genetically tailored stem cells as a renewable source for creating allogeneic T cell therapies that expand treatment options and deliver safer, consistently manufactured and more cost-effective cell immunotherapies to patients. At the core of Notchs technology is the synthetic Engineered Thymic Niche (ETN) platform, which drives the expansion and differentiation of stem cells in scalable, fully defined, feeder-free and serum-free cultures into T cells that can be genetically tailored for any T cell-based immunotherapeutic application. This technology was invented in the laboratories of Juan-Carlos Ziga-Pflcker, Ph.D. at Sunnybrook Research Institute and Peter Zandstra, Ph.D., FRSC at the University of Toronto. Notch was founded by these two institutions, in conjunction with MaRS Innovation (now Toronto Innovation Acceleration Partners) and the Center for Commercialization of Regenerative Medicine (CCRM) in Toronto.

About Allogene TherapeuticsAllogene Therapeutics, with headquarters inSouth San Francisco, is a clinical-stage biotechnology company pioneering the development of allogeneic chimeric antigen receptor Tcell (AlloCAR T) therapies for cancer. Led by a world-class management team with significantexperience in cell therapy, Allogene is developing a pipeline of off-the-shelf CAR T cell therapycandidates with the goal of delivering readily available cell therapy on-demand, more reliably, and atgreater scale to more patients. For more information, please visitwww.allogene.com, and follow @AllogeneTx on Twitter and LinkedIn.

Cautionary Note on Forward-Looking Statements This press release contains forward-looking statements for purposes of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. The press release may, in some cases, use terms such as "predicts," "believes," "potential," "proposed," "continue," "estimates," "anticipates," "expects," "plans," "intends," "may," "could," "might," "will," "should" or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Forward-looking statements include statements regarding intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things: the ability to progress the research collaboration, Notchs ability to develop a next-generation approach to differentiating mature immune cells from iPSCs, the ability to develop and manufacture new therapies from Notch technology, and the potential benefits of Notch technology and AlloCAR T therapy. Various factors may cause differences between Allogenes expectations and actual results as discussed in greater detail in Allogenes filings with theSecurities and Exchange Commission(SEC), including without limitation in its Form 10-Q for the quarter endedJune 30, 2019. Any forward-looking statements that are made in this press release speak only as of the date of this press release. Allogene assumes no obligation to update the forward-looking statements whether as a result of new information, future events or otherwise, after the date of this press release.

Allogene Media/Investor Contact:Christine CassianoChief Communications Officer(714) 552-0326Christine.Cassiano@allogene.com

Notch Media Contact:Mary MoynihanM2Friend Biocommunications802-951-9600mary@m2friend.com

Read more from the original source:
Allogene Therapeutics and Notch Therapeutics Announce Collaboration to Research and Develop Induced Pluripotent Stem Cell (iPSC)-Derived Allogeneic...

Patients, Physicians and Researchers Gather to Probe Genetic Eye Disorders – University of Virginia

Aniridia is a congenital disorder that causes severe eye problems, and also affects metabolism sometimes resulting in severe obesity. It is associated with mutation of a major developmental gene, called PAX6. People born with aniridia have no irises in their eyes, often are legally blind, and whatever eyesight they have continually worsens with age. The disease is uncommon, but disorders associated with genetic mutations can involve common eye problems, including cataracts and glaucoma.

To better understand and treat aniridia and other disorders involving the PAX6 gene, researchers and clinicians at the University of Virginia are combining clinical research, patient treatment and powerful basic science investigations.

They have organized for this weekend a major symposium focused on congenital eye disorders and the PAX6 gene, bringing together top researchers from the University and around the nation and Europe, along with patients living with aniridia and their families.

The organizers are Rob Grainger, W.L. Lyons Brown Professor of Biology, and Dr. Peter Netland, Vernah Scott Moyston Professor and Chair of Ophthalmology. Both are members of UVAs Brain Institute, and are research collaborators.

In his studies, Grainger uses frogs that are mutated to mimic aniridia and other eye disorders. Netland treats congenital eye disorders and conducts clinical research.

Here, the two colleagues explain for UVA Today readers their research and the goals of the 2019 John F. Anderson Symposium, Aniridia-PAX6 and Beyond

Q. Why did you organize this particular kind of symposium, connecting how eyes develop before birth and genetic diseases that can follow?

Grainger: Each of us works on different perspectives concerning eye formation. In my lab, we focus on how the eye is constructed during embryonic development; in Peter Netlands practice, on how to treat diseases that affect these processes.

These are complementary approaches two sides of the same coin. In one case we focus on the assembly of the eye, and in the other, what occurs when the eye is not constructed properly, leading to multiple serious consequences for the patient.

This interplay highlights the importance of looking at these two perspectives together, a collaboration in this case between the two of us (one in the School of Medicine and the other in the College of Arts & Sciences) each providing insights for the other.

Netland: The value of this kind of interaction has motivated us to bring together many of the worlds experts who pursue these two perspectives, including as well a third group: patients and their families who want to learn more about these diseases and treatments. There are few meetings held with this sort of three-way interaction in mind, and we anticipate that many fruitful insights and collaborations will emerge.

Q. Dr. Netland, why is aniridia an area of particular interest to you?

Netland: More than 20 years ago, I spent an extended period of time in the Middle East and India, where there are high rates of consanguinity and congenital eye disorders, which led to a book I produced about pediatric glaucomas, other scholarly contributions and development of my clinical skills. About 20 years ago, I cared for an infant with aniridia and the family of that patient. The potentially disabling issues for the patient, which involved all parts of the eye, and the compelling issues that the family were dealing with drew me toward this condition.

Another patient was very influential to me, because she was a patient advocate and mother of an affected child. I began to see increasingly larger numbers of patients with congenital eye disorders and aniridia, and I developed further clinical and academic interests in the topic.

Around 20 years ago, we started biannual meetings with the patient advocacy group Aniridia Foundation International, and developed connections with other patient support groups, which helped shape the direction of our efforts. With increasing contact with the patients and their families, I became deeply interested in trying to help these patients.

About 20 years ago, I cared for an infant with aniridia and the family of that patient. The potentially disabling issues for the patient, which involved all parts of the eye, and the compelling issues that the family were dealing with drew me toward this condition.

- Dr. Peter Netland

This is a disease that results from damage to the gene PAX6, already known to be perhaps the most fundamental gene involved in eye formation overall and consequently affecting the entire visual system. However, we knew much less about how to treat the many facets of this disorder; for example, cataract, glaucoma and corneal opacification (scarring), which are frequently acquired by patients. Some of these problems are common in the general population, and have broad significance. Many advances have been made in the past, but there is much more progress that is needed for the future.

Q. Why do you use frogs in your eye research, Professor Grainger?

Grainger: We have been examining eye development in frog embryos for over 20 years in my lab, initially because so much embryology, going back to the beginning of the 20th century, was done on these large, easy-to-obtain-and-raise embryos.

In the early days, we were learning how the different parts of the eye, notably the lens and retina, are formed by interactions between parts of the embryo to form a coordinated whole organ exactly the interactions that are disturbed when things go awry in aniridia patients.

Q. Six years ago the Grainger lab developed a gene-editing technique that allows you to mimic human lesions. How is this advancing eye research?

Grainger: While the utility of the frog system for understanding embryological processes is undisputed, during the decades that we have been doing research, the techniques allowing us to manipulate and understand gene function have blossomed, including genome projects and more recently gene editing the ability to inactivate genes of interest to learn how they function during normal development.

In 2013, we published our first paper using this new technology to inactivate genes critical for eye formation in frogs and to follow in precise detail how things go awry. This has allowed us to make important clarifications in how these genes contribute to development of the eye. Because the frog eye develops much as the human eye, these mutations help us look in detail in a way not feasible in human embryos; thereby allowing us to understand how these genetic errors lead to the problems that occur in human patients. Specifically, we have made mutations in frogs in the PAX6 gene that lead to frogs having aniridia, with features of the animals strikingly similar to those in human patients.

These are complementary approaches two sides of the same coin. In one case we focus on the assembly of the eye, and in the other, what occurs when the eye is not constructed properly, leading to multiple serious consequences for the patient.

- Robert Grainger

Q. What kind of clinical research and therapies are UVA conducting that connect with the basic research?

Netland: We have looked at many of the vision-threatening eye problems in our aniridia patients. We have also found that their mutation is linked with obesity, and have performed clinical trials to evaluate the causes of this. We have performed studies to better understand the mechanisms for some of their clinical problems, such as glaucoma.

We are excited about precision medicine trials identifying patients who can benefit from a specific gene-based therapy and we recently completed a two-year clinical trial evaluating targeted gene therapy. In parallel, similar problems are under study in the frog to complement and build on the work with human patients.

Q. What future do you see for patients with eye disease as this research moves forward?

Netland: We are working with patients with known mutations of a specific gene, so naturally we are excited about precision medicine approaches to these patients. We believe that genetic-based approaches will continue to increase understanding of these diseases and will provide the basis for rational therapy for affected patients, and more broadly for others in the general population who are suffering from the same clinical problems. We believe that new imaging techniques will produce new insights in this area.

Grainger: In the frog, our lab has developed a method for efficiently creating exact patient mutations, again amplifying the opportunities for an integrated approach to precision medicine. There are opportunities with in situ gene modification and other gene-based therapies for addressing problems and improving the quality of life of patients.

See the original post here:
Patients, Physicians and Researchers Gather to Probe Genetic Eye Disorders - University of Virginia

Shape Therapeutics, Inc. Raises $35.5M Series A Financing, Led by NEA and Announces the Formation of a World-Class Scientific Advisory Board, to…

These platforms include the proprietary ShapeTx RNAfix technology that enables direct in vivo targeting and modification of RNA by leveraging proteins such as Adenosine Deaminases Acting on RNA (ADARs), suppressor tRNAs, and engineered adeno-associated viruses (AAVs). The RNAfix platform differentiates from other contemporary genome engineering technologies by engaging natural human cellular machinery to modify RNA.

ShapeTx was founded on the work of Dr. Prashant Mali, Assistant Professor of Bioengineering at UCSD, who during his postdoctoral fellowship in the George Church laboratory at Harvard Medical School pioneered the use of CRISPR in human cells. ShapeTx RNAfix platform is built upon his lab's most recent work demonstrating in vivo use of guide RNAs to recruit native ADARs and to fix mutations in multiple rare genetic disease mouse models.

Our technology can correct mutations or target specific genes in neurodegenerative, oncology, metabolic and rare genetic disorders by hijacking naturally occurring proteins such as ADARs present in our cells using just a short guide RNA. Our proprietary new platform avoids the risk of in vivo immunogenicity and permanent off-target damages commonly associated with CRISPR-based approaches, explained Francois Vigneault, Ph.D., President and CEO, who was previously VP of Research at Juno Therapeutics after a successful co-acquisition of AbVitro, Inc. by Juno and Celgene.

Ed Mathers, Partner at NEA and Board member at ShapeTx, said, One rarely comes across a proprietary technology platform with such transformative potential led by a focused and data-driven scientific group with a successful track record in pre-clinical and clinical development. The team has shown us an exciting demonstration of the technology in multiple in vivo models, alongside one of the strongest IP estates we have seen in the field. NEA looks forward to backing the company in future rounds as they move the technology toward the clinic.

While the ShapeTx platform will be enabling for many other genetic diseases, Dr. Malis in vivo proof of concept in Duchenne Muscular Dystrophy was quite exciting and could potentially lead to a cure for families suffering from such a debilitating disorder, said Debra Miller, CEO and Founder of CureDuchenne and CureDuchenne Ventures.

The ShapeTx Series A financing coincides with the formation of a world-class Scientific Advisory Board comprised of foremost global experts in genomics, bioengineering, and gene editing, including George Church Ph.D., James Collins Ph.D., and Don Cleveland Ph.D. The scientific advisory board will serve as strategic advisors and ensure that the research and development of its platforms meet the highest standards of scientific merit.

Prashant and Francois are some of the most innovative and brilliant individuals that have come through my lab over the years, and it will be impressive to see these two disrupt the field of gene therapy with this paradigm-shifting technology, said Dr. George Church, Professor in Genetics at Harvard Medical School and member of the ShapeTx Scientific Advisory board.

Shape Therapeutics Scientific Advisory Board Members:

George Church, Ph.D.

George Church Ph.D., world-famous geneticist, molecular engineer, and chemist. He developed the methods used for the first genome sequence & million-fold cost reductions since, as well as pioneered many of the CRISPR advances in genome editing. He is currently a Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT). He is Director of the U.S. Department of Energy Technology Center and Director of the National Institutes of Health Center of Excellence in Genomic Science. He has received numerous awards, including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute and election to the National Academy of Sciences and Engineering.

James Collins, Ph.D.

James Collins Ph.D., is one of the pioneers of the field of synthetic biology and has made multiple synthetic biology and bioengineering breakthroughs in biotechnology and biomedicine. He serves as the Termeer Professor of Medical Engineering & Science and Professor of Biological Engineering at MIT, as well as a member of the Harvard-MIT Health Sciences & Technology Faculty, and core member of the Wyss Institute. His many awards include a Rhodes Scholarship, a MacArthur Genius Award, a National Institutes of Health Directors Pioneer Award. Jim is also an elected member of the National Academy of Sciences, the National Academy of Engineering, the National Academy of Medicine, the American Academy of Arts & Sciences, as well as a charter fellow of the National Academy of Inventors.

Don Cleveland Ph.D.

Don Cleveland Ph.D. is an award-winning inventor and pioneer in the field of Antisense Oligonucleotide (ASO) and their uses in gene therapy. He was recently awarded the Breakthrough Prize in Life Sciences for his work on the pathogenesis of disease and ASO-mediated treatment approaches in ALS and Huntingtons disease. Don is currently Professor of Medicine and Department Chair of Cellular and Molecular Medicine and Neurosciences at the University of California at San Diego, and Head, Laboratory for Cell Biology at the San Diego branch of Ludwig Cancer Research. He has made pioneering discoveries on the mechanisms of chromosome movement and cell-cycle control during normal cellular division, as well as the principles of neuronal cell development and the relationship to defects that contribute to inherited neurodegenerative disease.

About Shape Therapeutics, Inc.

Shape Therapeutics, Inc. is creating the worlds leading RNA and protein targeting platforms focused on the cure of human diseases. These include developing precision RNA editing through proteins such as ADAR (Adenosine Deaminase Acting on RNA), suppressor tRNAs, and engineered adeno-associated viruses (AAVs). The RNAfix technology allows for the editing of RNA using natural human cellular machinery, limiting the risk associated with immunogenicity, cellular toxicity, or off-target DNA editing. The teams founders include Prashant Mali, Ph.D., Francois Vigneault, Ph.D., and John Suliman. ShapeTx is headquartered in Seattle, Washington, with a satellite site opening in Cambridge, Massachusetts. For additional information, visit http://www.ShapeTx.com.

About NEA

New Enterprise Associates, Inc. (NEA) is a global venture capital firm focused on helping entrepreneurs build transformational businesses across multiple stages, sectors, and geographies. With more than $20 billion in cumulative committed capital since the firm's founding in 1978, NEA invests in technology and healthcare companies at all stages in a company's lifecycle, from seed stage through IPO. The firm's long track record of successful investing includes more than 225 portfolio company IPOs and more than 375 acquisitions. For additional information, visit http://www.nea.com.

About CureDuchenne Ventures

CureDuchenne Ventures supports Duchenne research by using philanthropic donations to encourage the development of new Duchenne drugs. Through an impact financing model, we can provide equity or royalty financing to biotech and pharmaceutical companies. CureDuchennes portfolio includes 16 wide-ranging projects with several successful exits. Investments from CureDuchenne Ventures have successfully de-risked and leveraged more than $2.3 billion in follow-on financing from venture capital, biotech, and pharmaceutical companies to fund emerging projects to find treatments for Duchenne. For additional information, visit https://www.cureduchenne.org/ventures/.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191105005443/en/

View original post here:
Shape Therapeutics, Inc. Raises $35.5M Series A Financing, Led by NEA and Announces the Formation of a World-Class Scientific Advisory Board, to...

The Alliance for Regenerative Medicine Releases Q3 2019 Sector Report, Highlighting Industry Trends and Metrics – BioSpace

WASHINGTON, D.C., Nov. 05, 2019 (GLOBE NEWSWIRE) -- via NEWMEDIAWIRE -- The Alliance for Regenerative Medicine (ARM) today released its most recent quarterly sector report, offering an in-depth look at cell therapy, gene therapy, tissue engineering, and broader global regenerative medicine sector trends and metrics in the third quarter of 2019.

By further curating information provided by ARMs data partner Informa, the quarterly sector report details industry-specific statistics compiled from 959 cell therapy, gene therapy, tissue engineering, and other regenerative medicine therapeutic developers worldwide, including total financings, partnerships and other deals, clinical trial information, key clinical data events, and ARMs current strategic priorities.

Amanda Micklus, a senior consultant for Pharma Intelligence at Informa, provided an overview of the commercial, clinical, and regulatory environment in the third quarter of 2019. The report also features commentary from founding members of ARM in honor of the organizations 10-year anniversary. Excerpts from panels at ARMs 2019 Meeting on the Mesa included in the report highlight the continued progress and innovation in the sector.

Highlighted findings from the Q3 2019 data report include:

ARM will continue to update this information through new reports to be released after the close of each quarter, tracking sector performance, key financial information, clinical trials by phase, and significant clinical data events.

The report isavailable online here, with interactive data and downloadable graphics from the reportavailable here. For more information, please visitwww.alliancerm.orgor contact Lyndsey Scull at lscull@alliancerm.org.

About the Alliance for Regenerative Medicine

The Alliance for Regenerative Medicine (ARM) is an international multi-stakeholder advocacy organization that promotes legislative, regulatory and reimbursement initiatives necessary to facilitate access to life-giving advances in regenerative medicine worldwide. ARM also works to increase public understanding of the field and its potential to transform human healthcare, providing business development and investor outreach services to support the growth of its member companies and research organizations. Prior to the formation of ARM in 2009, there was no advocacy organization operating in Washington, D.C. to specifically represent the interests of the companies, research institutions, investors and patient groups that comprise the entire regenerative medicine community. Today, ARM has more than 350 members and is the leading global advocacy organization in this field. To learn more about ARM or to become a member, visithttp://www.alliancerm.org.

Lyndsey Scull202 213 7086lscull@alliancerm.org

Read more:
The Alliance for Regenerative Medicine Releases Q3 2019 Sector Report, Highlighting Industry Trends and Metrics - BioSpace

Steve Kafka joins Section 23 as managing partner; Takeda auctions off $660M drug portfolio in bid to reduce post-Shire M&A debt load – Endpoints News

Former Thrive CEO and partner at Third Rock Ventures, Steve Kafka, has hopped aboard Section 23 as a managing partner. Within his new role, Kafka will focus on supporting and expanding the firms investment portfolio and presence in Boston. Currently, Kafka serves as the executive chairman at Thrive and at ArcherDX and he will continue to serve within these roles. Kafkas previous stints include roles as president and COO at Foundation Medicine and serving in positions at Aileron Therapeutics, Infinity Pharmaceuticals, Millennium Pharmaceuticals, Strategic Decisions Group and Forrester Research.

Takeda has grabbed $660 million to help pay down the big debt it took on to buy Shire. Germanys Stada is picking up the portfolio of pharmaceuticals including OTC products in the deal, which marks Takedas 4th auction since closing the Shire buyout. Takeda has garnered $6.5 billion of the $10 billion its set its sights on for debt reduction.

High-flying Chinese biotech BeiGene $BGNE has licensed Asian rights to a preclinical cancer drug out of Seattle Genetics. There are no specifics on what this drug is, but Seattle Genetics stands to earn up to $160 million from BeiGene if it pans out. They didnt break out the upfront. Seattle Genetics $SGEN is hanging on to US rights for this therapy.

Engitix, Inchas been awarded with a golden ticket providing one year of lab bench space and shared laboratory and office space to LabCentral by Takeda Pharmaceutical. The company says that the golden ticket will help further advance its human extracellular matrix (ECM) research in fibrosis and solid tumors disease progression.

CODA Biotherapeutics developing a chemogenetic gene therapy platform to treat intractable neurological diseases has closed its Series A financing round, bagging a total raised amount of $34 million. The companys existing investor, Versant Ventures, led the round and was joined by existing investors MPM Capital and Astellas Venture Management.

Allogene and immune cell therapy company, Notch Therapeutics, have entered into an exclusive worldwide collaboration and license agreement to research and develop induced pluripotent stem cell (iPSC) AlloCAR therapy products for initial application in non-Hodgkin lymphoma, leukemia and multiple myeloma. Under the partnership, the companies will create allogeneic cell therapy candidates from T cells or natural killer (NK) cells using Notchs Engineered Thymic Niche (ETN) platform. The collaboration comes two months after Allogene teamed up with researchers from Stanford University to investigate a nucleic acid delivery system that more effectively, safely and flexibly delivers intracellular RNA or DNA into lymphocytes, including T cells.

Black Belt TX and Praxis Biotech are teaming up in a strategic partnership to discover and develop new small molecule therapeutics to undisclosed targets which are aimed atmodulating key control mechanisms in the stress response pathways in cancer.

As reported by Business Quarter (BQ), Oxford Drug Design has bagged 2.2 million in a financing round. The round was led by new and existing investors the Angel CoFund and o2h Ventures along with grant funding from the UK Department of Health and Social Cares UK-China research competition. This brings the companys total 2019 funding to over 9m.

Read more here:
Steve Kafka joins Section 23 as managing partner; Takeda auctions off $660M drug portfolio in bid to reduce post-Shire M&A debt load - Endpoints News

RESTORE Consortium to Host the 1st Advanced Therapies Science Meeting, Aiming to Translate Promising Research into a Game Changer in Healthcare -…

HAIFA, Israel, Nov. 04, 2019 (GLOBE NEWSWIRE) -- Pluristem Therapeutics Inc. (PSTI) (PSTI), a leading regenerative medicine company developing novel placenta-based cell therapy products, today announced that the RESTORE Consortium is hosting its 1st Advanced Therapies Science Meeting (ATSM), which is being held November 25-26, 2019 in Berlin. As a leading member of the large-scale research initiative, Pluristem, along with additional respected members, is committed to accelerating the availability of advanced therapies to all those in need, a main motivation standing behind RESTORE.

Led by Charit-Universittsmedizin Berlin, and coordinated by Professor Hans-Dieter Volk from the BIH-Center for Regenerative Therapies in Berlin, RESTORE aims to promote groundbreaking research, drive Europe to the forefront in advanced therapies and deliver a pipeline of potentially transformative cures to patients in need. Advanced Therapies are a potential game changer in health care, aiming to shift our focus from chronic treatment of disease to regeneration of health, said Prof. Volk. We are determined to translate promising research findings into safe therapies, and we are working across disciplines and national borders in order to achieve this goal. The 1st Advanced Therapies Science Meeting provides the opportunity to discuss the still numerous obstacles in the way of implementing these promising therapies in routine clinical care.

This initiative may hold the key for changing the approach towards medicine in Europe, and advancing solutions for patients in need, said Zami Aberman, Executive Chairman of Pluristem. The European Commission is poised to make a significant investment of up to 1 billion in a consortium of companies that can drive forward the development of novel regenerative therapies, and we are pleased to be a leading part in this effort. Given our proprietary cell manufacturing technology and broad, late-stage pipeline, we believe we can play a key role toward making the transforming promise of advanced therapies into a reality.

The 1st ATSM will bring together experts from industry, patient organizations and academia to discuss the challenges within the field of advanced therapies, which include gene and cell therapies and tissue-engineering approaches. The ATSM is focused on trying to drive forward a concerted interdisciplinary effort, making use of science, infrastructure and funding within Europe to make regenerative therapies available to the broadest possible patient population.

The two-day program will include talks from Nobel Prize winner Ada Yonath (Director of Weizmann Institute of Science, Israel), Michele De Luca (University of Modena, Italy), Timothy OBrien (National University of Ireland, Galway, Ireland), Maksim Mamonkin (Baylor College of Medicine, USA), Manuela Gomes (University of Minho, Portugal) and others.

RESTORE partners include the Charit Universittsmedizin Berlin and Berlin Institute of Health (Germany), the University of Zurich (Switzerland), Cell and Gene Therapy Catapult (United Kingdom), TissUse GmbH (Germany), Pluristem (Israel), Miltenyi Biotec GmbH (Germany), INSERM Institut National de la Sant et de la Recherche (France), Innovation Acta S.r.l. (Italy), Fondazione Telethon Milan (Italy), and the University of Minho (Portugal).

About Pluristem TherapeuticsPluristem Therapeutics Inc. is a leading regenerative medicine company developing novel placenta-based cell therapy product candidates. The Company has reported robust clinical trial data in multiple indications for its patented PLX cell product candidates and is currently conducting late stage clinical trials in several indications. PLX cell product candidates are believed to release a range of therapeutic proteins in response to inflammation, ischemia, muscle trauma, hematological disorders and radiation damage. The cells are grown using the Company's proprietary three-dimensional expansion technology and can be administered to patients off-the-shelf, without tissue matching. Pluristem has a strong intellectual property position; a Company-owned and operated GMP-certified manufacturing and research facility; strategic relationships with major research institutions; and a seasoned management team.

Story continues

Safe Harbor StatementThis press release contains express or implied forward-looking statements within the Private Securities Litigation Reform Act of 1995 and other U.S. Federal securities laws. For example, Pluristem is using forward-looking statements when it discusses the potential for the RESTORE Consortium to receive up to a 1 billion award by the European Commission and the timing of the potential award, that RESTOREs aim is to promote groundbreaking research, drive Europe to the forefront in advanced therapies and deliver a pipeline of potentially transformative cures to patients in need, that RESTORE and the 1st ATSM may hold the key for changing the approach towards medicine in Europe, and advancing solutions for patients in need, and its belief that given its proprietary cell manufacturing technology and broad, late-stage pipeline, it believes it can play a key role toward making the transforming promise of advanced therapies into a reality. These forward-looking statements and their implications are based on the current expectations of the management of Pluristem only, and are subject to a number of factors and uncertainties that could cause actual results to differ materially from those described in the forward-looking statements. The following factors, among others, could cause actual results to differ materially from those described in the forward-looking statements: changes in technology and market requirements; Pluristem may encounter delays or obstacles in launching and/or successfully completing its clinical trials; Pluristems products may not be approved by regulatory agencies, Pluristems technology may not be validated as it progresses further and its methods may not be accepted by the scientific community; Pluristem may be unable to retain or attract key employees whose knowledge is essential to the development of its products; unforeseen scientific difficulties may develop with Pluristems process; Pluristems products may wind up being more expensive than it anticipates; results in the laboratory may not translate to equally good results in real clinical settings; results of preclinical studies may not correlate with the results of human clinical trials; Pluristems patents may not be sufficient; Pluristems products may harm recipients; changes in legislation may adversely impact Pluristem; inability to timely develop and introduce new technologies, products and applications; loss of market share and pressure on pricing resulting from competition, which could cause the actual results or performance of Pluristem to differ materially from those contemplated in such forward-looking statements. Except as otherwise required by law, Pluristem undertakes no obligation to publicly release any revisions to these forward-looking statements to reflect events or circumstances after the date hereof or to reflect the occurrence of unanticipated events. For a more detailed description of the risks and uncertainties affecting Pluristem, reference is made to Pluristem's reports filed from time to time with the Securities and Exchange Commission.

Follow this link:
RESTORE Consortium to Host the 1st Advanced Therapies Science Meeting, Aiming to Translate Promising Research into a Game Changer in Healthcare -...

Krystal Biotech Reports Third Quarter 2019 Financial and Operating Results – Yahoo Finance

Alignment With FDA on GMP Commercial Manufacturing Process for KB103 (Bercolagene telserpavec, B-VEC)KB105 Granted Fast Track Designation by the FDAPlatform Patent for Delivering any Effector to the Skin Granted by USPTO

PITTSBURGH, Nov. 04, 2019 (GLOBE NEWSWIRE) -- Krystal Biotech Inc., (Krystal) (KRYS), a gene therapy company developing medicines to treat dermatological diseases, announced financial results for third quarter 2019, recent corporate highlights and upcoming milestones.

"Following our CMC meeting, we believe we have a scalable GMP commercial process in place to fulfill future patient demand and anticipate a modest impact to our previously disclosed B-VEC timeline, said Krish S. Krishnan, chairman and chief executive officer of Krystal Biotech. We plan on announcing our agreement with the FDA on trial design and endpoints prior to initiating the B-VEC pivotal trial.

Corporate Highlights

CMC alignment and End of Phase 2 meeting

Positive results from Phase 1/2 trial of B-VEC

KB105

Patents

Pipeline

Financial results for the quarter endedSeptember 30, 2019

For additional information on the Companys financial results for the quarter ended September 30, 2018, refer to form 10-Q filed as with the SEC.

About KB103KB103 is Krystals lead product candidate, currently in clinical development, seeks to use gene therapy to treat dystrophic epidermolysis bullosa, or DEB, an incurable skin blistering condition caused by a lack of collagen in the skin.KB103 is a replication-defective, non-integrating viral vector that has been engineered using the HSV-1 virus employing Krystals STAR-D platform to deliver functional human COL7A1 genes directly to the patients dividing and non-dividing skin cells.Krystals vector can penetrate skin cells more efficiently than other viral vectors.Its high payload capacity allows it to accommodate large or multiple genes and its low immunogenicity makes it a suitable choice for direct and repeat delivery to the skin.

About Dystrophic Epidermolysis Bullosa, or DEBDystrophic epidermolysis bullosa, or DEB, is an incurable, often fatal skin blistering condition caused by a lack of collagen protein in the skin. It is caused by mutations in the gene coding for type VII collagen, or COL7, a major component of the anchoring fibrils, which anchor the epidermis to the underlying dermis, and provide structural adhesion in a normal individual. The lack of COL7 in DEB patients causes blisters to occur in the dermis as a result of separation from the epidermis.This makes the skin incredibly fragile, leading to blistering or skin loss at the slightest friction or knock. It is progressive and incredibly painful.

The most severe form of DEB is recessive DEB, or RDEB, which is caused by null mutations in the COL7A1 gene.DEB also occurs in the form of dominant DEB, or DDEB, which is considered to be a milder form of DEB.There are no known treatments which affect the outcome of either form of the disease, and the current standard of care for DEB patients is limited to palliative treatments.Krystalis developing KB-103 for the treatment of the broad DEB population, including both recessive and dominant forms of the disease.

About KB105KB105 is Krystals second product candidate, currently in clinical development, seeks to use gene therapy to treat patients with TGM-1 deficient ARCI. KB105 is a replication-defective, non-integrating viral vector that has been engineered employing Krystals STAR-D platform to deliver functional human TGM-1 gene directly to the patients dividing and non-dividing skin cells.

About Autosomal Recessive Congenital IchthyosisTransglutaminase 1 (TGM-1) is an essential epidermal enzyme that facilitates the formation of the epidermal barrier, which prevents dehydration, and protects the skin from unwanted toxins and surface microorganisms. The loss of TGM-1-activity results in the severe genetic skin disease autosomal recessive congenital ichthyosis (ARCI). Most patients with a TGM-1-deficiency exhibit life-long pronounced scaling with increased trans epidermal water loss (TEWL). The scales are plate-like, often of a dark color, and cover the whole-body surface area. Erythroderma is either absent or minimal. Such patients usually have ectropion and, at times, eclabium, hypoplasia of joint and nasal cartilage, scarring alopecia, especially at the edge of the scalp, and palmoplantar keratoderma. Additional complications include episodes of sepsis, fluid and electrolyte imbalances due to impaired skin barrier function, and failure to thrive, especially during neonatal period and infancy. Severe heat intolerance, and nail dystrophy are also frequently observed. TGM-1-deficient ARCI is associated with increased mortality in the neonatal period and has a dramatic impact on quality of life. No efficient treatment is available; current therapy only relieves some symptoms. There are approximately 23,000 cases of TGM1 deficient ARCI worldwide and about 400 new cases per year globally.

Story continues

About the STAR-D Gene Therapy PlatformKrystalhas developed a proprietary gene therapy platform, the Skin TARgeted Delivery platform, or STAR-D platform, that consists of an engineered HSV-1 viral vector and skin-optimized gene transfer technology, to develop off-the-shelf treatments for dermatological diseases. We believe that the STAR-D platform provides an optimal approach for treating dermatological conditions due to the nature of the vector. Certain inherent features of the HSV-1 virus, combined with the ability to strategically modify the virus in the form employed as a gene delivery backbone, provide the STAR-D platform with several advantages over other viral vector platforms for use in dermatological applications.

AboutKrystal BiotechKrystal Biotech, Inc.(KRYS) is a gene therapy company dedicated to developing and commercializing novel treatments for patients suffering from dermatological diseases. For more information, please visithttp://www.krystalbio.com.

Forward-Looking StatementsThis press release includes certain disclosures that contain forward-looking statements, including, without limitation, statements regarding development timelines for KB103, the ability of KB103 to be a transformative treatment option for DEB patients and the ability of our Ancoris manufacturing facility to supply KB103 for the forthcoming clinical trial . You can identify forward-looking statements because they contain words such as anticipate, believes and expects. Forward-looking statements are based on Krystals current expectations and assumptions. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that may differ materially from those contemplated by the forward-looking statements, which are neither statements of historical fact nor guarantees nor assurances of future performance. Important factors that could cause actual results to differ materially from those in the forward-looking statements are set forth in Krystals filings with theSecurities and Exchange Commission, including its registration statement on Form S-3, and in its Forms 10-K and 10-Q, as modified or supplemented from time to time, under the caption Risk Factors.

CONTACTS:

Investors:Ashley R. RobinsonLifeSci Advisorsarr@lifesciadvisors.com

Media:Darren Opland, PhD LifeSci Public Relationsdarren@lifescipublicrelations.com

Source: Krystal Biotech, Inc.

Read the rest here:
Krystal Biotech Reports Third Quarter 2019 Financial and Operating Results - Yahoo Finance

CNS Gene Therapy Market: Potential and Niche Segments, Geographical regions and Trends 2018 2028 – Health News Office

Worldwide Market Report:

Acquire Market introduced a new title on the Global Garden and Conservatory Furniture Research Report from its database. The report presents the up to date and useful market insights revealing the product definition, product type, and variety of applications. The report broadcasts a study with an in-depth overview, describes the product/industry scope, presents market outlook. The study of Garden and Conservatory Furniture product manufacturers which contribute to the higher market share satisfying the consumer demands and supply will reflect huge growth in the coming years. The report serves a competition analysis of top manufacturers with revenue, volume, price, market share, and the top players.

Request for free sample report @ https://www.acquiremarketresearch.com/sample-request/208489/

Furthermore, the Garden and Conservatory Furniture Market growth opportunities, key growth drivers, analysis of top competitors, threats & risks to the market growth are also highlighted in this report. The main objective of the report is to help users to achieve ecological growth in their particular areas. The report classifies the market on the basis of product, end-user, and geographical regions to make a report more useful. The report is based on geographical regions covering North America, Europe, China, Japan, Southeast Asia, India.

Manufacturer Detail: Yotrio Corporation, Brown Jordan, Agio International Company Limited, DEDON, KETTAL, Gloster, The Keter Group, Linya Group, Tuuci, MR DEARM, HIGOLD, Artie, Lloyd Flanders, Rattan, Emu Group, Barbeques Galore, COMFORT, Fischer Mobel GmbH, Royal Botania, Homecrest Outdoor Living, Hartman, Trex Company (Polyx Wood), Treasure Garden Incorporated, Patio Furniture Industries

Product Type Segmentation: Metal, Plastic, Wood, Textile

Industry Segmentation: Residential, Commercial

Request a discount on standard prices of this premium report @ https://www.acquiremarketresearch.com/discount-request/208489/

Garden and Conservatory Furniture Market

Global Garden and Conservatory Furniture Competitive Landscape and Segmentation:

The Garden and Conservatory Furniture market research offers analyzation on SWOT, company profile related to the market players as well as evaluates the market size. Additionally, the report offers a competitive outline covering recent developments, financial details, industry policies, import and export scenarios, product picture, production chain, and production capacity. The long-term and short-term strategies adopted by market players are highlighted in detail.

The regional coverage enfolds production, consumption Garden and Conservatory Furniture industry chain structure, market growth rate over the upcoming years. The growing demand for the market is well-established and developing regions, the increasing penetration of the end-user industries, and the latest technological developments are all together driving the growth of the market. Moreover, the report does the feasibility study, inspects the data sources, barriers and valuable conclusions.

Key Market Highlights:The market growth factors and trends, the report studies each market section and sub-section.The report represents the recent advancement and technological development.The in-depth analysis lets the reader organize the profit-making business technique.

Access full report @ https://www.acquiremarketresearch.com/industry-reports/garden-and-conservatory-furniture-market/208489/

The Garden and Conservatory Furniture business forecast study in terms of each volume and analysis outcome could be a final portion of this report.

In the end, Garden and Conservatory Furniture Market Report delivers a conclusion that includes Breakdown and Data Triangulation, Consumer Needs/Customer Preference Change, Research Findings, Market Size Estimation, Data Source. These factors will increase the business overall.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like Asia, United States, Europe.

Continue reading here:
CNS Gene Therapy Market: Potential and Niche Segments, Geographical regions and Trends 2018 2028 - Health News Office

Cystic Fibrosis Foundation rolls out $500 million cures initiative – STAT

Last week, the cystic fibrosis community celebrated the approval of a new drug from Vertex (VRTX) Pharmaceuticals, a decision that offers the large majority of patients access to cutting-edge treatments.

Those treatments, however, dont cover patients with certain rare mutations. And they are not cures for anyone.

Seeking to address those issues, the Cystic Fibrosis Foundation on Wednesday unveiled a $500 million initiative aimed at developing treatments for patients who arent helped by the Vertex drugs and, ultimately, at finding cures for all CF patients. The message is: Despite the success, there is still work to be done.

advertisement

Its not the entire story, Dr. Michael Boyle of the Cystic Fibrosis Foundation said about the Vertex therapies. The rest of the story is: How are we going to make sure there are treatments for the underlying cause of CF for 100% of patients?

The new Path to a Cure plan, which was announced ahead of the foundations North American Cystic Fibrosis Conference taking place later this week in Nashville, will fund some basic research. But Boyle, the foundations senior vice president of therapeutics development, said the majority of the money will go to support clinical programs.

The $500 million will be doled out through 2025, said Boyle, who is taking over as CEO of the foundation come January.

Cystic fibrosis is a progressive disease that damages the lungs, along with other organs, and can ultimately lead to respiratory failure. It occurs when mutations in the CFTR gene form a dysfunctional version of a protein, also called CFTR, setting off a cascade that ends with mucus clogging the lungs and frequent infections.

Vertexs drugs, the first of which was approved in 2012, have changed the landscape for patients with more common CF-causing mutations. (There are more than 1,700 mutations in the CFTR gene that cause the disease.) The latest medication, Trikafta, is a combination of three therapies that extends the reach of the drugs to an estimated 90% of patients.

All of thedrugs, called modulators, work by tweaking the location and shape of the CFTR protein to get it to function properly.

The bulk of the patients who do not respond to the modulators have CF caused by nonsense mutations (also called stop or X mutations), which fail to generate a version of CFTR close enough to the healthy form for modulators to coax activity from.

Given the urgency of the situation and the fact that unfortunately the research and drug development for nonsense mutations lags so far behind, we need to be throwing our efforts into a ton of different approaches and pursuing all of them with the same intensity and vigor, said Emily Kramer-Golinkoff, who has nonsense mutation-caused CF and, with her family, started Emilys Entourage to help develop treatments for patients with nonsense mutations.

The modulators also do not work on some rare CF mutations; in others they have not been tested.

Hispanic CF patients more frequently have these uncommon mutations and, as a result, many have been left without modern therapies, said Dr. Meghan McGarry, a pediatric pulmonologist at the University of California, San Francisco. She estimated that two-thirds of Hispanic patients have mutations targeted by the Vertex drugs, compared to 90% of patients generally.

For the patients where [modulators] work, its amazing, said McGarry, who has received funding from the Cystic Fibrosis Foundation before. But theres a whole group where they dont work.

The CF Foundations plan outlines a number of clinical approaches that it intends to support. Some, including an approach called a readthrough therapy, would be specific to nonsense mutations. But others, including those involving RNA and DNA, would be mutation agnostic, meaning they would work for all CF patients.

While modulators have been transformative for some patients, they are not cures. Gene therapies (delivering a healthy CFTR gene with the help of a harmless virus) or gene editing with tools like CRISPR have potential as one-time therapies that can permanently overcome the underlying mutation, so patients would no longer need to take modulators or other drugs.

Some of the foundations funding will also go toward researching how to deliver therapies. Lung cells are difficult targets for two reasons, Boyle said: First, they are more primed than others to attack anything that appears foreign which could extend to genetic therapies making their way into the cells. And second, lung cells turn over frequently, so the treatments would need to reach the cells that make lung cells to deliver a lasting benefit.

The lungs are more challenging than tissues like bone marrow or the liver, Boyle said.

Read this article:
Cystic Fibrosis Foundation rolls out $500 million cures initiative - STAT

SCD, HIV Gene Therapy Efforts Get $200M from NIH, Gates Foundation – Sickle Cell Anemia News

The National Institutes of Health (NIH) and the Bill & Melinda Gates Foundation will each invest $100 million over the next four years to speed the development of affordable gene therapies for sickle cell disease (SCD) and the human immunodeficiency virus (HIV) on a global scale.

This unprecedented collaboration focuses from the get-go on access, scalability and affordability of advanced gene-based strategies for sickle cell disease and HIV to make sure everybody, everywhere has the opportunity to be cured, not just those in high-income countries, said NIH Director Francis S. Collins, MD, PhD.

Seventy-five percent of babies born with SCD live in sub-Saharan Africa. It is hoped that experimental gene therapies would advance to clinical trials in the United States and relevant African countries within the next seven to 10 years, and that safe, effective, and inexpensive gene therapies be made available globally, including in low-resource settings where the cost and complexity of these therapies make them inaccessible to many.

In recent years, gene-based treatments have been groundbreaking for rare genetic disorders and infectious diseases, Trevor Mundel, MD, PhD, president of the global health program at the Bill & Melinda Gates Foundation said in a news release.

While these treatments are exciting, people in low- and middle-income countries do not have access to these breakthroughs. By working with the NIH and scientists across Africa, we aim to ensure these approaches will improve the lives of those most in need and bring the incredible promise of gene-based treatments to the world of public health, he added.

Hemoglobin is the protein in red blood cells that binds oxygen, allowing oxygen to be transported around the body. Mutations in the HBBgene, which encodes a component of hemoglobin, result in the formation of sickle hemoglobin that causes sickle cell anemia.

Currently, gene therapies for SCD involves altering the patients own hematopoietic stem cells (bone marrow cells that divide and specialize to produce blood cells including red blood cells). Genes are introduced into the cells using a modified, harmless virus (known as a viral vector). The cells are then transplanted back into the patient where they will produce healthy red blood cells. Gene therapy has an advantage over a bone marrow transplant, as it circumvents the complications associated with a bone marrow donation.

The first goal of the collaboration between the NIH and the Gates Foundation is to develop an easy-to-administer gene-based intervention to correct the mutations in the HBBgene or deliver a functional gene that will promote the production of normal levels of hemoglobin without the need to extract cells from patients and modify them in the lab before introducing the cells back. However, this strategy, known as in vivotreatment, requires the advancement of more efficient delivery systems that can deliver the gene therapy specifically to hematopoietic stem cells.

A second goal of the collaboration will be to work together with African partners and bring potential therapies to clinical trials.

Further research is required to understand the burden of SCD in sub-Saharan Africa and to screen newborns at high risk for the disease, a task that the National Heart, Lung and Blood Institute (NHLBI) has started to tackle by building the necessary infrastructure for clinical research.

The NIH and the Gates Foundation will help boost this infrastructure to allow point-of-care screening (for example, when infants receive vaccinations), and to initiate a standard of care. This will occur outside of the official collaboration.

Our excitement around this partnership rests not only in its ability to leverage the expertise in two organizations to reduce childhood mortality rates in low-resource countries, but to bring curative therapies for sickle cell disease and HIV to communities that have been severely burdened by these diseases for generations, said Gary H. Gibbons, MD, director of the NHLBI.

A persons health should not be limited by their geographic location, whether rural America or sub-Saharan Africa; harnessing the power of science is needed to transcend borders to improve health for all, he added.

Matshidiso Rebecca Moeti, the regional director for Africa at the World Health Organization said, We are losing too much of Africas future to sickle cell disease and HIV.

Beating these diseases will take new thinking and long-term commitment. Im very pleased to see the innovative collaboration announced today, which has a chance to help tackle two of Africas greatest public health challenges, Moeti added.

Patricia holds her Ph.D. in Cell Biology from University Nova de Lisboa, and has served as an author on several research projects and fellowships, as well as major grant applications for European Agencies. She also served as a PhD student research assistant in the Laboratory of Doctor David A. Fidock, Department of Microbiology & Immunology, Columbia University, New York.

Total Posts: 94

Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.

View post:
SCD, HIV Gene Therapy Efforts Get $200M from NIH, Gates Foundation - Sickle Cell Anemia News

Oregon Researchers ID Monkey Mutations Associated with Rare Blindness in Humans – BioSpace

Researchers identified a mutated gene in three rhesus monkeys that is associated with Bardet-Biedl Syndrome (BBS), a rare genetic disease that causes childhood-onset blindness. The science team indicates it is the first naturally occurring case of a nonhuman primate model of the syndrome and could lead to potential treatments.

The disease also leads to kidney problems, polydactylyextra fingers or toesobesity, hypogonadism, and other symptoms. It occurs in about one in 140,000 to 160,000 births in North America.

There is no cure for Bardet-Biedel Syndrome today, but having a naturally occurring animal model for the condition could help us find one in the future, Martha Neuringer, professor of neuroscience at the Oregon National Primate Research Center at Oregon Health & Science University, told MedicalXpress.

The findings have broader implications than just BBS. BBS is part of a family of diseases called retinitis pigmentosa, a disease of the retina. This larger family of eye diseases affects about one in 3,500 to 4,000 people in the U.S. and Europe.

The research was published in the journal Experimental Eye Research.

The authors note, The development of therapies for retinal disorders is hampered by a lack of appropriate animal models. Higher nonhuman primates are the only animals with retinal structure similar to humans, including the presence of a macula and fovea. However, few nonhuman primate models of genetic retinal disease are known.

One of the first gene therapies approved for use is Spark Therapeutics Luxturna (voretigene neparvovec) for a rare, genetic form of blindness called retinal dystrophy. The eye is a good target for gene therapies because the therapies can be directly injected into the organ, rather than requiring a systemic approach.

The development of Luxturna was built on the discovery of a gene mutation in dogs in the 1990s linked to Lebers congenital amaurosis, which causes blindness.

Neuringers research team hopes their discovery can lead to a similar therapy for BBS.

Neuringer and her research group identified two monkeys that were related and did not have cells key to vision. Colleagues Betsy Ferguson and Samuel Petersen than analyzed the monkeys genomes and found both had a mutation of the BBS7 gene, which is one of at least 14 genes associated with BBS.

Fergusons research has involved sequencing the genomes of 2,000 rhesus macaques at the nonhuman primate research center. She was then able to identify a third monkey with the same mutation. That monkey had serious vision loss when it was identified in 2018. At the time, the monkey was three-and-a-half years old, but it had adapted to its social group to such an extent that the blindness wasnt obvious.

Neuringer and her group are using a National Eye Institute grant to breed more monkeys with the naturally occurring BBS7 mutations, which will provide researchers with more laboratory animals to work with to develop treatments for these diseases.

The BBS genes encode proteins for the function of cilia. Models of BBS have been developed from rodents, fish and roundworms, but they are not as closely related to human eyes as primate models.

One of the common symptoms of BBS in humans is obesity. However, in the monkeys, only one had a body weight considered higher than average. This could be related to other factors, including the development of kidney disease. One of the monkeys also has relatively smaller testicles, but with only three monkeys, its not clear if the mutation is behind these characteristics.

See the rest here:
Oregon Researchers ID Monkey Mutations Associated with Rare Blindness in Humans - BioSpace

SIRION Biotech Continues to Expand into the U.S. Viral Vector Market – Yahoo Finance

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Dr. Carl Christel Heads U.S. Office and Hires Rajesh Panigrahi and Roman Braun

SIRION Biotech International Inc., a wholly-owned subsidiary of SIRION Biotech GmbH in Germany (SIRION), offering the most comprehensive portfolio of custom viral vectors for preclinical studies, today announced that Dr. Carl Christel, PhD, Vice President, U.S. Operations, has relocated to the U.S. to head SIRIONs Cambridge office. Dr. Christel has lived and worked as a molecular biologist on both sides of the Atlantic. After receiving his PhD at the Technical University Munich (Germany), he completed four productive years as postdoctoral fellow at the University of Iowa Carver College of Medicine. With his well-based understanding of molecular physiology and bilingual background, Carl will be a vital connection between SIRIONs German-based headquarters and the U.S. market, ensuring streamlined global communications. In addition, SIRION has hired Rajesh Panigrahi, PhD, and Roman O. Braun, PhD, to further support SIRIONs U.S. clients.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20191031005261/en/

Dr. Panigrahi is an experienced virologist who has devoted over ten years of research to investigating the connection between viruses and certain forms of cancer. As a postdoctoral fellow at UMass Medical School in Worcester, Massachusetts, his research was mainly focused on developing the therapeutic EBV vaccine as well as identifying the best AAV vector for the treatment of EBV lymphomas. With his experience in virology, he joined Sanofi as a scientist, where he was involved in the drug development process. His academic training and research encompass virology, molecular biology, microbiology, biochemistry, and genetics.

Dr. Braun is a scientific leader with broad experience in quantitative research, autoimmunity, cancer, pathogen-host interaction, and vaccine development. He studied in Konstanz, Germany and Bern, Switzerland and graduated with a PhD in Immunology. His experience includes being a postdoctoral fellow in immunology and vaccine development at the Institute for Virology & Immunology in Bern, Switzerland where he developed novel vaccine formulations and systems biological approaches to understand vaccine response in livestock. From there Dr. Braun moved to Harvard Medical School and Childrens Hospital in Boston, Massachusetts and was involved in research to understand inflammatory diseases, cancer, and hematological disorders.

We are laser-focused on delivering the worlds most comprehensive viral vector technology platforms to expedite gene therapy research and advance drug development in the U.S. market, said Dieter Lingelbach, Chief Operating Officer of SIRION Biotech. With Carl leading our Cambridge office, well be especially well positioned to broaden our reach into the U.S. market, and we welcome Rajesh and Roman to the team and look forward to utilizing their expertise to support our existing customers and further drive our international growth.

About SIRION Biotech International Inc.

SIRION Biotech International is a wholly-owned subsidiary of SIRION Biotech GmbH providing custom engineering and manufacturing services of viral vectors for the life sciences industry. SIRION offers one of the worlds most comprehensive viral vector technology platforms based on lenti-, adeno-, and adeno-associated viruses which expedites gene therapy research and advances drug development. Its unique focus on improving transduction efficiencies and safety make SIRION Biotech a valuable technology partner for gene and cell therapy trials. LentiBOOSTTM transduction reagent is actively used to improve, among others, hematopoietic cell transductions in clinical trials. NextGen AAV capsid evolution projects aim to improve tissue targeting and immune escape of capsids to usher in a new generation of therapeutics for international gene therapy companies. http://www.sirion-biotech.com

View source version on businesswire.com: https://www.businesswire.com/news/home/20191031005261/en/

Read more:
SIRION Biotech Continues to Expand into the U.S. Viral Vector Market - Yahoo Finance

bluebird bio Reports Third Quarter 2019 Financial Results and Highlights Operational Progress – Business Wire

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (NASDAQ: BLUE) today reported financial results and business highlights for the third quarter ended September 30, 2019.

During the third quarter we advanced our country-by-country launch plans in Europe and, with the recent approval of the commercial drug product manufacturing specifications for ZYNTEGLO, we moved one step closer to our goal of treating patients suffering from TDT in early 2020, said Nick Leschly, chief bluebird. Also this quarter, we presented updated data from the Phase 2/3 Starbeam study in patients with CALD. To report that patients continued to be free of MFDs at up to five years of follow-up is something were tremendously proud to do for these families, and we look forward to advancing that program in the regulatory process next year. Looking ahead, we plan to provide clinical updates for ZYNTEGLO and across the rest of our portfolio, including LentiGlobin in sickle cell disease, bb21217 in multiple myeloma, and from our registration-enabling KarMMa study of ide-cel in patients with multiple myeloma by the end of this year. Id like to thank all the bluebirds around the globe for their tireless focus on doing the right thing for our patients weve seen amazing progress thus far in 2019 and I look forward to ending the year on a strong note.

Recent Highlights:

TDT

CALD

COMPANY

Upcoming Anticipated Milestones:

Third Quarter 2019 Financial Results

About bluebird bio, Inc.bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders by researching cerebral adrenoleukodystrophy, sickle cell disease, transfusion-dependent -thalassemia and multiple myeloma using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, LentiGlobin and Lenti-D are trademarks of bluebird bio, Inc.

The full common name for ZYNTEGLO: A genetically modified autologous CD34+ cell enriched population that contains hematopoietic stem cells transduced with lentiviral vector encoding the A-T87Q-globin gene.

Forward-Looking StatementsThis release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the companys financial condition, results of operations, as well as statements regarding the plans for regulatory submissions and commercialization for ZYNTEGLO and the companys product candidates, including anticipated regulatory milestones, planned commercial launches, planned clinical studies, as well as the companys intentions regarding the timing for providing further updates on the development and commercialization of ZYNTEGLO and the companys product candidates. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risks that the preliminary positive efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or future clinical trials, the risk of cessation or delay of any of the ongoing or planned clinical studies and/or our development of our product candidates, risks that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union, the risk that we will encounter challenges in the commercial launch of ZYNTEGLO in the European Union, including in managing our complex supply chain for the delivery of drug product or in the adoption of value-based payment models or in obtaining sufficient coverage or reimbursement for our products if approved, the risk that our collaborations, including the collaboration with Celgene, will not continue or will not be successful, and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

bluebird bio, Inc.Consolidated Statements of Operations(in thousands, except per share data)(unaudited)

For the three months ended September 30,

For the nine months ended September 30,

2019

2018

2019

2018

Revenue:

Collaboration revenue

$

6,575

$

10,926

$

29,310

$

33,971

License and royalty revenue

2,335

602

5,367

1,365

Total revenues

8,910

11,528

34,677

35,336

Operating expenses:

Go here to see the original:
bluebird bio Reports Third Quarter 2019 Financial Results and Highlights Operational Progress - Business Wire

Thermo Fisher hooks gut onto its gene therapy pipeline, inks new collaboration pact – Endpoints News

Seven months ago, Thermo Fisher spent $1.7 billion to add a gene therapy company to its sprawling biotech business, purchasing Brammer Bio. Now theyve signed a collaboration deal with another, newly well-funded, company from the same founder to expand its gene therapy work into the microbiome.

Thermo Fisher announced a collaboration with microbiome product manufacturer Arranta Bio as the startup announced an $82 million funding round. The young CDMO will provide its live biopharmaceuticals to Thermo Fisher to use in gene therapy production.

Thermo Fisher has entered the gene therapy space as the field fills with biotechs who,eyeing the clinic, will demand more of the necessary materials than existing manufacturers have the capacity to provide. An October investor report from Jefferies argued that going forward, theability to manufacture gene therapy products may be just as important as perfecting the science behind them, Biopharma Dive reported.

A vast majority of companies rely on contract manufacturing organizations to fill this role, they wrote. However, with the recent explosion of gene therapy programs, a shortage of CMOs and human capital has resulted, driving many companies to bring manufacturing in-house.

Arrantas CEO and founder Mark Bamforth has a long relationship with Thermo Fisher, selling them Brammer this year and in 2014 selling Gallus Biopharmaceuticals to Patheon, now a Thermo Fisher subsidiary. The sole institutional investor for this funding round was Ampersand Capital Partners where Bamforth is also a partner. The rest came from company founders and colleagues, along with an infusion from Thermo Fisher.

Originally posted here:
Thermo Fisher hooks gut onto its gene therapy pipeline, inks new collaboration pact - Endpoints News

Archives