Archive for the ‘IPS Cell Therapy’ Category
The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor … – Frontiers
Introduction: iPSCs, an Invaluable Resource for Disease Modeling
The development of human induced pluripotent stem cells (iPSCs) (Takahashi et al., 2007) provided unprecedented opportunities to decipher pathophysiological mechanisms of diseases and to test therapeutic approaches in conditions that better translate to humans. This technology allows to obtain an unlimited number of cells from one patient thus representing an ideal model to study in vitro diseases developmental stages, onset and progression in specific human cells (Park et al., 2008a).
iPSCs are capable of indefinite self-renewal and can differentiate into any cell type under appropriate culture conditions (Takahashi et al., 2007; Yu et al., 2007). iPSCs are generated by reprogramming primary somatic cells, such as dermal fibroblasts or blood cells, using ectopic expression of selected embryonic transcription factors (e.g., Oct4, Sox2, Klf4, and c-Myc) (Takahashi et al., 2007). Over the years, several techniques have been refined to deliver the reprogramming cocktail for iPSCs generation. The first pioneering studies on iPSCs used integrating delivery systems, through retroviral or lentiviral vectors (Takahashi et al., 2007; Yu et al., 2007; Park et al., 2008b). To avoid any incorporation of the foreign genetic material and induction of genomic alterations (Nakagawa et al., 2008; Shao and Wu, 2010), novel delivery systems have been introduced, based on non-integrating vectors (such as the Sendai virus or episomal vectors), self-excising vectors (i.e., Cre-Lox, PiggyBac transposon), and non-viral vectors (i.e., combination of signaling molecules, small bioactive molecules, microRNAs, and other chemicals) (Liu et al., 2020). Interestingly, the delivery of synthetic mRNA expressing the reprogramming factors, was also exploited for the safe generation of iPSCs (Warren et al., 2010). It was also used for iPSCs differentiation (Warren et al., 2012; Mandal and Rossi, 2013; Yoshioka et al., 2013; Goparaju et al., 2017). This technology provides high in vitro transfection efficiency of complex mixtures, with transient expression and absence of genomic integration (Sahin et al., 2014).
iPSCs have the ability to retain the genetic mutation carried by the donor patient together with its genomic background, overcoming the limitations presented by the animal models and leading to a new era of disease modeling and clinical applications (Shi et al., 2017). Moreover, unlike the other unlimited sources of self-renewing cells, the embryonic stem cells (ESCs), which can only be obtained from early-stage blastocysts (45 days post fertilization), the iPSCs can be generated from adult patients, eliminating the ethical issues related to the generation of ESCs and leading to the opportunity for studying different stages of the disorders (Romano, 2008; Romito and Cobellis, 2016).
However, genetic background heterogeneity, lack of proper controls, as well as technical challenges in handling and standardizing the culture methods (Doss and Sachinidis, 2019; Volpato and Webber, 2020), contribute to the variability observed in the use of iPSCs as disease model (Hoekstra et al., 2017; Karagiannis et al., 2018; Volpato and Webber, 2020). To deal with genetic background influence on the expression of disease phenotype it is now possible to generate isogenic cell lines, introducing or repairing putative causative mutations through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genomic editing technologies (Ben Jehuda et al., 2018). The use of such controls, when possible, reduces the observed variation in cellular phenotypes caused by the genomic milieu (Soldner and Jaenisch, 2012).
Thanks to the mentioned superior features, iPSCs were exploited to generate in vitro models of severe diseases affecting the neuromuscular system and/or the central nervous system, such as neuromuscular and motor neuron disorders (NMD and MND, respectively). While genetic corrected iPSCs are investigated in the complex field of cell replacement therapies, in which modified cells are reintroduced into patients (Tedesco et al., 2012; Barthlmy and Wein, 2018; Abdul Wahid et al., 2019), the iPSCs platform has already allowed the identification of drug candidates for some of these complex disorders (Ortiz-Vitali and Darabi, 2019; Pasteuning-Vuhman et al., 2020). Recently, the combination of iPSCs and gene targeting approaches is changing the face of modern medicine. In this review, we will thus briefly discuss the successes in the identification of drug candidates for NMD and MND and then we will focus on the efforts toward the validation of gene therapy approaches in iPSCs for muscular dystrophies, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Table 1 summarizes the research efforts in this direction mentioned in this review.
Table 1. Summary of the major findings of the cited articles in which iPSCs were used for therapeutic tests of neuromuscular and motor neuron disorders.
iPSCs are widely exploited in high-throughput drug screenings for genetic disorders. Thus far, the introduction of iPSCs into the drug development pipeline has allowed (i) physiologically improved modeling of disease-relevant phenotypes, (ii) a greater patient stratification, and (iii) discrimination between drug responders and non-responders (Pasteuning-Vuhman et al., 2020). In perspective, this will have an impact on the current limitations of the conventional drug discovery process and consequently improve the success of therapeutic target identification and clinical trial outcomes (Hosoya and Czysz, 2016).
Following their discovery, multiple research efforts focused on the generation of iPSCs for NMD and MND. As example, in 2008 Park and collaborators, established the first iPSCs line from skin fibroblasts from a patient affected by Duchenne muscular dystrophy (DMD), a fatal genetic disorder caused by mutations in the dystrophin (DMD) gene and characterized by progressive muscle wasting (Koenig et al., 1987; Park et al., 2008a; Gao and McNally, 2015). Since then, additional DMD-iPSC lines have been reported by other groups and several differentiation protocols were tested to refine the optimal methods for skeletal muscle and cardiac cell differentiation (reviewed by Danisovic et al., 2018; Piga et al., 2019). These attempts overcame some of the limitations of the commonly used human models of DMD, such as myoblasts obtained from patient biopsies, which are limited in number and phenotypically diverse (Blau et al., 1983; Renault et al., 2000; Sun et al., 2020). In contrast, patient-derived iPSCs allow the generation of large amount of mature skeletal muscle cells (Chal et al., 2016; Caputo et al., 2020) or cardiomyocytesrecapitulating the cardiomyopathy of dystrophic patients (Hashimoto et al., 2016), and can mimic different stages of the disorder (Xia et al., 2018). iPSCs were also converted to neuronal cells to study the impact on the central nervous system in NMD. For example, neuron-iPSCs were generated from patients affected by myotonic dystrophy 1 (DM1) (Du et al., 2013; Xia et al., 2013; Ueki et al., 2017), caused by an expansion of the CTG trinucleotide repeats in the 3 untranslated region of the dystrophia myotonica protein kinase (DMPK) gene (Brook et al., 1992). Altogether these studies highlight the versatility of iPSCs as model for the thorough study of gene mutations in the main affected tissues (i.e., skeletal and cardiac muscle for DMD) but also in other relevant cell types (such as neurons in DM1), which contribute to the disease manifestations. Furthermore, iPSCs are being exploited for the development of therapies for muscular dystrophies which is usually carried out in mouse models unable to fully recapitulate all the human disease features (Wells, 2018; Ortiz-Vitali and Darabi, 2019; van Putten et al., 2020). Recently, Sun and colleagues developed a platform based on DMD-iPSCderived myoblasts for drug screening and among 1524 compounds analyzed, they identified 2 promising small molecules with in vivo efficacy (Sun et al., 2020). Further efforts in this direction will likely improve the search for reliable drug candidates and eventually increase the success rate in clinical trials for these severe disorders.
While animal models remain the preferred choice also for modeling and drug testing for MND (Picher-Martel et al., 2016; Dawson et al., 2018; Giorgio et al., 2019), the large genetic variability of these disorders set the ground for the wide use of patient-derived cells. Since 2008, when Eggans group (Dimos et al., 2008) used for the first time iPSCs to produce patient-specific motor neurons and glia from skin cells of an 82-year-old female patient diagnosed with ALSthe most common adult onset MNDseveral groups have designed and validated protocols for spinal motor neurons (MN) (Son et al., 2011; Amoroso et al., 2013; Demestre et al., 2015; Maury et al., 2015; Toli et al., 2015; Sances et al., 2016; Fujimori et al., 2018) and astrocyte differentiation (Madill et al., 2017; Birger et al., 2019; Zhao et al., 2020). The studies performed in ALS-iPSCs with different genetic mutations, facilitated the identification of common pathological features to the various disease forms, such as endoplasmic reticulum stress (Kiskinis et al., 2014; Dafinca et al., 2016), mitochondrial abnormalities (Dafinca et al., 2020; Hor et al., 2020), and impaired excitability (Wainger et al., 2014), but also characteristics related to specific mutations, like protein aggregation or mislocalization (Liu et al., 2015).
Drug screenings using ALS-derived iPSCs additionally allowed the identification of three drugs that are currently explored as therapeutic options in clinical trials.
- The first one, ROPI, a dopamine receptor agonist, was identified from a panel of 1232 Food and Drug Administration (FDA)-approved drugs in a drug screening analysis conducted at Keio University, which examined Fused in sarcoma (FUS)- and TAR-DNA-Binding Protein 43 (TDP-43)-ALS iPSC-derived MN for suppression of ALS-related phenotypes in vitro, such as mislocalization of FUS/TDP43, stress granule formation, MN death/damage, and neurite retraction (Fujimori et al., 2018). This drug is now tested in the ROPALS trial (UMIN000034954 and JMA-IIA00397) as continuation of the Phase I/IIa clinical trial (Morimoto et al., 2019).
- Retigabine (known as an antiepileptic) was identified as a potential suppressor of the hyperexcitability of ALS iPSC-derived MNs based on electrophysiological analysis (Wainger et al., 2014). It is a voltage-gated potassium channel activator (Kv7) able to both block hyperexcitability and improve MN survival in vitro when tested in ALS cases carrying the most common genetic mutations (Wainger et al., 2014). A Phase II Pharmacodynamic Trial of Ezogabine (Retigabine) on neuronal excitability in ALS (NCT02450552) was conducted from 2015 to 2019 showing a decrease of cortical and spinal MN excitability in participants with ALS. These data suggest that such neurophysiological metrics may be used as pharmacodynamic biomarkers in multisite clinical trials (Wainger et al., 2020).
- The third drug is Bosutinib, a proto-oncogene non-receptor protein tyrosine kinase (Src/c-Abl) inhibitor that promoted autophagy and rescued degeneration in iPSC-derived MN, inhibiting misfolded Superoxide Dismutase 1 (SOD1) aggregation and suppressing cell death in genetic and sporadic ALS (Imamura et al., 2017). A new Phase I clinical trial of the drug bosutinib for ALS (UMIN000036295) was initiated in Japan in March 2019.
These examples of drug discovery in iPSCs and their ongoing translation to patients affected by a yet uncurable disease, indicate that this could be a valid paradigm for clinical success in similar diseases, such as SMA. SMA is a MND caused by homozygous mutations in the survival of motor neuron gene (SMN1) leading to infant mortality and motor disabilities in young and adult patients (Lefebvre et al., 1995; Verhaart et al., 2017; Smeriglio et al., 2020). This gene has a paralog called SMN2 that is nearly identical to SMN1, with few nucleotide differences, which result in the exclusion of exon 7 and 90% production of a truncated non-functional survival of motor neuron (SMN) protein (Lefebvre et al., 1995). Several therapeutic strategies have been tested to restore SMN expression (Wirth, 2021). Histone deacetylase (HDAC) inhibitors were tested to induce transcriptional activation of SMN2 and consequent increased production of full length SMN, with successful outcomes in proof-of-concept studies and failure in clinical trials. With the aim to identify compounds with higher efficacy and specificity, Lai and colleagues performed a drug screening in neuron-iPSCs from SMA patients. This study identified novel HDAC inhibitors with therapeutic potential that could be further explored for SMA treatment (Lai et al., 2017). Interestingly, neuron-iPSC from SMA patients were also used to test the efficacy of the recent FDA approved small molecule EvrysdiTM (risdiplam) (Ratni et al., 2016; Ratni et al., 2018; Dhillon, 2020), which forces the inclusion of exon 7 and thus restore SMN protein levels (Poirier et al., 2018). Moreover, the drug called TEC-1 (2-(4,6-dimethylpyrazolo[1,5-a]pyrazin-2-yl)-6-(4-methylpiperazin-1-yl)quinazolin-4(3H)-one) another SMN2 splicing modulator, was recently identified in a screening on SMA patient-derived fibroblasts. The drugs effects were then confirmed in SMA-MN-iPSCs (Ando et al., 2020).
As suggested by the reported examples, the combination of iPSCs modeling, together with high-throughput drug screening followed by animal tests will likely ensure the identification of effective and safe therapeutic candidates. How this pipeline can be adapted to the development and tests for precision medicine approaches, such as gene therapy, will be discussed in the following paragraphs and is exemplified in Figure 1.
Figure 1. Test and development of gene targeting approaches using iPSCs. This drawing summarizes the steps of development for drugs and gene therapy approaches, using induced pluripotent stem cells (iPSCs). Somatic cells, such as fibroblasts or blood cells (peripheral blood mononuclear cells, PBMCs) are obtained from patients biopsies. After reprogramming, the patient-derived iPSCs can be differentiated into disease-relevant cell types, such as skeletal muscle cells, neural or glial cells for neuromuscular or motor neuron disorders. These cells are then subjected to the classical high-throughput drug screening and in perspective will be used to test novel therapeutic entities, based on gene targeting approaches. As example, antisense oligonucleotides (ASOs) or adeno-associated viral vectors (AAV)-based strategies. After validations in animal models and the pre-clinical development process, these novel therapies could enter into clinical trials for patients affected by rare disorders. The use of iPSCs and gene targeting strategies will likely foster the development of personalized medicine approaches. Created with BioRender.com.
Gene targeting approaches are based on the direct correction of the genetic defects (Wang and Gao, 2014; Cappella et al., 2019). For example, antisense oligonucleotides (ASOs) widely tested in pre-clinical and clinical settings, have been approved for SMA (Spinraza) (Aartsma-Rus, 2017) and DMD (i.e., Exondys 51) (Stein, 2016) patients, encouraging their use for the treatment of other monogenic disorders.
ASOs are synthetic single-stranded strings of nucleic acids that bind to RNA through standard WatsonCrick base pairing. After binding to the targeted RNA, the antisense drug can modulate the function of the targeted RNA by several mechanisms (Bennett and Swayze, 2010; Crooke et al., 2018), depending on the chemical modifications and the binding position on the target RNA (Wurster and Ludolph, 2018; Talbot and Wood, 2019; Ochoa and Milam, 2020). Briefly, ASOs can promote degradation of the targeted RNA, by mimicking DNA-RNA pairing and activating endogenous nucleases (i.e., RNase H1), or can modulate the processing of the RNA molecule, without inducing its degradation. This can be achieved through several mechanisms, such as by masking RNA splicing sites, as in the examples described below for DMD or SMA (Dick et al., 2013; Shoji et al., 2015; Osman et al., 2016; Ramirez et al., 2018). Other methods of action of ASOs have been previously reviewed (Bennett and Swayze, 2010; Crooke, 2017).
Several strategies, (Miller and Harris, 2016; Schoch and Miller, 2017), are currently investigated to increase ASOs stability, enhance binding affinity to the target RNA, improve tissue distribution and cellular uptake, while decreasing possible adverse effects (Bennett et al., 2017). Here we will focus on the use of iPSCs as model for testing the efficacy of these gene targeting approaches in NMD and MND.
Due to the large size of the DMD gene (Koenig et al., 1987), the restoration of the full-length dystrophin protein is challenging (Gao and McNally, 2015; Duan, 2018). One of the most promising approaches for gene targeting in DMD, is the use of ASOs binding to the pre-mRNA of the DMD gene to restore its reading frame and consequently producing a truncated but yet functional protein.
The ASO-mediated exon-skipping efficacy on exon 51 was tested in cardiomyocytes derived from iPSCs with DMD mutations, restoring dystrophin to nearly 30% of the normal level (Dick et al., 2013). Another similar study tested an ASO forcing exon 45 skipping of the DMD gene in myotubes derived from iPSCs, thus restoring dystrophin expression but also reducing calcium overflow (Shoji et al., 2015). These studies indicate that iPSCs can be used as platforms for therapeutic selection of ASO, based on the gene correction and prevention of skeletal muscle phenotype in DMD. The new frontier for the treatment of DMD patients is the development of mutation-specific ASOs (Schneider and Aartsma-Rus, 2020) and the use of iPSCs will likely speed the path to success of those strategies through the selection of the patient-specific and most efficient candidates.
ASOs were also proven effective in differentiated myotubes from DM1-iPSCs. A repeat-directed ASO treatment abolished RNA foci accumulation and rescued mis-splicing (Mondragon-Gonzalez and Perlingeiro, 2018) in vitro. These discoveries indicate that once established the proper conversion and differentiation protocols, together with valid disease read-outs, the test of ASOs in iPSCs could be likely applied to a larger spectrum of muscular dystrophies and diseases.
Therapeutic ASOs are currently tested in clinical trials for ALS patients harboring the chromosome 9 open reading frame 72 (C9ORF72) mutations (NCT03626012), SOD1 mutations (NCT03070119, NCT02623699) (recently reviewed by Cappella et al., 2021) or for sporadic ALS patients, with the Ataxin2-ASO (NCT04494256, Becker et al., 2017). Importantly, a splice switching ASO targeted to SMN2 (Spinraza) was approved for SMA patients in 2016.
To better characterize ASOs ability to rescue disease hallmarks, to dissect pathophysiological mechanisms and to test novel chemistries and molecular technologies, different research groups are studying ASOs in iPSCs for MND. For example, ASOs were proven effective in reducing the accumulation of sense RNA foci or toxic dipeptides in C9ORF72-iPSCs differentiated to neurons or MN (Donnelly et al., 2013; Sareen et al., 2013; Giorgio et al., 2019). More recently, Zhang et al. (2018) demonstrated that nucleocytoplasmic transport deficits and neurodegeneration were alleviated in C9ORF72-MN-iPSCs, after treatment with ASOs directed against the Ataxin 2, an RNA-binding protein. Nizzardo et al. (2016) treated ALS MN-iPSCs with ASOs designed to reduce the synthesis of human SOD1 and observed an increased survival and reduced expression of apoptotic markers in treated cells.
In SMA, iPSCs were used to test novel ASO sequences for their improved capacity of producing the full length SMN protein from splicing modulation of SMN2 and exon 7 inclusion (Osman et al., 2016; Ramirez et al., 2018). They were also used to test novel molecular strategies to restore SMN expression and correct neuropathological feature, namely an U1 small nuclear RNA-mediated splice switching approach and SMN transcription activation, via the Transcription Activator-Like Effector-Transcription Factor (TALE-TF) (Nizzardo et al., 2015). This report suggests that iPSCs could serve for the side-by-side comparison of different gene targeting strategies for monogenic disorders.
The use of adeno-associated viral vectors (AAV) for gene therapy of rare disorders recently became a clinical reality. The approval of Zolgensma (an AAV-mediated therapy) for the treatment of the most severe form of SMA, endorses the development of similar approaches for NMD and MND. Indeed, several pre-clinical studies report successes of these approaches in disease models (Biferi et al., 2017; Cappella et al., 2019; Crudele and Chamberlain, 2019) and their use in clinical trials (Bowles et al., 2012; Mendell et al., 2015; Mueller et al., 2020).
Some of the challenges associated to the translation of AAV-based therapies from animal models to patients, are linked to (i) the selection of the best AAV serotype for efficient transgene expression, (ii) cell/tissue specificity, as well as (iii) production of high vector titers, and (iv) reduction of immunoreactivity (Colella et al., 2017; Naso et al., 2017). To date, hundreds of natural AAV serotypes, variants and bio-engineered versions have been described (Hester et al., 2009; Choudhury et al., 2016; Deverman et al., 2016; Chan et al., 2017; Hanlon et al., 2019). Beside serotypes, research efforts are also focusing on the combination of the best serotype with the therapeutic and regulatory sequencessuch as promoters or enhancers (Colella et al., 2018; Besse et al., 2020; Nieuwenhuis et al., 2020), for efficient, safe and specific transgene expressions (Guilbaud et al., 2019; Hanlon et al., 2019). This will likely contribute to expedite the translational path from bench to clinic. In this context, iPSCs can be used to select the vector with best transduction properties for a specific cell type and/or to test the therapeutic sequences (recombinant transgene, oligonucleotides, antibodies, etc.). These techniques will be further refined to design patient-specific approaches. In perspective, when a therapeutic candidate will be established, iPSCs could be further used for analytical tests of approved gene therapies, such as potency assays.
AAV vectors were initially tested for genetic manipulation of ESCs or iPSCs in vitro, using natural human-derived AAV serotypes (from 1 to 9). After some unsuccessful attempts (Smith-Arica et al., 2003; Jang et al., 2011), some reports showed that natural AAV vector serotypes, such as AAV 2 and 3, were able to target iPSCs, although with limited efficacy (Mitsui et al., 2009; Khan et al., 2010). Through direct evolution, Asuri et al. (2012), derived a novel variant of AAV (AAV1.9) with a threefold higher gene delivery efficiency than AAV2 in iPSCs. These pioneer studies suggested that AAV vectors could be also used for stem cell correction and consequently studies of biological mechanisms in vitro and eventually for therapeutic purposes in cell therapy approaches.
Several studies reported method for AAV-mediated delivery of differentiated iPSCs. For example, Rapti et al. (2015) compared the transduction efficiency of different AAV (serotypes 1, 2, 6, and 9) in cardiomyocyte-iPSCs. Interestingly, they noticed that AAV vectors preferentially transduced differentiated cells and identified in serotypes 2 and 6 the best suited for cardiomyocyte-iPSCs transduction.
For modeling and therapeutic testing of central nervous system cells, AAV serotype 5 expressing the green fluorescent protein (GFP), was proven efficient in iPSCs-derived neuronal and glial cells, resulting in up to 90% of transduction (Martier et al., 2019a). Moreover, Duong et al. examined the level of AAV-GFP expression following the transduction of 11 AAV vectors in iPSCs differentiated into retinal pigment epithelium and cortical neurons (Duong et al., 2019). GFP-expressing cells were examined and compared across doses, time and cell type. They reported that retinal pigmented epithelium had the highest AAV-mediated GFP expression compared to cortical neurons-iPSCs and that AAV7m8 and AAV6 were the best performing, across vector concentrations and cell types. This study suggested that in addition to vector tropisms, cell type significantly affects transgene expression (Duong et al., 2019).
Overall, following optimizations, AAV vectors can be used to efficiently transduce patient-derived cells converted to neural or glial cells, likely facilitating studies for neurological diseases. Indeed, Martier and colleagues investigated the feasibility of a miRNA-based gene therapy to obtain long-term silencing of the repeat-containing transcripts of C9ORF72. Four AAV5 carrying miR candidates were tested in neuron-iPSC, resulting in sufficient transduction and expression of therapeutically relevant levels of the corresponding mature miRNA (Martier et al., 2019b). Two of the tested candidates were then proven efficient in reducing RNA foci accumulation in some brain regions of a disease mouse model (Martier et al., 2019a).
Novel methods are currently developed to select AAV for their fitness in vitro. For example, the group of Lisowski developed an AAV Testing Kit, as novel high-throughput approach based on next-generation sequencing, to study the performance of 30 published AAV variants in vitro, in vivo, and ex vivo. They tested AAV variants in primary cells, immortalized cell lines and iPSCs, showing that iPSCs were most efficiently transduced with bioengineered vectors, such as AAV 7m8, AAV LK03, and AAV DJ (Westhaus et al., 2020). This suggests that further methods for AAV optimization are necessary and will likely improve AAV transduction properties in vitro and in vivo.
Transduction properties of AAV serotypes in the human context have been recently tested in 3D structure iPSC-derived cerebral organoids. The transduction properties of two commonly used AAV serotypes (AAV5 and 9) were compared for transgene expression at the mRNA and protein levels, together with the presence of viral DNA. This study reported a higher transduction of the AAV5 compared to AAV9, in organoids and neural cells (Depla et al., 2020). This work set the ground for the use of iPSCs-derived human organoids as valid system for testing AAV properties and will be likely a valuable platform for holistic characterization of AAV properties in vitro and identification of the best therapeutic candidates.
Gene therapy treatments are revolutionizing the face of modern medicine opening treatment perspectives for patients affected by fatal conditions. Despite the growing success of these approaches, several aspects of gene therapy development need refinement and would benefit of the use of iPSCs. Indeed, together with their most known use, such as disease modeling for high-throughput drug screenings, they can be converted into a reliable platform for testing the novel therapeutic entities. Indeed, after the establishment of proper differentiation protocols and disease readouts, patient-derived models are being utilized to test gene targeting approaches. Here, we have summarized research efforts in testing drugs and gene therapy approaches in iPSCs from patient affected by neuromuscular and motor neuron diseases. We have presented some of the successes in candidate drug identification, such as risdiplam for the treatment of SMA and the research efforts in testing ASOs and AAV-mediated therapies. These studies set the ground for further developments, to select optimized therapeutic molecules and to identify powerful and safe AAV vectors.
In parallel to iPSCs development, research efforts are currently focused on the generation of even more advanced disease models. Indeed, despite iPSCs represent a reliable model for the understanding of pathological mechanisms and therapeutic development, they do not fully recapitulate the complexity of a tissue, with its architecture and interactions (Costamagna et al., 2019). In this direction, 3D culture methods are being implemented for NMD and MND, for example with the generation of artificial skeletal muscle for DMD (Maffioletti et al., 2018) or spinal cord organoids for SMA, which were used for drug test (Hor et al., 2018). Interestingly, the group of Pasa, has recently reported the generation of iPSC-derived 3D culture, in which cerebral cortex or hindbrain/spinal cord organoids were assembled with skeletal muscle spheroids (Andersen et al., 2020). These so-called 3D cortico-motor assembloids hold promise for the development of effective therapeutics for NMD and MND.
In conclusion, the advances in novel technologies, such as production of mature organoids, will endorse the development of efficient personalized medicine approaches.
MC and SE: writing of the manuscript draft. MB: conceptualization, writing, and review. All authors contributed to the article and approved the submitted version.
MC was supported by the ANR grant no. ANR-19-CE18-0014-01. MB and SE were supported by the Association Institut de Myologie (AIM)
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
We thank the Association Franaise contre les Myopathies (AFM), the Association Institut de Myologie (AIM), the Sorbonne Universit, the Institut National de la Sant et de la Recherche Mdicale (INSERM). We also thank Piera Smeriglio for critical reading of the manuscript.
Aartsma-Rus, A. (2017). FDA approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides. Nucleic Acid Ther. 27, 6769. doi: 10.1089/nat.2017.0665
PubMed Abstract | CrossRef Full Text | Google Scholar
Abdul Wahid, S. F., Law, Z. K., Ismail, N. A., and Lai, N. M. (2019). Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 12:CD011742.
Google Scholar
Amoroso, M. W., Croft, G. F., Williams, D. J., OKeeffe, S., Carrasco, M. A., Davis, A. R., et al. (2013). Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J. Neurosci. 33, 574586. doi: 10.1523/jneurosci.0906-12.2013
PubMed Abstract | CrossRef Full Text | Google Scholar
Andersen, J., Revah, O., Miura, Y., Thom, N., Amin, N. D., Kelley, K. W., et al. (2020). Generation of functional human 3D cortico-motor assembloids. Cell 183, 19131929.e26.
Google Scholar
Ando, S., Suzuki, S., Okubo, S., Ohuchi, K., Takahashi, K., Nakamura, S., et al. (2020). Discovery of a CNS penetrant small molecule SMN2 splicing modulator with improved tolerability for spinal muscular atrophy. Sci. Rep. 10:17472.
Google Scholar
Asuri, P., Bartel, M. A., Vazin, T., Jang, J.-H., Wong, T. B., and Schaffer, D. V. (2012). Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol. Ther. 20, 329338. doi: 10.1038/mt.2011.255
PubMed Abstract | CrossRef Full Text | Google Scholar
Becker, L. A., Huang, B., Bieri, G., Ma, R., Knowles, D. A., Jafar-Nejad, P., et al. (2017). Therapeutic reduction of ataxin 2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367371. doi: 10.1038/nature22038
PubMed Abstract | CrossRef Full Text | Google Scholar
Ben Jehuda, R., Shemer, Y., and Binah, O. (2018). Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev. Rep. 14, 323336. doi: 10.1007/s12015-018-9811-3
PubMed Abstract | CrossRef Full Text | Google Scholar
Bennett, C. F., and Swayze, E. E. (2010). RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259293. doi: 10.1146/annurev.pharmtox.010909.105654
PubMed Abstract | CrossRef Full Text | Google Scholar
Bennett, C. F., Baker, B. F., Pham, N., Swayze, E., and Geary, R. S. (2017). Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57, 81105.
Google Scholar
Besse, A., Astord, S., Marais, T., Roda, M., Giroux, B., Lejeune, F.-X., et al. (2020). AAV9-mediated expression of SMN restricted to neurons does not rescue the spinal muscular atrophy phenotype in mice. Mol. Ther. 28, 18871901. doi: 10.1016/j.ymthe.2020.05.011
PubMed Abstract | CrossRef Full Text | Google Scholar
Biferi, M. G., Cohen-Tannoudji, M., Cappelletto, A., Giroux, B., Roda, M., Astord, S., et al. (2017). A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol. Ther. 25, 20382052. doi: 10.1016/j.ymthe.2017.05.017
PubMed Abstract | CrossRef Full Text | Google Scholar
Birger, A., Ben-Dor, I., Ottolenghi, M., Turetsky, T., Gil, Y., Sweetat, S., et al. (2019). Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine 50, 274289. doi: 10.1016/j.ebiom.2019.11.026
PubMed Abstract | CrossRef Full Text | Google Scholar
Blau, H. M., Webster, C., and Pavlath, G. K. (1983). Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 80, 48564860. doi: 10.1073/pnas.80.15.4856
PubMed Abstract | CrossRef Full Text | Google Scholar
Bowles, D. E., McPhee, S. W., Li, C., Gray, S. J., Samulski, J. J., Camp, A. S., et al. (2012). Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther. 20, 443455.
Google Scholar
Brook, J. D., McCurrach, M. E., Harley, H. G., Buckler, A. J., Church, D., Aburatani, H., et al. (1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 68, 799808. doi: 10.1016/0092-8674(92)90154-5
CrossRef Full Text | Google Scholar
Cappella, M., Pradat, P.-F., Querin, G., and Biferi, M. G. (2021). Beyond the traditional clinical trials for amyotrophic lateral sclerosis and the future impact of gene therapy. J. Neuromuscul. Dis. 8, 2538. doi: 10.3233/jnd-200531
PubMed Abstract | CrossRef Full Text | Google Scholar
Caputo, L., Granados, A., Lenzi, J., Rosa, A., Ait-Si-Ali, S., Puri, P. L., et al. (2020). Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGF-dependent pro-fibrotic signaling. Skelet. Muscle 10:13.
Google Scholar
Chal, J., Al Tanoury, Z., Hestin, M., Gobert, B., Aivio, S., Hick, A., et al. (2016). Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11, 18331850. doi: 10.1038/nprot.2016.110
PubMed Abstract | CrossRef Full Text | Google Scholar
Chan, K. Y., Jang, M. J., Yoo, B. B., Greenbaum, A., Ravi, N., Wu, W.-L., et al. (2017). Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 11721179. doi: 10.1038/nn.4593
PubMed Abstract | CrossRef Full Text | Google Scholar
Choudhury, S. R., Fitzpatrick, Z., Harris, A. F., Maitland, S. A., Ferreira, J. S., Zhang, Y., et al. (2016). In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol. Ther. 24, 12471257. doi: 10.1038/mt.2016.84
PubMed Abstract | CrossRef Full Text | Google Scholar
Colella, P., Sellier, P., Costa Verdera, H., Puzzo, F., van Wittenberghe, L., Guerchet, N., et al. (2018). AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate pompe mice. Mol. Ther. Methods Clin. Dev. 12, 85101. doi: 10.1016/j.omtm.2018.11.002
PubMed Abstract | CrossRef Full Text | Google Scholar
Costamagna, G., Andreoli, L., Corti, S., and Faravelli, I. (2019). iPSCs-based neural 3D systems: a multidimensional approach for disease modeling and drug discovery. Cells 8:1438. doi: 10.3390/cells8111438
PubMed Abstract | CrossRef Full Text | Google Scholar
Crudele, J. M., and Chamberlain, J. S. (2019). AAV-based gene therapies for the muscular dystrophies. Hum. Mol. Genet. 28, R102R107.
Google Scholar
Dafinca, R., Barbagallo, P., Farrimond, L., Candalija, A., Scaber, J., Ababneh, N. A., et al. (2020). Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Reports 14, 892908. doi: 10.1016/j.stemcr.2020.03.023
PubMed Abstract | CrossRef Full Text | Google Scholar
Dafinca, R., Scaber, J., Ababneh, N., Lalic, T., Weir, G., Christian, H., et al. (2016). C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells 34, 20632078. doi: 10.1002/stem.2388
PubMed Abstract | CrossRef Full Text | Google Scholar
Danisovic, L., Culenova, M., and Csobonyeiova, M. (2018). Induced pluripotent stem cells for Duchenne muscular Dystrophy modeling and therapy. Cells 7:253. doi: 10.3390/cells7120253
PubMed Abstract | CrossRef Full Text | Google Scholar
Dawson, T. M., Golde, T. E., and Tourenne, C. L. (2018). Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 13701379.
Google Scholar
Demestre, M., Orth, M., Fhr, K. J., Achberger, K., Ludolph, A. C., Liebau, S., et al. (2015). Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes. Stem Cell Res. 15, 328336. doi: 10.1016/j.scr.2015.07.005
PubMed Abstract | CrossRef Full Text | Google Scholar
Depla, J. A., Sogorb-Gonzalez, M., Mulder, L. A., Heine, V. M., Konstantinova, P., van Deventer, S. J., et al. (2020). Cerebral organoids: a human model for AAV capsid selection and therapeutic transgene efficacy in the brain. Mol. Ther. Methods Clin. Dev. 18, 167175. doi: 10.1016/j.omtm.2020.05.028
Creative Medical Technology Holdings Announces Evolutionary Development of its iPSCelz Program with the … – StockTitan
Creative Medical Technology Holdings (NASDAQ: CELZ) has successfully generated human insulin-producing Islet Cells derived from induced pluripotent stem cells (iPSC) under its iPSCelz program. This development is validated by Greenstone Biosciences and utilized in several FDA-cleared clinical programs in the U.S. The creation of these cells marks a significant milestone for the company, potentially accelerating clinical applications and saving years of research and development. CEO Timothy Warbington highlighted the cost-efficiency and regulatory adherence of the company's multiple programs while maintaining a lower burn rate compared to peers.
Positive
PHOENIX, June 24, 2024 (GLOBE NEWSWIRE) -- Creative Medical Technology Holdings, Inc. (Creative Medical Technology or the Company) (NASDAQ: CELZ), a leading commercial stage biotechnology company focused on a regenerative approach to immunotherapy, urology, neurology, and orthopedics, today announced that it has successfully generated human induced pluripotent stem cells (iPSC)-derived Islet Cells that produce human insulin.
The iPSC clinical line that generated these insulin producing Islet Cells is part of the Companys iPSCelz program, which is validated by Greenstone Biosciences Inc. (Greenstone). The iPSC clinical line, which is currently utilized in a number of our FDA cleared clinical programs in the U.S., has also been utilized to derive validated mesenchymal cells and T-regulatory cells.
Timothy Warbington, President and CEO of the Company, commented, The production of human insulin from islets derived from the IPSCelz program is a significant milestone for the Creative Medical Team and a reflection of the leadership role we have assumed in developing these therapies. It was only year ago that we confirmed the development of our iPSC. As we said then, we estimated that the development of this cell line would save the Company two to three years in research and development time along with associated expenses. Today, we are thrilled to be able to announce the evolution of this program with the creation of insulin producing Islet Cells derived from our iPSC. We believe that this development has the potential for not only clinical translation of the human Islet Cells, but also the stand-alone human insulin which is produced by these cells. We are currently in strategic discussions on next step collaborations to further these programs.
The Company continues to achieve significant milestones with its multiple programs in a cost-efficient manner without sacrificing quality and maintaining strict adherence to all regulatory requirements, Mr. Warbington continued. We are focused on allocating our resources in a prudent and effective manner which we believe is evidenced by our achievements and a slower burn rate than many companies in our space.
About IPSCelz iPSCelz, which is protected by trade secrets and published U.S. patents, utilizes the companies xeno-free human perinatal cell line derived from qualified human donors which are then converted into IPS cells.These cells are incubated with the Companys cell-free reprogramming cocktail to create the human islets and other cell types.
About Creative Medical Technology Holdings Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of immunotherapy, urology, neurology, and orthopedics. For further information about the Company, please visit http://www.creativemedicaltechnology.com.
Forward Looking Statements This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website at http://www.sec.gov.
Creative Medical Technology announced the successful generation of human insulin-producing Islet Cells derived from iPSCs under its iPSCelz program.
Creative Medical Technology announced this development on June 24, 2024.
The generation of insulin-producing Islet Cells marks a key milestone, potentially speeding up clinical applications and saving years of research and development time for CELZ.
The iPSCelz program is validated by Greenstone Biosciences.
The PR highlights cost-efficient program management, regulatory adherence, and a slower burn rate compared to peers, as financial benefits for CELZ.
Follow this link:
Creative Medical Technology Holdings Announces Evolutionary Development of its iPSCelz Program with the ... - StockTitan
Shinobi and Anocca to advance cancer killing iPS-T cell therapies – BioProcess Insider
Under the terms of the agreement, Shinobi will combine its iPS-T cell platform with Anoccas TCR discovery platform to create a new class of TCR-iPS-Ts.
Anoccas platform allows the scale-out of TCR-T development and delivers libraries of clinical candidate TCRs that span multiple solid tumor cancer targets across broad patient segments, Reagan Jarvis, CEO of Anocca told BioProcess Insider.
By combining Anocca TCRs with the Shinobi Katana platform, we envision a rapid, efficient, novel and transformative product manufacture modality. Under this antigenic targets on a patients tumor are matched with Anoccas TCR library and introduced in a plug-and-play' manner into clinic-ready Shinobi iPS-T-cells. We anticipate delivering initial validatory data within the first year of the partnership and this will form the springboard for further validation and product development over the coming years.
Anocca TCR platform is designed to recreate human T-cell biology in the lab to precisely map T-cell targets and identify highly specific and potent TCRs. The platform uses advanced tests with programmable human cells to carefully analyze and find real disease targets and the specific T-cell receptors that recognize them, according to the company.
Meanwhile, Shinobis Katana platform is said to enable rapid pipeline creation by driving iPS-T cell differentiation without defining antigen specificity. This allows the development of an immune evasive CD8ab iPS-T cell platform that can then be armed with any receptor. CD8ab iPS-T cells are critical class I-restricted T cells responsible for killing cancerous or virally infected cells and mediating adaptive immunity.
Our Katana technology allows us to have a fully engineered CD8ab iPS-T cell which can then be modified to efficiently introduce a CAR or TCR in a plug-and-play manner, Dan Kemp, CEO of Shinobi told us.
Key challenges in the development of off-the-shelf TCR-iPS-T cell therapies are production and robustness of the process to differentiate the cell phenotype and the ability to produce cells at scale. From Anoccas perspective, we have been impressed by the Shinobi platform and its potential to deliver against these criteria. Our partnership is aimed at addressing these key challenges in a stepwise manner.
The financials of this partnership have not been disclosed.
Here is the original post:
Shinobi and Anocca to advance cancer killing iPS-T cell therapies - BioProcess Insider
Anocca AB and Shinobi Therapeutics Announce Strategic Partnership to Develop Allogeneic TCR-T Cell Therapies in … – GlobeNewswire
SDERTLJE, Sweden and SAN FRANCISCO and KYOTO, Japan, May 30, 2024 (GLOBE NEWSWIRE) -- Anocca AB (Anocca), a leading T-cell receptor-engineered T-cell (TCR-T) therapeutics company, and Shinobi Therapeutics (Shinobi), developer of immune-evasive induced pluripotent stem cell (iPSC)-derived CD8 T-cell therapies (iPS-T), today announced a strategic partnership to use Shinobis proprietary immune evasive iPS-T cell platform with novel candidate TCRs, discovered and validated by Anocca, to develop a new class of off-the-shelf allogeneic TCR engineered iPS-T-cell therapies (TCR-iPS-T) for solid tumors.
Anocca has made tremendous progress using our unique technology platform to systematically map cancer targets and build potent and highly specific TCR libraries to deliver personalized TCR-T treatments. As we prepare to progress our first gene-edited autologous TCR-T product into the clinic, we are excited to partner with Shinobi and work together to develop innovative off-the-shelf TCR-T cell therapies, said Anoccas CEO and co-founder, Reagan Jarvis. Shinobis Katana platform has the potential to offer treatment options for most cancer patients when combined with Anoccas ability to systematically unlock the largely unexploited landscape of TCR-T targets.
Combining Shinobis immune evasive iPS-T cell platform with Anoccas world-class TCR discovery platform will accelerate our mission of building a comprehensive pipeline of TCR and CAR-targeted off-the-shelf T-cell therapies, said Dan Kemp, Shinobis CEO. This is an ideal partnership between two emerging biotechs where the alignment of our technologies could realize a shared goal of making transformative TCR-iPS-T cell therapies and making them accessible to cancer patients on a global scale.
Shinobis Katana technology specifically enables the efficient introduction of antigen-targeting TCR and/or CAR constructs into its immune evasive iPS-T cells in a plug-and-play manner. Anocca has developed a unique deep-tech discovery platform that uses programmable human cells to recreate and manipulate T-cell immunity and deliver libraries of highly specific, clinically deployable TCR candidates for the treatment of solid cancers. In this joint program, Shinobi and Anocca will work together to produce TCR engineered CD8 iPS-T-cells against validated cancer targets and deliver pre-clinical proof of concept. A successful outcome will pave the way for the development of novel off-the-shelf treatments in solid tumor indications for the broadest patient populations.
Notes to editors
About Shinobi Therapeutics Shinobi Therapeutics is a biotechnology company developing a new class of off-the-shelf immune evasive iPSC-derived cell therapies. Based on the research of scientific co-founders Shin Kaneko, M.D., Ph.D., at Kyoto University and Tobias Deuse, M.D., at University of California, San Francisco, Shinobi has created a new allogeneic CD8 iPS-T-cell platform that demonstrates comprehensive immune evasion from all arms of the immune system. For more information, please visit http://www.shinobitx.com.
About Anocca Anocca is a biotechnology company developing libraries of T-cell receptor-engineered T-cell (TCR-T) therapies to redefine the treatment of solid tumors. Its proprietary technologies have been designed to vastly expand TCR-T development, allowing the systematic generation of treatments for the broadest patient populations that equip the immune system against the most difficult to treat solid tumors.
Anocca operates an advanced research and development infrastructure, underpinned by AnoccaOS, a custom software ecosystem, and in-house clinical manufacturing and process development facilities. Its unique discovery platform uses programmable human cells to recreate and manipulate T-cell immunity.
Follow Anocca onLinkedIn and visit http://www.anocca.com.
About Autologous and Allogeneic Cell Therapy Autologous cell therapy uses immune cells derived from a patient that are engineered and transferred back to the same patient, thus avoiding rejection by the patients own immune system. The current gold standard, autologous manufacture of cell therapy limits the type of patients that can be treated, as the patients own immune cells are used as the source of T-cells to modify. Allogeneic cell therapy, utilizing iPS cell-derived immune cells, is an attractive alternative as production of allogeneic immune cells can be scaled up and made available off-the-shelf, without the need to modify a patients immune cells. However, a major challenge in current allogeneic approaches is allo-rejection, as the patients' immune systems reject donor-derived and engineered cells as foreign invaders.
Media Inquiries
Anocca AB Mark Farmery, CDO media@anocca.com
Scius Communications (for Anocca AB) Katja Stout Tel: +44 7789 435 990 katja@sciuscommunications.com
Daniel Gooch Tel: +44 7747 875 479 daniel@sciuscommunications.com
Shinobi Therapeutics Molly Cole molly.cole@shinobitx.com
See more here:
Anocca AB and Shinobi Therapeutics Announce Strategic Partnership to Develop Allogeneic TCR-T Cell Therapies in ... - GlobeNewswire
Cell Therapy Technologies market is projected to grow at a CAGR of 10.7% by 2034: Visiongain – GlobeNewswire
Visiongain has published a new report entitled Cell Therapy Technologies Market Report 2024-2034: Forecasts by Product (Sera, Media, Reagent, Cell Engineering Product, Cell Culture Vessels, Equipment, Systems and Software, Others), by Cell Type (T-Cells, Stem Cells, Other Cells), by Process (Cell Processing, Cell Preservation, Distribution, and Handling, Process Monitoring and Quality Control), by End-users (Biopharmaceutical & Biotechnology Companies, CROs, Research Institutes and Cell Banks) AND Regional and Leading National Market Analysis PLUS Analysis of Leading Companies AND COVID-19 Impact and Recovery Pattern Analysis.
The cell therapy technologies market is estimated at US$7,041.3 million in 2024 and is projected to grow at a CAGR of 10.7% during the forecast period 2024-2034.
The rise in chronic diseases like cancer, cardiovascular issues, and autoimmune disorders has created a pressing need for effective treatments. Supportive regulatory frameworks have encouraged the development & commercialization of cell therapies. Additionally, increased awareness and acceptance of these therapies among healthcare professionals and patients are driving demand further. Advancements in cell therapies offer lucrative opportunities for market players. Companies are focusing on enhancing the efficacy & safety of these therapies to provide better disease management outcomes for patients.
Download Exclusive Sample of Report https://www.visiongain.com/report/cell-therapy-technologies-market-2024/#download_sampe_div
How has COVID-19 had a Significant Impact on the Cell Therapy Technologies Market?
The COVID-19 pandemic has affected the market for cell therapy technologies market significantly. The pandemic initially caused significant disruptions to the manufacturing and supply chains of numerous industries, including the biotechnology sector. As a result, there were delays in cell therapy clinical trials, regulatory approvals, and commercialization initiatives. Furthermore, the shift in healthcare resources towards the management of the pandemic led to a reduction in funding and attention for medical research unrelated to COVID-19, such as the development of cell therapies.
However, the pandemic also made clear how crucial cutting-edge medical innovations like cell therapies are to solving the world's health crises. Consequently, there has been a surge in interest and funding for the study and advancement of cell therapy as a means of treating not only COVID-19 but also other chronic illnesses and infectious diseases. Additionally, the pandemic's adoption of telemedicine and remote monitoring has sped up the acceptance of decentralised clinical trials, which could advance cell therapy technologies by lowering trial costs and increasing patient access. The COVID-19 pandemic has, in the long run, created opportunities for innovation, collaboration, and growth, even though it initially presented challenges to the cell therapy technology market. The cell therapy sector is positioned to have a significant impact on how healthcare and illness management are provided in the future, even as the globe struggles to cope with the pandemic's aftermath.
How will this Report Benefit you?
Visiongains 305-page report provides 109 tables and 173 charts/graphs. Our new study is suitable for anyone requiring commercial, in-depth analyses for the cell therapy technologies market, along with detailed segment analysis in the market. Our new study will help you evaluate the overall global and regional market for Cell Therapy Technologies. Get financial analysis of the overall market and different segments including product, cell type, process, end-users and capture higher market share. We believe that there are strong opportunities in this fast-growing cell therapy technologies market. See how to use the existing and upcoming opportunities in this market to gain revenue benefits in the near future. Moreover, the report will help you to improve your strategic decision-making, allowing you to frame growth strategies, reinforce the analysis of other market players, and maximise the productivity of the company.
What are the Current Market Drivers?
Rise in Prevalence of Chronic & Degenerative Diseases
The healthcare sector faces numerous challenges from chronic illnesses like cancer, heart disease, neurological ailments, and autoimmune disorders. The management or cure of many disorders is frequently only partially successful with conventional therapeutic options.
With the ability to replace, regenerate, or repair damaged tissues or organs, cell therapy presents a viable substitute. Much emphasis has been paid to cell treatments' capacity to treat diseases at their root and encourage long-term healing.
Notable advancements in cell treatment technologies have been made over time to address degenerative and chronic illnesses. For example, developments in stem cell research have made it possible to identify and isolate several types of stem cells, each with a unique therapeutic potential. In order to create novel cell-based therapeutics, researchers are looking into the utilisation of hematopoietic stem cells, induced pluripotent stem cells, and mesenchymal stem cells.
Rigorous Efforts by Companies Towards Development of Proprietary & Supportive Technologies Anticipated to Boost Industry Growth
In regenerative medicine, cell therapy, which employs living cells to treat or cure diseases, has emerged as a promising area of study. Nevertheless, the efficacy of cell therapies is contingent upon the accessibility of cutting-edge technologies that facilitate the production, characterization, and transportation of cells.
Significant investments are being made by companies in the cell therapy industry in research and development of proprietary technologies that improve the safety, effectiveness, and scalability of cell therapies. The technologies in question comprise an extensive array of domains, such as tools for cell characterization, cell isolation and expansion techniques, and cryopreservation methods.
The advancement of cell culture systems is a primary area of emphasis. Organisations are currently engaged in the development and refinement of culture media, growth factors, and bioreactors that establish an optimal milieu for cellular proliferation while preserving the viability and functionality of the cells. The primary objectives of these proprietary culture systems are to increase cell yields, decrease production expenses, and facilitate the scalable production of cell therapies.
Considerable interest is being devoted to supportive technologies that affect cell isolation and purification. Innovative methods are being developed by businesses to isolate particular cell populations from complex mixtures, thereby ensuring the quality and purity of cells used in therapies. These technologies reduce the possibility of contamination or undesired cell populations while facilitating the efficient isolation of therapeutic cell types.
Cryopreservation technologies are indispensable for the transportation and long-term storage of cells. Organisations are presently preoccupied with the advancement of cryopreservation techniques that preserve the genetic stability, viability, and functionality of cells throughout the freezing and thawing processes.
These developments guarantee the presence of viable cells during therapy administration, notwithstanding the logistical obstacles that may arise from cell storage and transportation.
The development of proprietary and supportive technologies will therefore likely contribute to the expansion of the global market for cell therapy technologies.
Get Detailed ToC https://www.visiongain.com/report/cell-therapy-technologies-market-2024/
Where are the Market Opportunities?
Emerging nations present a substantial potential for the progression and integration of cell therapy technologies. These countries are currently experiencing notable advancements in their healthcare systems, as significant financial resources are being allocated to accommodate the growth of their populations. Concurrent with this growth, developing nations are confronted with an increasing prevalence of chronic and non-communicable ailments as a result of urbanisation, alterations in lifestyles, and the ageing of their populations. Cell therapy technologies are of particular relevance in these regions due to the innovative solutions they offer to address these urgent medical needs.
Moreover, in comparison to developed countries, the execution of clinical trials in emerging economies frequently demonstrates greater cost-effectiveness, predominantly attributable to reduced labour and operational expenditures. The financial benefits associated with this incentive motivate pharmaceutical companies and research institutions to investigate and advance cell therapies in these areas. Furthermore, numerous developing nations provide favourable regulatory structures and incentives in order to promote the progress and acceptance of cutting-edge medical technologies, such as cell therapies. The convergence of these elements renders developing nations an optimal setting for the proliferation and integration of cell therapy technologies, holding the potential to yield substantial advantages for healthcare providers and patients.
Competitive Landscape
The major players operating in the cell therapy technologies market are Thermo Fisher Scientific Inc., Novartis AG, Gilead Sciences, Inc., Merck KGaA, Danaher Corporation, Bristol-Myers Squibb Company, Sartorius AG, FUJIFILM Diosynth Biotechnologies, Lonza, GE Healthcare, Terumo BCT, Avantor, Inc., Bio-Techne Corporation, and Corning Incorporated among others. These major players operating in this market have adopted various strategies comprising M&A, investment in R&D, collaborations, partnerships, regional business expansion, and new product launch.
Recent Developments
To access the data contained in this document please emailcontactus@visiongain.com. Avoid missing out by staying informed order our report now.
To find more Visiongain research reports on the Pharma sector, click on the following links:
Do you have any custom requirements we can help you with?Any need for a specific country, geo region, market segment or specific company information? Contact us today, we can discuss your needs and see how we can help:contactus@visiongain.com
About Visiongain
Visiongain is one of the fastest-growing and most innovative independent market intelligence providers around, the company publishes hundreds of market research reports which it adds to its extensive portfolio each year. These reports offer in-depth analysis across 18 industries worldwide. The reports, which cover 10-year forecasts, are hundreds of pages long, with in-depth market analysis and valuable competitive intelligence data. Visiongain works across a range of vertical markets with a lot of synergies. These markets include automotive, aviation, chemicals, cyber, defence, energy, food & drink, materials, packaging, pharmaceutical and utilities sectors. Our customised and syndicatedmarket research reportsoffer a bespoke piece of market intelligence customised to your very own business needs.
Contact
Visiongain Reports Limited Telephone: +44 (0) 20 7336 6100 Email:contactus@visiongain.com Web:www.visiongain.com
Visit link:
Cell Therapy Technologies market is projected to grow at a CAGR of 10.7% by 2034: Visiongain - GlobeNewswire
Panasonic and Shinobi Therapeutics Partner to Develop Efficient and Cost-Effective iPS Cell Therapy Manufacturing … – PR Newswire
SAN FRANCISCO and KYOTO, Japan, April 18, 2024 /PRNewswire/ -- Shinobi Therapeutics, a biotechnology company developing a new class of immune evasive iPS cell therapies, today announced a partnership with Panasonic Holdings Corp and Kyoto University's Center for iPS Cell Research and Application (CiRA). Through this strategic collaboration, the organizations aim to engineer a novel manufacturing platform to produce iPS-T cell therapies more efficiently and at lower cost than is possible with currently available technology.
"To make promising iPS-T cell therapies accessible to the broader population, Panasonic is committed to developing a manufacturing platform that will produce safe cells for therapies at the lowest possible cost," said Yuki Kusumi, Representative Director and President of Panasonic Holdings Corporation. "Reducing the production time and cost of cell therapies must be done in a manner that does not compromise safety or efficacy, and we are thrilled to see the Japanese biotech and engineering communities coming together to make that happen."
Cell therapies have shown remarkable promise in treating blood cancers and other intractable diseases, but manufacturing costs render these therapies inaccessible to many patients around the world. Shinobi's iPS-T cell technology, built upon a decade's worth of iPSC research pioneered at CiRA by Shinobi co-founder Shin Kaneko using iPSCs originally created by Nobel laureate Shinya Yamanaka, will be used to support the creation of a closed-system manufacturing device created by Panasonic, opening up an entirely new paradigm for cell therapy production.
"Advancements in iPS cell production and Shinobi's genetic modification of iPSCs for immune evasion have made regenerative T cell therapy increasingly feasible," said Shin Kaneko, Co-Founder at Shinobi. "The automated cultivation device developed in this joint research will significantly accelerate this, contributing to the realization of a world where state-of-the-art regenerative killer T cell therapy can be provided for every patient."
The newly announced partnership will leverage Panasonic's manufacturing expertise to develop a new method of producing iPS-T cell therapies in a closed-system process. The first phase of the partnership will be completed in April 2025, when the companies expect to release the initial prototype.
"While cell therapies have the potential to transform patient care across a wide range of intractable diseases, we have a long road ahead to overcome the challenges in manufacturability and accessibility," said Dan Kemp, CEO at Shinobi. "We are fortunate to be working with the most renowned partners across the academic and industry landscape as we endeavor to put cell therapies within reach for all patients who need them."
About Shinobi TherapeuticsShinobi Therapeutics is a biotechnology company developing a new class of off-the-shelf immune evasive iPSC-derived cell therapies. Based on the research of scientific co-founders Shin Kaneko, M.D., Ph.D., at Kyoto University and Tobias Deuse, M.D., at University of California, San Francisco, Shinobi has created a new allogeneic CD8a iPS-T cell platform that demonstrates comprehensive immune evasion from all arms of the immune system. For more information, please visit http://www.shinobitx.com.
Media Contact [emailprotected]
SOURCE Shinobi Therapeutics
The New Transformers: Innovators in Regenerative Medicine – NYAS – The New York Academy of Sciences
Overview
The human body regenerates itself constantly, replacing old, worn-out cells with a continuous supply of new ones in almost all tissues. The secret to this perpetual renewal is a small but persistent supply of stem cells, which multiply to replace themselves and also generate progeny that can differentiate into more specialized cell types. For decades, scientists have tried to isolate and modify stem cells to treat disease, but in recent years the field has accelerated dramatically.
A major breakthrough came in the early 21st century, when researchers in Japan figured out how to reverse the differentiation process, allowing them to derive induced pluripotent stem (iPS) cells from fully differentiated cells. Since then, iPS cells have become a cornerstone of regenerative medicine. Researchers can isolate cells from a patient, produce iPS cells, genetically modify them to repair any defects, then induce the cells to form the tissue the patient needs regenerated.
On April 26, 2019, the New York Academy of Sciences and Takeda Pharmaceuticals hosted the Frontiers in Regenerative Medicine Symposium to celebrate 2019 Innovators in Science Award winners and highlight the work of researchers pioneering techniques in regenerative medicine. Presentations and an interactive panel session covered exciting basic research findings and impressive clinical successes, revealing the immense potential of this rapidly developing field.
Shinya Yamanaka Kyoto University
Shruti Naik New York University
Michele De Luca University of Modena and Reggio Emilia
Masayo Takahashi RIKEN Center for Biosystems Dynamics Research
Hiromitsu Nakauchi Stanford University and University of Tokyo
Brigid L.M. Hogan Duke University School of Medicine
Emmanuelle Passegu Columbia University Irving Medical Center
Hans Schler Max Planck Institute for Molecular Biomedicine
Austin Smith University of Cambridge
Moderator: Azim Surani University of Cambridge
Shinya Yamanaka Kyoto University
Shinya Yamanakaof Kyoto University, gave the meetings keynote presentation, summarizing his laboratorys recent work using induced pluripotent stem (iPS) cells for regenerative medicine. The first clinical trial using iPS cells to treat age-related macular degeneration started five years ago. In his clinical trial, physicians isolated somatic cells from a patient, then used developed culture techniques to derive iPS cells from them. iPS cells can proliferate and differentiate into any type of cell in the body, which can then be transplanted back into the patient. Experiments over the past five years have shown that this approach has the potential to treat diseases ranging from age-related macular degeneration to Parkinsons disease.
However, this autologous transplantation strategy is slow and expensive. It takes up to a year just evaluating one patient, [and] it costs us almost one million US dollars, said Yamanaka. Before transplanting the differentiated cells, the researchers evaluated the entire iPS cell derivation and iPS cell differentiation processes, adding to time and cost. As another strategy, Yamanakas team is working on the iPS Cell Stock for Regenerative Medicine. Here, iPS cells are derived from blood cells of healthy donors, not the patients, and are stocked. The primary problem with this approach is the human leukocyte antigen (HLA) system, which encodes multiple cell surface proteins. Each person has a specific combination of HLA genes, or haplotype, defining the HLA proteins expressed on their own cells. The immune system recognizes and eliminates any cell expressing non-self HLA proteins. Because there are millions of potential HLA haplotypes, cells derived from one person will likely be rejected by another.
The homozygous superdonor cell line has limited immunological diversity, allowing it to match multiple patients.
To address that, Yamanaka and his colleagues are collaborating with the Japanese Red Cross to develop superdonor iPS cells. These cells carry homozygous alleles for different human lymphocyte antigen (HLA) genes, limiting their immunological diversity and making them match multiple patients. So far, the team has created four superdonor cell lines, allowing them to generate cells compatible with 40% of the Japanese population. Those cells are now being used in clinical trials treating macular degeneration and Parkinsons disease, with more indications planned.
So far so good, said Yamanaka, but he added that in order to cover 90% of the Japanese population we would need 150 iPS cell lines, and in order to cover the entire world we would need over 1,000 lines. It took the group about five years to generate the first four lines, so simply repeating the process that many more times isnt practical.
Instead, Yamanaka hopes to take the HLA reduction a step further, knocking out most of the major HLA genes to generate cells that will survive in large swaths of the population. However, simply knocking out entire families of genes isnt enough. Natural killer cells attack cells that are missing particular cell surface antigens, so the researchers had to leave specific markers in the cells, or reintroduce them transgenically. Natural killer and T cells from various donors ignore leukocytes derived from these highly engineered iPS cells, proving that the concept works. With this approach, just ten lines of iPS cells should yield a range of donor cells suitable for any human HLA combination. Yamanaka expects these gene-edited iPS cells to be available in 2020.
By 2025, Yamanaka hopes to announce my iPS cell technology. This technology will reduce the cost and time for autologous transplantation to about $10,000 and one month per patient.
While preclinical and early clinical trials on iPS cells have yielded promising results, the new therapies must still cross the valley of death, the pharmaceutical industrys term for the unsuccessful transition and industrialization of innovative ideas identified in academia to routine clinical use. In an effort to make that process more reliable, Yamanaka and his colleagues have begun a unique collaboration with Takeda Pharmaceutical Company Limited, Japans largest drug maker. The effort involves 100 scientists, 50 each from the company and academic laboratories. The corporate researchers gain access to the latest basic science developments on iPS cell technology, while the academics can use the companys cutting-edge R&D know-how equipment and vast chemical libraries.
In one project, the collaborators used iPS cells to derive pancreatic islet cells, and then encapsulated the cells in an implantable device to treat type 1 diabetes. The system successfully decreased blood glucose in a mouse model, and the team is now scaling up cell production to test it in humans in the future. Another effort identified chemicals in Takedas compound library that speed cardiomyocyte maturation, which the researchers are now using to improve iPS cell-derived treatments for heart failure. In a third project, the team has modified iPS cell-derived T cells to identify and attack tumors, again showing promising results in a mouse model.
Shruti Naik New York University
Michele De Luca University of Modena and Reggio Emilia
Shruti Naik, Early-Career Scientist winner of the 2019 Innovators in Science Award, discussed her work on epithelial barriers. These barriers, which include skin and the linings of the gut, lungs, and urogenital tract, exhibit nuanced responses to the many microbes they encounter. Injuries and pathogenic infections trigger prompt inflammatory responses, but the millions of harmless commensal bacteria that live on these surfaces dont. How does the epithelium know the difference?
To ask that question, Naik first studied germ-free mice, which lack all types of bacteria. These animals have defective immune responses against pathogens that affect epithelia, so commensal bacteria are clearly required for developing normal epithelial immunity. Naik inoculated the germ-free mice with bacterial strains found either on the skin or in the guts of normal mice, then assessed their immune responses in those two compartments.
When you gave gut-tropic bacteria, you were essentially able to rescue immunity in the gut but not the skin, and conversely when you gave skin-tropic bacteria, you were able to rescue immunity in the skin and not the gut, said Naik. Even though the commensal bacteria caused no inflammation, they did activate certain T cells in the epithelia they colonized, apparently preparing those tissues for subsequent attacks by pathogens.
Next, Naik took germ-free mice inoculated with Staphylococcus epidermidis, a normal skin commensal bacterium, and challenged them with an infection by Candida albicans, a pathogenic yeast. The bacterially primed mice produced a much more robust immune response against the yeast infection than control animals that hadnt gotten S. epidermidis. Naik confirmed that this immune training effect operates through the T cell response shed seen before. You essentially develop an immune arsenal to your commensals that helps protect against pathogens, Naik explained, adding that each epithelial barrier requires its own commensal bacteria to trigger this response.
Augmented wound repair in post-inflammation skin reveals that naive and inflammation-educated skin stem cells respond differently to subsequent stresses.
The response to epithelial commensals is remarkably durable; Naik found that the skin T cells in the inoculated mice remained on alert a year after their initial activation. That led her to wonder whether non-hematopoietic cells, especially epithelial stem cells, contribute to immunological memory in the skin.
To probe that, Naik and a colleague used a mouse model in which the topical drug imiquimod induces a temporary psoriasis-like skin inflammation. By tracing the lineages of cells in the animals skin, the researchers found that epithelial stem cells expand during this inflammation, and then persist. Challenging the mice with a wound one month after the inflammation resolves leads to faster healing than if the mice hadnt had the inflammation. Several other models of wound healing yielded the same result. The investigators concluded that naive and inflammation-educated skin stem cells respond differently to subsequent stresses.
Naiks team found that inflammation causes persistent changes in skin stem cells chromatin organization. Using a clever reporter gene assay, they demonstrated that the initial inflammation leaves inflammatory gene loci more open in the chromatin, making them easier to activate after subsequent insults. What was really surprising to us was that this change never fully resolved, said Naik. Even six months after the acute inflammation, skin stem cells retained the distinct post-inflammatory chromatin structure and the ability to heal wounds quickly. This chronic ready-for-action state isnt always beneficial, though. Naik noticed that the mice that had had the inflammatory treatment were more prone to developing tumors, for example.
In establishing her new laboratory, Naik has now turned her focus to another aspect of epithelial immunity: the link between immune responses and tissue regeneration. She looked first at a type of T cells found in abundance around hair follicles on skin. Mice lacking these cells exhibit severe delays in wound healing, apparently as a result of failing to vascularize the wound area. That implies a previously unknown role for inflammatory T cells in vascularization, which Naik and her lab are now probing.
Michele De Luca, Senior Scientist winner of the 2019 Innovators in Science Award, has developed techniques for regenerating human skin from transgenic epidermal stem cells. Researchers first isolated holoclones, or cells derived from a single epidermal stem cell, over 30 years ago. These cells can be used to grow sheets of skin in culture for both research and clinical use, but scientists have only recently begun to elucidate how the process works.
The first stem cell-derived therapies tested in humans were for skin and eye burns, allowing doctors to regenerate and replace burned epidermal tissue from a patients own stem cells. Thats the basis of Holoclar, a stem cell-based treatment for severe eye burns approved in Europe in 2015.
Holoclar and similar procedures work well for injured patients with normal epithelia. We wanted to genetically modify those cells in order to address one of the most important genetic diseases in the dermatology field, which is epidermolysis bullosa (EB), a devastating skin disease, said De Luca. In EB, patients carry a genetic defect in cell adhesion that causes severe blisters all over their skin and prevents normal healing. A large number of EB patients die as children from the resulting infections, and those who survive seldom get beyond young adulthood before succumbing to squamous cell carcinomas.
De Luca developed a strategy to isolate stem cells from a skin biopsy, repair the genetic defect in these cells with a retroviral vector, and then grow new skin in culture that can be transplanted back to the patient, replacing their original skin with genetically repaired skin. In 2015, the researchers carried out the procedure on a young boy named Hassan, who had arrived in the burn unit of a German hospital with EB after fleeing Syria. The burn unit was only able to offer palliative care, and his prognosis was poor because of his constant blistering and infections. De Lucas team received approval to perform their gene therapy on him.
The new strategy, which combines cell and gene therapy, resulted in the restoration of normal skin adhesion in Hassan.
After isolating and modifying epidermal stem cells from Hassan and growing new sheets of skin in culture, De Lucas team re-skinned the patients arms and legs, then his abdomen and back. The complete procedure took about three months. The new skin resists blister formation even when rubbed and heals normally from minor wounds. In the ensuing three and a half years, Hassan has begun growing normally and living an ordinary, healthy life.
Detailed analysis of skin biopsies showed that Hassans epidermis has normal cellular adhesion machinery and revealed that his skin is now derived from a population of proliferating transgenic stem cells, with no single clone dominating. By tracing the lineages of cells carrying the introduced transgene, De Luca was able to identify self-renewing transgenic stem cells, intermediate progenitor cells, and fully differentiated stem cells, indicating normal skin growth and replacement.
Besides being good news for the patient, the results confirmed a longstanding theory of skin regeneration. These data formally prove that the human epidermis is sustained only by a small population of long-lived stem cells that generates [short-lived epithelial] progenitors, said De Luca, adding that with this in mind, weve started doing other clinical trials.
The researchers plan to continue targeting junctional as well as dystrophic forms of EB, both of which are genetically distinct from EB simplex. Initial experiments revealed that in these conditions, transplant recipients developed mosaic skin, where some areas continued to be produced from cells lacking the introduced genetic repair. The non-transgenic cells appeared to be out-competing the transgenic cells and supplanting them, undermining the treatment. De Luca and his colleagues developed a modified strategy that gave the transgenic cells a competitive advantage. This approach and additional advances should allow them to achieve complete transgenic skin coverage.
Masayo Takahashi RIKEN Center for Biosystems Dynamics Research
Hiromitsu Nakauchi Stanford University and University of Tokyo
Masayo Takahashi, of RIKEN Center for Biosystems Dynamics Research, began her talk with a brief description of the new Kobe Eye Center, a purpose-built facility designed to house a complete clinical development pipeline dedicated to curing eye diseases. Not only cells, not only treatments, but a whole care system is needed to cure the patients, said Takahashi. In keeping with that philosophy, the Center includes everything from research laboratories to a working eye hospital and a patient welfare facility.
Takahashis recent work has focused on treating age-related macular degeneration (AMD). In AMD, the retinal pigment epithelium that nourishes other retinal cells accumulates damage, leading to progressive vision loss. AMD is the most common cause of serious visual impairment in the elderly in the US and EU, and there is no definitive treatment. Fifteen years ago, Takahashi and her colleagues derived retinal pigment epithelial cells from monkey embryonic stem cells and successfully transplanted them into a rat model of AMD, treating the condition in the rodents. They were hesitant to extend the technique to humans, though, because it required suppressing the recipients immune response to prevent them from rejecting the monkey cells.
The advent of induced pluripotent stem (iPS) cell technology pointed Takahashi toward a new strategy, in which she took cells from a patient, derived iPS cells from them, and then prompted those cells to differentiate into retinal pigment epithelial cells that were perfectly compatible with the patients immune system. Her team then transplanted a sheet of these cells into the patient. That experiment, in 2014, was the first clinical use of iPS cells in humans. The grafted cells were very stable, said Takahashi, who has checked the graft in multiple ways in the ensuing years.
Having proven that iPS cell-derived retinal grafts can work, Takahashi and her colleagues sought to make the procedure cheaper and faster. Creating customized iPS cells from each patient is a huge undertaking, so instead the team investigated superdonor iPS cells that can be used for multiple patients. These cells, described by Shinya Yamanaka in his keynote address, express fewer types of human leukocyte antigens than most patients, making them immunologically compatible with large swaths of the population. Just four lines of superdonor iPS cells can be used to derive grafts for 40% of all Japanese people.
Transplantation of an iPS cell-derived sheet into the retina ultimately proved successful.
In the next clinical trial, Takahashis lab performed several tests to confirm that the patients immune cells would not react with the superdonor cells, before proceeding with the first retinal pigment epithelial graft. Nonetheless, after the graft the researchers saw a minuscule fluid pocket in the patients retina, apparently due to an immune reaction. Clinicians immediately gave the patient topical steroids in the eye to suppress the reaction. Then after three weeks or so, the reaction ceased and the fluid was gone, so we could control the immune reaction to the HLA-matched cells, said Takahashi. Four subsequent patients showed no reaction whatsoever to the iPS superdonor-derived grafts.
While the retinal grafts were successful, none of the patients have shown much improvement in visual acuity so far. Takahashi explained that subjects in the clinical trial all had very severe AMD and extensive loss of their eyes photoreceptors. I think if we select the right patients, we could get good visual acuity if their photoreceptors still remain, said Takahashi.
Takahashi finished with a brief overview of her other projects, including using aggregates of iPS cells and embryonic stem cells to form organoids, which can self-organize into a retina. She hopes to use this system to develop new therapies for retinitis pigmentosa, another major cause of vision loss. Finally, Takahashi described a project aimed at reducing the cost and increasing the efficacy of stem cell therapies even further by employing a sophisticated laboratory robot. The system, called Mahoro, is capable of learning techniques from the best laboratory technicians, then replicating them perfectly. That should make stem cell culturing procedures much more reproducible and significantly reduce the cost of deploying new therapies.
Hiromitsu Nakauchi, of Stanford University and the University of Tokyo, described his groups efforts to overcome a decades-old challenge in stem cell research. Scientists have known for over 25 years that all of the blood cells in a human are renewed from a tiny population of multipotent, self-renewing hematopoietic stem cells. In an animal thats had all of its hematopoietic lineages eliminated by ionizing radiation, a single such cell can reconstitute the entire blood cell population. This protocol is the basis for several experimental models.
In theory, then, a single hematopoietic stem cell should also be able to multiply indefinitely in pure culture, allowing researchers to produce all types of blood cells on demand. In practice, cultured stem cells inevitably differentiate and die off after just a few generations in culture. Nakauchi and his colleagues have been trying to fix that problem. After years of hard work, we decided to take the reductionist approach and try to define the components that we use to culture [hematopoietic stem cells], said Nakauchi.
The team focused on the most undefined component of their culture media: bovine serum albumin (BSA). This substance, a crude extract from cow blood, has been considered an essential component of growth media since researchers first managed to culture mammalian cells. However, Nakauchis lab found tremendous variation between different lots of BSA, both in the types and quantities of various impurities in them and in their efficacy in keeping stem cells alive. Worse, factors that appeared to be helpful to the cells in some BSA lots were harmful when present in other lots. So this is not science; depending on the BSA lot you use, you get totally different results, said Nakauchi.
Next, the researchers switched to a recombinant serum albumin product made in genetically engineered yeast. That exhibited less variation between lots, and after optimizing their culture conditions they were able to grow and expand hematopoietic stem cells for nearly a month. Part of the protocol they developed was to change the medium every other day, which they found was required to remove inflammatory cytokines and chemokines being produced by the stem cells. That suggested the cells were still under stress, perhaps in response to some of the components of the recombinant serum albumin.
Polyvinyl alcohol can replace BSA in culture medium.
The ongoing problems with serum albumin products led Nakauchi to ask why albumin is even necessary in tissue culture. Scientists have known for decades that cells dont grow well without it, but why not? While trying to figure out what the albumin was doing for the cells, Nakauchis lab tested it against the most inert polymer they could find: polyvinyl alcohol (PVA). Best known as the primary ingredient for making school glue, PVA is also used extensively in the food and pharmaceutical industries. To their surprise, hematopoietic stem cells grew better in PVA-spiked medium than in medium with BSA. The PVA-grown cells showed decreased senescence, lower levels of inflammatory cytokines, and better growth rates.
In long-term culture, Nakauchi and his colleagues were able to achieve more than 900-fold expansion of functional mouse hematopoietic stem cells. Transplanting these cells into irradiated mice confirmed that the cells were still fully capable of reconstituting all of the hematopoietic lineages. Further experiments determined that PVA-containing medium also works well for human hematopoietic stem cells.
Besides having immediate uses for basic research, the ability to grow such large numbers of hematopoietic stem cells could overcome a fundamental barrier to using these cells in the clinic. Current hematopoietic stem cell therapies require suppressing or destroying a patients existing immune system to allow the transplanted cells to become established, but this immunosuppression can lead to deadly infections. Transplanting a much larger population of stem cells can overcome the need for immunosuppression, but growing enough cells for this approach has been impractical. Using their new culture techniques, Nakauchis team can now produce enough hematopoietic stem cells to carry out successful transplants without immunosuppression in mice. They hope to take this approach into the clinic soon.
Brigid L.M. Hogan Duke University School of Medicine
Emmanuelle Passegu Columbia University Irving Medical Center
Hans Schler Max Planck Institute for Molecular Biomedicine
Austin Smith University of Cambridge
Moderator: Azim Surani University of Cambridge
Austin Smith, from the University of Cambridge, gave the final presentation, in which he discussed his studies on the progression of embryonic stem cells through development. In mammals, embryonic development begins with the formation of the blastocyst. In 1981, researchers isolated cells from murine blastocysts and demonstrated that each of them can grow into a complete embryo. Stem cells isolated after the embryo has implanted itself into the uterus, called epiblast stem cells, have lost that ability but gained the potential to differentiate into multiple cell lineages in culture. So we have two different types of pluripotent stem cells in the mouse, and theyre different in just about every way you could imagine, said Smith.
Work on other species, including human cells, suggests that this transition between two different types of stem cells is a common feature of mammalian development. The transition from the earlier to the later type of stem cell is called capacitation. To find the factors driving capacitation, Smith and his colleagues looked for differences in gene transcription patterns and chromatin organization during the process, in both human and murine cells. What they found was a global re-wiring of nearly every aspect of the cells physiology. Together these things lead to the acquisition of both germline and somatic lineage competence, and at the same time decommission that extra-embryonic lineage potential, Smith explained.
Having characterized the cells before and after capacitation, the researchers wanted to isolate cells from intermediate stages of the process to understand how it unfolds. To do that, they extracted cells from mouse embryos right after implantation, then grew them in culture conditions that minimized their exposure to signals that would direct them toward specific lineages. Detailed analyses of these cells, which Smith calls formative stem cells, shows that they have characteristics of both the naive embryonic stem cells and the later epiblast stem cells. Injecting these cells into mouse blastocysts yields chimeric mice carrying descendants of the injected cells in all their tissues. The formative stem cells can therefore function like true embryonic stem cells, albeit less efficiently.
The developmental sequence of pluripotent cells.
Post-implantation human embryos arent available for research, but Smiths team was able to culture naive stem cells and prompt them to develop into formative stem cells. These cells exhibit transcriptional profiles and other characteristics homologous to those seen in the murine formative stem cells.
Having found the intermediate cell type, Smith was now able to assemble a more detailed view of the steps in development. Returning to the mouse model, he compared the chromatin organization of naive embryonic, formative, and epiblast stem cells. The difference between the naive and formative cells chromatin was much more dramatic than between the formative and epiblast cells.
Based on the results, Smith proposes that naive embryonic stem cells begin as a blank slate, which then undergoes capacitation to become primed to respond to later differentiation signals. The capacitation process entails a dramatic change in the cells transcriptional and chromatin organization and occurs around the time of implantation. We think we now have in culture a cell that represents this intermediate stage and that has distinctive functional properties and distinctive molecular properties, said Smith. After capacitation, the formative stem cells undergo a more gradual shift to become primed stem cells, which are the epiblast stem cells in mice.
Smith concedes that the human data are less detailed, but all of the experiments his team was able to do produced results consistent with the mouse model. Other work has also found corroborating results in non-human primate embryos, implying that the same developmental mechanisms are conserved across mammals.
After the presentations, a panel consisting of members of the Innovators in Science Awards Scientific Advisory Council and Jury took the stage to address a series of questions from the audience.
The panel first took up the question of how researchers can better study human stem cells, given the ethical challenges of working with embryos. Brigid Hogan described organoid cultures, in which researchers stimulate human iPS cells to grow into minuscule organ-like structures. This is a way of looking at human development at a stage when its [otherwise] completely inaccessible, said Hogan. Other speakers concurred, adding that implanting human organoids into mice provides an especially useful model.
Another audience member asked about the potential for human stem cell therapy in the brain. Hogan pointed to the use of fetal cells for treating Parkinsons disease as an example, but panelist Hans Schler suggested that that could be a unique case. Patients with Parkinsons disease suffer from deficiency in dopamine-secreting neurons, so implanting cells that secrete dopamine in the correct brain region may provide some relief.
Panelists also addressed the use of stem cells in regenerative medicine, where researchers are targeting the nexus of aging, nutrition, and brain health. Emmanuelle Passegu explained that the bodys progressive failure to regenerate itself from its own stem cells is a hallmark of aging. I think we are getting to an era where transplantation or engraftment [of cells] will not be the answer, it will really be trying to reawaken the normal properties of the [patients own] stem cells, said Passegu.
As the meeting concluded, speakers and attendees seemed to agree that the field of stem cell research, like the cells themselves, is now poised to develop in a wide range of promising directions.
View original post here:
The New Transformers: Innovators in Regenerative Medicine - NYAS - The New York Academy of Sciences
Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple…
Cell Therapy – an overview | ScienceDirect Topics
Stem Cell Therapy
Cell therapy involves the direct administration of cells into the body for healing purposes. The units of therapy in this approach are single cells. For regenerative medicine, the ultimate objective of cell therapy is to establish a long-term graft with the capacity to perform organ functions. A practical example is bone marrow transplantation, in which HSC are the units of therapy, engraft in the bone marrow, and repopulate the entire blood lineage.105
Intravenous administration describes the direct injection of dissociated cells into the bloodstream using a syringe. It is the simplest delivery route for cell therapies and is used for HSC therapy in the clinic. Kidney cells, however, are different from blood cells and do not typically circulate throughout the body. The kidney is furthermore a densely-packed organ with no obvious route for stem cells to traverse from the bloodstream into the nephrons. Whether kidney stem cells have the ability to engraft and regenerate the kidney after intravenous administration therefore needs to be tested in preclinical animal models. In these experiments, the kidneys are typically subjected to acute injury. This damages the glomerular filtration barrier, which can enhance penetration of cells into the kidney and subsequent engraftment.
In one example, human iPS cell-derived cells expressing a variety of NPC and adult kidney cell markers were injected into the mouse tail vein 24 hours after administration of the nephrotoxic drug cisplatin.106 Extensive engraftment was reported in proximal tubules, which coincided with a 55% reduction in urea levels in treated mice, compared with control animals administered with saline or undifferentiated iPS cells.106 These experiments suggest a possible benefit of iPS-derived kidney cells on kidney injury. However, the isolated cells were not shown to demonstrate the ability to form kidney organoids with segmented nephrons. It is therefore unclear whether the implanted cells contained bona fide NPC or whether new nephrons were actually formed.
Intravenous administration has also been applied to adult kidney cell populations. Human glomerular epithelial transitional cells (see earlier), administered intravenously into a mouse model of chemically-induced podocytopathy, were found in glomeruli, and were associated with a decrease in proteinuria.107 These cells also contributed to tubules after acute injury.80 As these cells cannot form new nephrons, this approach seeks to repair and replace, rather than to completely regenerate.
MSC can be readily obtained, for instance from a patient's adipose tissue. Intravenous administration of MSC in experimental models can have a beneficial effect on ischemia-reperfusion injury.99,102,108 This benefit can be obtained even in the absence of MSC engraftment, likely via a paracrine effect. However, MSC administered to injured kidneys do not contribute tangibly to new nephron formation and can differentiate ectopically into undesirable fat cells or fibroblasts within glomeruli.108,109 Collectively, these findings suggest that intravenous administration of cell therapeutics may provide some benefit in cases where the glomerular filtration barrier has been compromised but may also have unwanted side effects.
Originally posted here:
Cell Therapy - an overview | ScienceDirect Topics
Stem Cell Therapy for Parkinson’s: Current Developments – Healthline
Parkinsons disease is a neurological disorder with symptoms that become more severe over time. It affects about 1% of people ages 60 years and older in industrialized nations. The exact cause of the disease isnt known, but experts believe that both genetic and environmental factors play a role.
Parkinsons disease causes neurons to die in certain parts of your brain, leading to a decrease of dopamine. Dopamine is a neurotransmitter. Cells in your brain release dopamine as a way of sending signals to other nearby cells.
When you have Parkinsons, a decrease in dopamine activity can lead to such symptoms as:
Theres no cure for Parkinsons disease. But over the past few decades, researchers have been studying stem cell therapy to provide better treatment options.
Read on to learn more about current and future developments in using stem cell therapy to treat Parkinsons disease.
Stem cells are special because theyre undifferentiated, meaning they have the potential to become many types of specialized cells.
You might think of stem cells as natural resources for your body. When your body needs a specific type of cell from bone cells to brain cells an undifferentiated stem cell can transform to fit the need.
There are three main types of stem cells:
Stem cell therapy is the use of stem cells usually from a donor, but sometimes from your own body to treat a disorder.
Because Parkinsons disease leads to the death of brain cells, researchers are trying to use stem cells to replace brain cells in the affected areas. This could help treat the symptoms of Parkinsons disease.
Researchers are exploring various approaches to use stem cells to treat Parkinsons disease.
The current idea is to introduce stem cells directly into the affected areas of your brain where they can transform into brain cells. These new brain cells could then help regulate dopamine levels, which should improve the symptoms of the disease.
Its important to note that experts believe this would only be a treatment for Parkinsons disease and not a cure.
While stem cell therapy has the potential to replace the brain cells destroyed by Parkinsons disease, the disease would still be present. Parkinsons disease would likely destroy the implanted stem cells eventually.
Its unclear right now whether stem cell therapy could be used multiple times to continue to reduce symptoms of Parkinsons disease or if the effect would be the same after multiple procedures.
Until the discovery of the process of creating iPSCs, the only stem cell therapies for Parkinsons disease required the use of embryonic stem cells. This came with ethical and practical challenges, making research more difficult.
After iPSCs became available, stem cells have been used in clinical trials for many conditions involving neural damage with overall mixed results.
The first clinical trial using iPSCs to treat Parkinsons disease was in 2018 in Japan. It was a very small trial with only seven participants. Other trials have been completed using animal models.
So far, trials have shown improvement to symptoms affecting movement as well as nonmotor symptoms such as bladder control.
Some challenges do arise from the source of the stem cells.
Stem cell therapy can be thought of as being similar to an organ transplant. If the iPSCs are derived from a donor, you may need to use immunosuppressant drugs to prevent your body from rejecting the cells.
If the iPSCs are derived from your own cells, your body might be less likely to reject them. But experts believe that this will delay stem cell therapy while the iPSCs are made in a lab. This will probably be more costly than using an established line of tested iPSCs from a donor.
There are many symptoms of Parkinsons disease. Theyre often rated using the Unified Parkinsons Disease Rating Scale (UPDRS) or the Movement Disorder Societys updated revision of that scale, the MDS-UPDRS.
Clinical trials today are generally looking to significantly improve UPDRS or MDS-UPDRS scores for people with Parkinsons disease.
Some trials are testing new delivery methods, such as intravenous infusion or topical applications. Others are looking to determine the safest number of effective doses. And other trials are measuring overall safety while using new medical devices in stem cell therapy.
This is an active area of research. Future trials will help narrow down the most safe and effective approach to stem cell therapy for Parkinsons disease.
Clinical trials are usually conducted in three phases. Each phase adds more participants, with the first phase usually limited to a few dozen people and several thousand in the third phase. The purpose is to test the treatments safety and effectiveness.
Clinical trials testing stem cell therapy for Parkinsons disease are still in the early phases. If the current trials are successful, it will likely still be 4 to 8 years before this treatment is widely available.
The goal of stem cell therapy for Parkinsons disease is to replace destroyed brain cells with healthy, undifferentiated stem cells. These stem cells can then transform into brain cells and help regulate your dopamine levels. Experts believe this can relieve many of the symptoms of Parkinsons disease.
This therapy is still in the early stages of clinical testing. Many trials are either proposed, currently recruiting, or already active. The results of these trials will determine how soon stem cell therapy might become widely available as a treatment for Parkinsons disease.
At the moment, its not believed that stem cell therapy will cure Parkinsons disease. But it might be an alternative to existing treatments such as drug therapies and deep brain stimulation.
Read the original:
Stem Cell Therapy for Parkinson's: Current Developments - Healthline
Cell and Gene Therapy World Asia Event – IMAPAC
Since 2017, Cell & Gene Therapy World Asia haswitnessed huge success in bringing over 300industry pioneers from both cell & gene therapyindustry. With the mission to facilitate the research& development and manufacturing of high qualitycell & gene therapy treatments and regenerativemedicines in Asia, Cell & Gene Therapy World Asia isgoing to continue its legacy.
In addition, this year, speakers will be exploringinnovations in cell & gene therapy in Asia region,best practices on cell & gene therapymanufacturing and process development, scale outstrategies, cost optimization, next generation onCART, advances in CART manufacturing,preparation for commercialization, regulation casestudies and more.
Join the conference to interact with key andupcoming entities from Asia cell & gene therapycompanies including BeiGene, GracellBiotechnologies, Fosun Kite Biotechnology, TessaTherapeutics, CARSgen, Senlang Bio, KangstemBiotech, Medigen Biotechnology Corp, ShangaiUniCAR Therapy among others.
Catch the latest cell & gene therapy development inAsia. From current best R&D practices to advancingtowards manufacturing and commercializationfrom most-exclusive case studies to industry's keyneeds. All this and more under 1 roof.
See the article here:
Cell and Gene Therapy World Asia Event - IMAPAC
Present and Future Perspectives on Cell Sheet-Based … – Hindawi
Heart failure is a life-threatening disorder worldwide and many papers reported about myocardial regeneration through surgical method induced by LVAD, cellular cardiomyoplasty (cell injection), tissue cardiomyoplasty (bioengineered cardiac graft implantation), in situ engineering (scaffold implantation), and LV restrictive devices. Some of these innovated technologies have been introduced to clinical settings. Especially, cell sheet technology has been developed and has already been introduced to clinical situation. As the first step in development of cell sheet, neonatal cardiomyocyte sheets were established and these sheets showed electrical and histological homogeneous heart-like tissue with contractile ability in vitro and worked as functional heart muscle which has electrical communication with recipient myocardium in small animal heart failure model. Next, as a preclinical study, noncontractile myoblast sheets have been established and these sheets have proved to secrete multiple cytokines such as HGF or VEGF in vitro study. Moreover, in vivo studies using large and small animal heart failure model have been done and myoblast sheets could improve diastolic and systolic performance by cytokine paracrine effect such as angiogenesis, antifibrosis, and stem cell migration. Recently evidenced by these preclinical results, clinical trials using autologous myoblast sheets have been started in ICM and DCM patients and some patients showed LV reverse remodelling, improved symptoms, and exercise tolerance. Recent works demonstrated that iPS cell-derived cardiomyocyte sheet were developed and showed electrical and microstructural homogeneity of heart tissue in vitro, leading to the establishment of proof of concept in small and large animal heart failure model.
Therapeutic treatments using cells or cell-based tissues have been developed to regenerate the damaged myocardium associated with ischemic heart disease. This technique has already been evaluated in the clinical setting, using myoblasts [1] or bone marrow mononuclear cells (BM-MNCs) [2]. Although these studies demonstrated the feasibility and safety of this approach, the efficacy associated with this technology was generally insufficient to repair severe myocardial damage. Thus, a second generation of myocardial regenerative therapy, tissue-engineered cardiomyoplasty, is currently being developed. A large number of achievements concerning basic, preclinical, and clinical works about cell sheet technology have been done and this review summarizes recent advances in myocardial regeneration emerging from the development of cell sheet technology.
Cell-sheet techniques have been applied to several diseased organs, such as the heart [3], eye [4], and kidney [5], in the laboratory and the clinic. Cell sheets can be prepared on special dishes that are coated with a temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm), that changes from being hydrophobic to hydrophilic when the temperature is lowered. This change allows cells to be removed without EDTA or enzymatic treatment and without destroying the cell-cell or cell-extracellular matrix (ECM) interactions within the cell sheet.
Shimizu et al. used such temperature-sensitive culture dishes to develop a contractile chick cardiomyocyte sheet that exhibited a recognizable heart tissue-like structure and showed electrical pulsatile amplitude [6]. Next, they layered single-cell sheets to generate bilayer-cell sheets, forming an electrically communicative three-dimensional cardiac construct, which exhibited spontaneous and synchronous pulsation with electrical communication between the cell sheets, mediated by connexin 43. Furthermore, the cell sheets adhered together rapidly, as indicated by the presence of desmosomes and intercalated disks between them [7]. When the pulsatile cardiac tissue was implanted subcutaneously, it was found to assume a heart tissue-like structure and exhibited neovascularization and spontaneous beating for up to one year. The size, conduction velocity, and contractile force of the engrafted sheets increased in proportion to the host growth [8, 9].
Miyagawa et al. demonstrated that a neonatal cardiomyocyte sheet could communicate electrically with the host myocardium, as indicated by the presence of connexin 43, and changes in the QRS wave and action potential amplitude, leading to improved cardiac performance in a rat model of ischemic heart disease [3]. This study clearly showed electrical and morphological coupling between the cell sheet and host myocardium and that the cell sheet could contract synchronously with the beating of the host heart and improve the regional systolic function.
A detailed analysis of the vascularization process following cell sheet implantation was undertaken by Sekiya et al. These authors reported that the cardiomyocyte sheet expresses angiogenesis-associated genes and forms an endothelial cell network. Evidence was also presented suggesting that the vessels arising in the engrafted sheet migrate to connect with the host vasculature [10].
Myocardial tissue grafts engineered with cell sheet technology represent a promising therapy for repairing the damaged myocardium, but there may be some inherent limitations. For example, cellular treatment for heart failure may be not suitable for emergency situations. Another issue is that wide therapeutic use will require improvement in the uniformity in the quality of the cultured cells.
Recently, new medications that imitate the paracrine effects of cytokines in cell sheets have been reported, and the addition of such medications could improve the regenerative treatment for heart failure. It was reported that the direct introduction of a prostacyclin agonist into the damaged myocardium induced significant functional recovery in a canine model of dilated cardiomyopathy, via the upregulation of multiple cytokines, including HGF, VEGF, and SDF-1 [11]. Similarly, the implantation of an atelocollagen sheet containing a prostacyclin analogue induced improved cardiac function and a prolonged survival rate in a mouse model of acute myocardial infarction, accompanied by an enhanced expression of SDF-1 [12]. Recent work has also revealed that prostacyclin may be upregulated in the implanted myoblast sheet in the early phases after implantation in response to ischemic conditions and may in turn stimulate endothelial or smooth muscle cells to secrete multiple cytokines including HGF, VEGF, and SDF-1 (data not shown).
In the clinical setting, cellular cardiomyoplasty is reported to have potential regenerative capability, and a method using skeletal myoblasts has been evaluated in clinical trials and found to be relatively feasible and safe [13]. For tissue cardiomyoplasty, skeletal myoblasts are the cell source closest to being ready for clinical application at this time. Memon et al. demonstrated that the nonligature implantation of a skeletal myoblast sheet into a rat cardiac ligation model regenerated the damaged myocardium and improved global cardiac function, by attenuating cardiac remodeling via hematopoietic stem-cell recruitment and growth-factor release, with better restoration of the implanted cells than that obtained using needle injection [14]. In another study, the application of a skeletal myoblast sheet into a 27-week dilated cardiomyopathy hamster model resulted in the attenuated deterioration of cardiac performance accompanied by the preservation of alpha-sarcoglycan and beta-sarcoglycan expression in the host myocytes, and an inhibition of fibrosis, leading to prolonged survival rates [15]. In addition, the grafting of skeletal myoblast sheets attenuated cardiac remodeling and improved cardiac performance in a pacing-induced canine heart failure model [16]. Studies from our group have shown that myoblast sheets may improve cardiac performance via cytokines such as HGF or VEGF (XX).
The mechanism of recovery in the damaged myocardium has not been completely elucidated and may be very complicated. As mentioned above, cytokine release and hematopoietic stem-cell recruitment are possible mechanisms of regeneration; however, other regenerative mechanisms are likely to be involved as well. Skeletal myoblasts cannot beat synchronously with the host myocardium in vitro [17] or in vivo [18], and, thus, they do not appear to be functionally integrated. However, data from our human and porcine studies suggested that after myoblast sheet implantation, the diastolic dysfunction in the distressed region of the myocardium was significantly recovered compared with controls, leading to improved systolic function in the same region, without contraction of the implanted myoblasts (data not shown). Massive angiogenesis in the implanted region was detected histologically and appeared to be a critical feature associated with the improvement. Thus, we speculate that angiogenesis and the recovery of diastolic function are both major components of the regenerative mechanism in myoblast sheet implantation [19].
On the other hand, immunohistochemical analysis has indicated that the myoblast sheet may only survive for a few months after implantation. We speculate that in the early phases after implantation of the myoblast sheet, the ischemic conditions induce the upregulated expression of several cytokines by the myoblasts that promote their own survival. These cytokines then in turn enhance angiogenesis and the recruitment of stem cells, leading to improved blood perfusion to reactivate the damaged myocardium. The system may continue to be effective in spite of the short-lived myoblast sheet, due to long-term maintenance of the newly developed vasculature.
We recently initiated a clinical evaluation of autologous myoblast sheet implantation. We tested the technology in four patients who were using left ventricular assist devises (LVADs); three of the four patients showed functional recovery, and in two of the patients, the treatment provided a bridge to recovery [20]. Six years later, these two patients have no symptoms of heart failure. We have also implanted myoblast sheets into eight patients with ischemic cardiomyopathy and seven with dilated cardiomyopathy (who were not using LVADs). In that study, some of the patients exhibited left ventricle reverse remodeling and improvements in exercise tolerance and symptoms, with no major adverse cardiac events (MACEs) (data not shown). This clinical research program is ongoing, as we continue to evaluate patients with dilated cardiomyopathy and ischemic cardiomyopathy with and without the use of LVADs.
In addition to cardiomyocytes and myoblasts, other types of cell sheets have been used effectively to improve cardiac performance. The transplantation of a mesenchymal stem cell (MSC) sheet onto the infarcted myocardium of rats resulted in increased anterior wall thickness and new vessel formation, accompanied by a low incidence of differentiation of the implanted cells to cardiomyocytes [21]. While the small number of differentiated cardiomyocytes may not have contributed to the observed improvement in systolic function in this study, the cell sheet exhibited self-propagating properties that promoted the generation of a thick-layered sheet. Although the MSC sheet exhibited a maximum thickness of approximately 600m, which would not be strong enough to correct human end-stage heart failure [22], this method of self-propagation is a potential strategy for creating a thick-layered sheet in vivo, with the potential for cardiac tissue regeneration.
A further development in cell sheet technology is the creation of a cell sheet composed of two types of cocultured cells; this type of cell sheet was developed to enhance angiogenesis [23, 24]. The cocultured cell sheet, which combined fibroblasts and endothelial progenitor cells, enhanced blood vessel formation and led to functional improvement in a rat myocardial infarction model [24]. Cocultured cell sheets combining fibroblasts and human smooth muscle cells were found to accelerate the secretion of angiogenic factors in vitro and to increase blood perfusion in vivo by the formation of new vessels [25]. This enhanced effectiveness attained by coculturing two cell types is supported by another study in which the coimplantation of BMCs and myoblasts showed improved results compared to the transplantation of a single cell type in a canine model of ischemic cardiomyopathy [26].
Cell sheets composed of stem cell antigen-1- (sca-1-) positive, or kit-positive cells may represent additional promising approaches. Matsuura et al. demonstrated that sca-1-positive cell sheets could differentiate into cardiomyocytes in vivo and produce VCAM-1, leading to improved cardiac performance in a mouse model of myocardial infarction [27]. The administration of c-kit-positive stem cells has shown efficacy in animal models of cardiac dysfunction, and this approach is currently being tested in clinical trials in combination with coronary artery bypass grafting, with encouraging preliminary results [28]. In another study, a c-kit-positive cell sheet combined with endothelial progenitor cell injection was found to induce better functional recovery of endocardial scar tissue than that induced by the cell sheet alone, despite the poor transdifferentiation ability of the c-kit-positive cells into cardiomyocytes [29].
Many of the cell sources mentioned above demonstrate regenerative ability based on the paracrine effect of secreted cytokines; however, newly differentiated cardiomyocytes may be the best candidate cells to regenerate the damaged myocardium. In 2006, Takahashi and Yamanaka reported the development of induced pluripotent stem (iPS) cells that can differentiate into various types of cells, such as cardiomyocytes, cartilage, and nerve cells [30]. Since then, there have been many reports showing that cardiomyocytes derived from iPS cells demonstrate electrophysiological, functional, and microstructural similarities to native cardiomyocytes [31]. Cardiomyocyte sheets derived from human or mouse iPS cells that contract synchronously in vitro have been developed, and studies indicate that these cardiomyocyte sheets can contract in vivo as analyzed by X-ray diffraction with synchrotron radiation. The transplantation of these sheets leads to functional recovery with upregulated electrical potential in the scarred areas in large [32] and small animal myocardial infarction models [33].
Although preclinical studies appear promising, the safety of these artificially generated cells must be evaluated thoroughly before they can be used in the clinic. In addition, a potential limitation of iPS cell-derived cardiomyocytes may be the loss of cardiomyocytes due to ischemia after implantation. Recent studies have proposed supplemental strategies to avoid ischemia. In one study, the combination of an iPS-derived cardiomyocyte sheet with omentum, which has a rich vasculature network, resulted in retention of the implanted cardiomyocytes and enhanced functional recovery compared with the cardiomyocyte sheet alone [34]. In another study, the transplantation of a cardiomyocyte sheet containing iPS cell-derived endothelial cells led to enhanced functional recovery in a rat myocardial infarction model and increased survival of the implanted cardiomyocytes [35]. Thus, to successfully treat the severely damaged myocardium using iPS cell-derived cardiomyocyte sheets, additional strategies to increase angiogenesis and reduce ischemia may be required.
Studies on the original myoblast cell therapy, in which cells were directly injected into the myocardium, indicated that the proportion of injected cells surviving to engraft the infarcted myocardium was too low to be effective. This low level of engraftment may have been caused by the injected cells leaking out of the injected region and being carried to other organs, or due to mechanical stress resulting in cellular loss of function. The resulting rapid cell loss [14] limited the usefulness of the original myoblast cell therapy.
To overcome the problems associated with the intramyocardial injection of cells, many investigators have combined cell transplantation with protein or gene therapy [36], or with tissue-engineered techniques [3]. We have also developed a new cell delivery system that uses tissue-engineered myoblast grafts grown as cell sheets and have utilized animal studies to guide clinical trials. These studies showed that the viability of the transplanted cells was higher than that of injected cells, and that the transplanted myoblasts survived for at least 3 months in the cardiac tissue of a porcine model of heart failure treated with autologous myoblast sheets. Using tissue-engineered temperature responsive techniques, we found that the implanted cells could be applied in larger numbers, were viable during transplantation, and were not lost from the applied region. Furthermore, we showed that cell sheets could be engrafted onto the failed myocardium and contribute to the attenuation of cardiac dysfunction and remodeling [14].
In cell therapy for cardiac disease, life-threatening adverse events involving arrhythmogenicity are a potential risk in both animal models and human clinical trials [37]; however, life-threatening arrhythmias have not been observed during the clinical course of patients who have received autologous cell sheet transplants. In any case, arrhythmias can occur during the natural clinical course of severe heart failure, so their cause may not be easily determined. Procedures using needle injection may cause scars in the myocardium that could in turn induce arrhythmias. Our cell delivery techniques using cell sheets prepared on temperature-responsive culture dishes may carry less risk for the induction of arrhythmias. Myoblasts have a weak electrical potential, and it may be possible for these cells to induce arrhythmia if they survive in the myocardium. However, cell sheets may not be able to induce arrhythmia, since they are attached to the epicardium.
Another potential problem is the limited blood perfusion to the implanted cell sheets. Although the survival of implanted cells using the cell sheet technique has already been shown to exceed the cell survival using other delivery routes, the survival rate was still found to be relatively low when the cells were implanted on the epicardium with this technique [38]. Although we have reported that improved cardiac performance depends on the dose of implanted myoblast sheets, the use of too many cell sheets results in a reduced blood supply. Thus, additional strategies, such as combining myoblasts with angiogenic factors [36] or other types of cells [23] to establish a vasculature network, may be needed to solve this problem. One strategy discussed above, is the combination of a myoblast sheet with omentum tissue that has a rich vasculature network. One report recently demonstrated the effectiveness of this approach for retention of the implanted cell sheets [39]. This report also suggested that the implanted myoblast sheet might induce vasculature connections between arteries of the transplanted omentum and the native coronary arteries, suggesting the possibility of biocoronary artery bypass grafting. This method may also be used in conjunction with iPS cell-derived cardiomyocytes to generate an artificial thick cardiac structure with increased vascular connections.
In this review, we surveyed many exciting topics in the area of cell sheet technology for cardiac repair. Owing to these studies, some techniques have already been tested in clinical applications, but the mechanisms by which they improve cardiac function are only partially understood, and much of the technology is still in the early stages of development, both experimentally and in the clinic. Nevertheless, the field of clinical myocardial regenerative therapy holds much promise, and we expect to witness more progress in this innovative technology in the near future.
The authors declare that there is no conflict of interests regarding the publication of this paper.
See the original post:
Present and Future Perspectives on Cell Sheet-Based ... - Hindawi
Stem cell therapy side effects & risks: infections, tumors & more
What are the possible stem cell therapy side effects of going to an unproven clinic? This is a common question I get asked. Most often it is asked by patients who reach out.
Check out the YouTube video below on our stem cell channel. If you like such videos please subscribe to our channel.
Many clinics have said over the years to potential customers that the worst that can happen is that the stem cells wont work.
We know this isnt true and its irresponsible.
Anything that has the potential to help a medical condition also poses some risks of harm. For this reason, its important to discuss potential stem cell therapy side effects. In this case I am focusing on the risks primarily associated with unproven stem cell clinics. Not for established methods like bone marrow transplantation.
Recent publications in journals including one by my colleague Gerhard Bauer and a special report by The Pew Charitable Trust have helped clarify risks. Gerhards paper presents the types of side effects that appear more common after people go to stem cell clinics. After closely following this area for a decade I was familiar with many of the examples of problems. However, some were new to me.
One of the highest profiles examples of bad outcomes was the case where three people lost their vision due to stem cells injected by a clinic.See image below of one set of damaged eyes. More on that case at the end of the post.
Why do stem cells pose risks?
Stem cells are uniquely powerful cells.
By definition they can both make more of themselves and turn into at least one other kind of specialized cells. This latter process is called differentiation. That former ability to make more of themselves is called self-renewal.
The most powerful stem cells are totipotent stem cells that can literally make any kind of differentiated cell. The fertilized human egg is the best example of a cell having totipotency. Next in the power line are pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Adult stem cells are multipotent. The best type of stem cell depends on the condition that is trying to be treated. The best type may not be the most powerful.
In any case, the power of stem cells is a main reason they also pose risks. These cells are not always easy to control and misdirected power can do harm.
Let me explain and start with the side effect that seems scariest to most.
If someone injects a patient with stem cells, its possible that the self-renewal power of stem cells just wont get shut off. In that scenario the stem cells could drive formation of a tumor or even cancer. Note that tumors are not always malignant whereas cancer is always malignant.
Why wouldnt a transplanted stem cell always eventually hit the brakes on self-renewal? It could be that the stem cell has one or more mutations. For any stem cells grown in a lab, within the population of millions of cells in a dish, there are going to be at least a few with mutations that crop up. Thats just the way it goes with growing cells in a lab.
Even stem cells not grown in the lab have the same spectrum of mutations as the person they were isolated from. It may seem weird to think about, but we all have some mutations.
When someone like a clinic person tells us that theres a risk to you thats a one in a million chance it doesnt sound that bad. However, with cells being injected into a person in theory all it takes is one cell out of a million cells in a syringe with a couple really bad mutations to potentially cause disaster. Research suggests it takes more than one cell with cancer-causing potential to make a tumor in experiments in the lab, but in actual people we just dont know. Many cancers may arise from one stem cell gone awry. If a clinic injects 50 or 100 million cells, a one-in-a-million rate of dangerous cells means that 50-100 such cells end up in the patient.
The odds are far lower for cells never grown in a lab to cause a tumor, but its still possible. Oddly, its possible that receiving someone elses stem cells (we call this allogeneic) might pose a lower cancer risk because your immune system is going to see those cells as foreign from the start.
But some stem cells, especially those with mutations, might be able to somewhat fly under the radar of the immune system to some extent even if they are from another person. This could allow them to grow into a tumor. The Pew report does a nice job of summarizing risks and there are several reports of tumors.
The possibility of infections after stem cell injections is another risk that is often discussed. Infections from injections of stem cells or other materials like PRP are probably the most common type of side effect. Bacteria can either sometimes already be in the product that is injected or can be introduced by poor injection or preparation methods by the one doing the procedure.
The distributor Liveyon had a product contaminated with bacteria that sickened at least a dozen people who were hospitalized. Some of them ended up in the ICU. A few may even have permanent issues.
Clinics using excellent procedures and products should have a low risk of infection more similar to getting any kind of invasive procedure even unrelated to stem cells.
Many preparations of stem cells sold at stem cell clinics these days are made from fat tissue or birth-related materials. I put stem cells in quotes because most fat and birth-related preparations only contain a small population of true stem cells.
In the case of adipose biologics, they mostly consist of a mixture of a dozen or so other kinds of cells found in fat.
The injections of fat cells are most often made IV right into the bloodstream. Fat cells just live in fat so they arent supposed to be floating around in your blood. As a result, after IV injection, many fat cells are thought to get killed right away.
Others end up landing in the lungs, where many are also probably meeting their doom. However, during this process of wiping out the fat cells it is possible that clots can start forming. Maybe the fat cells form small clots in the blood before they even get into the lungs. Either way, if the clots grow and are big enough, patients can get pulmonary emboli.
The same kind of risk may apply to IV injections or nebulizer inhalations of other kinds of stem cells.
There are other possible risks to stem cell injections too.
I wrote a post about possible graft versus host disease in stem cell recipients. This would only happen in people receiving someone elses stem cells. Its not clear if GvHD is something that happens to patients after going to clinics.
Beyond outright tumor formation it is also possible that stem cells will turn into an undesired or even dangerous tissue type. The example that comes to mind is the practice mentioned earlier of some clinics injecting fat cells into peoples eyeballs. What seems to have happened in some cases is that the mesenchymal cells (MSCs) that were injected turned into scar tissue, which caused retinal detachment. Unfortunately, what are called MSCs by some clinics can mostly consist of close relatives of fibroblasts or in some cases may even largely consist of fibroblasts. Fibroblasts are good at making scar tissue under some circumstances and that can create pull on surrounding tissues including the retina if inside the body.
Specific kinds of stem cells or routes of administration may pose unique risks as well. For instance, intranasal administration of stem cells is getting popular with unproven clinics and could lead to stem cells ending up in the brain.
Other products in the regenerative sphere that are not stem cells may be risky as well for various reasons. For instance, an exosome product harmed quite a few people in Nebraska.Some problems may relate to product contamination.
There have also been cases of unusual immune reactions to stem cell injections.
Finally, stem cells also pose unknown risks because of their power. We just dont have long-term follow up data to have a clear sense of risks.
Related Posts
Read the original post:
Stem cell therapy side effects & risks: infections, tumors & more
Ethical issues in stem cell research and therapy
Lo B, Parham L: Resolving ethical issues in stem cell clinical trials: the example of Parkinson disease. J Law Med Ethics. 2010, 38: 257-266. 10.1111/j.1748-720X.2010.00486.x.
Article PubMed Google Scholar
Habets MG, van Delden JJ, Bredenoord AL: The inherent ethical challenge of first-in-human pluripotent stem cell trials. Regen Med. 2014, 9: 1-3. 10.2217/rme.13.83.
Article CAS PubMed Google Scholar
Niemansburg SL, Teraa M, Hesam H, van Delden JJ, Verhaar MC, Bredenoord AL: Stem cell trials for cardiovascular medicine: ethical rationale. Tiss Eng Part A. 2013, [Epub ahead of print]
Google Scholar
Levine R: Ethics and Regulation of Clinical Research. 1988, New York: Yale University Press
Google Scholar
Gilbert S, Kaebnick GE, Murray TH: Special Report: Animal research ethics: evolving views and practices. Hastings Center Rep. 2012, 42: S1-S39.
Article Google Scholar
Joffe S, Miller FG: Bench to bedside: mapping the moral terrain of clinical research. Hastings Center Rep. 2008, 38: 30-42.
Article Google Scholar
Arcidiacono JA, Blair JW, Benton KA: US Food and Drug Administration international collaborations for cellular therapy product regulation. Stem Cell Res Ther. 2012, 3: 38-42. 10.1186/scrt129.
Article PubMed Central PubMed Google Scholar
Caulfield T, Zarzeczny A, McCormick J, Bubela T, Critchley C, Einsiedel E, Galipeau J, Harmon S, Huynh M, Hyun I, Illes J, Isasi R, Joly Y, Laurie G, Lomax G, Longstaff H, McDonald M, Murdoch C, Ogbogu U, Owen-Smith J, Pattinson S, Premji S, von Tigerstrom B, Winickoff DE: The stem cell research environment: a patchwork of patchworks. Stem Cell Rev. 2009, 5: 82-88. 10.1007/s12015-009-9071-3.
Article PubMed Google Scholar
Greely H: Assessing ESCROs: yesterday and tomorrow. Am J Bioeth. 2013, 13: 44-52.
Article PubMed Google Scholar
Lomax GP, Peckman SR: Stem cell policy exceptionalism: proceed with caution. Stem Cell Rev Rep. 2012, 8: 299-304. 10.1007/s12015-011-9305-z.
Article Google Scholar
Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G, De Luca M, Fox IJ, Gerstle C, Goldstein RA, Hermeren G, High KA, Kim HO, Lee HP, Levy-Lahad E, Li L, Lo B, Marshak DR, McNab A, Munsie M, Nakauchi H, Rao M, Rooke HM, Valles CS, Srivastava A, Sugarman J, Taylor PL, Veiga A, Wong AL, Zoloth L, Daley GQ: New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell. 2008, 3: 607-609. 10.1016/j.stem.2008.11.009.
Article CAS PubMed Google Scholar
International Society for Stem Cell Research: Guidelines for the clinical translation of stem cells. [http://www.isscr.org/docs/guidelines/isscrglclinicaltrans.pdf]
Caulfield T: Stem cell research and economic promises. J Law Med Ethics. 2010, 38: 303-313. 10.1111/j.1748-720X.2010.00490.x.
Article PubMed Google Scholar
Caulfield T, Rachul C, Zarzeczny A: The evolution of policy issues in stem cell research: an international survey. Stem Cell Rev Rep. 2012, 8: 1037-1042. 10.1007/s12015-012-9404-5.
Article Google Scholar
Emanuel EJ, Wendler D, Grady C: What makes clinical research ethical?. JAMA. 2000, 283: 2701-2711. 10.1001/jama.283.20.2701.
Article CAS PubMed Google Scholar
Kato K, Kimmelman J, Robert J, Sipp D, Sugarman J: Ethical and policy issues in the clinical translation of stem cells: report of a focus session at the ISSCR annual meeting. Cell Stem Cell. 2012, 11: 765-767. 10.1016/j.stem.2012.11.004.
Article CAS PubMed Google Scholar
London AJ, Kimmelman J, Emborg ME: Beyond access vs. protection in trials of innovative therapies. Science. 2010, 328: 829-830. 10.1126/science.1189369.
Article PubMed Central CAS PubMed Google Scholar
King NM, Cohen-Haguenauer O: En route to ethical recommendations for gene transfer clinical trials. Mol Ther. 2008, 16: 432-438. 10.1038/mt.2008.13.
Article CAS PubMed Google Scholar
Dresser R: First-in-human trial participants: not a vulnerable population, but vulnerable nonetheless. J Law Med Ethics. 2009, 37: 38-50.
Article PubMed Central PubMed Google Scholar
Dresser R: Stem cell research as innovation: expanding the ethical and policy conversation. J Law Med Ethics. 2010, 38: 332-341. 10.1111/j.1748-720X.2010.00492.x.
Article PubMed Central PubMed Google Scholar
Dresser R: Alive and well: the research imperative. J Law Med Ethics. 2012, 40: 915-921.
Article PubMed Google Scholar
Dresser R: The ubiquity and utility of the therapeutic misconception. Soc Philos Policy. 2002, 19: 271-294. 10.1017/S0265052502192119.
Article PubMed Google Scholar
King NM, Henderson GE, Churchill LR, Davis AM, Hull SC, Nelson DK, Parham-Vetter PC, Rothschild BB, Easter MM, Wilfond BS: Consent forms and the therapeutic misconception: the example of gene transfer research. IRB. 2005, 27: 1-
Article PubMed Google Scholar
Hyun I: The bioethics of stem cell research and therapy. J Clin Invest. 2010, 120: 71-75. 10.1172/JCI40435.
Article PubMed Central CAS PubMed Google Scholar
Daley GQ: The promise and perils of stem cell therapeutics. Cell Stem Cell. 2012, 10: 740-749. 10.1016/j.stem.2012.05.010.
Article PubMed Central CAS PubMed Google Scholar
Sugarman J: Human stem cell ethics: beyond the embryo. Cell Stem Cell. 2008, 2: 529-533. 10.1016/j.stem.2008.05.005.
Article CAS PubMed Google Scholar
Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research: Guidance for industry: considerations for the design and conduct of early-phase clinical trials of cellular and gene therapy products (DRAFT). 2013, [http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM359073.pdf]
Google Scholar
Sipp D: Direct-to-consumer stem cell marketing and regulatory responses. Stem Cells Translational Med. 2013, 2: 638-640. 10.5966/sctm.2013-0040.
Article Google Scholar
Weissman I: Stem cell therapies could change medicine if they get the chance. Cell Stem Cell. 2012, 10: 663-665. 10.1016/j.stem.2012.05.014.
Article CAS PubMed Google Scholar
Hyun I, Hochedlinger K, Jaenish R, Yamanaka S: New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell. 2007, 4: 367-368.
Article Google Scholar
King NM, Coughlin CN, Atala A: Pluripotent stem cells: the search for the perfect source. Minn J Law Sci Technol. 2011, 12: 715-730.
Google Scholar
Ishii T, Pera RA, Greely HT: Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell. 2013, 13: 145-148. 10.1016/j.stem.2013.07.005.
Article CAS PubMed Google Scholar
Cohen CB: Renewing the Stuff of Life: Stem Cells, Ethics, and Public Policy. 2007, New York: Oxford University Press
Google Scholar
Human Embryonic Stem Cell Research Advisory Committee, The National Academies: Final Report and 2010 Amendments to the National Academies Guidelines for Human Embryonic Stem Cell Research. 2010, Washington, DC: National Academies Press
Google Scholar
Yamanaka S: Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012, 10: 678-684. 10.1016/j.stem.2012.05.005.
Article CAS PubMed Google Scholar
Pera MF: Stem cells: the dark side of induced pluripotency. Nature. 2011, 471: 46-47. 10.1038/471046a.
Article CAS PubMed Google Scholar
Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CA: Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature. 2014, 505: 641-647. 10.1038/nature12968.
Article CAS PubMed Google Scholar
Cyranoski D: Acid bath offers easy path to stem cells. Nature. 2014, 505: 596-10.1038/505596a.
Article CAS PubMed Google Scholar
Cyranoski D: Acid-bath stem-cell study under investigation. Nature. 2014, [http://www.nature.com/news/acid-bath-stem-cell-study-under-investigation-1.14738]
Google Scholar
Kimmelman J, Baylis F, Glass KG: Stem cell trials: lessons from gene transfer research. Hastings Cent Rep. 2006, 36: 23-26.
Article PubMed Google Scholar
Hyun I: Allowing innovative stem cell based therapies outside of clinical trials: ethical and policy challenges. J Law Med Ethics. 2010, 38: 277-285. 10.1111/j.1748-720X.2010.00488.x.
Article PubMed Google Scholar
Wilson JM: A history lesson for stem cells. Science. 2009, 324: 727-728. 10.1126/science.1174935.
Article CAS PubMed Google Scholar
Bretzner F, Gilbert F, Baylis F, Brownstone RM: Target populations for first-in-human embryonic stem cell research in spinal cords. Cell Stem Cell. 2011, 8: 468-475. 10.1016/j.stem.2011.04.012.
Article CAS PubMed Google Scholar
Lukovic D, Stojkovic M, Moreno-Manzano V, Bhattacharya SS, Erceg S: Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Gerons clinical trial for spinal cord injury. Stem Cells Dev. 2014, 23: 1-4. 10.1089/scd.2013.0266.
Article PubMed Google Scholar
Illes J, Reimer C, Kwon BK: Stem cell clinical trials for spinal cord injury: readiness, reluctance, redefinition. Stem Cell Rev. 2011, 7: 997-1005. 10.1007/s12015-011-9259-1.
Article CAS PubMed Google Scholar
Esch MB, King TL, Shuler ML: The role of body-on-a-chip devices in drug and toxicity studies. Ann Rev Biomed Eng. 2011, 13: 55-72. 10.1146/annurev-bioeng-071910-124629.
Article CAS Google Scholar
Lowenthal J, Lipnick S, Rao M, Hull SC: Specimen collection for induced pluripotent stem cell research: harmonizing the approach to informed consent. Stem Cells Translational Med. 2012, 1: 409-421. 10.5966/sctm.2012-0029.
Article Google Scholar
Lomax GP, Hull SC, Lowenthal J, Rao M, Isasi R: The DISCUSS project: induced pluripotent stem cell lines from previously collected research biospecimens and informed consent: points to consider. Stem Cells Translational Med. 2013, 2: 727-730. 10.5966/sctm.2013-0099.
Article Google Scholar
Lomax GP, Shepard KA: Return of results in translational iPS cell research: considerations for donor informed consent. Stem Cell Res Ther. 2013, 4: 6-7. 10.1186/scrt154.
Article PubMed Central PubMed Google Scholar
Hyun I: The bioethics of iPS cell based drug discovery. Clin Pharmacol Ther. 2011, 89: 646-647. 10.1038/clpt.2010.308.
Article CAS PubMed Google Scholar
King NM, Coughlin CN, Furth M: Ethical issues in regenerative medicine. Wake Forest Intellectual Property Law J. 2009, 9: 216-238.
Follow this link:
Ethical issues in stem cell research and therapy
Stem cell therapy for diabetes – PMC – PubMed Central (PMC)
Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.
Keywords: Embryonic stem cell, induced pluripotent stem cell, mesenchymal stem cell, diabetes
This lecture is based on a recent review.[1]
The increasing burden of diabetes worldwide is well-known, and the effects on health care costs and in human suffering, morbidity, and mortality will be primarily felt in the developing nations including India, China, and countries in Africa. New drugs are being developed at a rapid pace, and the last few years have seen several new classes of compounds for the treatment of diabetes e.g. glucagon-like peptide (GLP-1) mimetics, dipeptidyl-peptidase-4 (DPP-4) inhibitors, sodium glucose transporter-2 (SGLT2) inhibitors. New surgical treatments have also become increasingly available and advocated as effective therapies for diabetes. Gastric restriction surgery, gastric bypass surgery, simultaneous pancreas-kidney transplantation, pancreatic and islet transplantation have all been introduced in recent years. To avoid the trauma of a major operation, there have been many studies on the transplantation of isolated islets removed from a cadaveric pancreas. There was encouragement from the Edmonton protocol described by Shapiro and colleagues in the New England Journal in 2000. The islets were injected into the portal vein and patients, especially those suffering from dangerous, hypoglycemic unawareness, were treated before they had developed severe complications of diabetes, especially renal complications. While the early results were promising, with some 70% of the patients requiring no insulin injections after two years, at five years, most of these patients had deteriorated and required insulin supplements, despite some having received more than one transplant of islets. In the more recent series of patients, the Edmonton group has reported better long-term results with the use of the monoclonal anti-lymphocyte antibody, Campath 1H given as an induction agent, 45% of patients being insulin-independent at five years, and 75% had detectable C-peptide.
However, cadavaric pancreata and islets compete for the same source and are limited in number, and so, neither treatment could readily be offered to the vast majority of diabetic patients. Some have attempted to use an alternative source, for example, encapsulated islets from neonatal or adult pigs. This is still very experimental and will be a far away alternative with many technical and possibly ethical obstacles to overcome.
More recently, with the successes in the development of pluripotent adult stem cells (from Yamanaka, awarded the 2012 Nobel prize for medicine for developing induced pluripotent stem cells iPSCs), new approaches to seek a methods that may be more accessible and available have been attempted. Much hope was derived initially from embryonic stem cell (ESC) research, since these cells can be persuaded to multiply and develop into any tissue, but the process was expensive, and the problem of teratoma formation from these stem cells proved extremely difficult to overcome. Many of the important factors related to fetal development are not understood and cannot be reproduced. However, some progress has been made, and (occasionally) cells been persuaded to secrete insulin, but so far, there have been very minimal therapeutic application.
Scientists are now aware that to persuade a cell to produce insulin is only one step in what may be a long and difficult journey. Islets cells are highly specialized to have not only a basal release of insulin but also to respond rapidly to changes in blood glucose concentration. With insulin, the process and regulation of switching off secretion is as important as the switching on secretion.
A variety of approaches has been made with different starting points. The stem cell reproduces itself and can then also divide asymmetrically and form another cell type: This is known as differentiation. Although initially they were thought to be available only from embryos, non-embryonic stem cells can now be obtained without too much difficulty from neonatal tissue, umbilical cord, and also from a variety of adult tissues including bone marrow, skin, and fat. These stem cells can be expanded and made to differentiate, but their repertoire is restricted compared with embryonic stem cells: oligo- or pluri- as opposed to toti-potent embryonic stem cells. Even more, recently, there has been much interest in the process of direct cell trans-differentiation, in which a committed and fully differentiated cell, for example a liver cell, is changed directly to another cell type, for example an islet beta-cell, without induction of de-differentiation back to a stem cell stage.
Yamanaka, in 2006, was able to produce pluripotent stem cells from mouse neonatal and adult fibroblast cultures by adding a cocktail of four defined factors.[2] This led to a series of other studies developing the process, which was shown to be repeatable with human tissue as well as laboratory mice. The use of iPS cells avoided the ethical constraints of using human embryos, but there have been other problems and obstacles still. There have been emerging reports of iPS cells becoming antigenic to an autologous or isologous host, and the cells can accumulate DNA abnormalities and even retain epigenetic memory of the cell type of origin and thus have a tendency to revert back. Like embryonic stem cells, iPS cells can form teratoma, especially if differentiation is not complete.
Despite this, there has been very little success in directing differentiation of iPSCs to form islet beta-cells in sufficient quantity that will secrete and stop secretion in response to changes in blood glucose levels.
Another approach that has been tried is to combine gene therapy with stem cells. Some progress has been made in trying to express the desired insulin gene in more primitive undifferentiated cells by coaxing stem cells with differentiation factors in vitro and then by direct gene transfection using plasmids or a viral vector. We, and others, have used a human insulin gene construct and introduced ex vivo or in vivo into cells by direct electroporation (in ex vivo cells obviously) or by viral vectors. The adenovirus, adeno-associated virus, and various retro viruses have been most studied, especially the Lentivirus. However, any type of genetic engineering raises fears not only of infection from the virus but also of the unmasking of onco-genes, leading to malignancy, and there are strict regulations how to proceed to avoid these risks.
We have been interested in umbilical cord stem cells and in mesenchymal stem cells as targets for combined stem cell and gene therapy. These cells can be obtained in a reasonably easy and reproducible manner from otherwise discarded umbilical cord, or readily accessible bone marrow, selecting out the cells using various standard techniques. Fat, amnion, and umbilical cord blood are also sources, from which mesnechymal stem cells can be derived. After a proliferative phase, the cells take up an appearance similar to a carpet of fibroblasts, which can differentiate into bone, cartilage, or fat cells. Although mesenchymal stem cells from the various sources mentioned may look similar, their differentiation potentials are idiosyncratic and differ, which makes it inappropriate and difficult to think of them as a uniform source of target cells. Neonatal amnion cells and umbilical cord cells have low immunogenicity and do not express HLA class II antigens. They also secrete factors that inhibit immune reactions, for example, soluble HLA-G. Although immunogenicity is reduced significantly, they are still not autologous and, therefore, there remains a risk for allograft rejection. They have the advantage that they could be multiplied, frozen, and banked in large numbers and could be used in patients already needing immunosuppressive agents, for examples those having renal transplants.
In Singapore, our studies of umbilical cord-derived amnion cells have shown some success in having expression of insulin and glucagon genes, but little or no secretion of insulin in vitro. Together with insulin gene transfection in vitro, after peritoneal transplantation into sterptozotocin-induced diabetic mice, there was some improvement in glucose levels.[3] Our colleagues in Singapore[4,5] have used another model of autologous hepatocytes from streptozotocin-induced diabetic pigs. These separated hepatocytes were successfully transfected ex-vivo with a human insulin gene construct by electrophoration, and then the cells were injected directly back into the liver parenchyma using multiple separate injections. The pigs were cured of their diabetes for up to nine months - which is a remarkable achievement. As these were autotransplantations, no immunosuppressive drugs were necessary, but the liver cells were obtained from large open surgical biopsies. This necessity of surgical removal of liver tissue would limit its applicability, but nevertheless has been a good proof of concept study. In the context of autoimmune diabetes, the risk of recurrent disease may well persist unless the target of autoimmune attack could be defined and eliminated. In these porcine experiments, the human insulin gene with a glucose sensing promoter EGR-1 was used. There was no virus involved, and the plasmid does not integrate. Division of the transfected cell would dilute gene activity, but large numbers of plasmid can be produced cheaply. The same group of workers successfully transfected bone marrow mesenchymal stem cells with the human insulin gene plasmid using the same EGR-1 promoter and electrophoration. This cured diabetic mice after direct intra-hepatic and intra-peritoneal injection.
Finally, there should be caution in interpreting the results of these and other reports of cell and gene therapy for diabetes. In gene transfection and/or transplantation of insulin-producing cells or clusters in the diabetic rodent, there have been many reports in the literature, but only a few of these claims have been reproduced in independent laboratories. We have suggested the need to satisfy The Seven Pillars of Credibility as essential criteria in the evaluation of claims of success in the use of stem cell and/or gene therapy for diabetes.[1]
Cure of hyperglycemia
Response to glucose tolerance test
Evidence of appropriate C-peptide secretion
Weight gain
Prompt return of diabetes when the transfecting gene and/or insulin producing cells are removed
No islet regeneration of stereptozotocin-treated animals and no re-generation of pancreas in pancreatectomized animals
Presence of insulin storage granules in the treated cells
Read the original:
Stem cell therapy for diabetes - PMC - PubMed Central (PMC)
Ono Exercises Option to HER2-targeted CAR T-Cell Product Candidate for Solid Tumors Generated from the Collaboration with Fate Therapeutics -…
Ono Exercises Option to HER2-targeted CAR T-Cell Product Candidate for Solid Tumors Generated from the Collaboration with Fate Therapeutics  Marketscreener.com
See original here:
Ono Exercises Option to HER2-targeted CAR T-Cell Product Candidate for Solid Tumors Generated from the Collaboration with Fate Therapeutics -...
Cell Rejuvenation and Cell Therapy | Cell Regeneration Perth
There are a lot of theories as to why people change as they get older. Some claim that aging is caused by injuries from ultraviolet light over time, wear and tear on the body, or by-products ofmetabolism. Other theories view aging as a predetermined process controlled by genes.
No single process can explain all the changes of aging. Aging is a complex process that varies as to how it affects different people and even different organs. Most gerontologists (people who study aging) feel that aging is due to the interaction of many lifelong influences. These influences include heredity, environment, culture, diet, exercise and leisure, past illnesses, and many other factors.
Unlike the changes of adolescence, which are predictable to within a few years, each person ages at a unique rate. Some systems begin aging as early as age 30. Other aging processes are not common until much later in life.
Although some changes always occur with aging, they occur at different rates and to different extents. There is no way to predict exactly how you will age.
Some studies have shown that Regeneration treatments have a better effect on people over the age of 35, however this has no clinical evidence to back it up. What we do know is that as we age our bodies do not renew cell turnover at the same rate as it did in our younger years. There appears to be no end age for these treatments to have some effect.
Read more from the original source:
Cell Rejuvenation and Cell Therapy | Cell Regeneration Perth
cGMP iPSCs & Cell Therapy Manufacturing | CDMO | I Peace, Inc.
For example, pharmaceutical companies and research institutions are conducting research on various diseases, trying to develop new treatments and new drugs. However, progress is limited by the availability of cell samples that can be collected from any one patient. Indeed, a single donors cell sample may not be enough for even one study, in one single institute. Thus, it is often not feasible to expand the scope of a study or allow for others around the world to reproduce or advance results. Without renewable sources of accessible patient cell samples, there is a chronic shortage of research materials, which slows research and development efforts. Many of the inquiries received by I Peace express an eagerness and hope to advance research by providing their iPS-cells to research institutions, but find it difficult as a prospective donor to make such a connection with a research institution. We wish to bridge a prospective donors goodwill and the needs of research institutions by using I Peace platforms.
Since iPS cells can proliferate indefinitely, a patients iPS cells can be grown in large quantities, then differentiated into various cell types. In this case, any cells needed for research could be obtained from a renewable source on demand, such as I Peace, so that research programs are dramatically accelerated.
Similarly, to drive advances in personalized regenerative medicine, I Peace aims to provide donors with accessible and affordable medical-grade personal iPS cells, and with your consent, provide your cells to pharmaceutical companies, research institutions or for joint development programs with I Peace. We believe this partnership, facilitated by I Peace, will accelerate the realization of personalized and autologous transplantation and regenerative medicine for various diseases. We want to build a future that helps patients suffering from these diseases receive new cell-based therapies as soon as possible.
Original post:
cGMP iPSCs & Cell Therapy Manufacturing | CDMO | I Peace, Inc.
Stem cell therapy for knees: fact-check, costs, risks
One of the most common questions I get from patients is about stem cell therapy for knees. Can it help knee arthritis and pain? Todays post is a fact-check of where things stand today in 2022 on stem cells for knee issues.
You can watch a video overview of this post on our Stem Cell YouTube Channel below.
Stem cell therapy for knees | Look at the Data |Some biased studies? |Clinical trials: no clear benefit | Cost: $5,000-$10,000 | Risks & Efficacy | 2022 and Looking Ahead | References
Quick Article Summary and Claim Review.Stem cells are a still unproven approach to knee problems like pain and arthritis, but many clinics market this approach, claiming it works and is safe. While risks appear low overall for stem cell knee injections, there have been problems on occasion. The cost of around $5,000-$10,000 at unproven stem cell clinics is not covered by insurance or Medicare. Overall, this experimental therapy may not be worth the cost and risks at this time. More data are needed from ongoing trials. Certain patients are far more likely to benefit from knee replacement instead of stem cells depending on their age and severity of disease, but joint replacement has its own risks. You should consult your doctor.
With all those patients asking about this, perhaps then its not surprising that for-profit clinics have zeroed in. One of the most common claims made by unproven, for-profit stem cell clinics is related to knees.
They sell the idea that their stem cells can help knee arthritis and associated pain, but what is the evidence to back this up? What about other products like platelet rich plasma (PRP) for knees?
There are many problems with the claims of stem cells and other regenerative products.
In many cases what is being sold as stem cells isnt even real stem cells. It often is an amniotic extract.
Such products are probably not made from actual stem cells anyway and are dead.
But what about cases where real, live stem cells are being injected every day for knee arthritis? For other kinds of joint problems? What about PRP?
Mostly the answer seems to be no, with a few maybes.
One of the challenges in this area is that there is so much noise out there. The data are a real jumble.
With just one search on PubMed I found more than 400 articles. Such articles often report conflicting big-picture findings as well.
And there are likely many more articles depending on how one does the literature search.
The first three results popping up with that search are all themselves meta analyses or reviews. I could also easily find many recent clinical trial reports. Many on the surface suggest there might a small benefit to various kinds of stem cell injections, but the studies are often too small or have other issues to be sure. One phrase in this particular study kind of sums up many others: Larger sample size and long-term follow-up are required.
I interpret that to mean that this is not ready for prime time. Its not a convincing replacement for knee joint replacement. While joint replacement has its own issues, the data indicate it gives most patients back the functionality they want.
A Cochrane review of stem cells for knees appears to be ongoing without results so far. It could have a big impact.
Another meta kind of study in the British Journal of Sports Medicine identified potential challenges to many of the regenerative studies on knees. The issue is the risk of bias in many of the stem cell for knees studies. The authors conclude:
Six trials with high risk of bias showed level-3 or level-4 evidence in favour of stem cell injections in KOA. In the absence of high-level evidence, we do not recommend stem cell therapy for KOA.
I know that stem cell clinic doctors can find plenty of studies supposedly supporting what they are offering for knees, but the question is which studies are the strongest? Also, is there some coherent signal of benefit and safety rising above the noise overall? I didnt see it.
Many universities and medical centers including the Mayo Clinic are studying stem cells for various orthopedic injuries including knee problems. These clinical trials so far have not produced clear data supporting regenerative approaches as a new standard of care.
Some reasons include that some trials to date havent been designed or powered to measure efficacy, other trials produced inconclusive results, and many trials are still ongoing. As to the first reason, an example is The completed Phase 1 Mayo Clinic trial.This study of bone marrow stem cells for knees was very preliminary.
The published Mayo study itself was direct about the inconclusive results:
Study patients experienced a similar relief of pain in both BMAC- and saline-treated arthritic knees.
In other words, the stem cells did nothing more than just an injection of salt water.
A search I did on Clinicaltrials.gov found more than 100 listings of studies of stem cells for knees. I did the search on March 29, 2021.
Other trials are examining PRP for knee issues. PRP could actually be more promising here than MSC-type cells as they are currently being used.
The CIRM Blogrecently covered the issue of stem cells for knee arthritis at clinics. In large part the post seemed inspired by a new at that time comprehensive study that sheds major doubt on this approach.
Some of the main take-homes from the study on clinics were nicely summarized by Kevin McCormack of CIRM, including on cost:
In a study presented at the Annual Meeting of the American Academy of Orthopaedic Surgeons, researchers contacted 317 clinics in the US that directly market stem cell therapies to consumers. They asked the clinics for information on the cost of the procedure and their success rate.
Only 36 clinics responded with information about success rates.
None offered any evidence based on a clinical trial that supported those claims, and there was no connection between how much they charged and how successful they claimed to be.
Patients are paying around $5K-$10K for a kind of stem cell treatment where clinics are largely claiming 70-100% success yet have little or no strong clinical trial evidence to back it up. The average cost data here fit wellwith the numbers in a poll I did on The Niche of what patients say they paid for stem cell therapies more generally. Note that this approach is not covered by insurance or Medicare.
McCormack has quotes both from the lead authors,Nicolas Piuzzi andGeorge Muschler, of the study entitled, The Stem-Cell Market for Treatment of Knee Osteoarthritis: A Patient Perspective, which is published in Journal of Knee Surgery with some big picture perspectives and thoughts on the meaning of their work. Check it out.
Basically, theres a disconnect between the state of the clinical science in this area and what is being widely marketed for profit. Im not aware of massive patient side effects in this area so safety, while not assured by any means, is perhaps not the biggest issue.
Risks. A possible risk comes from poor injection methods. I have had patients report that injections to the knee went badly after the needle ended up outside the knee joint. Some clinics using imaging to guide the process so thats a plus. Many are not. Probably the other main risk is infection. It is unclear if the stem cell materials themselves pose specific risks like incorrect tissue growth.
Efficacy. Overall, there is minimal evidence of efficacy from properly controlled studies. For instance, the authors ofthis stem cells for knees studysuggest potential benefit of bone marrow stem cells for knee arthritis, but although it did have a control group, it wasnt blinded and was underpowered.Heres a more recent, blinded studyarguing for some moderate benefit, but it was underpowered as well and no benefit was seen after 12 months. Clinics will point to yet other studies that purportedly report benefits, but the big picture is just not very clear.
I hope in the future we get that data as a field so we can have better clarity here. You can see some past posts including on knee arthritis. Its apparent that for up to 8 years or more this issue has been percolating.
Other alternatives including knee replacements, especially for older patients, can offer great outcomes. The Mayo Clinic and others are using approaches beyond stem cells. They are also testing approaches using cartilage cells called chondrocytes instead of stem cells, which also show promise.
My viewis that stem cell injections for knee arthritis from clinics directly marketing to consumers is most often going to be a big waste of money for patients and again there are risks. This is not to say that theres no hope of stem cells for arthritis or specifically for knee arthritis, but caution is in order right now on this front.
Im optimistic about the future of this area, but most of whats going on now commercially is not ready for prime time.
Disclaimer: this post is not medical advice. Consult with your doctor before making medical decisions.
Related Posts
Follow this link:
Stem cell therapy for knees: fact-check, costs, risks
Global Cell Banking Outsourcing Market to Grow at a CAGR of ~18% during 2022-2031; Market to Expand Owing to the Development of Advanced Cell…
New York, Aug. 23, 2022 (GLOBE NEWSWIRE) -- Kenneth Research has published a detailed market report on Global Cell Banking Outsourcing Market for the forecast period, i.e., 2022 2031, which includes the following factors:
Global Cell Banking Outsourcing Market Size:
The global cell banking outsourcing market generated the revenue of approximately USD 7200.1 million in the year 2021 and is expected to garner a significant revenue by the end of 2031, growing at a CAGR of ~18% over the forecast period, i.e., 2022 2031. The growth of the market can primarily be attributed to the development of advanced preservation techniques for cells, and increasing adoption of regenerative cell therapies for the treatment of chronic diseases such as cancer. Additionally, factors such as growing demand for gene therapy, and increasing worldwide prevalence of cancer are expected to drive the market growth. According to the World Health Organization, nearly 10 million people died of cancer across the globe in 2020. The most recurrent cases of deaths because of cancer were lung cancer which caused 1.80 million deaths, colon, and rectum cancer which caused 916 000 deaths, liver cancer which caused 830 000 deaths, stomach cancer which caused 769 000 deaths, and breast cancer which caused 685 000 deaths. Furthermore, it was noticed that about 30% of cancer cases in low and lower-middle income nations are caused by cancer-causing diseases such the human papillomavirus (HPV) and hepatitis.
Get a Sample PDF of This Report @ https://www.kennethresearch.com/sample-request-10070777
Global Cell Banking Outsourcing Market: Key Takeaways
Increasing Geriatric Population across the Globe to Boost Market Growth
Increasing demand for stem cell therapy, and increasing biopharmaceutical production are estimated to fuel the growth of the global cell banking outsourcing market. Among the geriatric population around the world, the demand of stem cell therapy is at quite a high rate. Hence, growing geriatric population across the globe is also expected be an important factor to influence the market growth. According to the data by World Health Organisation (WHO), the number and proportion of geriatric population, meaning the people aged 60 years and older in the population is rising. The number of people aged 60 years and older was 1 billion in 2019. This number is estimated to increase to 1.4 billion by 2030 and 2.1 billion by 2050.
In addition to this, increasing prevalence of chronic diseases, supportive initiatives by governments around the world, and growing awareness about stem cell banking are predicted to be major factors to propel the growth of the market. The growth of the global cell banking outsourcing market, over the forecast period, can be further ascribed to the rising investments in the R&D activities to continuously bring up more feasible solutions for medical procedures. According to research reports, since 2000, global research and development expenditure has more than tripled in real terms, rising from approximately USD 680 billion to over USD 2.5 trillion in 2019.
Browse to access In-depth research report on Global Cell Banking Outsourcing Market with detailed charts and figures: https://www.kennethresearch.com/report-details/cell-banking-outsourcing-market/10070777
Global Cell Banking Outsourcing Market: Regional Overview
The global cell banking outsourcing market is segmented into five major regions including North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa region.
Advanced Healthcare Facilities Drove Market in the North America Region
The market in the North America region held the largest market share in terms of revenue in the year 2021. The growth of the market in this region is majorly associated with the increasing number of pharmaceutical companies & manufacturers in the region, and increasing awareness for the use of stem cells as therapeutics. Increasing number of bone marrow and cord blood transplants throughout the region is also estimated to positively influence the market growth. It was noted that, 4,864 unrelated and 4,160 related bone marrow and cord blood transplants were performed in the United States in 2020.
Increasing Prevalence of Chronic Diseases to Influence Market Growth in the Asia Pacific Region
On the other hand, market in the Asia Pacific region is estimated to grow with the highest CAGR during the forecast period. The market in this region is driven by the increasing investment in biotechnology sector by government and private companies specifically in countries such as China, India, and Japan. Moreover, the increasing pool of patient with chronic diseases, such as cancer, and the ongoing research & development activities for cancer treatment is expected to propel the growth of the market. Further, increasing percentage of regional health expenditure contributing to the GDP is also estimated to be a significant factor to influence the growth of the cell banking outsourcing market in the Asia Pacific region. As per The World Bank, in the year 2019, share of global health expenditure in East Asia & Pacific region accounted to 6.67% of GDP.
Get a Sample PDF of the Global Cell Banking Outsourcing Market @ https://www.kennethresearch.com/sample-request-10070777
The study further incorporates Y-O-Y growth, demand & supply and forecast future opportunity in:
Middle East and Africa (Israel, GCC [Saudi Arabia, UAE, Bahrain, Kuwait, Qatar, Oman], North Africa, South Africa, Rest of Middle East and Africa).
Global Cell Banking Outsourcing Market, Segmentation by Bank Phase
The bank storage segment held the largest market share in the year 2021 and is expected to maintain its share by growing with a notable CAGR during the forecast period. The market growth is anticipated to be driven by the development of effective preservation technologies such as cryopreservation technique. Cryopreservation is a technique in which low temperature is used to preserve the living cells and tissue for a longer time. With the growing healthcare expenditure per capita across the world, demand for bank storage increasing notably. As sourced from The World Bank, in 2019, worldwide health expenditure per capita was USD 1121.97.
Access full Report Description, TOC, Table of Figure, Chart, etc. @ https://www.kennethresearch.com/sample-request-10070777
Global Cell Banking Outsourcing Market, Segmentation by Product
The adult cell banking segment is estimated to hold a substantial market share in the global cell banking outsourcing market during the forecast period. The growth of this segment can be attributed to the significant prevalence of chronic diseases among the adults around the globe. For instance, according to the National Library of Medicine 71.8% of adult population suffered from cardiovascular diseases, 56% had diabetes, and 14.7% adults had arthritis as of 2020.
Global Cell Banking Outsourcing Market, Segmentation by Cell Type
Global Cell Banking Outsourcing Market, Segmentation by Bank Type
Few of the well-known market leaders in the global cell banking outsourcing market that are profiled by Kenneth Research are SGS SA, WuXi AppTec, LifeCell International Pvt. Ltd., BSL Bioservice, LUMITOS AG, Cryo-Cell International, Inc., REPROCELL Inc, CORDLIFE GROUP LIMITED, Reliance Life Sciences, and Clean Biologics and others.Enquiry before Buying This Report @ https://www.kennethresearch.com/sample-request-10070777
Recent Developments in the Global Cell Banking Outsourcing Market
Browse More Related Reports:
Immunoassays in R&D Market Segmentation by Application (Cancer Research, Infectious Diseases, Autoimmune Diseases, Endocrinology, and Others); by End-Use (Academic Laboratories & Institutions, Biotechnology & Pharmaceutical Companies, and Others); and by Product & Services (Analyzers, Software & Services, and Kits & Reagents)-Global Demand Analysis & Opportunity Outlook 2031
Global Vaginal Slings Market Segmentation by End-Use (Clinics, Hospitals, and Ambulatory Surgical Centers); and by Slings Type (Conventional, and Advanced Vaginal Slings)-Demand Analysis & Opportunity Outlook 2031
Chemotherapy Market Segmentation by Cancer Type (Lung, Breast, Stomach, and Ovarian Cancer, and Others); by Gender Type (Male, and Female); and by Product Type (Pump, Cannula, Catheter, and Others)-Global Demand Analysis & Opportunity Outlook 2022-2031
Lancet Market Segmentation by Type (Push Button Safety, Pressure Activated Safety, Personal, and Side Button Safety); by Application (Glucose Testing, Hemoglobin Testing, and Coagulation Testing); and by End Users (Homecare, Hospitals & Clinics, Blood Banks, and Others)-Global Demand Analysis & Opportunity Outlook 2031
eClinical Solutions Market Segmentation by Product Type {Clinical Data Management Systems (CDMS), Electronic Data Capture (EDC), Clinical Trial Management Systems (CTMS), Electronic Clinic Outcome Assessment0 (eCOA), Randomization & Trial Supply Management (RTSM), Electronic Patient-Reported Outcome (ePRO), Electronic Trial Master File (eTMF), and Clinical Analytics Platform}; by Delivery Mode (Web-based, On-Premise, and Cloud); and by End users {Pharma & Biotech, Hospitals, and Contract Research Organizations (CROs)}-Global Demand Analysis & Opportunity Outlook 2031
About Kenneth Research
Kenneth Research is a leading service provider for strategic market research and consulting. We aim to provide unbiased, unparalleled market insights and industry analysis to help industries, conglomerates and executives to take wise decisions for their future marketing strategy, expansion and investment, etc. We believe every business can expand to its new horizon, provided a right guidance at a right time is available through strategic minds. Our out of box thinking helps our clients to take wise decision so as to avoid future uncertainties.
Contact for more Info:
AJ Daniel
Email: info@kennethresearch.com
U.S. Phone: +1 313 462 0609
Web: https://www.kennethresearch.com/
See the original post here:
Global Cell Banking Outsourcing Market to Grow at a CAGR of ~18% during 2022-2031; Market to Expand Owing to the Development of Advanced Cell...
Twenty-Five Years After My House Call To Dolly: What Have We Learned About Cloning And How Did We Learn It? – Forbes
Nearly twenty-five years ago, the scientific breakthrough of mammalian cloning marked a monumental moment in medicine and science. Anticipating the collision it would have with ethical decision making in medicine, I, the only physician-scientist in the U.S. Senate at the time, journeyed to the University of Edinburgh in Scotland to personally visit Sir Ian Wilmut at his research lab at the Roslin Institute.
My house call to Dolly in 1997: I stand with Dolly, the first ever mammal to be cloned from an adult ... [+] somatic cell, during my journey to visit her creator and caretaker, Sir Ian Wilmut.
Professor Wilmut just months before in 1996 had cloned a sheep from an adult somatic cell, shocking the world. This was the first successful attempt of its kind. All over the world people were wondering: would we be cloning a human being next? We talked science, we talked ethics, and we talked about his creations potential impact on altering the course of human history. I also met and examined the cloned sheep, Dolly, in her stall.
Dolly, named after Tennessees own Dolly Parton, was a Finnish Dorset sheep cloned from a single, adult mammary gland cell. Her creation, birth, and short life were scientific feats that immediately sparked global concern and discourse on the increasingly complex moral and ethical dilemmas posed by a sudden discovery of life-manipulating science.
Wilmut and colleagues published their achievement in February 1997, having kept Dolly secret for seven months. We, as a society, were quickly forced to answer difficult, probing questions. A few months later on the Senate floor, I borrowed a question that the Washington Post editorial board had posed a few years before: Is there a line that should not be crossed even for scientific or other gain, and if so where is it?
Here are my remarks in the Senate chamber in 1998:
So it is vital that our public debate and reflection on scientific developments keep pace, and even anticipate and prepare for new scientific knowledge. The moral and ethical dilemmas inherent in the cloning of human beings may well be our greatest test to date. We do not simply seek knowledge, but the wisdom to apply that knowledge. As with each of the mind-boggling scientific advances of the last century, we know that there is the potential for both good and evil in this technology. Congressional Record February 2, 1998
Years removed, I now reflect back on the confusion, questions, and status quo that Dolly challenged.
Dolly was the first mammal to be successfully cloned from an adult somatic cell, which is any type of bodily cell that is not a reproductive germ cell. The process Wilmut developed is technically called somatic cell nuclear transfer, colloquially known as cloning. It is the process of transferring the nuclear DNA of a donor somatic cell into an enucleated oocyte, followed by embryo development and then transfer to a surrogate recipient, followed by live birth.
Dollys creation in a test tube and eventual birth marked a major milestone in scientific research, suggesting that an animal could be cloned to create an exact replica using genetic material derived from theoretically any type of body cell. It opened the world to staggering new possibilities in reproductive cloning and therapeutic cloning.
Soon after Dollys birth, another parallel and similarly monumental finding was made: in 1998 embryonic stem cells were discovered. These cells are a highly unique type of unprogrammed somatic cell with the exceptional ability to both reproduce unlimited exact copies of themselves and develop into more specialized cell types, such as heart, lung, kidney or skin cells. And though seemingly miraculous in potential, these cells could not be created or programmed from any other type of cell and could only be collected from embryos an ethical dilemma because collection for research required destruction of the embryo itself.
Dolly changed this. Her successful creation paved the way for future scientists to develop a technique to independently produce equally powerful pluripotent stem cells by reprogramming other adult somatic cells, revolutionizing genetic therapy, and completely nullifying the ethical dilemma of collecting embryonic stem cells from embryos. Similarly, Dolly also highlighted the potential for scientists to create new tissues and organs for diseased patients, and to preserve the genetic material of endangered species.
But, along with these positive contributions came widespread concern about the ethics of cloning, especially around potential attempts to clone another human being. Many, including myself, feared this type of technology, if left unregulated, would be misused and abused. Indeed, cloning evoked great scientific power that demanded even greater ethical responsibility, and there were no established ethical guardrails at the time to monitor this duty.
In retrospect, these fears have diminished in part due to proactive measures and to the inherent complexities of the human genome (cloning an entire human being is, after all, a large jump from cloning a sheep). Importantly, legislative and scientific communities have been resolute and unified in their opposition to cloning human beings.
Though a human embryo was indeed successfully cloned in 2013, no known progress has been made when it comes to attempts to clone a human being. Yet the technique to create Dolly has been repurposed widely and has led to numerous scientific innovations.
In 2003, six years after her birth, Dolly became sick and was euthanized. Her decline in health was due to the development of tumors in her chest; some examinations of her cells suggested that she was also aging prematurely.
Despite her relatively short life (the average sheep lifespan is ~10-12 years), Dollys influence on the scientific community has been profound. Not only did she force scientists and researchers to redefine the ethics of their field, but she also laid the foundation for other significant scientific advancements in the fast-evolving new field we know today as regenerative medicine.
One powerful example is gene therapy and editing, where specific genes are targeted, edited, and repaired to protect against disease, cancer, autoimmune disorders, and even rewiring immune system cells for treatment-resistant cancer patients. This revolutionary innovation is made possible by CRISPR technology (the same technology that enabled rapid vaccine development for COVID-19), which is currently celebrating its 10-year anniversary.
Genetic cloning was also made possible thanks to Dolly. This is a type of cloning where scientists create copies of genes within DNA segments to combine with plasmid DNA, or self-replicating genetic material, and then place this new plasmid into a host organism, such as a bacterium, yeast, or mammal cell. This process is used to develop vaccines and antigen tests and is also used to identify useful genetic traits in plants, which can be replicated on a larger scale through the genetic modification of seeds.
Further, cloning techniques have also helped to advance agricultural practices. Farmers can use cloning technology to quickly introduce favored characteristics of prize livestock (such as the ability to produce large amounts of high-quality milk) into a herd by cloning and breeding. These livestock will then further reproduce using traditional breeding or assisted reproductive technology.
Despite advances in genetic cloning and agricultural practices, cloning especially the additional attempts at cloning whole organisms remains variable and highly inefficient.
Successful attempts have been made by companies like Sooam Biotech Research and ViaGen Pets to clone dogs and kittens for wealthy pet owners. But, even today, the success rate of animal cloning is estimated to be less than 30%. In fact, many animal rights activists oppose the practice citing animal welfare. In 2015, the European Union banned the practice of livestock cloning.
Overall interest in cloning slowed as advances in adult stem cell research gained traction in the 2000s. This resulted primarily from scientists newfound ability to take adult human cells, for example skin cells, and reprogram them back into an earlier, more primitive but more powerful embryonic-like, pluripotent cells.
This technique was pioneered by Japanese scientist Shinya Yamanaka in 2006, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine. Yamanakas discovery of reprogramming already specialized adult cells to create induced pluripotent stem cells (IPS) took the ethical issue of destroying embryos for research off the table. Some scientists continue to look to cloning as a way to develop genetically unique stem cells that can be used to reduce the risk of triggering an immune response.
Notes taken shortly after my visit with Dolly.
We have come a long way since my exploratory journey from the Senate floor in Washington, DC, to the stall and research laboratory that housed Dolly in Edinburgh in 1997.
For all the controversy that Dolly sparked during her short life, her contributions to society have been nothing short of remarkable. She forced thought leaders, researchers, and policymakers around the world to confront the ethics of cloning. And, she encouraged us, as a society, to weigh in and engage on the ethical considerations of increasingly frequent scientific discoveries.
On all of these fronts, we worked tirelessly to instill and adhere to a strong scientific code, focusing on the bettering of science, innovation, and technology for societal good. Cloning gave us that first glimpse into the future.
As I said on the floor of the Senate on February 3, 1998:
This cloning debate, I think, maybe for the first time in the history of this body [the US Senate], forces us to address what is inevitable as we look to the future, and that is a rapid-fire, one-after-another onslaught of new scientific technological innovation that has to be assimilated into our ethical-social fabric. Congressional Record February 3, 1998
What I said then still holds true today, Science and ethics must march hand in hand. Congressional Record February 11, 1998
Continue reading here:
Twenty-Five Years After My House Call To Dolly: What Have We Learned About Cloning And How Did We Learn It? - Forbes
Construction of a novel signature and prediction of the immune landscape in gastric cancer based on necroptosis-related genes | Scientific Reports -…
The landscape of genetic variation of DENRGs in GC
A total of 48 DENRGs were identified using limma package for further analysis (p<0.05, Fig.1A). Out of 433 GC samples, 147 (33.95%) were showed regulatory mutations associated with necroptosis (Fig.1B) and ATRX (5%) was the highest frequency mutated gene. As loss or gain of function is commonly achieved through DNA mutation or amplification/deletion, we considered both somatic mutation and somatic copy number changes in our analysis. We first summarized the incidence of copy number variations and somatic mutations of 48 DENRGs in GC. The frequency of CNV alterations and found that all 48 DENRGs showed prevalent CNV alterations (Fig.1C). The rates of amplification or deletion for most of DENRGs were relatively low. The altered position of CNVs of DENRGs on chromosome were also scanned and illustrated with visual figure (Fig.1D). In addition, most of the DENRGs were significant increase in tumor tissues (Fig.1E).
The landscape of genetic alterations of DENRGs in GC. (A) Heatmap of DENRGs expression between the normal and tumor samples. Blue represents normal gastric tissue, pink represents tumor tissue; upregulated genes were defined as red, and downregulated genes as blue. (B) Mutation characteristics of DENRGs in the TCGA-GC cohort. The TMB is presented in the barplot at the top of the image; the mutation frequency of each DENRGs is indicated on the barplot right. The barplot on the right represents different mutation types proportions. (C) CNV variants frequency of the DENRGs in the TCGA-GC cohort. Red: amplification frequency. Green: loss frequency. The column represented the alteration frequency. (D) The locations of CNV alteration of DENRGs on 23 chromosomes. (E) Expression of DENRGs between normal gastric tissue and tumor tissue. Blue: normal gastric tissue. Red: tumor tissue. DENRGs, differentially expressed necroptosis-related genes. (*p<0.05; **p<0.01; ***p<0.001).
To further explore the interactions of these DENRGs, we conducted a PPI analysis, and the PPI network was shown in Fig. S1A. In addition, the correlation network containing all DENRGs was presented in Fig. S1B. The network above indicated that there was a very strong correlation among DENRGs. GO-term analysis showed that DENRGs were associated with necrotic cell death, programmed necrotic cell death, necroptotic process and apoptotic signaling pathway (Fig. S2A). KEGG pathway analysis displayed that these DENRGs were involved in multiple tumor-related signaling pathway including necroptosis, apoptosis, TNF signaling pathway, IL-17 signaling pathway, and Toll-like receptor signaling pathway (Fig. S2B).
According to Consensus clustering analysis, when the clustering variable was set to the optimal value (K=2), the intragroup correlations were the highest, and the intergroup correlations were the lowest, indicating that all GC patients could be classified into two molecular subtypes (Figs.2A, S3A and S3B), which were termed as C1 (n=208) and C2 (n=163). The heatmap demonstrated a significant difference between cluster C1 and C2 in clinical factors including tumor grade and T stage (Fig.2B). Result of KaplanMeier curve analysis revealed that the patients in C2 cluster had a poorer prognosis (Fig.2C). The results above indicated that the necroptosis subtypes classified by consensus clustering analysis do well in distinguishing prognosis of those GC patients.
Tumor molecular subtypes related by differentially expressed necroptosis-related genes. (A) Consensus clustering of GC patients for k=2 in the meta-cohort (TCGA-GC and GSE84437). (B) Unsupervised clustering heatmap of top 100 DEGs in GC. Clusters, age, gender, grade and stage were used as patient annotations. Red represents high DEGs expression and blue low DEGs expression. *p<0.05; **p<0.01; ***p<0.001. (C) KaplanMeier curves (Log-rank test, P=0.004) for OS of two necroptosis-related molecular subtypes. Blue line represents cluster C1 (n=208), yellow line represents cluster C2 (n=163). DEGs, differentially expressed genes between various molecular subtypes; OS, overall survival.
Given the clear importance of the TME in tumorigenesis, we further investigated whether the two subtypes showed differential characteristics of immune microenvironment and the main results presented in Fig.3AH. The abundance of immune infiltrating cells, including resting Dendritic cells, resting Mast cells, T cells regulatory (Tregs), Monocytes and M2 macrophages, were found significantly higher in the C2 subtype. And M1 macrophages, T cells follicular helper and activated T cells CD4 memory in C1 subtypes showed greater infiltration. These results suggested that the two molecular subtypes associated with necroptosis had distinct TME infiltration characteristics and prognoses.
TME immune cell infiltration levels between two molecular subtypes. The abundance of Monocytes (A), resting Mast cells (B), M2 macrophages (C), M1 macrophages (D), resting Dendritic cells (E), T cells regulatory (Tregs) (F), T cells follicular helper (G) and activated T cells CD4 memory (H) between the two subtypes (all p<0.05). Blue represents cluster C1, red represents cluster C2. The median value is represented as the thick line, and the interquartile range is represented as the box bottom and top. Scattered dots represent outliers.
To better understand the mechanisms responsible for the prognosis differences in the two above molecular subtypes, we further investigate the functional and pathway and 1101 DEGs associated with necroptosis phenotypes were identified by the limma package. GO analysis showed an enrichment of GO terms for these DEGs, including extracellular matrix organization, collagen containing and extracellular matrix binding (Fig.4A). KEGG pathway analysis for the DEGs showed that genes involved in immune-related pathways were enriched, including ECM-receptor interaction, Focal adhesion, and TGF-beta signaling pathway (Fig.4B). These results reconfirmed a pivotal role of necroptosis in regulating the immune microenvironment.
Functional enrichment analysis of the DEGs. (A) Top 10 enriched GO terms of the DEGs (B) Top 10 enriched KEGG pathways of the DEGs. The box color represents the number of enriched genes. Red represents a large number of genes enriched; blue is the opposite. DEGs differentially expressed genes, BP biological process, CC cellular component, MF molecular function. (all adjusted p<0.05).
Although our results identify a role of necroptosis molecular subtypes in prognosis and regulation of immune infiltration, these analyses are based only on patient groups and cannot be used to predict the necroptosis characteristics in individual GC patients. For this, we next constructed an multigenic prognostic signature associated with prognosis and response to treatment in each GC patient based on differential genes of molecular subtypes. We performed univariate Cox regression analysis on all DEGs and resulted in 84 genes as candidate genes (all P<0.005; Fig.5A). Most of the candidate genes were risk factors for the prognosis of GC except for MYB and RNF43. We then subjected the candidate genes to LASSO Cox regression analysis by narrowing the number of genes for the establishment of the NRGsig (Fig.5B and C). In total, 11 optimal genes (CYTL1, PLCL1, CGB5, ADRA1B, APOD, RGS2, CST6, MATN3, RNF43, SLC7A2 and SERPINE1) were screened (Table 2) and most of the optimal genes were significant differentialexpression between the normal tissue and tumor tissue (Fig. S4). The formula of the risk score was calculated as follow:
$$begin{gathered} Risk; score = CYTL1 {text{exp}}.; times ;0.05351 ; + ; PLCL1 {text{exp}}.; times ;0.06101 ; + ; CGB5 {text{exp}}.; times ;0.1605 hfill \ quad quad quad quad , + ; ADRA1B {text{exp}}.; times ;0.07886; + ;APOD {text{exp}}.; times ;0.03166; + ;RGS2 {text{exp}}.; times ,0.04199, + ;CST6 {text{exp}}. hfill \ quad quad quad quad , times ;0.00119 ; + ;MATN3 {text{exp}}.; times ;0.13379 ; + ;RNF43 {text{exp}}.; times ; - 0.09577; + , SLC7A2 {text{exp}}. times ;0.07123. hfill \ quad quad quad quad , + ;SERPINE1 {text{exp}}.; times ;0.12925 hfill \ end{gathered}$$
The development of NRGsig in the TCGA-GC cohort. (A) The prognostic-related genes determined by univariate Cox-regression analysis. Red represents risk genes; green represents protective genes. (B) LASSO regression of prognostic-related genes. (C) Crossvalidation for tuning the parameter selection.
All GC patients were divided into high- and low-risk score group according to the median risk score value. Next, we investigated whether the prognostic signature could distinguish different risk groups of patients clearly. A clearly discernable dimensions between the two risk groups of patients was observed according to the results of PCA and t-SNE analysis (Fig.6A and B). KaplanMeier curves analysis revealed high-risk group patients had a worse prognosis. (Fig.6C). The time-dependent ROC curves were performed to evaluate the prediction performance of the NRGsig and the areas under the curve for 5-year was 0.743 in the TCGA-GC cohort (Fig.6D). Results above demonstrated NRGsigs advantage as robust tool for prognosis.
Prognosis value of necroptosis-related prognostic signature in the TCGA-GC cohort. (A) Principal component analysis plot. (B) T-distributed neighbor embedding plot. (C) KaplanMeier curves (Log-rank test, P<0.001) for OS of high- and low-risk groups. (D) The AUC of the prediction of 1, 3, 5year survival rate of GC. OS, overall survival.
We externally validated the NRGsig using the GSE84437 dataset, an independent validation dataset, and found a similar prediction performance. Patients were then classified as being high or low risk according to the calculated NRGsig risk score. A clearly two directions between the two risk groups of patients was also observed according to the results of PCA and t-SNE analysis (Fig.7A and B). KaplanMeier curves analysis indicated high-risk group patients had a worse outcome (Fig.7C). This independent validation dataset yielded a prediction performance AUC of 0.623 at 5-year (Fig.7D). As a whole, these results showed a satisfactory prediction performance of the NRGsig in external data.
Validation of the necroptosis-related prognostic signature in the GSE84437 cohort. (A) Principal component analysis plot. (B) T-distributed neighbor embedding plot. (C) KaplanMeier curves (Log-rank test, P=0.005) for OS of high- and low-risk groups. (D) The AUC of the prediction of 1, 3, 5year survival rate of GC. OS, overall survival.
The independence of NRGsig were evaluated by univariate and multivariate Cox regression analysis and the result revealed the NRGsig was an independent prognostic factor of GC (Fig.8A and B). Above analysis were repeated in the GSE84437 cohort and similar results were observed (Fig.8C and D). Furthermore, the clinical features in the different risk groups for TCGA-GC cohort we depicted as a heatmap (Fig.8E). To verify the clinical implications of our NRGsig risk score, we examined the correlation of the risk score with the available clinical features in TCGA-GC cohort. The KaplanMeier curves indicated that risk score remained its independent predictive performance regardless of other clinical features, including age (60 or>60years), sex (female or male), grade (G1-2 and G3), T-stage (T3-4), N-stage (N0 and N1-3), and M-stage (M0) (Fig. S5AL). Survival analysis demonstrated that these 11 optimal genes were all correlation with the OS of GC patients (Fig. S6AK). All the results above illustrated that NRGsig was a satisfactory and reliable prognostic tool and could be as an independent risk factor for GC.
Independent prognosis analysis. (A, B) Univariate Cox regression analysis in the TCGA-GC cohort. (C, D) Multivariate Cox regression analysis in the GSE84437 cohort. (E) Heatmap depicting the clinicopathological characteristics and optimal genes expression between the high- and low-risk groups. Risk, age, gender, grade and stage were used as patient annotations. Red represents high expression and blue low expression. *p<0.05; **p<0.01; ***p<0.001.
After categorizing cases of TCGA-GC cohort into two risk score groups by the median risk score value, we further performed GSEA analysis towards them. The results of GSEA suggested that the KEGG_COMPLEMENT_AND_COAGULATION_CASCADES, KEGG_ECM_RECEPTOR_INTERACTION, KEGG_FOCAL_ADHESION, KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM, and KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION were the top five most enriched pathways in the high-risk group, while the KEGG_CELL_CYCLE, KEGG_DNA_REPLICATION, KEGG_BASE_ EXCISION_REPAIR, KEGG_RIBOSOME, and KEGG_SPLICEOSOME pathways were most enriched in the low-risk group (Figs. S7A and B).
To make the prognosis tool more convenient and quantitative, we integrated risk score with other clinical features including Age and TNM stage to establish a nomogram followed by a series of performance testing (Fig.9A). The net benefit of nomogram was better than other clinical factors, a clinical value was observed as our expectations (Fig.9B). The ROC curve analysis revealed that nomogram had an advantage over other single predictors. In addition, an excellent consistency with ideal model could be observed in the subsequent calibration plot of nomogram for OS predicting (Fig.9C and D). Furthermore, to evaluate the prediction performance of the NRGsig for clinical applications in the TCGA-GC cohort, we compared our prognostic signature with other GC signatures reported in 2020 (Dai signature, Guan signature, Liu signature and Shao signature, respectively). We adopted similar risk score-estimated method described above towards these four signatures to generate risk score for samples from TCGA-GC cohort. The time-independent ROC curves illustrated that Liu signature, Shao signature and Guan signature exhibited lower AUC values for 1-, 3- and 5-year survival rates than NRGsig. The Dai signature presented similar AUC values with our signature (Fig. S8AE). Similar to our signature, these four signatures could also predict the OS of GC patients except for Liu signature and shao signature (Fig. S8GJ). Moreover, the C-index of the NRGsig was the higher than other four signatures (Fig. S8K). NRGsig evidenced its advantage in long-term survival predicting and risk stratification compared with other four prognostic signatures.
The construction and assessment of nomogram. (A) Nomogram integrating clinical factors and risk score for predicting 1-, 3-, and 5-year OS in TCGA-GC cohort (B) Decision curves of risk score, nomogram, and single clinical factors including T stage, N stage and age. (C) The time-dependent ROC curves of risk score, nomogram and single clinical factors including T stage, N stage and age. (D) The calibration curves for 1-, 3-, and 5-year OS. OS, overall survival.
In line with our aim to increase the response to immunotherapy, we investigated the potential correlates between immune infiltration of tumors and NRGsig risk score. After calculating the infiltrating score of 16 immune cells and 13 immune-related pathways by using ssGSEA, we observed significantly increased antigen presenting function including aDCs, DCs and APC co-stimulation score in the high-risk group, while the activity of APC co-inhibition and MHC class I showed the opposite variation (all adjusted P<0.05). Besides, contents of Treg cells, TIL cells and T helper cells were relatively higher in high-risk group, while the activity of Th2 cells had exactly the reverse results. Those results suggested significant difference in T cell regulation between the two subgroups. Moreover, CCR, mast cells, B cells, macrophages, neutrophils, parainflammation, type I IFN response and type II IFN response were observed to have increasing activities in samples from high-risk group (Fig.10A and B). Similar observational results existed for in the GSE84437 cohort (Fig.10C and D). Taken together, the findings of this study demonstrated that different risk groups have different immune landscape, which affected the prognosis of GC patients.
ssGSEA scores in the high- and low-risk group in the TCGA-GC and GSE84437 cohort. (A, B) TCGA cohort, (C, D) GSE84437 cohort. The scores of 16 immune cells (A, C) and 13 immune-related functions (B, D) are displayed in boxplots.
We next explored potential expression changes of immune checkpoints between high- and low-risk groups. Results showed clear differences between the two patient groups, such as BTLA, CD86, CD200, CD27, and other immune checkpoints (Fig. S9). These results highlighted NRGsig as a therapeutic potential for combination strategies with immune checkpoint blockade (ICB) therapy in GC patients. Beyond ICB therapy, we also investigated sensitivity of chemotherapeutic and targeted therapeutics agents between high- and low-risk score groups in TCGA-GC cohort. Results indicated that IC50 toward eleven chemotherapeutics including A.770041, AS601245, AZ628, Axitinib, Luminespib, Navitoclax, Motesanib, Ponatinib, Rucaparib and Saracatinib, of samples in low-risk group were higher than those of high-risk group except for Veliparib (P<0.05), suggesting that samples in low-risk group were more responsive to those medicine (Fig.11AK). As mentioned already, GSEA analysis revealed that a drug-resistant pathway like KEGG_BASE_EXCISION REPAIR was highly enriched in the low-risk score group, which could partially explain the above results. Drugs sensitivity analysis suggested that high-risk score patients might be more suitable for chemotherapy better response to chemotherapy.
Drugs sensitivity analysis in patients from different risk score groups. The sensitivity to chemotherapeutic drugs was represented by the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs. (AK) Comparisons of IC50 for chemotherapeutics drugs between two subgroups revealed that the high-risk group was more likely to benefit from the treatments (KruskalWallis test, all p<0.01).
Evidence is growing that high TMB is a feature associated with response to immunotherapy in a variety of tumors, and high TMB levels lead to an increase in tumor neoantigens, which may trigger the immune system to attack the tumor40,41. Thus, we assessed the correlation of risk score with TMB in the TCGA-GC cohort. A negative relationship was observed between them, and the TMB score of the two risk groups were evaluated and significant disparity could be observed. The results illustrated that low-risk group patients had a significantly higher TMB than high-risk group (Fig.12A). The combination of high TMB and low-risk score had the best OS in GC by KaplanMeier curves (Fig.12B).
Correlation of risk score with TMB and predictive value of risk score for immunotherapy response. (A) TMB differences between the high- and low-risk score groups and the scatter plot depicted a positive correlation between risk score and TMB. (B) KaplanMeier curves for patients stratified by risk score and TMB in the TCGA-GC cohort. (CE) Immunophenscore (IPS) between high- and low-risk score groups. Blue represents the low-score group and red the high-score group. The thick line within the violin plot represents the median value. The inner box between the top and bottom represents the interquartile range. (C) IPS score when PD-1 positive; (D) IPS score when CTLA4 positive; (E) IPS score when both PD-1 and CTLA4 positives. TMB, tumor mutation burden; IPS, Immunophenscore. (F) TIDE score differences between the high- and low-risk score groups and the scatter plot depicted a positive correlation between risk score and TIDE and lower risk score may be more likely to benefit from the immunotherapy (Spearman text, p<0.001).
Furthermore, we explored the potential of risk score as predictor for immunotherapy response. We applied two mature algorithms, including IPS and TIDE, to predict the response of GC samples with different risk score to immunotherapy. The result evidenced that the IPS value for CTLA4 or PD1 therapy response was more sensitive in the low-risk group and suggested that the NRGsig has high potentiality for predicting CTLA4 and PD1 blockade therapy (Fig.12CE). On the other hand, the TIDE score was higher in the low-risk group and was also positively correlated with risk score, which indicated the lower risk score might benefit more from immunotherapy (Fig.12F and G). Two distinct algorithms drew consistent results. The results above implied that NRGsig may effectively help predict the response to immunotherapy.
Go here to see the original:
Construction of a novel signature and prediction of the immune landscape in gastric cancer based on necroptosis-related genes | Scientific Reports -...
Gene & Cell Therapy FAQs | ASGCT – American Society of Gene & Cell …
For more in-depth learning, we recommend Different Approaches in our Patient Education program.
The challenges of gene and cell therapists can be divided into three broad categories based on disease, development of therapy, and funding.
Challenges based on the disease characteristics: Disease symptoms of most genetic diseases, such as Fabrys, hemophilia, cystic fibrosis, muscular dystrophy, Huntingtons, and lysosomal storage diseases are caused by distinct mutations in single genes. Other diseases with a hereditary predisposition, such as Parkinsons disease, Alzheimers disease, cancer, and dystonia may be caused by variations/mutations in several different genes combined with environmental causes. Note that there are many susceptible genes and additional mutations yet to be discovered. Gene replacement therapy for single gene defects is the most conceptually straightforward. However, even then the gene therapy agent may not equally reduce symptoms in patients with the same disease caused by different mutations, and even the samemutationcan be associated with different degrees of disease severity. Gene therapists often screen their patients to determine the type of mutation causing the disease before enrollment into a clinical trial.
The mutated gene may cause symptoms in more than one cell type. Cystic fibrosis, for example, affects lung cells and the digestive tract, so the gene therapy agent may need to replace the defective gene or compensate for its consequences in more than one tissue for maximum benefit. Alternatively, cell therapy can utilizestem cellswith the potential to mature into the multiple cell types to replace defective cells in different tissues.
In diseases like muscular dystrophy, for example, the high number of cells in muscles throughout the body that need to be corrected in order to substantially improve the symptoms makes delivery of genes and cells a challenging problem.
Some diseases, like cancer, are caused by mutations in multiple genes. Although different types of cancers have some common mutations, every tumor from a single type of cancer does not contain the same mutations. This phenomenon complicates the choice of a single gene therapy tactic and has led to the use of combination therapies and cell elimination strategies. For more information on gene and cell therapy strategies to treat cancer, please refer to the Cancer and Immunotherapy summary in the Disease Treatment section.
Disease models in animals do not completely mimic the human diseases and viralvectorsmay infect various species differently. The testing of vectors in animal models often resemble the responses obtained in humans, but the larger size of humans in comparison to rodents presents additional challenges in the efficiency of delivery and penetration of tissue.Gene therapy, cell therapy, and oligonucleotide-based therapy agents are often tested in larger animal models, including rabbit, dog, pig and nonhuman primate models. Testing human cell therapy in animal models is complicated by immune rejections. Furthermore, humans are a very heterogeneous population. Their immune responses to the vectors, altered cells, or cell therapy products may differ or be similar to results obtained in animal models.
Challenges in the development of gene and cell therapy agents: Scientific challenges include the development of gene therapy agents that express the gene in the relevant tissue at the appropriate level for the desired duration of time. There are a lot of issues in that once sentence, and while these issues are easy to state, each one requires extensive research to identify the best means of delivery, how to control sufficient levels or numbers of cells, and factors that influence duration of gene expression or cell survival. After the delivery modalities are determined, identification and engineering of a promoter and control elements (on/off switch and dimmer switch) that will produce the appropriate amount of protein in the target cell can be combined with the relevant gene. This gene cassette is engineered into a vector or introduced into thegenomeof a cell and the properties of the delivery vehicle are tested in different types of cells in tissue culture. Sometimes things go as planned and then studies can be moved onto examination in animal models. In most cases, the gene/cell therapy agent may need to be improved further by adding new control elements to obtain the desired responses in cells and animal models.
Furthermore, the response of the immune system needs to be considered based on the type of gene or cell therapy being undertaken. For example, in gene or cell therapy for cancer, one aim is to selectively boost the existing immune response to cancer cells. In contrast, to treat genetic diseases like hemophilia and cystic fibrosis the goal is for the therapeutic protein to be accepted as an addition to the patients immune system.
If the new gene is inserted into the patients cellularDNA, the intrinsic sequences surrounding the new gene can affect its expression and vice versa. Scientists are now examining short DNA segments that may insulate the new gene from surrounding control elements. Theoretically, these insulator sequences would also reduce the effect of vector control signals in the gene cassette on adjacent cellular genes. Studies are also focusing on means to target insertion of the new gene into safe areas of the genome, to avoid influence on surrounding genes and to reduce the risk of insertional mutagenesis.
Challenges of cell therapy include the harvesting of the appropriate cell populations and expansion or isolation of sufficient cells for one or multiple patients. Cell harvesting may require specific media to maintain the stem cells ability toself-renew and mature into the appropriate cells. Ideally extra cells are taken from the individual receiving therapy. Those additional cells can expand in culture and can be induced to becomepluripotent stem cells(iPS), thus allowing them to assume a wide variety of cell types and avoiding immune rejection by the patient. The long term benefit of stem cell administration requires that the cells be introduced into the correct target tissue and become established functioning cells within the tissue. Several approaches are being investigated to increase the number of stem cells that become established in the relevant tissue.
Another challenge is developing methods that allow manipulation of the stem cells outside the body while maintaining the ability of those cells to produce more cells that mature into the desired specialized cell type. They need to provide the correct number of specialized cells and maintain their normal control of growth and cell division, otherwise there is the risk that these new cells may grow into tumors.
Challenges in funding: In most fields, funding for basic or applied research for gene and cell therapy is available through the National Institutes of Health (NIH) and private foundations. These are usually sufficient to cover the preclinical studies that suggest a potential benefit from a particular gene and cell therapy. Moving into clinical trials remains a huge challenge as it requires additional funding for manufacturing of clinical grade reagents, formal toxicology studies in animals, preparation of extensive regulatory documents, and costs of clinical trials.Biotechnology companies and the NIH are trying to meet the demand for this large expenditure, but many promising therapies are slowed down by lack of funding for this critical next phase.
Read the original:
Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ...
The benefits and risks of stem cell technology – PMC
Stem cell technology will transform medical practice. While stem cell research has already elucidated many basic disease mechanisms, the promise of stem cellbased therapies remains largely unrealized. In this review, we begin with an overview of different stem cell types. Next, we review the progress in using stem cells for regenerative therapy. Last, we discuss the risks associated with stem cellbased therapies.
There are three major types of stem cells as follows: adult stem cells (also called tissue-specific stem cells), embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells.
A majority of adult stem cells are lineage-restricted cells that often reside within niches of their tissue of origin. Adult stem cells are characterized by their capacity for self-renewal and differentiation into tissue-specific cell types. Many adult tissues contain stem cells including skin, muscle, intestine, and bone marrow (Gan et al, 1997; Artlett et al, 1998; Matsuoka et al, 2001; Coulombel, 2004; Humphries et al, 2011). However, it remains unclear whether all adult organs contain stem cells. Adult stem cells are quiescent but can be induced to replicate and differentiate after tissue injury to replace cells that have died. The process by which this occurs is poorly understood. Importantly, adult stem cells are exquisitely tissue-specific in that they can only differentiate into the mature cell type of the organ within which they reside (Rinkevich et al, 2011).
Thus far, there are few accepted adult stem cellbased therapies. Hematopoietic stem cells (HSCs) can be used after myeloablation to repopulate the bone marrow in patients with hematologic disorders, potentially curing the underlying disorder (Meletis and Terpos, 2009; Terwey et al, 2009; Casper et al, 2010; Hill and Copelan, 2010; Hoff and Bruch-Gerharz, 2010; de Witte et al, 2010). HSCs are found most abundantly in the bone marrow, but can also be harvested at birth from umbilical cord blood (Broxmeyer et al, 1989). Similar to the HSCs harvested from bone marrow, cord blood stem cells are tissue-specific and can only be used to reconstitute the hematopoietic system (Forraz et al, 2002; McGuckin et al, 2003; McGuckin and Forraz, 2008). In addition to HSCs, limbal stem cells have been used for corneal replacement (Rama et al, 2010).
Mesenchymal stem cells (MSCs) are a subset of adult stem cells that may be particularly useful for stem cellbased therapies for three reasons. First, MSCs have been isolated from a variety of mesenchymal tissues, including bone marrow, muscle, circulating blood, blood vessels, and fat, thus making them abundant and readily available (Deans and Moseley, 2000; Zhang et al, 2009; Lue et al, 2010; Portmann-Lanz et al, 2010). Second, MSCs can differentiate into a wide array of cell types, including osteoblasts, chondrocytes, and adipocytes (Pittenger et al, 1999). This suggests that MSCs may have broader therapeutic applications compared to other adult stem cells. Third, MSCs exert potent paracrine effects enhancing the ability of injured tissue to repair itself. In fact, animal studies suggest that this may be the predominant mechanism by which MSCs promote tissue repair. The paracrine effects of MSC-based therapy have been shown to aid in angiogenic, antiapoptotic, and immunomodulatory processes. For instance, MSCs in culture secrete hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) (Nagaya et al, 2005). In a rat model of myocardial ischemia, injection of human bone marrow-derived stem cells upregulated cardiac expression of VEGF, HGF, bFGF, angiopoietin-1 and angiopoietin-2, and PDGF (Yoon et al, 2005). In swine, injection of bone marrow-derived mononuclear cells into ischemic myocardium was shown to increase the expression of VEGF, enhance angiogenesis, and improve cardiac performance (Tse et al, 2007). Bone marrow-derived stem cells have also been used in a number of small clinical trials with conflicting results. In the largest of these trials (REPAIR-AMI), 204 patients with acute myocardial infarction were randomized to receive bone marrow-derived progenitor cells vs placebo 37 days after reperfusion. After 4 months, the patients that were infused with stem cells showed improvement in left ventricular function compared to control patients. At 1 year, the combined endpoint of recurrent ischemia, revascularization, or death was decreased in the group treated with stem cells (Schachinger et al, 2006).
Embryonic stem cells are derived from the inner cell mass of the developing embryo during the blastocyst stage (Thomson et al, 1998). In contrast to adult stem cells, ES cells are pluripotent and can theoretically give rise to any cell type if exposed to the proper stimuli. Thus, ES cells possess a greater therapeutic potential than adult stem cells. However, four major obstacles exist to implementing ES cells therapeutically. First, directing ES cells to differentiate into a particular cell type has proven to be challenging. Second, ES cells can potentially transform into cancerous tissue. Third, after transplantation, immunological mismatch can occur resulting in host rejection. Fourth, harvesting cells from a potentially viable embryo raises ethical concerns. At the time of this publication, there are only two ongoing clinical trials utilizing human ES-derived cells. One trial is a safety study for the use of human ES-derived oligodendrocyte precursors in patients with paraplegia (Genron based in Menlo Park, California). The other is using human ES-derived retinal pigmented epithelial cells to treat blindness resulting from macular degeneration (Advanced Cell Technology, Santa Monica, CA, USA).
In stem cell research, the most exciting recent advancement has been the development of iPS cell technology. In 2006, the laboratory of Shinya Yamanaka at the Gladstone Institute was the first to reprogram adult mouse fibroblasts into an embryonic-like cell, or iPS cell, by overexpression of four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 under ES cell culture conditions (Takahashi and Yamanaka, 2006). Yamakana's pioneering work in cellular reprogramming using adult mouse cells set the foundation for the successful creation of iPS cells from adult human cells by both his team (Takahashi et al, 2007) and a group led by James Thomson at the University of Wisconsin (Yu et al, 2007). These initial proof of concept studies were expanded upon by leading scientists such as George Daley, who created the first library of disease-specific iPS cell lines (Park et al, 2008). These seminal discoveries in the cellular reprogramming of adult cells invigorated the stem cell field and created a niche for a new avenue of stem cell research based on iPS cells and their derivatives. Since the first publication on cellular reprogramming in 2006, there has been an exponential growth in the number of publications on iPS cells.
Similar to ES cells, iPS cells are pluripotent and, thus, have tremendous therapeutic potential. As of yet, there are no clinical trials using iPS cells. However, iPS cells are already powerful tools for modeling disease processes. Prior to iPS cell technology, in vitro cell culture disease models were limited to those cell types that could be harvested from the patient without harm usually dermal fibroblasts from skin biopsies. However, mature dermal fibroblasts alone cannot recapitulate complicated disease processes involving multiple cell types. Using iPS technology, dermal fibroblasts can be de-differentiated into iPS cells. Subsequently, the iPS cells can be directed to differentiate into the cell type most beneficial for modeling a particular disease process. Advances in the production of iPS cells have found that the earliest pluripotent stage of the derivation process can be eliminated under certain circumstances. For instance, dermal fibroblasts have been directly differentiated into dopaminergic neurons by viral co-transduction of forebrain transcriptional regulators (Brn2, Myt1l, Zic1, Olig2, and Ascl1) in the presence of media containing neuronal survival factors [brain-derived neurotrophic factor, neurotrophin-3 (NT3), and glial-conditioned media] (Qiang et al, 2011). Additionally, dermal fibroblasts have been directly differentiated into cardiomyocyte-like cells using the transcription factors Gata4, Mef2c, and Tb5 (Ieda et al, 2010). Regardless of the derivation process, once the cell type of interest is generated, the phenotype central to the disease process can be readily studied. In addition, compounds can be screened for therapeutic benefit and environmental toxins can be screened as potential contributors to the disease. Thus far, iPS cells have generated valuable in vitro models for many neurodegenerative (including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis), hematologic (including Fanconi's anemia and dyskeratosis congenital), and cardiac disorders (most notably the long QT syndrome) (Park et al, 2008). iPS cells from patients with the long QT syndrome are particularly interesting as they may provide an excellent platform for rapidly screening drugs for a common, lethal side effect (Zwi et al, 2009; Malan et al, 2011; Tiscornia et al, 2011). The development of patient-specific iPS cells for in vitro disease modeling will determine the potential for these cells to differentiate into desired cell lineages, serve as models for investigating the mechanisms underlying disease pathophysiology, and serve as tools for future preclinical drug screening and toxicology studies.
Despite substantial improvements in therapy, cardiovascular disease remains the leading cause of death in the industrialized world. Therefore, there is a particular interest in cardiovascular regenerative therapies. The potential of diverse progenitor cells to repair damaged heart tissue includes replacement (tissue transplant), restoration (activation of resident cardiac progenitor cells, paracrine effects), and regeneration (stem cell engraftment forming new myocytes) (Codina et al, 2010). It is unclear whether the heart contains resident stem cells. However, experiments show that bone marrow mononuclear cells (BMCs) can repair myocardial damage, reduce left ventricular remodeling, and improve heart function by myocardial regeneration (Hakuno et al, 2002; Amado et al, 2005; Dai et al, 2005; Schneider et al, 2008). The regenerative capacity of human heart tissue was further supported by the detection of the renewal of human cardiomyocytes (1% annually at the age of 25) by analysis of carbon-14 integration into human cardiomyocyte DNA (Bergmann et al, 2009). It is not clear whether cardiomyocyte renewal is derived from resident adult stem cells, cardiomyocyte duplication, or homing of non-myocardial progenitor cells. Bone marrow cells home to the injured myocardium as shown by Y chromosome-positive BMCs in female recipients (Deb et al, 2003). On the basis of these promising results, clinical trials in patients with ischemic heart disease have been initiated primarily using bone marrow-derived cells. However, these small trials have shown controversial results. This is likely due to a lack of standardization for cell harvesting and delivery procedures. This highlights the need for a better understanding of the basic mechanisms underlying stem cell isolation and homing prior to clinical implementation.
Although stem cells have the capacity to differentiate into neurons, oligodendrocytes, and astrocytes, novel clinical stem cellbased therapies for central and peripheral nervous system diseases have yet to be realized. It is widely hoped that transplantation of stem cells will provide effective therapy for Parkinson's disease, Alzheimer's disease, Huntington's Disease, amyloid lateral sclerosis, spinal cord injury, and stroke. Several encouraging animal studies have shown that stem cells can rescue some degree of neurological function after injury (Daniela et al, 2007; Hu et al, 2010; Shimada and Spees, 2011). Currently, a number of clinical trials have been performed and are ongoing.
Dental stem cells could potentially repair damaged tooth tissues such as dentin, periodontal ligament, and dental pulp (Gronthos et al, 2002; Ohazama et al, 2004; Jo et al, 2007; Ikeda et al, 2009; Balic et al, 2010; Volponi et al, 2010). Moreover, as the behavior of dental stem cells is similar to MSCs, dental stem cells could also be used to facilitate the repair of non-dental tissues such as bone and nerves (Huang et al, 2009; Takahashi et al, 2010). Several populations of cells with stem cell properties have been isolated from different parts of the tooth. These include cells from the pulp of both exfoliated (children's) and adult teeth, the periodontal ligament that links the tooth root with the bone, the tips of developing roots, and the tissue that surrounds the unerupted tooth (dental follicle) (Bluteau et al, 2008). These cells probably share a common lineage from neural crest cells, and all have generic mesenchymal stem cell-like properties, including expression of marker genes and differentiation into mesenchymal cells in vitro and in vivo (Bluteau et al, 2008). different cell populations do, however, differ in certain aspects of their growth rate in culture, marker gene expression, and cell differentiation. However, the extent to which these differences can be attributed to tissue of origin, function, or culture conditions remains unclear.
There are several issues determining the long-term outcome of stem cellbased therapies, including improvements in the survival, engraftment, proliferation, and regeneration of transplanted cells. The genomic and epigenetic integrity of cell lines that have been manipulated in vitro prior to transplantation play a pivotal role in the survival and clinical benefit of stem cell therapy. Although stem cells possess extensive replicative capacity, immune rejection of donor cells by the host immune system post-transplantation is a primary concern (Negro et al, 2012). Recent studies have shown that the majority of donor cell death occurs in the first hours to days after transplantation, which limits the efficacy and therapeutic potential of stem cellbased therapies (Robey et al, 2008).
Although mouse and human ES cells have traditionally been classified as being immune privileged, a recent study used in vivo, whole-animal, live cell-tracing techniques to demonstrate that human ES cells are rapidly rejected following transplantation into immunocompetent mice (Swijnenburg et al, 2008). Treatment of ES cell-derived vascular progenitor cells with inter-feron (to upregulate major histocompatibility complex (MHC) class I expression) or in vivo ablation of natural killer (NK) cells led to enhanced progenitor cell survival after transplantation into a syngeneic murine ischemic hindlimb model. This suggests that MHC class I-dependent, NK cell-mediated elimination is a major determinant of graft survivability (Ma et al, 2010). Given the risk of rejection, it is likely that initial therapeutic attempts using either ES or iPS cells will require adjunctive immunosuppressive therapy. Immunosuppressive therapy, however, puts the patient at risk of infection as well as drug-specific adverse reactions. As such, determining the mechanisms regulating donor graft tolerance by the host will be crucial for advancing the clinical application of stem cellbased therapies.
An alternative strategy to avoid immune rejection could employ so-called gene editing. Using this technique, the stem cell genome is manipulated ex vivo to correct the underlying genetic defect prior to transplantation. Additionally, stem cell immunologic markers could be manipulated to evade the host immune response. Two recent papers offer alternative methods for gene editing. Soldner et al (2011) used zinc finger nuclease to correct the genetic defect in iPS cells from patients with Parkinson's disease because of a mutation in the -Synuclein (-SYN) gene. Liu et al (2011) used helper-dependent adenoviral vectors (HDAdV) to correct the mutation in the Lamin A (LMNA) gene in iPS cells derived from patients with HutchinsonGilford Progeria (HGP), a syndrome of premature aging. Cells from patients with HGP have dysmorphic nuclei and increased levels of progerin protein. The cellular phenotype is especially pronounced in mature, differentiated cells. Using highly efficient helper-dependent adenoviral vectors containing wild-type sequences, they were able to use homologous recombination to correct two different Lamin A mutations. After genetic correction, the diseased cellular phenotype was reversed even after differentiation into mature smooth muscle cells. In addition to the potential therapeutic benefit, gene editing could generate appropriate controls for in vitro studies.
Finally, there are multiple safety and toxicity concerns regarding the transplantation, engraftment, and long-term survival of stem cells. Donor stem cells that manage to escape immune rejection may later become oncogenic because of their unlimited capacity to replicate (Amariglio et al, 2009). Thus, ES and iPS cells may need to be directed into a more mature cell type prior to transplantation to minimize this risk. Additionally, generation of ES and iPS cells harboring an inducible kill-switch may prevent uncontrolled growth of these cells and/or their derivatives. In two ongoing human trials with ES cells, both companies have provided evidence from animal studies that these cells will not form teratomas. However, this issue has not been thoroughly examined, and enrolled patients will need to be monitored closely for this potentially lethal side effect.
In addition to the previously mentioned technical issues, the use of ES cells raises social and ethical concerns. In the past, these concerns have limited federal funding and thwarted the progress of this very important research. Because funding limitations may be reinstituted in the future, ES cell technology is being less aggressively pursued and young researchers are shying away from the field.
View post:
The benefits and risks of stem cell technology - PMC