Archive for the ‘Hormone Physician’ Category
Meet the doctor giving free menopause support to LGBT people – RTE.ie
There's an assumption that if you're a woman in a heterosexual relationship or marriage going through menopause, you'll have a partner who can step in. But that isn't always a guarantee.
Menopause can put "a huge strain" on relationships, Dr. Deirdre Forde - founder of Cile Medical in Athlone, the first dedicated Menopause Clinic in the Midlands - says, heterosexual or not.
"There's a lot of men who don't know about menopause, don't want to know about menopause and their woman, and their relationship becomes strained because she's turning into a crazy person and he doesn't know who she is anymore.
"And all of a sudden then they start to drift. So when they start to drift then, there's nothing to talk about anymore. Sure, a lot of them end up getting divorced."
"I was one of the one such person", Forde says, adding that she got divorced at 44, six years after starting menopause.
When she started menopause in her late 30s, Forde became gripped by what she calls an "irrational anxiety".
"I describe it like a washing machine, churning in your stomach, that just won't stop", says Forde. "I just wanted to detach my head for my body and make it stop."
Now, imagine you're a menopausal woman or a trans man in a relationship with another menopausal person. Who steps in to pick up the slack then?
Forde has opened up her Athlone practice to LGBT people going through menopause by organising free information events to offer support and advice, on 13 and 15 June.
"We need to talk about menopause as people who are going through menopause, as opposed to women going through menopause", she says. "I want to get rid of that stigma. There's nobody judging you. You are a person like everybody else, and you are going to go through this transition."
How we talk about the menopause has shifted radically in recent years, both globally and at home. A notable watershed moment in this shift was when scores of Irish women contacted Liveline with their often anguished accounts of menopause for five days straight, releasing years of suppressed pain.
Compounding this has been a glut of new research into the once mysterious part of a woman's life. This also backed up what many women had been saying in no uncertain terms: 55% of Irish women described menopause and perimenopause as a negative experience, compared to 22% calling it positive.
On top of that, an overwhelming majority of women (93%) agreed on menopause having a significant impact on a woman's life.
Menopause is defined as having had no period for 12 months, or if a woman has no ovaries due to surgery. It's caused by a drop in the production of key hormones estrogen, progesterone, and testosterone. It can span anywhere from four to 11 years and can bring on symptoms ranging from night sweats, mood swings and brain fog, to disrupted sleep, a burning sensation in the mouth and vaginal dryness.
Depending on the person, the stakes are undeniably high when it comes to untreated menopause, Forde says. Of course, there will always be some who practically sail through the experience, barely noticing a change. But the majority will undergo often seismic shifts in their physical and mental health. Research shows that fluctuating hormones can even have a lasting effect on the brain's structure.
"You're going to get women who just don't feel themselves anymore, who don't know who they are anymore. They feel that they can't work. They feel that they can't contribute to society anymore. Their brain is foggy and all of that. But they just feel worthless."
In some cases, those affected can become suicidal*, she says. People living with preexisting mental health conditions are particularly at risk.
"You've really got to watch a woman who, all of a sudden, is changing. Her mood is changing. Her mood swings are horrendous and her rage is terrible. She's not sleeping and she has uncontrollable anxiety. She's a menopausal woman and she needs help."
Finding the right support during menopause can still be challenging, particularly for LGBT people, she adds.
Although she herself hasn't treated any trans men presenting with menopause, she stresses that, "it is going to happen". "I am now 64, so I won't be doing this forever. But the new doctors coming on board who are hopefully going to be treating an awful lot of people with menopause, they're going to see it.
"I suppose trans people need to be aware. Trans men who are born with a uterus or who are born female, they need to be aware that they're going to face this in the future."
Forde's aim isn't to scaremonger, but to illuminate the reality of what many people experience. The hope is that in doing so, generations of people can prepare for the shift. There are already 600,000 menopausal women in Ireland, and by 2030 it is estimated that there will be 1.1 billion menopausal women on the planet.
Increased research and a greater understanding of hormone replacement therapy (HRT) and other treatments has made managing menopause considerably easier for many people.
Although a 1990s study - the Women's Health Initiative, which set out to examine the link between HRT and cardiovascular disease and studied the health of 160,000 postmenopausal women - skewed public perception against HRT, suggesting that it caused breast cancer, greater research has now shown that such risks are low for healthy women under the age of 60 and HRT is still a profoundly helpful treatment option for many women.
With the right treatment, Forde says, "You've got the benefit in that you've got your quality of life back. You're able to function as a person in this society. You're able to work, you're able to be happy."
To register for the free sessions on Saturday 15 June at 11am and 3pm email info@ceilemedical.ie with your name and age.
*If you are affected by any of the issues raised in this article, you can contact The Samaritans (phone: 116123), or Pieta House (1800 247 247).
More:
Meet the doctor giving free menopause support to LGBT people - RTE.ie
Hormone Replacement Therapy May Benefit Some Women with Pulmonary Hypertension – Managed Healthcare Executive
New evidence suggests the use of hormone replacement therapy (HRT) may lead to benefits in certain women with pulmonary hypertension. The findings add to a long debate over the role of hormones like estrogen in the course of the disease.
During a presentation at the American Thoracic Societys 2024 International Conference in San Diego, investigators said HRT appeared to improve pulmonary vascular disease and right ventricular (RV) function in a cohort of 742 women who participated in the study
Corresponding author Audriana Hurbon, M.D., of the University of Arizona College of Medicine, explained along with colleagues that previous research has indicated women with World Symposium Group 1 pulmonary hypertension have improved preservation of RV function compared to men in the same disease group. Yet, Hurbon and colleagues said it was not clear whether the preservation of RV function was linked with endogenous and/or exogenous exposure to female hormones, and it was not known if the apparent benefits of female hormones applied to all groups of pulmonary hypertension or merely to Group 1.
While it is accepted that in World Symposium Group 1 pulmonary hypertension female sex is associated with preservation of right ventricular function, the role of estrogen in pulmonary hypertension has been controversial, Hurbon explained, in a press release. Additionally, we know that women are affected by pulmonary hypertension more often than men, but when compared to each other, women seem to present less severely than men.
The more than 700 participants in Hurbons research were part of the National Heart Lung and Blood Institute-funded Pulmonary Vascular Disease Phenomics (PVDOMICS) Study. The women represented all five World Symposium disease groups, along with healthy controls and comparators who had risk factors for pulmonary hypertension but had not been diagnosed with the disease.
The authors set out to compare participants using mean pulmonary artery pressure on right heart catheterization to measure pulmonary vascular disease related to pulmonary hypertension, and characterizing RV function based on RV fractional shortening and RV ejection fraction from echocardiography.
Endogenous hormone exposure was quantified based on self-reported lifetime duration of menses. Participants were considered to have exogenous exposure to hormones if they had ever received HRT.
Hurbon and colleagues found that people with greater lifetime duration of menses had decreased average pulmonary arterial pressure regardless of which pulmonary hypertension group they belonged in. Specifically, they found mean pulmonary arterial pressure was 4714 mmHg for participants with 20-30 years of menses, versus 3713 mmHg for participants with more than 50 years of menses.
Additionally, participants who had taken HRT had lower mean pulmonary artery pressure (3511 vs 4214, P = 0.002) and pulmonary vascular resistance (53 vs 74, P = 0.006) and higher RV fractional shortening (3711 vs 329, P = 0.001) and RV ejection fraction (4813 vs 4012 %, P < 0.0001). However, when broken out by subgroup, the investigators only found statistically significant impacts in patients with Group 1 pulmonary hypertension.
Hurbon said in the press release that further analysis also suggests that older age and HRT exposure may have a positive synergistic effect.
This could support a theory suggesting a threshold of estrogen exposure necessary for a protective effect, she said.
The authors described their findings as preliminary, but they said their data suggest more research is needed to better understand the potential impacts of HRT, both positive and potentially negative, on patients with pulmonary hypertension.
We hope this study will be a catalyst for further exploration of the mechanisms of female reproductive hormones to identify therapeutic targets for right ventricular preservation in pulmonary hypertension, Hurbon said.
Doctors say Pharmac too slow to act over hormone replacement therapy patch shortage – RNZ
Pharmac limits funding to two patches per week but says it is reconsidering this restriction. Photo: BMJ
The shortage of hormone replacement therapy patches is getting worse, and Pharmac has been too slow to act, doctors specialising in women's health say.
Two of the most popular dosage patches - used to mitigate the symptoms of estrogen deficiency - are unavailable nationwide, leaving women shopping around different pharmacies, and some having to pay for extra patches to reach their required prescribed dose.
Pharmac limits funding to two patches per week but said it was reconsidering this restriction, as well as moving to fund alternatives such as estrogen gels.
The funding agency said demand for HRT patches had more than doubled in the past three and the shortage was likely to continue into next year.
There were a number of factors behind the shortage, ERH Associates endocrinologist Dr Megan Ogilvie told Nine to Noon.
"Novartis, which manufactures the gold standard product Estradot, is having manufacturing issues, and there has been a significant rise in demand globally for this product as the superiority of the transdermal approach has been recognised.
"But it is compounded in New Zealand by a lack of gels which would relieve significant pressure on the patches," Ogilvie said.
In a statement, Pharmac said it was "exploring if there are other presentations or products that it can secure and fund".
Ogilvie said more funding for alternatives such as gels would ease the situation.
"We've been asking for funding for gels for probably two to three years now. And it is disappointing to see their comment that they're in the initial stages of procuring funding."
Rules governing the dose pharmacies could dispense were also complicating the situation, Ogilvie said.
"Why if I prescribe 15 micrograms twice weekly and 25 micrograms are the only patches available, does that woman have to pay to make up the extra patch dose?
"It's a historic reason, they [Pharmac] have always only funded two patches per week, per woman."
This means women who needed higher doses were penalised, she said.
Tauranga-based menopause doctor Linda Dear said prescribing and dispensing should be easier and would ease the situation.
"Strictly speaking, the rule is that a woman can have two patches a week of the same strength.
"So, there are pharmacies who will give women say a 25 [microgram] and a 50 [microgram] to make a dose of 75 [micrograms], and not charge for those extra ones."
But the picture was inconsistent, she said.
"Some women have been charged for extra patches, some women are not. Some pharmacists are happy to give women a 100-microgram patch and say 'chop this in half' even if the script said 50 micrograms, some pharmacists are not and they demand a new whole new script from the doctor.
"So, there's all this faffing around, and [at] the centre of this is a poor woman who just needs her HRT and has to go back and forth between doctors and pharmacies, just to just to get the dose she needs."
If it were pills, this would not be an issue, pharmacists could achieve the required dose using various combinations, Dr Dear said.
"It's weird how patch doses are seen so differently, when we just want to achieve a dose in whatever way shape or form, whether you have to give her multiple lower dose, or a higher dose to chop up. Just give her the dose that's working for her."
A consistent message was needed across the board, she said, so that doctors, pharmacists and patients knew what was allowed and what was not.
In a statement, Pharmac chief medical officer Dr David Hughes said he acknowledged the stress of the HRT shortage and that Pharmac was aware some people were paying for extra patches to reach their required dose.
Pharmac was considering reviewing the restriction to two patches per week, he said.
See more here:
Doctors say Pharmac too slow to act over hormone replacement therapy patch shortage - RNZ
What people should know about stress, according to a doctor – Yahoo Singapore News
Sign up for CNNs Stress, But Less newsletter.Our six-part mindfulness guide will inform and inspire you to reduce stress while learning how to harness it.
There is no doubt that stress is a part of everyday life, but too much can have detrimental impacts on peoples physical and mental health.
I wanted to delve more into depth about the health impacts of stress during National Stress Awareness Month. What does stress do to the body? When does it become a problem, and what are some ways to cope with it? And what can people do with stressors such as a hard job or caregiving responsibilities that cant just go away?
To help us answer these questions, I had a conversation with CNN wellness expert Dr. Leana Wen. Wen is an emergency physician and adjunct associate professor at George Washington University. She previously served as Baltimores health commissioner.
CNN: What does stress do to a persons body?
Dr. Leana Wen: When people experience a perceived threat, a variety of hormones are released that make the heart beat faster and increase blood pressure and blood sugar. These hormones also divert energy away from other parts of the body, such as the immune system and digestive system. These are evolutionary adaptations that once helped people to respond to situations such as predators chasing after them. Such fight or flight responses are normal and may be helpful in modern-day life. For instance, they could help an athlete with a faster performance or a student with staying up to study for an exam.
The problem arises when the bodys stress response is continuous. A perpetual state of fight or flight could lead to many chronic problems. Individuals could experience anxiety and depression, and other mental health ailments. They could also have headaches, muscle tension, abdominal pain, sleep disturbances, decreased immunity to infections, and problems with memory and concentration. Chronic stress has also been linked to increased likelihoods of high blood pressure, diabetes, heart attack and stroke.
Story continues
CNN: Everyone experiences stress, so when does it become a problem?
Wen: Its natural for people to experience stress to discrete stressful events (those that have a clear onset such as the birth of a child, starting of a new job, a divorce or the death of a loved one) that happen in their lives. The problem is when stress becomes a chronic state of being.
Warning signs to look out for include signs or symptoms of mental health concerns or physical manifestations of stressfor instance, if someone starts having new heart palpitations, abdominal pain or headaches. In addition, some people may attempt to cope with stress by using alcohol or drugs. A change in substance use could be a red flag to look for underlying stressors.
People should also ask themselves if stress is negatively affecting their function at home, at work and with their friends. Someone who finds themselves unusually irritable and is lashing out at loved ones and colleagues may also be doing so because of excessive stress.
CNN: Why should we be aware of excessive stress and try to reduce it as a health priority?
Wen: We can think of stress as something in our lives that is modifiable, just like high blood pressure or high blood sugar. The stressor itself may not be able to be changed, just as we cannot change our genetic predisposition to hypertension or diabetes. However, our reaction to it is within our control. And its our reaction to the stressor that determines our health outcomes. If stress has detrimental effects on our health, just as high blood pressure and diabetes do, then we can and should look for ways to reduce these effects.
CNN: What are some ways we can cope with stress?
Wen: First, its important to clarify that there are good and bad ways to cope with stress. Some people may turn to these not-so-good ways because it may help them feel better in the short-term, but there are real risks. I mentioned drinking alcohol and using drugsobviously, these are not healthy coping strategies. Neither are binge-eating or smoking.
I think its really important to be self-aware. Be honest with yourself: When you have faced stressful situations in the past, have you turned to these unhealthy ways to cope? If so, be on the lookout and work to prevent these behaviors during stressful times.
Also, try to anticipate when there will be stressful situations. Is there a big deadline at work coming up? A family gathering that is likely to elicit negative emotions? A difficult conversation with a loved one? Knowing that a stressful event may occur can help you anticipate your reaction and plan accordingly.
I advise, too, that people make a list of stress relief techniques that have worked for them in the past. And try new techniques. Deep breathing exercises are something everyone can try and help both in the moment of the stressful encounter and after, for example, as is mindfulness meditation.
Im also a big fan of exercise. There is excellent scientific evidence that exercise is very effective at managing stress. Exercise reduces stress hormones and increases endorphins, which are feel-good neurotransmitters that can relax the body and improve mood.
CNN: What is your advice for people who have stressors in their livessuch as a hard job or caregiving responsibilitiesthat cant easily go away?
Wen: This is really hard, because of course it would be ideal to address the stressors themselves. But many people have stressful situations that they cant change.
It helps to be up front about that and acknowledge that changing the situation is not in your control. What is in your control, though, is your reaction to the situation.
Here is where self-awareness and self-care are so important. Learn to recognize when you are feeling especially stressed. Perhaps you feel tension in your neck and back muscles, or you have abdominal cramps or jitters. These are the times to practice deep breathing, meditation and other exercises that help you in the short-term.
For both short- and long-term benefit, its essential to make time for self-care. By that, I mean activities that you enjoy and that can take your mind off the stressful life situations. These could include taking a walk with a good friend, working in the garden, playing with your pets, reading a good book or otherwise participating in activities you enjoy. Think of the time you are putting aside for yourself as a kind of therapy; stress can make you unhealthy, so this is your way of giving yourself treatment to offset that stress.
Along those lines, knowing that stress is one factor that can impact your well-being, work to maximize the other aspects that contribute to overall health. Try to get adequate, restful sleep. Aim to eat healthy, whole foods and reduce your consumption of ultra-processed products. Make sure other chronic medical conditions, such as high blood pressure, are being treated. And do not wait to seek help from your mental health or primary care provider if the stress you are experiencing is leading to continuing mental health or physical distress.
For more CNN news and newsletters create an account at CNN.com
Go here to see the original:
What people should know about stress, according to a doctor - Yahoo Singapore News
Pharmac seeking bids from suppliers to fund another type of hormone replacement therapy – New Zealand Doctor Online
Pharmac Te Ptaka Whaioranga has issued a request for proposals (RFP) asking suppliers to bid for the supply of oestradiol gel in New Zealand.
Pharmac is looking to fund a new type of oestradiol treatment without restrictions, says Dr David Hughes, Pharmacs Director Advice and Assessment/Chief Medical Officer.
In the past three years, the supply issues for oestradiol patches has caused stress and frustration for New Zealanders. Demand has more than doubled - growing from 1.2 million patches dispensed in 2020/21 to over 3 million patches in 2022/23.
Our clinical advisors have told us that funding another oestradiol product would be useful because demand is increasing, and we are continuing to experience global supply issues for oestradiol patches. We know that some people would use the gel if its funded, and this could relieve some of the stress on the supply of patches.
Oestradiol is used by 85,000 people each year for the treatment of a range of conditions including, menopause, osteoporosis, and gender affirming health care. It is most often used as a patch placed on the skin, but it is also available as a tablet.
We want to make sure people get the treatment they need, and which can be funded from Pharmacs fixed budget, so were keen to hear from suppliers about what they can offer, says Dr Hughes.
Dr Linda Dear, a menopause specialist says, Its wonderful to hear that another step is being taken towards giving perimenopausal and menopausal New Zealanders fully funded access to oestradiol (estrogen) gels.
This will provide a much-needed alternative, so people are no longer solely reliant on the patches as the only funded transdermal option available. Having gels as an alternative will ease the pressure of the supply issue which has had an impact on New Zealanders using the treatments, pharmacists, and prescribing doctors alike. My hope is that we dont have to wait too much longer to access this important therapy.
Pharmacs job is to assess and prioritise which treatments will deliver the best possible health outcomes for New Zealanders from the available budget, says Dr Hughes.
"Once this RFP closes, an evaluation committee will meet to consider the bids received. We will also seek advice from our clinical advisors. As this activity progresses, well share more information with the public.
Read the original here:
Pharmac seeking bids from suppliers to fund another type of hormone replacement therapy - New Zealand Doctor Online
The Doctor Game: What women suffer most from menopause? – The Westerly Sun
Theres a universal fact for women. If they live long enough, their capacity to bring forth children will end, and they will become menopausal. Menopause can be when the thermostat becomes their most prized possession.
But not all women have hot flashes. Some go through this period wondering why they have no symptoms. The best advice for them is, Enjoy the smooth sailing!
Other women endure needless suffering. There are treatments, and these women should see their doctors.
The medical journal The Lancet has urged women to become educated about hormone replacement therapy. Menopause should not be considered a disease. It is a natural process. Be cautious with commercial interests of pharmaceutical companies propaganda. Seek information from a medical specialist.
The authors of The Lancet report stress they are not opposed to HRT, as it can be effective in treating hot flashes, vaginal dryness, and genital urinary symptoms. Many years ago, HRT was often used by women to control menopausal symptoms. The standard treatment involved the hormones estrogen and progestin, a synthetic form of progesterone.
But a large and widely publicized study called the Womens Health Initiative identified problems with HRT. Doctors and patients concluded HRT was dangerous, and this misconception lingers today. The study had significant shortcomings, however, and subsequent studies have more nuanced conclusions. For women under 60, or for those less than a decade out of menopause, the benefits of HRT in fighting debilitating symptoms outweighed the risk. There was one other caution. Those using HRT should not have a family history of stroke, breast cancer, or coronary heart disease.
Which women suffer the most from menopause? Its those who are affected by severe symptoms. Imagine a stalwart high school principal. She has handled the tough job for years. But with the onset of menopause, the slightest provocation has her bursting into tears behind closed doors. For the first time, she feels incapable of the task. If she meets the criteria mentioned above, then she is a textbook case for HRT. Within a week, her problem would be history.
Menopause is not just one event or one symptom, such as hot flashes. A gradual decrease in the production of estrogen influences organs such as the vagina and urinary bladder. Its these organs that women are loath to discuss with their family doctor, to say nothing of their partners.
It may come as a shock to younger people to know that seniors have sexual relations. But menopause can make vaginal tissues thinner and more easily irritated. Past columns have tried to explain this with a touch of eloquence, noting that its hard for females to sing with a sore throat. Put plainly, its hard for menopausal and post-menopausal women to enjoy sex with an inflamed vagina (atrophic vaginitis). Sometimes neither the woman nor her partner knows whats causing the severe pain. Unfortunately, many women suffer silently.
Those who ask for help will find there are good remedies. Something as simple as an estrogen cream can resolve an irritated vagina within two weeks. Other consequences of menopause, like the accelerated loss of bone density, may also be treated with HRT.
Sometimes problems are missed because a vaginal examination is not done during a check-up. Or patients dont mention issues to the doctor.
The comedian Joan Rivers made a joke about news that having a dog makes you 10 years younger. My first thought was to rescue two more, she said, before adding, but I dont want to go through menopause again.
Today, women can and should get their symptoms treated.
Dr. W. Gifford-Jones, aka Ken Walker, is a graduate of the University of Toronto and Harvard Medical School. You can reach him online at his website, docgiff.com, or via email at contact-us@ docgiff.com. Follow him and his daughter on Instagram @docgiff and @diana_gifford_jones.
Visit link:
The Doctor Game: What women suffer most from menopause? - The Westerly Sun
Hormone | Definition, Function, & Types | Britannica
Relationships between endocrine and neural regulation
Hormonal regulation is closely related to that exerted by the nervous system, and the two processes have generally been distinguished by the rate at which each causes effects, the duration of these effects, and their extent; i.e., the effects of endocrine regulation may be slow to develop but prolonged in influence and widely distributed through the body, whereas nervous regulation is typically concerned with quick responses that are of brief duration and localized in their effects. Advances in knowledge, however, have modified these distinctions.
Nerve cells are secretory, for responses to the nerve impulses that they propagate depend upon the production of chemical transmitter substances, or neurotransmitters, such as acetylcholine and norepinephrine (noradrenaline), which are liberated at nerve endings in minute amounts and have only a momentary action. It has been established, however, that certain specialized nerve cells, called neurosecretory cells, can translate neural signals into chemical stimuli by producing secretions called neurohormones. These secretions, which are often polypeptides (compounds similar to proteins but composed of fewer amino acids), pass along nerve-cell extensions, or axons, and are typically released into the bloodstream at special regions called neurohemal organs, where the axon endings are in close contact with blood capillaries. Once released in this way, neurohormones function in principle similar to hormones that are transmitted in the bloodstream and are synthesized in the endocrine glands.
The distinctions between neural and endocrine regulation, no longer as clear-cut as they once seemed to be, are further weakened by the fact that neurosecretory nerve endings are sometimes so close to their target cells that vascular transmission is not necessary. There is good evidence that hormonal regulation occurs by diffusion in plants and (although here the evidence is largely indirect) in lower animals (e.g., coelenterates), which lack a vascular system.
Hormones have a long evolutionary history, knowledge of which is important if their properties and functions are to be understood. Many important features of the vertebrate endocrine system, for example, are present in the lampreys and hagfishes, modern representatives of the primitively jawless vertebrates (Agnatha), and these features were presumably present in fossil ancestors that lived more than 500 million years ago. The evolution of the endocrine system in the more advanced vertebrates with jaws (Gnathostomata) has involved both the appearance of new hormones and the further evolution of some of those already present in agnathans; in addition, extensive specialization of target organs has occurred to permit new patterns of response.
The factors involved in the first appearance of the various hormones is largely a matter for conjecture, although hormones clearly are only one mechanism for chemical regulation, diverse forms of which are found in living things at all stages of development. Other mechanisms for chemical regulation include chemical substances (so-called organizer substances) that regulate early embryonic development and the pheromones that are released by social insects as sex attractants and regulators of the social organization. Perhaps, in some instances, chemical regulators including hormones appeared first as metabolic by-products. A few such substances are known in physiological regulation: carbon dioxide, for example, is involved in the regulation of the respiratory activity of which it is a product, in insects as well as in vertebrates. Substances such as carbon dioxide are called parahormones to distinguish them from true hormones, which are specialized secretions.
View original post here:
Hormone | Definition, Function, & Types | Britannica
Hormone – Wikipedia
Biological signalling molecule
A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior.[1] Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone (as a signaling molecule that exerts its effects far from its site of production), numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids (e.g. prostaglandins and thromboxanes), steroids (e.g. oestrogen and brassinosteroid), amino acid derivatives (e.g. epinephrine and auxin), protein or peptides (e.g. insulin and CLE peptides), and gases (e.g. ethylene and nitric oxide).
Hormones are used to communicate between organs and tissues. In vertebrates, hormones are responsible for regulating a variety of physiological processes and behavioral activities such as digestion, metabolism, respiration, sensory perception, sleep, excretion, lactation, stress induction, growth and development, movement, reproduction, and mood manipulation.[2][3] In plants, hormones modulate almost all aspects of development, from germination to senescence.[4]
Hormones affect distant cells by binding to specific receptor proteins in the target cell, resulting in a change in cell function. When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription, resulting in increased expression of target proteins. Hormones can also act in non-genomic pathways that synergize with genomic effects.[5] Water-soluble hormones (such as peptides and amines) generally act on the surface of target cells via second messengers. Lipid soluble hormones, (such as steroids) generally pass through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. Brassinosteroids, a type of polyhydroxysteroids, are a sixth class of plant hormones and may be useful as an anticancer drug for endocrine-responsive tumors to cause apoptosis and limit plant growth. Despite being lipid soluble, they nevertheless attach to their receptor at the cell surface.[6]
In vertebrates, endocrine glands are specialized organs that secrete hormones into the endocrine signaling system. Hormone secretion occurs in response to specific biochemical signals and is often subject to negative feedback regulation. For instance, high blood sugar (serum glucose concentration) promotes insulin synthesis. Insulin then acts to reduce glucose levels and maintain homeostasis, leading to reduced insulin levels. Upon secretion, water-soluble hormones are readily transported through the circulatory system. Lipid-soluble hormones must bond to carrier plasma glycoproteins (e.g., thyroxine-binding globulin (TBG)) to form ligand-protein complexes. Some hormones, such as insulin and growth hormones, can be released into the bloodstream already fully active. Other hormones, called prohormones, must be activated in certain cells through a series of steps that are usually tightly controlled.[7] The endocrine system secretes hormones directly into the bloodstream, typically via fenestrated capillaries, whereas the exocrine system secretes its hormones indirectly using ducts. Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue.
Plants lack specialized organs for the secretion of hormones, although there is spatial distribution of hormone production. For example, the hormone auxin is produced mainly at the tips of young leaves and in the shoot apical meristem. The lack of specialised glands means that the main site of hormone production can change throughout the life of a plant, and the site of production is dependent on the plant's age and environment.[8]
Hormonal signaling involves the following steps:[9]
Hormone producing cells are found in the endocrine glands, such as the thyroid gland, ovaries, and testes.[10] Exocytosis and other methods of membrane transport are used to secrete hormones when the endocrine glands are signaled. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological effects. Different tissue types may also respond differently to the same hormonal signal.[citation needed]
Arnold Adolph Berthold was a German physiologist and zoologist, who, in 1849, had a question about the function of the testes. He noticed in castrated roosters that they did not have the same sexual behaviors as roosters with their testes intact. He decided to run an experiment on male roosters to examine this phenomenon. He kept a group of roosters with their testes intact, and saw that they had normal sized wattles and combs (secondary sexual organs), a normal crow, and normal sexual and aggressive behaviors. He also had a group with their testes surgically removed, and noticed that their secondary sexual organs were decreased in size, had a weak crow, did not have sexual attraction towards females, and were not aggressive. He realized that this organ was essential for these behaviors, but he did not know how. To test this further, he removed one testis and placed it in the abdominal cavity. The roosters acted and had normal physical anatomy. He was able to see that location of the testes does not matter. He then wanted to see if it was a genetic factor that was involved in the testes that provided these functions. He transplanted a testis from another rooster to a rooster with one testis removed, and saw that they had normal behavior and physical anatomy as well. Berthold determined that the location or genetic factors of the testes do not matter in relation to sexual organs and behaviors, but that some chemical in the testes being secreted is causing this phenomenon. It was later identified that this factor was the hormone testosterone.[11][12]
Although known primarily for his work on the Theory of Evolution, Charles Darwin was also keenly interested in plants. Through the 1870s, he and his son Francis studied the movement of plants towards light. They were able to show that light is perceived at the tip of a young stem (the coleoptile), whereas the bending occurs lower down the stem. They proposed that a 'transmissible substance' communicated the direction of light from the tip down to the stem. The idea of a 'transmissible substance' was initially dismissed by other plant biologists, but their work later led to the discovery of the first plant hormone.[13] In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny (working independently of each other) conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending. In 1933 this hormone was finally isolated by Kgl, Haagen-Smit and Erxleben and given the name 'auxin'.[13][14][15]
British physician George Oliver` and physiologist Edward Albert Schfer, professor at University College London, collaborated on the physiological effects of adrenal extracts. They first published their findings in two reports in 1894, a full publication followed in 1895.[16][17] Though frequently falsely attributed to secretin, found in 1902 by Bayliss and Starling, Oliver and Schfer's adrenal extract containing adrenaline, the substance causing the physiological changes, was the first hormone to be discovered. The term hormone would later be coined by Starling.[18]
William Bayliss and Ernest Starling, a physiologist and biologist, respectively, wanted to see if the nervous system had an impact on the digestive system. They knew that the pancreas was involved in the secretion of digestive fluids after the passage of food from the stomach to the intestines, which they believed to be due to the nervous system. They cut the nerves to the pancreas in an animal model and discovered that it was not nerve impulses that controlled secretion from the pancreas. It was determined that a factor secreted from the intestines into the bloodstream was stimulating the pancreas to secrete digestive fluids. This was named secretin: a hormone.
Hormonal effects are dependent on where they are released, as they can be released in different manners.[19] Not all hormones are released from a cell and into the blood until it binds to a receptor on a target. The major types of hormone signaling are:
As hormones are defined functionally, not structurally, they may have diverse chemical structures. Hormones occur in multicellular organisms (plants, animals, fungi, brown algae, and red algae). These compounds occur also in unicellular organisms, and may act as signaling molecules however there is no agreement that these molecules can be called hormones.[20][21]
Compared with vertebrates, insects and crustaceans possess a number of structurally unusual hormones such as the juvenile hormone, a sesquiterpenoid.[23]
Examples include abscisic acid, auxin, cytokinin, ethylene, and gibberellin.[24]
Most hormones initiate a cellular response by initially binding to either cell membrane associated or intracellular receptors. A cell may have several different receptor types that recognize the same hormone but activate different signal transduction pathways, or a cell may have several different receptors that recognize different hormones and activate the same biochemical pathway.[25]
Receptors for most peptide as well as many eicosanoid hormones are embedded in the plasma membrane at the surface of the cell and the majority of these receptors belong to the G protein-coupled receptor (GPCR) class of seven alpha helix transmembrane proteins. The interaction of hormone and receptor typically triggers a cascade of secondary effects within the cytoplasm of the cell, described as signal transduction, often involving phosphorylation or dephosphorylation of various other cytoplasmic proteins, changes in ion channel permeability, or increased concentrations of intracellular molecules that may act as secondary messengers (e.g., cyclic AMP). Some protein hormones also interact with intracellular receptors located in the cytoplasm or nucleus by an intracrine mechanism.[26][27]
For steroid or thyroid hormones, their receptors are located inside the cell within the cytoplasm of the target cell. These receptors belong to the nuclear receptor family of ligand-activated transcription factors. To bind their receptors, these hormones must first cross the cell membrane. They can do so because they are lipid-soluble. The combined hormone-receptor complex then moves across the nuclear membrane into the nucleus of the cell, where it binds to specific DNA sequences, regulating the expression of certain genes, and thereby increasing the levels of the proteins encoded by these genes.[28] However, it has been shown that not all steroid receptors are located inside the cell. Some are associated with the plasma membrane.[29]
Hormones have the following effects on the body:[30]
A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.
The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.[31][32]
Hormone secretion can be stimulated and inhibited by:
One special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones.[33]
To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus.[33]
Eicosanoids are considered to act as local hormones. They are considered to be "local" because they possess specific effects on target cells close to their site of formation. They also have a rapid degradation cycle, making sure they do not reach distant sites within the body.[34]
Hormones are also regulated by receptor agonists. Hormones are ligands, which are any kinds of molecules that produce a signal by binding to a receptor site on a protein. Hormone effects can be inhibited, thus regulated, by competing ligands that bind to the same target receptor as the hormone in question. When a competing ligand is bound to the receptor site, the hormone is unable to bind to that site and is unable to elicit a response from the target cell. These competing ligands are called antagonists of the hormone.[35]
Many hormones and their structural and functional analogs are used as medication. The most commonly prescribed hormones are estrogens and progestogens (as methods of hormonal contraception and as HRT),[36] thyroxine (as levothyroxine, for hypothyroidism) and steroids (for autoimmune diseases and several respiratory disorders). Insulin is used by many diabetics. Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline, while steroid and vitamin D creams are used extensively in dermatological practice.[citation needed]
A "pharmacologic dose" or "supraphysiological dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful, though not without potentially adverse side effects. An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation.
At the neurological level, behavior can be inferred based on hormone concentration, which in turn are influenced by hormone-release patterns; the numbers and locations of hormone receptors; and the efficiency of hormone receptors for those involved in gene transcription. Hormone concentration does not incite behavior, as that would undermine other external stimuli; however, it influences the system by increasing the probability of a certain event to occur.[37]
Not only can hormones influence behavior, but also behavior and the environment can influence hormone concentration.[38] Thus, a feedback loop is formed, meaning behavior can affect hormone concentration, which in turn can affect behavior, which in turn can affect hormone concentration, and so on.[39] For example, hormone-behavior feedback loops are essential in providing constancy to episodic hormone secretion, as the behaviors affected by episodically secreted hormones directly prevent the continuous release of said hormones.[40]
Three broad stages of reasoning may be used to determine if a specific hormone-behavior interaction is present within a system:[citation needed]
There are various clear distinctions between hormones and neurotransmitters:[41][42][35]
Neurohormones are a type of hormone that share a commonality with neurotransmitters.[45] They are produced by endocrine cells that receive input from neurons, or neuroendocrine cells.[45] Both classic hormones and neurohormones are secreted by endocrine tissue; however, neurohormones are the result of a combination between endocrine reflexes and neural reflexes, creating a neuroendocrine pathway.[35] While endocrine pathways produce chemical signals in the form of hormones, the neuroendocrine pathway involves the electrical signals of neurons.[35] In this pathway, the result of the electrical signal produced by a neuron is the release of a chemical, which is the neurohormone.[35] Finally, like a classic hormone, the neurohormone is released into the bloodstream to reach its target.[35]
Hormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones.[citation needed]
The formation of a complex with a binding protein has several benefits: the effective half-life of the bound hormone is increased, and a reservoir of bound hormones is created, which evens the variations in concentration of unbound hormones (bound hormones will replace the unbound hormones when these are eliminated).[46] An example of the usage of hormone-binding proteins is in the thyroxine-binding protein which carries up to 80% of all thyroxine in the body, a crucial element in regulating the metabolic rate.[47]
Go here to read the rest:
Hormone - Wikipedia
Hormones: What They Are, Function & Types – Cleveland Clinic
What are hormones?
Hormones are chemicals that coordinate different functions in your body by carrying messages through your blood to your organs, skin, muscles and other tissues. These signals tell your body what to do and when to do it. Hormones are essential for life and your health.
Scientists have identified over 50 hormones in the human body so far.
Hormones and most of the tissues (mainly glands) that create and release them make up your endocrine system. Hormones control many different bodily processes, including:
With hormones, a little bit goes a long way. Because of this, minor changes in levels can cause significant changes to your body and lead to certain conditions that require medical treatment.
Hormones are chemical messengers that affect and manage hundreds of bodily processes. Often, a bodily process involves a chain reaction of several different hormones.
A hormone will only act on a part of your body if it fits if the cells in the target tissue have receptors that receive the message of the hormone. Think of a hormone as a key and the cells of its target tissue, such as an organ or fat tissue, as specially shaped locks. If the hormone fits the lock (receptor) on the cell wall, then itll work; the hormone will deliver a message that causes the target site to take a specific action.
Your body uses hormones for two types of communication. The first type is communication between two endocrine glands: One gland releases a hormone, which stimulates another gland to change the levels of hormones that its releasing. An example of this is the communication between your pituitary gland and thyroid. Your pituitary gland releases thyroid-stimulating hormone (TSH), which triggers your thyroid gland to release its hormones, which then affect various aspects of your body.
The second type of communication is between an endocrine gland and a target organ. An example of this is when your pancreas releases insulin, which then acts on your muscles and liver to help process glucose.
Specialized glands that make up your endocrine system make and release most of the hormones in your body. A gland is an organ that makes one or more substances, such as hormones, digestive juices, sweat or tears. Endocrine glands release hormones directly into your bloodstream.
Your endocrine system consists of the following glands:
But not all organs and tissues that release hormones or hormone-like substances are considered part of the endocrine system. Other body tissues that release hormones include:
Your hypothalamus is a small region of your brain that connects to your pituitary gland through the pituitary stalk. It releases several hormones that control your pituitary gland.
Your hypothalamus makes the following hormones:
Your pituitary gland is a pea-sized gland at the base of your brain, behind the bridge of your nose and directly below your hypothalamus. It consists of two lobes: the posterior lobe and the anterior lobe. Your pituitary gland releases several hormones many of which control the functions of other endocrine glands.
The anterior pituitary makes and releases the following six hormones:
The posterior pituitary releases the following hormones:
Your pineal gland is a tiny gland in your brain thats located beneath the back part of the corpus callosum (nerve fibers that connect the two parts of your brain). It releases the hormone melatonin, which helps control your sleep-wake cycle.
Your thyroid is a small, butterfly-shaped gland located at the front of your neck under your skin. Your thyroids main job is to control the speed of your metabolism (metabolic rate), which is the process of how your body transforms the food you consume into energy.
Your thyroid releases the following hormones:
Thyroxine and triiodothyronine are often collectively called thyroid hormone.
Most people have four pea-sized parathyroid glands located behind their thyroid gland (the butterfly-shaped gland in your neck). Sometimes, your parathyroid glands are located along your esophagus or in your chest. These are known as ectopic (in an abnormal place) parathyroid glands.
The main job of your parathyroid glands is to release parathyroid hormone (PTH), which is responsible for the calcium balance in your blood and bone health.
Your adrenal glands, also known as suprarenal glands, are small, triangle-shaped glands that are located on top of each of your two kidneys.
Your adrenal glands make the following hormones:
Your pancreas is an organ in the back of your abdomen (belly). Its part of your digestive system and endocrine system.
The islet cells (endocrine cells) in your pancreas make the following hormones:
People assigned female at birth (AFAB) have two ovaries each located on both sides of their uterus below the opening of the fallopian tubes. In addition to containing the egg cells necessary for reproduction, the ovaries produce the following hormones:
People assigned male at birth (AMAB) have two testes that hang in a pouch outside of their body below their penis. The testes are part of the male reproductive system and produce sperm and the hormone testosterone.
Adipose tissue is commonly known as body fat. Its located all over your body, including under your skin, around internal organs, between muscles, in bone marrow and breast tissue.
Adipose tissue makes and releases the following hormones:
Your kidneys are two bean-shaped organs that filter your blood. Theyre part of your urinary system, but they also produce hormones, including:
Your liver is an essential organ and gland, performing hundreds of functions necessary to sustain life. Its considered part of your digestive system, but also produces hormones, including:
Your gut (gastrointestinal tract) is the long, connected tube that starts at your mouth and ends at your anus. Its responsible for digestion. Scientists are currently studying the hormones that your gut makes and their effects. These hormones include:
The placenta is a temporary organ that develops in your uterus during pregnancy. It provides oxygen and nutrients to the developing fetus. The placenta produces the hormones estrogen and progesterone to maintain the pregnancy.
Dozens of medical conditions are caused by hormone issues. For most hormones, having too much or too little of them causes symptoms and issues with your health. These imbalances often require treatment. Some of the most common hormone-related conditions include:
Each hormone-related condition can have several different possible causes. In general, the main conditions or situations that cause hormone imbalances include:
Primary healthcare providers can diagnose and help you manage many hormone conditions. However, you may benefit from seeing an endocrinologist.
An endocrinologist is a healthcare provider who specializes in endocrinology, a field of medicine that studies conditions related to your hormones. An endocrinologist can diagnose endocrine (hormone) conditions, develop treatment and management plans for them and prescribe medication.
A note from Cleveland Clinic
Hormones are an important and essential part of human existence. While your body normally carefully balances its hormones, having too little or too much of a certain hormone can lead to health problems. If youre experiencing any concerning symptoms, its important to talk to your healthcare provider. They can order tests to see if you have a hormone imbalance or if something else is causing your symptoms.
View post:
Hormones: What They Are, Function & Types - Cleveland Clinic
Hormones and the Endocrine System | Johns Hopkins Medicine
Where the hormone is produced
Hormone(s) secreted
Hormone function
Adrenal glands
Aldosterone
Regulates salt,water balance, and blood pressure
Adrenal glands
Corticosteroid
Controls key functions in the body; acts as an anti-inflammatory; maintains blood sugar levels, blood pressure, and muscle strength; regulates salt and water balance
Pituitary gland
Antidiuretic hormone (vasopressin)
Affects water retention in kidneys; controls blood pressure
Pituitary gland
Adrenocorticotropic hormone (ACTH)
Controls production of sex hormones (estrogen in women and testosterone in men) and the production of eggs in women and sperm in men.
Pituitary gland
Growth hormone (GH)
Affects growth and development; stimulates protein production; affects fat distribution
Pituitary gland
Luteinizing hormone (LH) and follicle-stimulating hormone (FSH)
Controlsproduction of sex hormones (estrogen in women and testosterone in men) and the production of eggs in women and sperm in men
Pituitary gland
Oxytocin
Stimulates contraction of uterus and milk ducts in the breast
Pituitary gland
Prolactin
Initiates and maintains milk production in breasts; impacts sex hormone levels
Pituitary gland
Thyroid-stimulating hormone (TSH)
Stimulates the production and secretion of thyroid hormones
Kidneys
Renin and angiotensin
Controls blood pressure, both directly and also by regulating aldosterone production from the adrenal glands
Kidneys
Erythropoietin
Affects red blood cell (RBC) production
Pancreas
Glucagon
Raises blood sugar levels
Pancreas
Insulin
Lowers blood sugar levels; stimulates metabolism of glucose, protein, and fat
Ovaries
Estrogen
Affects development of female sexual characteristics and reproductive development, important for functioning of uterus and breasts; also protects bone health
Ovaries
Progesterone
Stimulates the lining of the uterus for fertilization; prepares the breasts for milk production
Parathyroid glands
Parathyroid hormone (PTH)
Most important regulator of blood calcium levels
Thyroid gland
Thyroid hormone
Controls metabolism; also affects growth, maturation, nervous system activity, and metabolism
Adrenal glands
Epinephrine
Increases heart rate, oxygen intake, and blood flow
Adrenal glands
Norepinephrine
Maintainsblood pressure
Testes (testicles)
Testosterone
Develop and maintain male sexual characteristics and maturation
Pineal gland
Melatonin
Releases melatonin during night hours to help with sleep
Hypothalamus
Growth hormone releasing hormone (GHRH)
Regulates growth hormone release in the pituitary gland
Hypothalamus
Thyrotropin releasing hormone (TRH)
Regulates thyroid stimulating hormone release in the pituitary gland
Hypothalamus
Gonadotropin releasing hormone (GnRH)
Regulates LH/FSH production in the pituitary gland
Hypothalamus
Corticotropin releasing hormone (CRH)
Regulates adrenocorticotropin release in the pituitary gland
Thymus
Humoral factors
Helps develop the lymphoid system
Originally posted here:
Hormones and the Endocrine System | Johns Hopkins Medicine
What are Hormones? Types, Functions and Hormonal Diseases – BYJUS
Hormones Definition
Hormones are chemicals synthesized and produced by the specialized glands to control and regulate the activity of certain cells and organs. These specialized glands are known as endocrine glands.
Table of Contents
What are Hormones?
As stated above, hormones are chemicals that essentially function as messengers of the body. These chemicals are secreted by special glands known as the endocrine glands. These endocrine glands are distributed throughout the body. These messengers control many physiological functions as well as psychological health. They are also quite important in maintaining homeostasis in the body.
Explore more: Endocrine Glands And Hormones
The effects of hormones depend on how they are released. Hence, signalling effects can be classified into the following:
Types of Hormones
To regulate various functions, different types of hormones are produced in the body. They are classified as follows:
Peptide hormones are composed of amino acids and are soluble in water. Peptide hormones are unable to pass through the cell membrane as it contains a phospholipid bilayer that stops any fat-insoluble molecules from diffusing into the cell. Insulin is an important peptide hormone produced by the pancreas.
Unlike peptide hormones, steroid hormones are fat-soluble and are able to pass through a cell membrane. Sex hormones such as testosterone, estrogen and progesterone are examples of steroid hormones.
Also Read:Placebo Effect
Endocrine Glands and the Hormones Secreted
As stated before, hormones are released by the endocrine glands. These are different from other glands of the human body as they are ductless.
All these glands work together to produce and manage the hormones of the body.
Also Read:Sex Hormones
List of Important Hormones
Also Read: Animal Hormones
Functions of Hormones
Following are some important functions of hormones:
Also Read: Plant Growth Regulators
Hormonal Diseases
Several hormonal diseases occur when there is a malfunctioning of the endocrine glands. Common hormonal issues are associated with hypothalamus, adrenal and pituitary glands. An increase or decrease in the secretion of these hormones can severely affect growth, metabolism and development.
Diseases such as hyperthyroidism, osteoporosis, and diabetes are caused due to hormonal imbalance. The factors responsible for hormonal diseases can be genetic, environmental, or related to diet.
Also Read:Mechanism of Hormone Action
Why are Hormones called Chemical Messengers?
The prominent role ofhormonesis that of a messenger. Hypothalamus is a part of forebrain where a numerous amount of neurosecretory cells are present. These neurosecretory cells are specialized in the secretion of a hormone called neurohormones. They stimulate the anterior lobe of the pituitary to produce various other hormones.
Sometimes, hormones act more than a regulator than a messenger. The changes in the level of hormone production lead to certain changes in the body. Thus, hormone as a regulator maintains the homeostasis of the body. Once the hormones meet their target, their production needs to be controlled and this is attained by a mechanism called feedback control mechanism. The feedback mechanism could either be positive or negative.
Feedback Mechanism Thyroid
Thethyroid glandproduces a hormone called thyroxine, and its secretion is controlled by the Thyrotropin Releasing Hormone (TRH) from the hypothalamus and the Thyroid Stimulating Hormone (TSH) from the anterior pituitary.
When the level of thyroxine in the blood reduces, the hypothalamus stimulates the thyroxine secretion by stimulating TSH secretion. This represents a positive feedback mechanism.
If the hypothalamus continues to stimulate thyroxine production, it could result in a high level of thyroxine in the blood. This sends negative feedback to the hypothalamus to reduce or stop the TRH and TSH secretion which regulates the thyroxine level in the body. This is a negative feedback mechanism.
Hormones are meant for their target tissues for specific functions. As soon as they meet their target, they are removed. This is mainly done by the liver, kidney and other organs.
Also Read:Feedback Mechanism of Hormones
Learn more in detail about what are hormones, different types of hormones, their functions and other related topics at BYJUS Biology.
Hormones are the chemicals that are responsible for controlling and regulating the activities of certain cells and organs. These hormones are secreted by ductless glands known as endocrine glands.
Hormones are classified into two types, namely: Peptide hormones and steroid hormones.
Hormones are made of either proteins or steroids.
The hormone released by the adrenal glands is called Epinephrine. It is also called adrenaline.
The hormone produced by the pineal gland is Melatonin. It regulates the bodys sleep cycle.
The thyroid gland is responsible for producing thyroxine, triiodothyronine, and calcitonin.
In males, testosterone is produced by the testes while ovaries produce the same hormone in females.
Progesterone is produced by the ovaries.
The hormone responsible for gigantism is growth hormones, which are released by the pituitary gland.
Acromegaly is the result of excess production of the growth hormone by the pituitary gland, commonly as a result of a benign tumour.
Read more from the original source:
What are Hormones? Types, Functions and Hormonal Diseases - BYJUS
Patient Engagement | Endocrine Society
Your Health and Hormones Close
We are here to help you understand how hormones work and use that knowledge to manage your health.
We empower high-quality, equitable healthcare for people with hormone health conditions, including diabetes and obesity, infertility, thyroid conditions, osteoporosis, and hormone-related cancers. Together, we promote an environment that helps people of all backgrounds and ethnicities access the medical care they need.
Through our multi-lingual educational materials, and EndoCares program, the Endocrine Society provides opportunities for you to connect with endocrinologists across the globe. For more than two decades, our 18,000 members have leveraged their medical and scientific expertise to provide trusted information to the public.
Endocrinology is the study of medicine that relates to the endocrine system, which is the system that controls hormones. Hormones regulate:
Hormones are produced by glands and sent into the bloodstream to the various tissues in the body. They send signals to those tissues to tell them what they are supposed to do. When the glands do not produce the right amount of hormones, diseases develop that can affect many aspects of life.
Endocrinologists are specially trained physicians, who treat those that suffer from hormonal imbalances. They have thoroughly studied hormonal conditions and know the best treatments and therapies. options. Most general practitioners have the skills necessary to diagnose and treat basic hormonal conditions, but sometimes the help of a specialist is needed.
The Patient Engagement Committee is comprised of Endocrine Society members, clinicians, researchers, educators, with expertise in endocrinology's major therapeutic areas. The committees role is to identify the educational needs of endocrine science for patients and the public, oversee the impact and outcomes of our program, and provide translational knowledge on specific hormone-related conditions.
Are you an Endocrine Society member interested in creating or reviewing content? Let us know you are interested, by filling out the volunteer form here.
DISCLAIMER:WE DO NOT PROVIDE MEDICAL ADVICE -The information, including but not limited to, text, graphics, images and other material contained on this website are for informational and educational purposes only. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition.
Read the rest here:
Patient Engagement | Endocrine Society
Uterine Fibroids | ACOG
Anemia: Abnormally low levels of red blood cells in the bloodstream. Most cases are caused by iron deficiency (lack of iron).
Cervix: The lower, narrow end of the uterus at the top of the vagina.
Cesarean Birth: Birth of a fetus from the uterus through an incision made in the womans abdomen.
Computed Tomography (CT): A type of X-ray that shows internal organs and structures in cross section.
Estrogen: A female hormone produced in the ovaries.
Fetus: The stage of human development beyond 8 completed weeks after fertilization.
Fallopian Tubes: Tubes through which an egg travels from the ovary to the uterus.
Gonadotropin-releasing Hormone (GnRH): A hormone made in the brain that tells the pituitary gland when to produce follicle-stimulating hormone (FSH) and luteinizing hormone.
Hysterectomy: Surgery to remove the uterus.
Hysterosalpingography: A special X-ray procedure in which a small amount of fluid is placed in the uterus and fallopian tubes to find abnormal changes or see if the tubes are blocked.
Hysteroscopy: A procedure in which a lighted telescope is inserted into the uterus through the cervix to view the inside of the uterus or perform surgery.
Intrauterine Device (IUD): A small device that is inserted and left inside the uterus to prevent pregnancy.
Laparoscopy: A surgical procedure in which a thin, lighted telescope called a laparoscope is inserted through a small incision (cut) in the abdomen. The laparoscope is used to view the pelvic organs. Other instruments can be used with it to perform surgery.
Laparotomy: A surgical procedure in which an incision is made in the abdomen.
Magnetic Resonance Imaging (MRI): A test to view internal organs and structures by using a strong magnetic field and sound waves.
Menopause: The time when a woman's menstrual periods stop permanently. Menopause is confirmed after 1 year of no periods.
Menstruation: The monthly shedding of blood and tissue from the uterus that happens when a woman is not pregnant.
Osteoporosis: A condition of thin bones that could allow them to break more easily.
Pelvic Exam: A physical examination of a womans pelvic organs.
Progesterone: A female hormone that is made in the ovaries and prepares the lining of the uterus for pregnancy.
Progestin: A synthetic form of progesterone that is similar to the hormone made naturally by the body.
Resectoscope: A slender telescope with an electrical wire loop or roller-ball tip used to remove or destroy tissue.
Sonohysterography: A procedure in which sterile fluid is injected into the uterus through the cervix while ultrasound images are taken of the inside of the uterus.
Tranexamic Acid: A drug to treat or prevent heavy bleeding.
Ultrasound Exam: A test in which sound waves are used to examine inner parts of the body. During pregnancy, ultrasound can be used to check the fetus.
Uterus: A muscular organ in the female pelvis. During pregnancy, this organ holds and nourishes the fetus. Also called the womb.
Uterine Artery Embolization: A procedure to block the blood vessels to the uterus. This procedure is used to stop bleeding after delivery. It is also used to stop other causes of bleeding from the uterus.
Vagina: A tube-like structure surrounded by muscles. The vagina leads from the uterus to the outside of the body.
Read more from the original source:
Uterine Fibroids | ACOG
Breast cancer: What you need to know – Sanford Health News
Around 264,000 women are diagnosed with breast cancer every year. Its one of the most common types of cancer in American women.
Heres what you need to know to protect your breast health.
Your body is growing new cells all the time. Usually, these cells die off when you dont need them any longer. Cancer is a group of abnormal cells that mutate and grow out of control when your body doesnt need them. They usually form a lump or mass.
Breast cancer describes any cancer that begins in the breast. It can affect both women and men, although it is rare in men. Out of every 100 breast cancers diagnosed, there is around one case found in a man.
The breast is made of lobules (milk glands), ducts, fat, tissue, lymph nodes and blood vessels. Cancer can start anywhere in the cells of the breast but is most likely to start in the lobules and ducts.
Experts dont know exactly what causes breast cancer, but they have identified some risk factors that make you more likely to get it.
Some risk factors are things you cant change, including:
Breast cancer usually isnt painful. If youre experiencing breast pain or discomfort, its more likely your menstrual cycle is the cause.
If your breast pain is severe or lasts longer than a few weeks, see your health care provider. Breast pain is rarely the main symptom of breast cancer, but it could still happen. Your provider will help you identify the cause of your breast pain and how to treat it.
In early stages, breast cancer can be too small to cause symptoms. This is what makes breast cancer screenings so important. Catching breast cancer early means its more treatable and less likely to have spread to other parts of the body.
As breast cancer grows, it can cause changes in your breasts such as:
If you notice any changes in your breasts, see your health care provider right away.
Find a Sanford Health provider.
There are steps you can take to help prevent breast cancer:
Having children also helps reduce your risk of getting breast cancer, especially if you have children before the age of 30.
The best way to protect your breast health is through regular screenings. Sanford Health recommends getting a mammogram every year starting at age 40. These screenings are important for catching breast cancer early when its most treatable.
Depending on your risk factors, you may need to get screened earlier than age 40. Talk to your doctor to learn when you should start screenings based on your personal risk.
Medical review by Michael Bouton, MD, a breast surgeon at the Sanford Medical Center in Fargo, North Dakota; Andrea Kaster, MD, a family medicine physician in the Edith Sanford Breast Center Fargo in Fargo, North Dakota; and Christina Tello-Skjerseth, MD, a radiologist at the Sanford Clinic in Bismarck, North Dakota.
Posted In Cancer, Cancer Screenings, Women's
Continue reading here:
Breast cancer: What you need to know - Sanford Health News
Medical guidelines that embrace the humility of uncertainty could help doctors choose treatments with more research evidence behind them -…
Clinical guidelines greatly influence how doctors care for their patients. By providing recommendations on how to diagnose and treat particular situations, guidelines can help standardize the care patients receive. For instance, when a patient is suffering from an infection, a physician can consult the relevant guidelines to confirm that antibiotics are the appropriate treatment. Regulators, insurance payers and lawyers can also use guidelines to manage a doctors performance, or as evidence in malpractice cases. Often, guidelines compel doctors to provide care in specific ways.
We are physicians who share a common frustration with guidelines based on weak or no evidence. We wanted to create a new approach to medical guidelines built around the humility of uncertainty, in which care recommendations are only made when data is available to support the care. In the absence of such data, guidelines could instead present the pros and cons of various care options.
We got together an international team of physicians and pharmacists to create a guideline on creating guidelines. We call this new type of guideline a WikiGuideline, not affiliated with Wikipedia but similarly opening collaboration to all people. The idea was to enable any qualified practitioner to have a voice in guideline construction, rather than limiting authorship to academics who are politically active in specialty societies in wealthy countries.
The clinical guidelines movement first began to gain steam in the 1960s. Guideline committees, usually composed of subspecialty experts from academic medical centers, would base care criteria on randomized clinical trials, considered the gold standard of empirical evidence.
Unfortunately, many committees have since started providing answers to clinical questions even without data from high-quality clinical trials. Instead, they have based recommendations primarily on anecdotal experiences or low-quality data.
Medical guidelines made with insufficient data can lead to patient harm.
For example, guidelines once instructed doctors to prescribe hormone replacement therapy to all post-menopausal women to prevent breast cancer. However, a subsequent large randomized controlled trial showed that giving hormone replacement therapy actually increased the risk of breast cancer. While guidelines have since been updated to narrow down who would benefit from hormone replacement therapy, prior practices have likely resulted in breast cancer for many patients.
Other poorly made guidelines have also seen similar results.
A guideline that instructed doctors to use higher doses of an antibiotic called vancomycin for bacterial infections was later shown to not be more effective and also increase the risk of kidney failure. Likewise, a guideline that promoted aggressive, rapid administration of antibiotics to patients who may have pneumonia was found to not improve outcomes and cause side effects for patients who did not actually end up diagnosed with pneumonia.
Another guideline promoted the use of medications called beta blockers for certain types of surgeries before researchers learned that they increased the risk of heart attacks during and after the procedures. Similarly, a guideline promoting the use of intensive insulin therapy in the ICU was later shown to cause blood sugar levels to drop to dangerously low levels.
To create a new form of medical guideline that takes the strength of available evidence for a particular practice into account, we gathered 60 other physicians and pharmacists from eight countries on Twitter to draft the first WikiGuideline. Bone infections were voted as the conditions most in need of new guidelines.
We all voted on seven questions about bone infection diagnosis and management to include in the guideline, then broke into teams to generate answers. Each volunteer searched the medical literature and drafted answers to a clinical question based on the data. These answers were repeatedly revised in open dialogue with the group.
These efforts ultimately generated a document with more than 500 references and provided clarity to how providers currently manage bone infections. Of the seven questions we posed, only two had sufficient high-quality data to make a clear recommendation on how providers should treat bone infection. The remaining five questions were answered with reviews that provided pros and cons of various care options.
The recommendations WikiGuidelines arrived at differ from current bone infection guidelines by professional group for medical specialists. For example, WikiGuidelines makes a clear recommendation to use oral antibiotics for bone infections based on numerous randomized controlled trials. Current standard guidelines, however, recommend giving intravenous antibiotics, despite the evidence that giving treatment orally is not only just as effective as giving it intravenously, but is also safer and results in fewer side effects.
Providers benefit from careful review of a clinical case. When there isnt enough data to make a clear recommendation, laying out what data is available can help inform their clinical judgment.
We believe that more inclusive guideline committees that open participation to qualified practitioners instead of just those within specialty societies could help make for better medical guidelines. The WikiGuidelines Group now has over 110 members from over 14 countries, many of which are lower- and lower-middle-income countries. We are currently working on a guideline for managing heart valve infections.
It is our hope that future guidelines can avoid the errors of the past by incorporating the humility of uncertainty into the process, acknowledging when the evidence is unclear and only issuing clear recommendations when high quality data can support them.
Superior HealthPlan Promotes Breast Cancer Screenings this October – PR Newswire
EL PASO, Texas, Oct. 6, 2022 /PRNewswire/ -- With more than 20 years of experience providing comprehensive healthcare and programs to Texas women, Superior HealthPlan is urging members to schedule routine appointments and screenings to help prevent breast cancer. This is part of a larger effort by Superior in support of National Breast Cancer Awareness Month in October.
"This national awareness campaign serves as an important reminder to those in need of a mammogram to contact their physician for support," said Dr. David Harmon, Chief Medical Director at Superior. "Early detection and treatment are essential in the fight against breast cancer, and we want to encourage everyone to get the care they need."
This year alone, an estimated 20,000 women in Texaswill be diagnosed with breast cancer, and nearly 3,400 of those women will die from the disease. Women older than 40 should consider beginning annual breast cancer screenings with mammograms, and potentially earlier if they have a family history of breast cancer. Below are a few ways to lower risk and take preventive steps:
Along with early prevention and other steps, Superior offers several programs and support for women. This includes Care Management specifically for women who have been diagnosed with breast cancer. This program is featured in a new videothat explores the story of Autumn, a Superior HealthPlan member who has a history of breast cancer in her family.
Superior can help members connect with their primary care physician, either through telehealth or in-person visits. Members can use the "Find a Provider" tool or call Superior at 1-800-783-5386.
For more about Superior's services and benefits, visit http://www.SuperiorHealthPlan.com.
Founded in 1999,Superior HealthPlanis a managed care company that delivers quality healthcare throughout Texas. Committed to transforming the health of the community, one person at a time, Superior supports active local involvement in all 254 Texas counties with 3,000 employees throughout the state. Superior is a wholly-owned subsidiary of Centene Corporation, a leading healthcare enterprise that is committed to helping people live healthier lives. More information on Superior can be found at http://www.SuperiorHealthPlan.com.
SOURCE Superior HealthPlan
See the original post here:
Superior HealthPlan Promotes Breast Cancer Screenings this October - PR Newswire
EDITORIAL: Political stances on gender reassignment treatment for minors need to be carefully considered – Enid News & Eagle
In a time where political partisanship is at an all-time high, and even highly personal issues such as gender or sexual identity policies are moving into either right or left camps, politicians should be cautious in considering their positions on this issue.
Legislation passed this week that was tied to increasing the capacity of behavioral health care for children in the state, came with some strings attached primarily that state funding for life-altering transgender treatments for youth would be restricted. The legislation states that no money may be spent by the University Hospitals Authority for the benefit of any facility owned by the University Hospitals Authority or University Hospitals Trust performing gender reassignment medical treatment on any patient younger than 18.
The controversy swirls mostly around the University of Oklahoma Childrens Hospital, which operates a program that provides gender-affirming scope of treatment that includes using puberty blockers, managing gender-affirming hormone therapy and finding surgeons who perform gender-reassignment surgeries.
There still is so much to understand and learn about what many young people are facing when it comes to gender and sexual identity. We believe hospitals and physicians should be a part of working with children and families on those issues; however, when it comes to performing these life-altering procedures on children, there is legitimate concern in medical circles to exercise great caution.
A recent New York Times article points out that these procedures raise definite ethical questions, and some experts urge caution in treating children with puberty-blocking drugs and hormones.
The article states some clinicians have pointed to the rising demand and the turmoil of adolescent development as reasons for doctors to slow down before offering irreversible procedures. Although medical experts believe the likelihood to be small, some patients come to regret their surgeries.
This is not an issue of not trusting parents or physicians judgment regarding the needs of their children or patients, as some Democratic supporters suggest. Any type of life-altering surgery performed on a minor should be very carefully considered. We understand these issues put parents and caregivers in a sensitive position because they want to do what they can to help their children; however, children under the age of 18 do not have the judgment needed to make such drastic decisions.
Lawmakers have the right to withhold taxpayer funding for these types of programs performed at state-funded hospitals. However, outlawing or criminalizing medical facilities and professionals should not be on the table. Instead, lawmakers take the time and effort to further study the issue with care and honest consultation with physicians and families.
We are making critical coverage of the coronavirus available for free. Please consider subscribing so we can continue to bring you the latest news and information on this developing story.
Continue reading here:
EDITORIAL: Political stances on gender reassignment treatment for minors need to be carefully considered - Enid News & Eagle