Page 32«..1020..31323334..4050..»

Archive for the ‘Skin Stem Cells’ Category

Stem Cell Basics A Closer Look at Stem Cells

About stem cells

Stem cells are the foundation of development in plants, animals and humans. In humans, there are many different types of stem cells that come from different places in the body or are formed at different times in our lives. These include embryonic stem cells that exist only at the earliest stages of development and various types oftissue-specific(oradult)stem cells that appear during fetal development and remain in our bodies throughout life.Stem cells are defined by two characteristics:

Beyond these two things, though, stem cells differ a great deal in their behaviors and capabilities.

Embryonic stem cells arepluripotent, meaning they can generate all of the bodys cell types but cannot generate support structures like the placenta and umbilical cord.

Other cells aremultipotent,meaning they can generate a few different cell types, generally in a specific tissue or organ.

As the body develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells give rise to the specialized cells that make up the bodys organs and tissues. The stem cells that stay in your body throughout your life are tissue-specific, and there is evidence that these cells change as you age, too your skin stem cells at age 20 wont be exactly the same as your skin stem cells at age 80.

Learn more about different types of stem cellshere.

View original post here:
Stem Cell Basics A Closer Look at Stem Cells

TREATMENTS – IMAGE NOW. Age later.

Our signature chemical peels help to reverse the visible effects of damage in two ways. First, they power away dull, dead cells to illuminate the skin and reduce the appearance of fine lines, wrinkles, age spots, clogged pores and blemishes. Then, they support collagen for firmer-looking skin over time. Ask your esthetician which IMAGE chemical peel will best target your skins individual needs.

I PEEL | WRINKLE LIFT

Ultra-resurfacing blend of glycolic acid combined with retinol to visibly reduce the appearance of fine lines and wrinkles.

Skin type indications: Aging, wrinkles, rough complexion, uneven skin tone, smokers skin, tired/dull skin, oily/acne

I PEEL | WRINKLE LIFT FORTE

This advanced treatment is formulated with additional glycolic acid and an innovative blend of firming and anti-aging properties, to visibly reduce the appearance of fine lines and wrinkles.

Skin type indications: Advanced aging, wrinkles, rough complexion, uneven skin tone, smokers skin, tired/dull skin, oily/acne

I PEEL | PERFECTION LIFT

This distinct blend of active exfoliants works synergistically to visibly reduce the appearance of fine lines, correct uneven skin tone, smooth rough texture and reduce acne blemishes.

Skin type indications: Aging, pigmentation, acne

I PEEL | PERFECTION LIFT FORTE

This concentrated blend of lactic acid, salicylic acid and resorcinol works synergistically to quickly and effectively reduce the appearance of advanced aging, pigmentation and acne. This extra strength treatment reveals a younger you in a single treatment.

Skin type indications: Advanced aging, pigmentation, acne

I PEEL | ACNE LIFT

Blend of AHAs and BHAs with protective agents to effectively treat all grades of acne.

Acne, oily, acne-prone, aging

I PEEL | BETA LIFT

This powerful non-blended salicylic acid treatment quickly and effectively targets and improves moderate/severe acne. Skin type indications: Acne, oily, aging

I PEEL | LIGHTENING LIFT

Lactic acid blended with kojic acid and a cocktail of brightening agents to reduce all forms of pigmentation.

Skin type indications: Pigmentation, aging, dry/dehydrated, uneven skin tone, age spots, redness-prone

I PEEL | LIGHTENING LIFT FORTE

This results-driven treatment combines the most innovative and effective botanical brighteners with echinacea, plant-derived stem cells and anti-aging peptides for youthful, illuminated skin.

Skin type indications: Advanced pigmentation, aging, dry/dehydrated, uneven skin tone, age spots, redness-prone

See the article here:
TREATMENTS - IMAGE NOW. Age later.

Types of Stem Cells A Closer Look at Stem Cells

Tissue-specific stem cells

Tissue-specific stem cells (also referred to assomaticoradultstem cells) are more specialized than embryonic stem cells. Typically, these stem cells can generate different cell types for the specific tissue or organ in which they live.

For example, blood-forming (orhematopoietic) stem cells in the bone marrow can give rise to red blood cells, white blood cells and platelets. However, blood-forming stem cells dont generate liver or lung or brain cells, and stem cells in other tissues and organs dont generate red or white blood cells or platelets.

Some tissues and organs within your body contain small caches of tissue-specific stem cells whose job it is to replace cells from that tissue that are lost in normal day-to-day living or in injury, such as those in your skin, blood, and the lining of your gut.

Tissue-specific stem cells can be difficult to find in the human body, and they dont seem to self-renew in culture as easily as embryonic stem cells do. However, study of these cells has increased our general knowledge about normal development, what changes in aging, and what happens with injury and disease.

Read this article:
Types of Stem Cells A Closer Look at Stem Cells

AnteAge Stem Cell Skin Care Reviewed

Serum: KEY ACTIVE INGREDIENTS:Stem CytokinesCarnosineNiacinamide (vit B3)Palmitoyl OligopeptidePalmitoyl Tetrapeptide-7Yerba MatGreenTea ExtractCatechins & Flavonoids

INGREDIENTS:Mesenchymal Stem Cell Cytokines,Water (Aqua), Palmitoyl Oligopeptide, Niacinamide (Vitamin B3), Palmitoyl Tetrapeptide-7, PPG-3 Benzyl Myristate, Dimethyl Isosorbide, Carnosine, Hydrolyzed Myrtus Communis (True Myrtle) Leaf Extract, Polyacrylate-13, Camellia Sinensis (Green Tea) Leaf Extract, Maltodextrin, Ilex Paraguariensis (Paraguay) Leaf (Yerba Mate) Extract, Cetearyl Ethylhexanoate, Polyisobutene, Phenoxyethanol (Preservative), Caprylyl Glycol (NaturallyDerived Preservative), Polysorbate-20 (Plant Derived), Chlorphenesin, TetrasodiumEDTA, Citric Acid (Naturally Derived) Accelerator: KEY ACTIVE INGREDIENTS:

INGREDIENTS: Mesenchymal Stem Cell Cytokines, Water (Aqua), Glycerin (Plant Derived), C12-15 Alkyl Benzoate, PPG-3 Benzyl Myristate, Carthamus Tinctorius (Safflower) Seed Oil, Alcohol, Cetearyl Alcohol (Plant Derived), Tocopheryl Acetate (Vitamin E Acetate), Polysorbate-20 (Plant Derived), Cetearyl Glucoside,Tetrahexyldecyl Ascorbate (Vitamin C Ester), Simmondsia Chinensis (Jojoba) Seed Oil, Limnanthes Alba (Meadowfoam) Seed Oil, Dimethyl Isosorbide, Butylene Glycol, Polysorbate-60 (Plant Derived), Glyceryl Stearate (Plant Derived),Lecithin, Hydroxyethyl Acrylate/Sodium Acryloyl Dimethyl Taurate Copolymer, SoybeanGlycerides, Arachidyl Alcohol, Soy Isoflavones, Phenoxyethanol (Preservative), Helianthus Annuus (Hybrid Sunflower) Oil, Butyrospermum Parkii (Shea Butter) Fruit, Bisabolol,Arbutin, Caprylyl Glycol (Naturally Derived Preservative), Behenyl Alcohol, Lonicera Japonica (Honeysuckle) Extract (Natural Preservative), Foeniculum Vulgare (Fennel) Fruit Extract, Camellia Oleifera (ORGANIC) Black Tea, Algae (Seaweed) Extract,Xanthan Gum (Natural Thickener), Saccharum Officinarum (Sugar Cane), Chlorphenesin, Squalane (Plant Derived), Retinol (Vitamin A), Ubiquinone (Coenzyme Q10), Panthenol (Pro-Vitamin B5), Allantoin (Comfrey Root Derived), Citrus MedicaLimonum (Lemon) Fruit Extract, Citrus Aurantium Dulcis (Sweet Neroli Orange) Fruit, Tetrasodium EDTA, Pyrus Malus (Apple) Fruit Juice, Sodium Hyaluronate, Camellia Sinensis (Green Tea) Leaf Extract, Arachidyl Glucoside, Vitis Vinifera (Grape) SeedExtract, Salix Alba (Willow) Bark Extract, Vaccinium Myrtillus (Bilberry) Extract, Phyllanthus Emblica (Amla) Extract, Thioctic Acid (a-Lipoic Acid), Sodium Hydroxide (pH Modifier)

Read more here:
AnteAge Stem Cell Skin Care Reviewed

Stem Cell Transplants in Cancer Treatment – National …

Stem cell transplants are procedures that restore blood-forming stem cells in people who have had theirs destroyed by the very high doses of chemotherapy or radiation therapy that are used to treat certain cancers.

Blood-forming stem cells are important because they grow into different types of blood cells. The main types of blood cells are:

You need all three types of blood cells to be healthy.

In a stem cell transplant, you receive healthy blood-forming stem cells through a needle in your vein. Once they enter your bloodstream, the stem cells travel to the bone marrow, where they take the place of the cells that were destroyed by treatment. The blood-forming stem cells that are used in transplants can come from the bone marrow, bloodstream, or umbilical cord. Transplants can be:

To reduce possible side effects and improve the chances that an allogeneic transplant will work, the donors blood-forming stem cells must match yours in certain ways. To learn more about how blood-forming stem cells are matched, see Blood-Forming Stem Cell Transplants.

Stem cell transplants do not usually work against cancer directly. Instead, they help you recover your ability to produce stem cells after treatment with very high doses of radiation therapy, chemotherapy, or both.

However, in multiple myeloma and some types of leukemia, the stem cell transplant may work against cancer directly. This happens because of an effect called graft-versus-tumor that can occur after allogeneic transplants. Graft-versus-tumor occurs when white blood cells from your donor (the graft) attack any cancer cells that remain in your body (the tumor) after high-dose treatments. This effect improves the success of the treatments.

Stem cell transplants are most often used to help people with leukemia and lymphoma. They may also be used for neuroblastoma and multiple myeloma.

Stem cell transplants for other types of cancer are being studied in clinical trials, which are research studies involving people. To find a study that may be an option for you, see Find a Clinical Trial.

The high doses of cancer treatment that you have before a stem cell transplant can cause problems such as bleeding and an increased risk of infection. Talk with your doctor or nurse about other side effects that you might have and how serious they might be. For more information about side effects and how to manage them, see the section on side effects.

If you have an allogeneic transplant, you might develop a serious problem called graft-versus-host disease. Graft-versus-host disease can occur when white blood cells from your donor (the graft) recognize cells in your body (the host) as foreign and attack them. This problem can cause damage to your skin, liver, intestines, and many other organs. It can occur a few weeks after the transplant or much later. Graft-versus-host disease can be treated with steroids or other drugs that suppress your immune system.

The closer your donors blood-forming stem cells match yours, the less likely you are to have graft-versus-host disease. Your doctor may also try to prevent it by giving you drugs to suppress your immune system.

Stem cells transplants are complicated procedures that are very expensive. Most insurance plans cover some of the costs of transplants for certain types of cancer. Talk with your health plan about which services it will pay for. Talking with the business office where you go for treatment may help you understand all the costs involved.

To learn about groups that may be able to provide financial help, go to the National Cancer Institute database, Organizations that Offer Support Services and search "financial assistance." Or call toll-free 1-800-4-CANCER (1-800-422-6237) for information about groups that may be able to help.

When you need an allogeneic stem cell transplant, you will need to go to a hospital that has a specialized transplant center. The National Marrow Donor Program maintains a list of transplant centers in the United States that can help you find a transplant center.

Unless you live near a transplant center, you may need to travel from home for your treatment. You might need to stay in the hospital during your transplant, you may be able to have it as an outpatient, or you may need to be in the hospital only part of the time. When you are not in the hospital, you will need to stay in a hotel or apartment nearby. Many transplant centers can assist with finding nearby housing.

A stem cell transplant can take a few months to complete. The process begins with treatment of high doses of chemotherapy, radiation therapy, or a combination of the two. This treatment goes on for a week or two. Once you have finished, you will have a few days to rest.

Next, you will receive the blood-forming stem cells. The stem cells will be given to you through an IV catheter. This process is like receiving a blood transfusion. It takes 1 to 5 hours to receive all the stem cells.

After receiving the stem cells, you begin the recovery phase. During this time, you wait for the blood cells you received to start making new blood cells.

Even after your blood counts return to normal, it takes much longer for your immune system to fully recoverseveral months for autologous transplants and 1 to 2 years for allogeneic or syngeneic transplants.

Stem cell transplants affect people in different ways. How you feel depends on:

Since people respond to stem cell transplants in different ways, your doctor or nurses cannot know for sure how the procedure will make you feel.

Doctors will follow the progress of the new blood cells by checking your blood counts often. As the newly transplanted stem cells produce blood cells, your blood counts will go up.

The high-dose treatments that you have before a stem cell transplant can cause side effects that make it hard to eat, such as mouth sores and nausea. Tell your doctor or nurse if you have trouble eating while you are receiving treatment. You might also find it helpful to speak with a dietitian. For more information about coping with eating problems see the booklet Eating Hints or the section on side effects.

Whether or not you can work during a stem cell transplant may depend on the type of job you have. The process of a stem cell transplant, with the high-dose treatments, the transplant, and recovery, can take weeks or months. You will be in and out of the hospital during this time. Even when you are not in the hospital, sometimes you will need to stay near it, rather than staying in your own home. So, if your job allows, you may want to arrange to work remotely part-time.

Many employers are required by law to change your work schedule to meet your needs during cancer treatment. Talk with your employer about ways to adjust your work during treatment. You can learn more about these laws by talking with a social worker.

Follow this link:
Stem Cell Transplants in Cancer Treatment - National ...

Apple Stem Cells – The Anti-Aging skin care ingredient …

What are Stem Cells?

Stem cells are super unique in that they have the ability to go through numerous cycles and cell divisions while maintaining the undifferentiated state. Primarily, stem cells are capable of self-renewal and can transform themselves into other cell types of the same tissue. Their crucial role is to replenish dying cells and regenerate damaged tissue. Stem cells have a limited life expectation due to environmental and intrinsic stress factors. Because their life is endangered by internal and external stresses, stem cells have to be protected and supported to delay preliminary aging. In aged bodies, the number and activity of stem cells in reduced.

Until several years ago, the tart, unappealing breed of the Swiss-grown Uttwiler Sptlauber apples, did not seem to offer anything of value. That was until Swiss scientists discovered the unusual longevity of the stem cells that kept these apples alive months after other apples shriveled and fell off their trees. In the rural region of Switzerland, home of these magical apples, it was discovered that when the unpicked apples or tree bark was punctured, Swiss Apple trees have the ability to heal themselves and last longer than other varieties. What was the secret to these apples prolonged lives?

Proven to Diminish the Signs of Aging

These scientists got to work to find out. What they revealed was that apple stem cells work just like human stem cells, they work to maintain and repair skin tissue. The main difference is that unlike apple stem cells, skin stem cells do not have a long lifespan, and once they begin depleting, the signs of aging start kicking in (in the forms of loose skin, wrinkles, the works). Time to harness these apple stem cells into anti aging skin care! Not so fast. As mentioned, Uttwiler Sptlauber apples are now very rare to the point that the extract can no longer be made in a traditional fashion. The great news is that scientists developed a plant cell culture technology, which involves breeding the apple stem cells in the laboratory.

Human stem cells on the skins epidermis are crucial to replenish the skin cells that are lost due to continual shedding. When epidermal stem cells are depleted, the number of lost or dying skin cells outpaces the production of new cells, threatening the skins health and appearance.

Like humans, plants also have stem cells. Enter the stem cells of the Uttwiler Sptlauber apple tree, whose fruit demonstrates an exceptionally long shelf-life. How can these promising stem cells help our skin?

Studies show that apple stem cells boosts production of human stem cells, protect the cell from stress, and decreases wrinkles. How does it work? The internal fluid of these plant cells contains components that help to protect and maintain human stem cells. Apple stem cells contain metabolites to ensure longevity as the tree is known for the fact that its fruit keep well over long periods of time.

When tested in vitro, the apple stem cell extract was applied to human stem cells from umbilical cords and was found to increase the number of the stem cells in culture. Furthermore, the addition of the ingredient to umbilical cord stem cells appeared to protect the cells from environmental stress such as UV light.

Apple stem cells do not have to be fed through the umbilical cord to benefit our skin! The extract derived from the plant cell culture technology is being harnessed as an active ingredient in anti aging skincare products. When delivered into the skin nanotechnology, the apple stem cells provide more dramatic results in decreasing lines, wrinkles, and environmental damage.

Currently referred to as The Fountain of Youth, intense research has proved that with just a concentration level of 0.1 % of the PhytoCellTec (apple stem cell extract) could proliferate a wealth of human stem cells by an astounding 80%! These wonder cells work super efficiently and are completely safe. Of the numerous benefits of apple stems cells, the most predominant include:

See the original post here:
Apple Stem Cells - The Anti-Aging skin care ingredient ...

Stem Cell Use in Skin Care Products? – Science of Skincare

The science behind skin care has been progressing at a faster and faster rate of speed. Twenty years ago, had you mentioned stem cell use in association with mainstream skin care, people would have stared at you as though you had three heads and steered their children in a path far around you.

Reality today paints a much cooler picture. One where stem cells are used to treat a variety of blood and bone marrow diseases, blood cancers, and immune disorders. And we are finding stem cells, both human and plant, on the ingredients lists of some very powerful and effective skin care products. Stem cell use in skin care products is coming of age.

Stem cells are a type of cell that are found in all living things and have the glorious ability to differentiate themselves into many different types of cells. They are capable of becoming any other type of cell in that type of organism and reproducing in a controlled manner. As a result, they are the building blocks of your tissues and have the unique ability to replace damaged and diseased cells. They can proliferate for long periods, dividing themselves over and over again into millions of new cells. That means they can play a pivotal role in how skin repairs itself.

Stem cells are extremely beneficial in the natural process of healing and regeneration, says Jessica Weiser, M.D., a board-certified dermatologist in New York City.

Many beauty products contain stem cells from fruits like Swiss apples, edelweiss, roses, date palms, grape, raspberry, lilac, and gotu kola that have the ability to stay fresh for long periods of times.

Human stem cells come from one of two sources: embryonic stem cells and adult (somatic) stem cells. For the case of skin care, stem cells of the adult origin are used. They remain in the body quietly in a non-dividing state for years until activated by disease or injury.

Because they play an essential role in tissue removal, stem cells residing just below the surface of the skin can help with restorative functions, such as cellular regeneration, and could play a vital role in helping to enhance our ability to repair aging skin.

You start off with an abundance of stem cells in your skin, but you lose them as you age. By the time you hit 50, youve lost about 98% of them.

The working theory is that by applying products containing stem cell extracts, you could encourage the growth of your own skins stem cells and possibly wake them up to trigger their anti-aging effects. Some research suggests that they can promote the production of collagen, which is the bodys firming protein.

Live cells need very specific conditions to remain alive and viable. Its difficult enough to maintain those conditions in a laboratory setting. Skin care products and their environments dont offer those types of conditions. When stem cells are included in skin care products, makers arent looking to provide you with live, functional cells. Extracts from the stem cells, not the actual cells themselves, are usually added to skin care products. Its not possible to maintain live stem cells in cosmetic emulsions, says Zoe Diana Draelos, a consulting professor of dermatology at the Duke University School of Medicine in Durham, North Carolina.

Most stem cell products you see on the shelf dont actually contain stem cells, but rather the proteins and amino acids that those cells secrete. Typically, if you see a product labeled as a stem cell product, youll see the stem cells key substances in the ingredients list. These include ferulic acid, ellagic acid, and quercetin. This is what your body is able to recognize and put to use to help rejuvenate and repair cells. Human stem cell byproducts (from skin or adipose tissue) seem to be the best solution for use in skin care products because of their ability to produce the same types of cellular components that your body uses naturally to maintain a youthful appearance.

Cultivating stem cells is a tedious process involving a very controlled environment without any contaminants in order to yield the most potent, stable, and pure extract. Because of this technology, the cost of stem cell products are usually greater than products without.

MDSUN is a perfect collaboration between medicine and beauty with the ability to deliver the highest quality skin care products, giving you long-lasting radiance and youth. Each formulation is effective, while free of harsh ingredients, perfumes, or chemical scent additives.

They offer multiple options incorporating powerful stem cell technology with proven effective results. The Wrinkle Smoothener reduces wrinkle depth and improves skins texture while quenching skin-damaging free radicals. It can stimulate skin repair and diminish the appearance of aging skin.

The Collagen Lift is a very potent treatment that can deliver obvious results, minimizing the appearance of wrinkles and lines, improving skin texture and tone. This luxurious gel-cream soothes redness and irritations and rejuvenates skin cells for a strong and long-lasting radiant renewal.

The Med-Eye Complex Cream visibly promotes firmness, increases blood circulation and deeply hydrates the eye area to reduce the signs of aging, lending a youthful appearance and glow.

Here is the original post:
Stem Cell Use in Skin Care Products? - Science of Skincare

Stem Cells Used in Anti-Aging Skin Care Radiant RG-Cell

Stem cells are biological cells that are able to stay dormant until triggered to reproduce into new tissue. Found in human embryos and in adult tissue, they can form into any cell type, and help repair organs and skin in the case of injury or other cause of damage.

So is it any surprise that their potential is also being trumpeted in the world of skin care? Cosmetic science has often taken inspiration from hard-core medical breakthroughs, and stem cells appear to possess the ideal skill set to throw the switch on a veritable fountain of youth.

While skin stem cells have found use in treating diseases, stem cells technology in skin care products have been largely based on hype rather than science, but in some cases like RG-CELL, it truly works magic.

The concept of topically applying stem cells, through cream, serum, mask, or facial procedure, with a promise to replenish dying cells and regenerate dying tissues has shown no real scientific evidence that it works.

If youre unfamiliar with the practice, you may question the validity of using live stem cells in anti-aging products when its already an enormous and time consuming challenge to use them in actual organ regenerating procedures.

Firstly, stem cells are highly unstable. They have little to no shelf life. Secondly, they will not enter the deep layers of the skin without an effective skin delivery system. And thirdly, stem cells need specific nutrition via a blood supply in the tissue to survive and function if they were layered onto intact skin the stem cells would just die.

It should be made abundantly clear that, no stem cell skin care products contain actual stem cells. Stem cell based products contain growth factors, along with enzymes and other nutrients, which help the cells grow. Other products dont contain any stem cell-related material at all.

[frame src=https://rg-cell.com/wp-content/uploads/2013/05/stem-cell-skin-care.jpg width=250 height=188 alt=Stem Cell Skin Care align=right]There are 2 ways in which stem cell technology is being used. Firstly, companies are creating products with specialized peptides and enzymes or plant growth factors which, when applied topically on the surface, help protect the human skin from damage and deterioration. Products claiming to contain plant stem cells dont contain human cytokines (or cell messengers), and in fact are really just ground up plant bits. In short, plant stem cell technology cannot effectively impact human stem cells. It can be useful as excellent antioxidants, but marketing has made the benefits bigger than reality.

Secondly, and bearing more scientific evidence, is an alternative application of skin care anti-aging products. These products utilize human stem cell technology, and your skin is the most active participant, NOT plant or apple stem cells. Using ingredients that promote the repair and rejuvenation of your skin by stimulating the activity of your own stem cells in the skin has proven to be safer, more ethical and far more scientifically proven than applying stem cells in a jar. This technology implies a superior product designed specifically to regenerate and rejuvenate your own skin cells.

These products contain epidermal growth factors (EGF) obtained by genetic engineering technology (microbial recombinant) totally identical to natural EGF, known as a BEAUTY FACTOR, boosts and regulates stem cell proliferation. When applied to the skin, stimulate collagen production, improve elasticity, firm sagging skin, improve tone and so much more.

[frame src=https://rg-cell.com/wp-content/uploads/2012/11/nano-encapsulation.jpg width=250 height=190 alt=Skin Delivery System align=right]EGF is a large molecule so it cannot penetrate the skin. In fact, it is too big to fit in between the spaces in cells of our skin. There is also speculation around the length of time, that it can remain stable in a formulation. Clinical studies and research are practically non-existent. Therefore, buyer beware: If you opt for using a product that contains EGF consider whether or not the mechanism of action employed to deliver the ingredient to the dermal layers, will actually work.

Only special technology, can deliver EGF into the skin deeper layers. One of the biggest advances is the use of a patented nano-particulate lipid bi-layer delivery system that allows the products to be delivered deep into the skin where the stem cells live.

RG-Cell uses a unique patented nano-encapsulation technology as its delivery system. This improves the permeation and penetration efficiency of the active ingredients. Owing to this fact, RG-CELL can make valid claims about the efficiency in it is delivery of EGF where it is needed the most. This technology also stabilizes the EGF thereby prolonging its shelf life in the actual product.

Thus we can see that there are already many choices in skin care products with specialized peptides and enzymes or EGFs which, when applied topically stimulate the skins own stem cells. But, only one uses the most advanced technology to deliver nutrients into the skin. Expect many more good choices to be developed in the years to come!

Go here to read the rest:
Stem Cells Used in Anti-Aging Skin Care Radiant RG-Cell

Stem Cell Skin Care – anti-aging cream and hydration Serum

SC21 BioTech: Stem Cell Skin Care Set

SC21 nowoffers a rejuvenating stem cell skin careset that is available to help restore aging skin. At SC21, we have been able to combine human mesenchymal stem cell growth factors, polypeptide complexes, and cytokines, with our day time anti-aging cream & evening hydration serum.

Our SC21 biotechnology scientists have developed a process to isolate potent rejuvenating factors from human stem cells. By resupplying the skin with these powerful missing factors, SC21 Day & Night Stem Cell Skin Care promotes cell renewal, boosts the production of collagen and elastin, restores aging cells, and, ultimately, provides you with more youthful looking skin.

It is important to note that as we age, the stem cell population that is vital in providing healing signals to the skin dramatically diminishes. As a result of this, the rejuvenating components the skin needs to maintain its appearance lessen. By replenishing lost peptides, cytokines & growth factors with the use of a topical product on the skin, we, through the day &night skin care set, are able to effectively re-engage the skins healing process.

The SC21 day & night stem cell skin care rejuvenation set also has a complete solution for restoring aging skin. We have, through the day anti-aging cream & night hydration serum been able to use: human mesenchymal stem cell growth factors, to regenerate human tissues; polypeptide complexes, (which penetrate the epidermis, outer layer of our skin) to send signals to the skin cells and cytokines proteins to send signals between the skin cells.

Focus Ingredient of Growth Factor Skin Care:

Mesenchymal Stem Cell (MSC) Peptide Complex = 15% (cytokines, growth factors, peptide complex)

Other Key Ingredients:

Focus Ingredient of Growth Factor Skin Care:

Mesenchymal Stem Cell (MSC) Peptide Complex = 20%(cytokines, growth factors, peptide complex)

Other Key Ingredients:

Apply 2-3 pumps to clean & dry skin.

Peptides are easier explained as signaling molecules produced by cells to instruct other cells.

As cellular messengers, cytokines influence and control our biological processes from start to finish. There are hundreds of unique cytokines in the human body. Cells talk with cytokines to repair injury, repel microbes, fight infections, and develop immunity.

Growth factors, are, on the other hand, diffusible signaling proteins that stimulate the growth of specific tissues and play a crucial role in promoting cell differentiation and division.

Many modern medical advances, including stem cell breakthroughs, are made possible due to our growing understanding of cytokines & growth factors. We use modern culture techniques (the same type used to produce human insulin and other naturally occurring substances) to grow human stem cells in the laboratory to harvest their regenerative cytokines and growth factors.

Mesenchymal stem cells (MSCs), which are traditionally found in the bone marrow, are used to improve function upon integration because they are self-renewing cells that have the capacity to differentiate, and are capable of replacing and repairing damaged tissues.

MSCs can consequently during culture, produce the following:

Our skin cells are biologically designed to continuously renew themselves, but, starting from our mid 20s, the skin cell renewal process slows down and our skin becomes thinner. This thinning causes us to be more prone to skin damage from external elements.

However, there are other factors that can contribute to our aging process, and in other cases even cause premature aging. Some of these factors include:

More:
Stem Cell Skin Care - anti-aging cream and hydration Serum

Which spare body parts will stem cells deliver first? | Cosmos

On 6 November 1998, the world woke to news of an astonishing discovery. James Thomson and his colleagues at the University of Wisconsin-Madison had generated stem cells from human embryos. Unlike other types of stem cells, these were pluripotent meaning they had the potential to generate any type of body tissue if given the right signals.

For many this news, and the accompanying claims that embryonic stem (ES) cells could revolutionise medicine, appeared to come out of the blue. However, for those of us already working in the stem cell space it was the vital next step in exploring the potential of stem cell science.

Back in 1998, I was a keen PhD student, part of the stem cell research effort at Monash University. I was trying to create pluripotent stem cells from the skin cells of a mouse. The idea was to first clone a mouse embryo from its skin cell and harvest the ES cells. In the lab next door, Ben Reubinoff had been working with Alan Trounson and Martin Pera for several years to see if they could make embryonic stem cells from donated human embryos effectively in parallel to their colleagues in Wisconsin.

There was a lot of excitement about how we might one day be able to use these cells to make replacement body tissues effectively on demand and alleviate suffering for many patients. Although we all recognised this was going to take an enormous amount of effort and time to deliver.

Outside the lab if I mentioned that I worked in stem cell research, I was met with overwhelming curiosity. But people also wondered why we couldnt just use adult stem cells which are found in some of our organs. Many people I spoke to already knew somebody who had been helped by a stem cell transplant using bone marrow or cord blood. Why did we need to use human embryos and ES cells at all?

The reason was, and still is, that adult stem cells are not able to generate any type of tissue because they are not pluripotent. Bone marrow stem cells, for instance, can regenerate an immune system but they cannot regenerate the pancreas or brain tissue. The only source of pluripotent cells was surplus human embryos originally created in an IVF clinic and then donated to research.

In 2007, Japanese scientists made a landmark discovery that side-stepped the need to use embryos. They were able to manipulate ordinary human skin cells to make them pluripotent (a much more elegant and effective approach than my attempts with mice skin cells during my PhD). Dubbed induced pluripotent stem cells or iPSC, these cells share the same desirable features as ES cells. They can be grown in the lab and coaxed to form specific types of body cells.

But both sources of pluripotent stem cells also carry the risk that they could form a tumour if we dont fully direct their developmental fate. Any clinical application must meticulously weed out the stem cells as part of the laboratory recipe used to make the replacement cells. For me, the crucial challenge is how to harness the potential of stem cells to develop safe and effective treatments.

These days, as the head of the outreach and policy program for Stem Cells Australia, a nationwide consortium of Australian stem cell scientists, I spend a lot of my time talking to the public. To some extent Ive become a race caller frequently asked to predict what new treatments are likely to come galloping down the track. Sometimes Im asked to offer an opinion on stem cell treatments that are not on the track at all. Promoted as a sure thing and available now for a price, these interventions lack credible evidence that they work or are even safe. Providers are effectively peddling hope and should be viewed with caution.

Fortunately, we do have providers committed to responsibly advancing the field with lots of bona fide contenders in clinical trials. So with my binoculars firmly in place, here is my reading of whats coming down the track.

Jeffrey Phillips

Leading the charge towards the clinic is a possible treatment for the most common cause of age-related vision loss: macular degeneration. In Australia about one in seven people over the age of 50 have some evidence of this disease. In this condition, damage to the cells at the back of the eye the macula affects central vision and the ability to read, drive and recognise faces. The actual seeing cells in the macula are intact but sight is lost because a tiny underlying patch of darkly pigmented cells are damaged. Known as retinal pigmented epithelial cells or RPE cells, they act like a pit stop team, feeding and clearing away waste for the highly active cells of the retina.

Because the number of RPE cells needed is very small and pluripotent stem cells readily develop into this exact tissue (you can easily spot a patch of darkly pigmented cells in the dish), macular degeneration has long been a favourite. Clinical trials are now underway in the United States, United Kingdom and Japan to determine whether replacing faulty RPE cells with those made in the lab from either human embryonic stem cells or induced pluripotent stem cells could help.

At this early stage, safety is a key concern. The surgical technique to deliver the cells carries the risk of detaching the retina and causing further vision loss. In May 2018, the London Project to Cure Blindness announced that two patients with macular degeneration specifically whats called the wet form due to extensive blood vessel growth under the retina had improved their vision with no significant side-effects after participating in a clinical trial.

Another early entrant in the race to the clinic is type 1 diabetes. Its a disease caused by friendly fire: the immune system seeks and destroys the beta cells of the pancreas. These remarkable cells can both sense rising blood sugar levels and release the exact amount of insulin needed to lower glucose levels to normal. When these cells are destroyed, which often occurs in childhood, the person is no longer able to control their blood sugar levels.

More than 120,000 Australians manage the disease with regular injections of insulin. But they cant regulate their blood sugar levels as precisely as beta cells do. And there are consequences: high blood sugar levels can damage the blood vessels in the heart, eyes and kidneys, while low levels can be fatal. Some patients have been lucky enough to receive a whole pancreas transplant or tissues containing beta cells from cadavers. But there are two problems. First, transplant donors are in short supply. Second, the donated tissue will likely suffer the fate of the original: attack by the immune system.

Enter pluripotent stem cells. Supply is no longer a problem. After two decades of trying, scientists are now able to make large quantities of fully functional beta cells in the lab. And as far as keeping the immune system at bay, several start-up companies have come up with the tea-bag approach. They encase the beta cells in a porous capsule. Like tea leaves, the beta cells are netted in but soluble factors easily move in and out across the net, including insulin and blood-borne glucose as well as other nutrients. Crucially, the net also stops marauding immune cells from getting to the beta cells.

The Californian company, Viacyte, is trialling a teabag about the size and shape of a credit card. Made of surgical-grade polymer, the capsule encases immature beta cells (theyre more robust if they mature inside the body), and is inserted just under the patients skin.

The key challenge, so far, is providing intimate contact with surrounding blood vessels so that the transplanted cells increase in number and survive. In June this year, the company reported its results at a meeting of the American Diabetes Association. Overall, they said there was a low rate of survival, but when cells did survive they produced insulin.

The company is now evaluating a second device that allows the patients blood vessels to grow through the walls of the capsule.

Jeffrey Phillips

A strong stayer in the race to the clinic is Parkinsons disease (PD). Predominantly a disease of ageing, around 1% of people over the age of 60 suffer from it.

The disease results from the death of brain neurons that release the neurotransmitter dopamine. Like a conductor, dopamine ensures different parts of the brain act in synchrony to execute routine movements. Without dopamine, patients have trouble controlling their walking and experience tremors in their hands and other parts of their bodies. Could replacing the faulty dopamine-producing neurons with healthy ones provide a way to combat PD?

More than 20 years ago, a few different research groups around the world gave it a try. Using human foetal tissue, they dissected out the dopamine-producing cells, and surgically implanted these into the brains of patients, specifically in a region called the striatum.

Some patients improved, but others reported significant side effects, particularly uncontrollable jerky movements known as dyskinesia. Questions were asked about whether the correct types of cells were being transferred to the correct part of the brain and further experiments were put on hold. A key question was whether pluripotent stem cells could offer a more precise and reliable source of dopamine-producing cells.

Jump forward to 2018 and several groups are on the cusp of testing new types of replacement cells for PD in a series of clinical trials. Years of research has shown that ES cells and iPS cells can be directed to develop into the correct type of neurons and that sufficiently large numbers can be generated.

When tested in animals, the dopamine-producing cells corrected movement disorders and did not form tumours.

This time around, rather than working in silos, different groups of researchers in Japan, Sweden, UK and US have banded together in a coalition called G-Force PD. Although each group is using a slightly different approach for their clinical trial, by sharing their results and expertise they hope to bring a cell-based therapy for PD closer to reality.

Jeffrey Phillips

Skin stem cells have long been solid performers for growing skin grafts to treat severe burns. But in November 2017, headlines ran hot with a report that a seven-year-old refugee Syrian boy, on the verge of death from a genetic skin condition, had been saved by a graft of skin stem cells corrected by gene therapy.

Hassan, now living with his family in Germany, suffered from a severe form of Epidermolysis Bullosa (EB). Its been referred to as the worst disease youve never heard of. It affects about 500,000 people worldwide, and can be caused by mutations to 18 different genes. In each case, the mutation disrupts the anchoring of the skins upper layer, the epidermis, to the underlying dermis. The result is skin that tears as easily as a butterflys wing. The only treatment is painful bandaging and re-bandaging.

Hassans skin had started blistering from birth but by the time he was seven, a bacterial infection had robbed him of 80% of his skin cover. In a last ditch effort to save his life, his German doctors contacted veteran stem cell researcher Michele De Luca at the University of Modena and Reggio Emilia in Italy. In 2006, De Luca had used skin grafts corrected by gene therapy to treat a leg wound of a woman who suffered from the same form of EB that Hassan suffered from. It was caused by a mutation to a gene called LAMB3.

De Lucas team took a tiny patch of skin containing stem cells from Hassans groin. They also spliced a copy of the LAMB3 gene into a benign virus. Then they infected the skin cells with the virus which ferried the LAMB3 gene into their DNA. The genetically corrected skin grew into a sheet which was grafted onto Hassans body. Five months after the first graft, Hassan was discharged. A month later he was back at school and playing soccer. Thanks to the genetically corrected stem cells, his grafted skin no longer blisters or shreds. The executive director of the Dystrophic Epidermolysis Bullosa Research Association of America dubbed Hassans treatment a sea change to the world of EB. Besides de Lucas group, Peter Marinkovich and Jean Tang at Stanford University School of Medicine, United States, are also trialling genetically-corrected skin grafts for a different type of EB.

Jeffrey Phillips

One of the front runners at the start of the stem cell race was spinal cord injury. Perhaps you remember the actor Christopher Reeve, aka Superman? Following a horse riding accident that left him a quadriplegic, he campaigned tirelessly for researchers to be allowed to use human embryonic stem cells to treat spinal cord injury which claims about 180,000 new cases each year. Perhaps thanks to his efforts in 2010, the world saw the first clinical trial using cells made from human ES cells.

Conducted by the California based biotech company Geron, the researchers had directed ES cells to develop into precursors of oligodendrocytes. These octopus-like cells wind their arms around neurons in the spinal cord to provide electrical insulation as well as nurturing factors. With a spinal cord injury, these important support cells can be lost. Four patients were injected with stem cell-derived oligodendrocyte precursors soon after their injury.

Controversially, Geron discontinued the study in 2011 to refocus their business. Asterias Biotherapeutics picked up the baton and last July, in a company press release, reported the results of an early clinical trial on 25 additional patients who were all injected with oligodendrocyte precursors three to six weeks post-injury. They reported no serious adverse events and that four patients recovered a degree of motor function that may increase their ability to lead an independent life. However, we have to wait to see the peer reviewed published results before we can assess the state of progress.

Beyond replacing oligodendrocytes made from ES cells, other clinical trials are testing different types of cells ranging from neurons obtained from donated foetal tissue to using the patients own cells obtained from the back of the nose where they play an important role in supporting the regeneration of the olfactory neurons. Some types of transplanted cells may act as paramedics, helping damaged motor neurons to recover. Others are designed to directly replace spinal cord neurons.

It remains too early to tell which approach will result in long-term improvements. While many with spinal cord injury are eager for even small improvements such as bladder or bowel control, patients should be careful about trying marketed experimental procedures outside well-conducted clinical trials as they may cause further harm. In a chilling example, one young woman who sought treatment using olfactory cells developed a large, painful mucus-secreting tumour in her spine and no improvement of her paraplegia. Unfortunately, many stem cell cures promoted online, especially for spinal cord injury, lack credibility.

Seeking advice from your medical specialist is the best way to find out more. If they dont know about a trial or claimed treatment, it is probably a mirage.

Jeffrey Phillips

Marked as a long shot for many years, stem cell research is starting to pay dividends for kidney disease. Though its not ready to provide transplants, it is already helping to discover new treatments.

Kidneys are the bodys vital cleansing and balancing system. They filter waste products and toxins from our blood into urine, maintain the bodys water balance and also make hormones important for regulating blood pressure and the production of red blood cells.

Kidney disease, which affects one in 10 Australians, damages the filtration units called nephrons. The major causes are diabetes and high blood pressure. Once gone, the nephrons cannot regenerate. But waiting for a donated kidney can take years; close to 1,000 Australians are currently on the waiting list for a transplant. This health crisis has catapulted researchers into trying to recreate kidney tissue from pluripotent stem cells an immense challenge as these are complex biological machines composed of many interacting parts.

Melissa Littles group, based at the Murdoch Childrens Research Institute in Melbourne, have pioneered this research. In 2015, they successfully grew tiny kidney-like structures that were showcased on the cover of Nature with the headline: Kidney in a dish. While their mini-kidneys possess many of the working parts of a mature kidney, theres a long way to go before they can be used as transplants. The plumbing for example bringing blood in and taking waste out is not yet functional. Also they are tiny, smaller than the tip of your finger.

Nevertheless, these mini-kidneys are already making a difference to our understanding of how kidneys develop and what goes awry in kidney disease, especially the hereditary form. For example, researchers were recently able to make mini-kidneys from a child suffering from a rare genetic condition that can cause end-stage kidney disease. They did it by first generating iPS cells from the childs skin. In the lab they were able to observe structural abnormalities in the childs cells and also showed that when the genetic mutation was corrected, the structural defect was corrected. This provides a new insight into inherited kidney disease where previously we knew very little about how these conditions develop.

Jeffrey Phillips

This article appeared in Cosmos 80 - Spring 2018 under the headline "The stem cell race"

More:
Which spare body parts will stem cells deliver first? | Cosmos

Storing Stem Cells For Life – Smart Cells

One of the bravest moves in that direction has come from stem cell research and therapy. Stem cell therapy is currently being used to successfully treat more than 80 diseases, but the field is rapidly evolving backed by prestigious research and clinical trials.

Smart Cells is the first private UK stem cell storage company to have released stored stem cell units for use in the treatment of children with life-threatening illnesses. We have released the greatest number of samples for use in transplants from the UK.

We believe with the development of technology in the future we will be able to treat even more illnesses.

We believe our customers deserve the best service available and we run our state of the art facility with leading professionals in the field.

We believe that storing your childs stem cells at birth can be a crucial part of treating or curing an unexpected illness.

We believe that in the future this service should be available to every parent, child and family.

We are a company that is for life.

Continued here:
Storing Stem Cells For Life - Smart Cells

Stem Cells – MedicineNet

Stem cell facts

What are stem cells?

Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.

The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.

The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.

Stem Cells:One of the human body's master cells, with the ability to grow into any one of the body's more than 200 cell types.

All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.

Stem cells contribute to the body's ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).

Why are stem cells important?

Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies that are under investigation involve transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.

Embryonic stem cells

During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.

Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cells. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.

Fetal stem cells

The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.

Adult stem cells

Adult stem cells are present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.

The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.

One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.

Peripheral blood stem cells

Most blood stem cells are present in the bone marrow, but a few are present in the bloodstream. This means that these so-called peripheral blood stem cells (PBSCs) can be isolated from a drawn blood sample. The blood stem cell is capable of giving rise to a very large number of very different cells that make up the blood and immune system, including red blood cells, platelets, granulocytes, and lymphocytes.

All of these very different cells with very different functions are derived from a common, ancestral, committed blood-forming (hematopoietic), stem cell.

Umbilical cord stem cells

Blood from the umbilical cord contains some stem cells that are genetically identical to the newborn. Like adult stem cells, these are multipotent stem cells that are able to differentiate into certain, but not all, cell types. For this reason, umbilical cord blood is often banked, or stored, for possible future use should the individual require stem cell therapy.

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) were first created from human cells in 2007. These are adult cells that have been genetically converted to an embryonic stem celllike state. In animal studies, iPSCs have been shown to possess characteristics of pluripotent stem cells. Human iPSCs can differentiate and become multiple different fetal cell types. iPSCs are valuable aids in the study of disease development and drug treatment, and they may have future uses in transplantation medicine. Further research is needed regarding the development and use of these cells.

Why is there controversy surrounding the use of stem cells?

Embryonic stem cells and embryonic stem cell lines have received much public attention concerning the ethics of their use or non-use. Clearly, there is hope that a large number of treatment advances could occur as a result of growing and differentiating these embryonic stem cells in the laboratory. It is equally clear that each embryonic stem cell line has been derived from a human embryo created through in-vitro fertilization (IVF) or through cloning technologies, with all the attendant ethical, religious, and philosophical problems, depending upon one's perspective.

What are some stem cell therapies that are currently available?

Routine use of stem cells in therapy has been limited to blood-forming stem cells (hematopoietic stem cells) derived from bone marrow, peripheral blood, or umbilical cord blood. Bone marrow transplantation is the most familiar form of stem cell therapy and the only instance of stem cell therapy in common use. It is used to treat cancers of the blood cells (leukemias) and other disorders of the blood and bone marrow.

In bone marrow transplantation, the patient's existing white blood cells and bone marrow are destroyed using chemotherapy and radiation therapy. Then, a sample of bone marrow (containing stem cells) from a healthy, immunologically matched donor is injected into the patient. The transplanted stem cells populate the recipient's bone marrow and begin producing new, healthy blood cells.

Umbilical cord blood stem cells and peripheral blood stem cells can also be used instead of bone marrow samples to repopulate the bone marrow in the process of bone marrow transplantation.

In 2009, the California-based company Geron received clearance from the U. S. Food and Drug Administration (FDA) to begin the first human clinical trial of cells derived from human embryonic stem cells in the treatment of patients with acute spinal cord injury.

What are experimental treatments using stem cells and possible future directions for stem cell therapy?

Stem cell therapy is an exciting and active field of biomedical research. Scientists and physicians are investigating the use of stem cells in therapies to treat a wide variety of diseases and injuries. For a stem cell therapy to be successful, a number of factors must be considered. The appropriate type of stem cell must be chosen, and the stem cells must be matched to the recipient so that they are not destroyed by the recipient's immune system. It is also critical to develop a system for effective delivery of the stem cells to the desired location in the body. Finally, devising methods to "switch on" and control the differentiation of stem cells and ensure that they develop into the desired tissue type is critical for the success of any stem cell therapy.

Researchers are currently examining the use of stem cells to regenerate damaged or diseased tissue in many conditions, including those listed below.

References

REFERENCE:

"Stem Cell Information." National Institutes of Health.

Originally posted here:
Stem Cells - MedicineNet

Embryonic stem cell – Wikipedia

Embryonic stem cells (ES cells or ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo.[1][2] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. Isolating the embryoblast, or inner cell mass (ICM) results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage should have the same moral considerations as embryos in the post-implantation stage of development.[3][4] Researchers are currently focusing heavily on the therapeutic potential of embryonic stem cells, with clinical use being the goal for many labs. These cells are being studied to be used as clinical therapies, models of genetic disorders, and cellular/DNA repair. However, adverse effects in the research and clinical processes have also been reported.

Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their ability to differentiate into any cell type and by their ability to propagate. It is these traits that makes them valuable in the scientific/medical fields. ESC are also described as having a normal karyotype, maintaining high telomerase activity, and exhibiting remarkable long-term proliferative potential.[5]

Embryonic stem cells of the inner cell mass are pluripotent, meaning they are able to differentiate to generate primitive ectoderm, which ultimately differentiates during gastrulation into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult human body. Pluripotency distinguishes embryonic stem cells from adult stem cells, which are multipotent and can only produce a limited number of cell types.

Under defined conditions, embryonic stem cells are capable of propagating indefinitely in an undifferentiated state. Conditions must either prevent the cells from clumping, or maintain an environment that supports an unspecialized state.[2] While being able to remain undifferentiated, ESCs also have the capacity, when provided with the appropriate signals, to differentiate (presumably via the initial formation of precursor cells) into nearly all mature cell phenotypes.[6]

Due to their plasticity and potentially unlimited capacity for self-renewal, embryonic stem cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. Pluripotent stem cells have shown potential in treating a number of varying conditions, including but not limited to: spinal cord injuries, age related macular degeneration, diabetes, neurodegenerative disorders (such as Parkinson's disease), AIDS, etc.[7] In addition to their potential in regenerative medicine, embryonic stem cells provide an alternative source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Not only that, but tissue/organs derived from ESCs can be made immunocompatible with the recipient. Aside from these uses, embryonic stem cells can also serve as tools for the investigation of early human development, study of genetic disease and as in vitro systems for toxicology testing.[5]

According to a 2002 article in PNAS, "Human embryonic stem cells have the potential to differentiate into various cell types, and, thus, may be useful as a source of cells for transplantation or tissue engineering."[8]

However, embryonic stem cells are not limited to cell/tissue engineering.

Current research focuses on differentiating ESCs into a variety of cell types for eventual use as cell replacement therapies (CRTs). Some of the cell types that have or are currently being developed include cardiomyocytes (CM), neurons, hepatocytes, bone marrow cells, islet cells and endothelial cells.[9] However, the derivation of such cell types from ESCs is not without obstacles, therefore current research is focused on overcoming these barriers. For example, studies are underway to differentiate ESCs in to tissue specific CMs and to eradicate their immature properties that distinguish them from adult CMs.[10]

Besides becoming an important alternative to organ transplants, ESCs are also being used in field of toxicology and as cellular screens to uncover new chemical entities (NCEs) that can be developed as small molecule drugs. Studies have shown that cardiomyocytes derived from ESCs are validated in vitro models to test drug responses and predict toxicity profiles.[9] ES derived cardiomyocytes have been shown to respond to pharmacological stimuli and hence can be used to assess cardiotoxicity like Torsades de Pointes.[17]

ESC-derived hepatocytes are also useful models that could be used in the preclinical stages of drug discovery. However, the development of hepatocytes from ESCs has proven to be challenging and this hinders the ability to test drug metabolism. Therefore, current research is focusing on establishing fully functional ESC-derived hepatocytes with stable phase I and II enzyme activity.[18]

Several new studies have started to address the concept of modeling genetic disorders with embryonic stem cells. Either by genetically manipulating the cells, or more recently, by deriving diseased cell lines identified by prenatal genetic diagnosis (PGD), modeling genetic disorders is something that has been accomplished with stem cells. This approach may very well prove invaluable at studying disorders such as Fragile-X syndrome, Cystic fibrosis, and other genetic maladies that have no reliable model system.

Yury Verlinsky, a Russian-American medical researcher who specialized in embryo and cellular genetics (genetic cytology), developed prenatal diagnosis testing methods to determine genetic and chromosomal disorders a month and a half earlier than standard amniocentesis. The techniques are now used by many pregnant women and prospective parents, especially couples who have a history of genetic abnormalities or where the woman is over the age of 35 (when the risk of genetically related disorders is higher). In addition, by allowing parents to select an embryo without genetic disorders, they have the potential of saving the lives of siblings that already had similar disorders and diseases using cells from the disease free offspring.[19]

Differentiated somatic cells and ES cells use different strategies for dealing with DNA damage. For instance, human foreskin fibroblasts, one type of somatic cell, use non-homologous end joining (NHEJ), an error prone DNA repair process, as the primary pathway for repairing double-strand breaks (DSBs) during all cell cycle stages.[20] Because of its error-prone nature, NHEJ tends to produce mutations in a cells clonal descendants.

ES cells use a different strategy to deal with DSBs.[21] Because ES cells give rise to all of the cell types of an organism including the cells of the germ line, mutations arising in ES cells due to faulty DNA repair are a more serious problem than in differentiated somatic cells. Consequently, robust mechanisms are needed in ES cells to repair DNA damages accurately, and if repair fails, to remove those cells with un-repaired DNA damages. Thus, mouse ES cells predominantly use high fidelity homologous recombinational repair (HRR) to repair DSBs.[21] This type of repair depends on the interaction of the two sister chromosomes formed during S phase and present together during the G2 phase of the cell cycle. HRR can accurately repair DSBs in one sister chromosome by using intact information from the other sister chromosome. Cells in the G1 phase of the cell cycle (i.e. after metaphase/cell division but prior the next round of replication) have only one copy of each chromosome (i.e. sister chromosomes arent present). Mouse ES cells lack a G1 checkpoint and do not undergo cell cycle arrest upon acquiring DNA damage.[22] Rather they undergo programmed cell death (apoptosis) in response to DNA damage.[23] Apoptosis can be used as a fail-safe strategy to remove cells with un-repaired DNA damages in order to avoid mutation and progression to cancer.[24] Consistent with this strategy, mouse ES stem cells have a mutation frequency about 100-fold lower than that of isogenic mouse somatic cells.[25]

On January 23, 2009, Phase I clinical trials for transplantation of oligodendrocytes (a cell type of the brain and spinal cord) derived from human ES cells into spinal cord-injured individuals received approval from the U.S. Food and Drug Administration (FDA), marking it the world's first human ES cell human trial.[26] The study leading to this scientific advancement was conducted by Hans Keirstead and colleagues at the University of California, Irvine and supported by Geron Corporation of Menlo Park, CA, founded by Michael D. West, PhD. A previous experiment had shown an improvement in locomotor recovery in spinal cord-injured rats after a 7-day delayed transplantation of human ES cells that had been pushed into an oligodendrocytic lineage.[27] The phase I clinical study was designed to enroll about eight to ten paraplegics who have had their injuries no longer than two weeks before the trial begins, since the cells must be injected before scar tissue is able to form. The researchers emphasized that the injections were not expected to fully cure the patients and restore all mobility. Based on the results of the rodent trials, researchers speculated that restoration of myelin sheathes and an increase in mobility might occur. This first trial was primarily designed to test the safety of these procedures and if everything went well, it was hoped that it would lead to future studies that involve people with more severe disabilities.[28] The trial was put on hold in August 2009 due to FDA concerns regarding a small number of microscopic cysts found in several treated rat models but the hold was lifted on July 30, 2010.[29]

In October 2010 researchers enrolled and administered ESTs to the first patient at Shepherd Center in Atlanta.[30] The makers of the stem cell therapy, Geron Corporation, estimated that it would take several months for the stem cells to replicate and for the GRNOPC1 therapy to be evaluated for success or failure.

In November 2011 Geron announced it was halting the trial and dropping out of stem cell research for financial reasons, but would continue to monitor existing patients, and was attempting to find a partner that could continue their research.[31] In 2013 BioTime (AMEX:BTX), led by CEO Dr. Michael D. West, acquired all of Geron's stem cell assets, with the stated intention of restarting Geron's embryonic stem cell-based clinical trial for spinal cord injury research.[32]

BioTime company Asterias Biotherapeutics (NYSE MKT: AST) was granted a $14.3 million Strategic Partnership Award by the California Institute for Regenerative Medicine (CIRM) to re-initiate the worlds first embryonic stem cell-based human clinical trial, for spinal cord injury. Supported by California public funds, CIRM is the largest funder of stem cell-related research and development in the world.[33]

The award provides funding for Asterias to reinitiate clinical development of AST-OPC1 in subjects with spinal cord injury and to expand clinical testing of escalating doses in the target population intended for future pivotal trials.[33]

AST-OPC1 is a population of cells derived from human embryonic stem cells (hESCs) that contains oligodendrocyte progenitor cells (OPCs). OPCs and their mature derivatives called oligodendrocytes provide critical functional support for nerve cells in the spinal cord and brain. Asterias recently presented the results from phase 1 clinical trial testing of a low dose of AST-OPC1 in patients with neurologically-complete thoracic spinal cord injury. The results showed that AST-OPC1 was successfully delivered to the injured spinal cord site. Patients followed 23 years after AST-OPC1 administration showed no evidence of serious adverse events associated with the cells in detailed follow-up assessments including frequent neurological exams and MRIs. Immune monitoring of subjects through one year post-transplantation showed no evidence of antibody-based or cellular immune responses to AST-OPC1. In four of the five subjects, serial MRI scans performed throughout the 23 year follow-up period indicate that reduced spinal cord cavitation may have occurred and that AST-OPC1 may have had some positive effects in reducing spinal cord tissue deterioration. There was no unexpected neurological degeneration or improvement in the five subjects in the trial as evaluated by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam.[33]

The Strategic Partnership III grant from CIRM will provide funding to Asterias to support the next clinical trial of AST-OPC1 in subjects with spinal cord injury, and for Asterias product development efforts to refine and scale manufacturing methods to support later-stage trials and eventually commercialization. CIRM funding will be conditional on FDA approval for the trial, completion of a definitive agreement between Asterias and CIRM, and Asterias continued progress toward the achievement of certain pre-defined project milestones.[33]

The major concern with the possible transplantation of ESC into patients as therapies is their ability to form tumors including teratoma.[34] Safety issues prompted the FDA to place a hold on the first ESC clinical trial, however no tumors were observed.

The main strategy to enhance the safety of ESC for potential clinical use is to differentiate the ESC into specific cell types (e.g. neurons, muscle, liver cells) that have reduced or eliminated ability to cause tumors. Following differentiation, the cells are subjected to sorting by flow cytometry for further purification. ESC are predicted to be inherently safer than IPS cells created with genetically-integrating viral vectors because they are not genetically modified with genes such as c-Myc that are linked to cancer. Nonetheless, ESC express very high levels of the iPS inducing genes and these genes including Myc are essential for ESC self-renewal and pluripotency,[35] and potential strategies to improve safety by eliminating c-Myc expression are unlikely to preserve the cells' "stemness". However, N-myc and L-myc have been identified to induce iPS cells instead of c-myc with similar efficiency.[36]More recent protocols to induce pluripotency bypass these problems completely by using non-integrating RNA viral vectors such as sendai virus or mRNA transfection.

Due to the nature of embryonic stem cell research, there is a lot of controversial opinions on the topic. Since harvesting embryonic stem cells necessitates destroying the embryo from which those cells are obtained, the moral status of the embryo comes into question. Scientists argue that the 5-day old mass of cells is too young to achieve personhood or that the embryo, if donated from an IVF clinic (which is where labs typically acquire embryos from), would otherwise go to medical waste anyway. Opponents of ESC research counter that any embryo has the potential to become a human, therefore destroying it is murder and the embryo must be protected under the same ethical view as a developed human being.[37]

In vitro fertilization generates multiple embryos. The surplus of embryos is not clinically used or is unsuitable for implantation into the patient, and therefore may be donated by the donor with consent. Human embryonic stem cells can be derived from these donated embryos or additionally they can also be extracted from cloned embryos using a cell from a patient and a donated egg.[49] The inner cell mass (cells of interest), from the blastocyst stage of the embryo, is separated from the trophectoderm, the cells that would differentiate into extra-embryonic tissue. Immunosurgery, the process in which antibodies are bound to the trophectoderm and removed by another solution, and mechanical dissection are performed to achieve separation. The resulting inner cell mass cells are plated onto cells that will supply support. The inner cell mass cells attach and expand further to form a human embryonic cell line, which are undifferentiated. These cells are fed daily and are enzymatically or mechanically separated every four to seven days. For differentiation to occur, the human embryonic stem cell line is removed from the supporting cells to form embryoid bodies, is co-cultured with a serum containing necessary signals, or is grafted in a three-dimensional scaffold to result.[50]

Embryonic stem cells are derived from the inner cell mass of the early embryo, which are harvested from the donor mother animal. Martin Evans and Matthew Kaufman reported a technique that delays embryo implantation, allowing the inner cell mass to increase. This process includes removing the donor mother's ovaries and dosing her with progesterone, changing the hormone environment, which causes the embryos to remain free in the uterus. After 46 days of this intrauterine culture, the embryos are harvested and grown in in vitro culture until the inner cell mass forms egg cylinder-like structures, which are dissociated into single cells, and plated on fibroblasts treated with mitomycin-c (to prevent fibroblast mitosis). Clonal cell lines are created by growing up a single cell. Evans and Kaufman showed that the cells grown out from these cultures could form teratomas and embryoid bodies, and differentiate in vitro, all of which indicating that the cells are pluripotent.[41]

Gail Martin derived and cultured her ES cells differently. She removed the embryos from the donor mother at approximately 76 hours after copulation and cultured them overnight in a medium containing serum. The following day, she removed the inner cell mass from the late blastocyst using microsurgery. The extracted inner cell mass was cultured on fibroblasts treated with mitomycin-c in a medium containing serum and conditioned by ES cells. After approximately one week, colonies of cells grew out. These cells grew in culture and demonstrated pluripotent characteristics, as demonstrated by the ability to form teratomas, differentiate in vitro, and form embryoid bodies. Martin referred to these cells as ES cells.[42]

It is now known that the feeder cells provide leukemia inhibitory factor (LIF) and serum provides bone morphogenetic proteins (BMPs) that are necessary to prevent ES cells from differentiating.[51][52] These factors are extremely important for the efficiency of deriving ES cells. Furthermore, it has been demonstrated that different mouse strains have different efficiencies for isolating ES cells.[53] Current uses for mouse ES cells include the generation of transgenic mice, including knockout mice. For human treatment, there is a need for patient specific pluripotent cells. Generation of human ES cells is more difficult and faces ethical issues. So, in addition to human ES cell research, many groups are focused on the generation of induced pluripotent stem cells (iPS cells).[54]

On August 23, 2006, the online edition of Nature scientific journal published a letter by Dr. Robert Lanza (medical director of Advanced Cell Technology in Worcester, MA) stating that his team had found a way to extract embryonic stem cells without destroying the actual embryo.[55] This technical achievement would potentially enable scientists to work with new lines of embryonic stem cells derived using public funding in the USA, where federal funding was at the time limited to research using embryonic stem cell lines derived prior to August 2001. In March, 2009, the limitation was lifted.[56]

The iPSC technology was pioneered by Shinya Yamanakas lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes encoding transcription factors could convert adult cells into pluripotent stem cells.[57] He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent." [58]

In 2007 it was shown that pluripotent stem cells highly similar to embryonic stem cells can be generated by the delivery of three genes (Oct4, Sox2, and Klf4) to differentiated cells.[59] The delivery of these genes "reprograms" differentiated cells into pluripotent stem cells, allowing for the generation of pluripotent stem cells without the embryo. Because ethical concerns regarding embryonic stem cells typically are about their derivation from terminated embryos, it is believed that reprogramming to these "induced pluripotent stem cells" (iPS cells) may be less controversial. Both human and mouse cells can be reprogrammed by this methodology, generating both human pluripotent stem cells and mouse pluripotent stem cells without an embryo.[60]

This may enable the generation of patient specific ES cell lines that could potentially be used for cell replacement therapies. In addition, this will allow the generation of ES cell lines from patients with a variety of genetic diseases and will provide invaluable models to study those diseases.

However, as a first indication that the induced pluripotent stem cell (iPS) cell technology can in rapid succession lead to new cures, it was used by a research team headed by Rudolf Jaenisch of the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, to cure mice of sickle cell anemia, as reported by Science journal's online edition on December 6, 2007.[61][62]

On January 16, 2008, a California-based company, Stemagen, announced that they had created the first mature cloned human embryos from single skin cells taken from adults. These embryos can be harvested for patient matching embryonic stem cells.[63]

The online edition of Nature Medicine published a study on January 24, 2005, which stated that the human embryonic stem cells available for federally funded research are contaminated with non-human molecules from the culture medium used to grow the cells.[64] It is a common technique to use mouse cells and other animal cells to maintain the pluripotency of actively dividing stem cells. The problem was discovered when non-human sialic acid in the growth medium was found to compromise the potential uses of the embryonic stem cells in humans, according to scientists at the University of California, San Diego.[65]

However, a study published in the online edition of Lancet Medical Journal on March 8, 2005 detailed information about a new stem cell line that was derived from human embryos under completely cell- and serum-free conditions. After more than 6 months of undifferentiated proliferation, these cells demonstrated the potential to form derivatives of all three embryonic germ layers both in vitro and in teratomas. These properties were also successfully maintained (for more than 30 passages) with the established stem cell lines.[66]

Read the rest here:
Embryonic stem cell - Wikipedia

New CRISPR Approach Converts Skin Cells into Pluripotent …

Scientists say that for the first time they have been able to convertskin cells into pluripotent stem cells by activating the cells' own genes. The team reportedly used a type of CRISPRa gene-editing technology that does not cut DNA and can activate gene expression without mutating the genome.Up till now, reprogramming has only been possible by introducing the critical genes for the conversion, called Yamanaka factors, artificially into skin cells where they are not normally active.

The study (Human Pluripotent Reprogramming with CRISPR Activators)is published in Nature Communications.

CRISPR-Cas9-based gene activation (CRISPRa) is an attractive tool for cellular reprogramming applications due to its high multiplexing capacity and direct targeting of endogenous loci. Here we present the reprogramming of primary human skin fibroblasts into induced pluripotent stem cells (iPSCs) using CRISPRa, targeting endogenousOCT4,SOX2,KLF4,MYC, andLIN28Apromoters. The low basal reprogramming efficiency can be improved by an order of magnitude by additionally targeting a conserved Alu-motif enriched near genes involved in embryo genome activation (EEA-motif). This effect is mediated in part by more efficient activation ofNANOGandREX1,write the investigators.

These data demonstrate that human somatic cells can be reprogrammed into iPSCs using only CRISPRa. Furthermore, the results unravel the involvement of EEA [EGA-enriched Alu-motif]-motif-associated mechanisms in cellular reprogramming.

"CRISPR/Cas9 can be used to activate genes. This is an attractive possibility for cellular reprogramming because multiple genes can be targeted at the same time. Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is also theoretically a more physiological way of controlling cell fate and may result in more normal cells. In this study, we show that it is possible to engineer a CRISPR activator system that allows robust reprogramming of iPSCs, saysTimo Otonkoski, M.D., Ph.D., at the University of Helsinki.

An important key for success was also activating a critical genetic element that was earlier found to regulate the earliest steps of human embryo development after fertilization. "Using this technology, pluripotent stem cells were obtained that resembled very closely typical early embryonal cells, addsJuha Kere, M.D., Ph.D., at the Karolinska Institute and King's College London.

The discovery also suggests that it might be possible to improve many other reprogramming tasks by addressing genetic elements typical of the intended target cell type.

The technology may find practical use in biobanking and many other tissue technology applications, notes doctoral student Jere Weltner, the first author of the article."In addition, the study opens up new insights into the mechanisms controlling early embryonic gene activation."

Read more here:
New CRISPR Approach Converts Skin Cells into Pluripotent ...

Skin & Human Stem Cells – BareFacedTruth.com

We have a lot of knowledge to share with you about stem cells and their value in skin care. We thought we would start with a current review of ongoing work in human stem cell science to give you some context. In the next few days we will be getting a lot more specific about wound healing, anti-aging, and related applications.

Human Stem Cells: Introduction

Future advances in many medical fields are thought to be dependent on continued progress in stem cell research. In this section, BTF briefly looks at the future of stem cell based therapies in the treatment of traumatic injury, degenerative diseases, and other ailments, and concludes with a review of current cell based therapies (stem cell and non-stem cell) in the field of skin care.

While the possible indications for stem cell based therapies are numerous,the field of stem cell science is young and years (or decades) may pass before todays promising laboratory results translate into useful clinical treatments. Only time will tell whether successes evolve or remain frustratingly elusive. We do know that success is possible.

The first stem cell therapy was bone marrow transplantation, originally accomplished in the mid 1960s. Last year, there were more than 50,000 such transplants worldwide. In earlier years, infusion of filtered bone marrow cells was performed with stem cells comprising but a very small part of the volume. Newer techniques have made it possible to separate cellular types to enable use of much higher concentrations of stem cells.

Much progress has been made in characterizing stem cells and understanding how they function. There is much more to the story than differentiation into tissue specific cells. Recent research shows that perhaps even more important is the fact that stem cells, especially certain types of stem cells, communicate with the cells around them by producing cellular signals called cytokines, of which there are hundreds.

Cytokines trigger specific receptors on cell membranes that result in precise responses. This phenomenon is considered an essential element in the healing response of all tissues. Identifying and characterizing the large number of cytokines is an important part of stem cell research.

Not every induced response is necessarily beneficial. It is the symphony of responses that is important. How to promote helpful responses while inhibiting non-beneficial ones is a continuing focus of cellular biochemical research as well as the basis upon which drug companies spend huge resources developing drugs to either trigger or block particular cytokine receptors. Good examples in the field of dermatology are EGFR (epidermal growth factor receptor) blocking compounds for use in treating susceptible cells, most notably cancers stimulated by EGF.

Potential Treatments

Stem cell therapies hold potential to treat many conditions and diseases that affect millions of people in the U.S.

From the Laboratory to the Bedside

Going from the research laboratory to the bedside takes time. Only one month ago, the FDA granted marketing approval for the first licensed stem cell product. Derived from donated umbilical cord blood, the product contains stem cells that can restore a recipients blood cell levels and function. In the chart below, the type of cells recovered from umbilical cord blood are those designated as HSC cell. They are the exact cells responsible for the success of bone marrow transplantation.

Of particular note are the cells designated in the chart as MSC or mesenchymal stem cells. MSC cells are the focus of intense research in the treatment of a number of conditions because this type of stem cell can differentiate into a variety of cell types including bone, cartilage, muscles, nerve, and skin (fibroblast.)

Recent announcements about stem cells being used to fabricate replacement parts (bone, cartilage, heart muscle) are based on MSC research. They truly are the duct tape of the bodys repair tool box; a phrase coined because of their importance in the healing of injuries.

Research has shown MSC cells reside in a number of tissues, including the bone marrow. Through precise chemical signaling that originate from sites of injury, MSC cells have the ability to become mobile, enter the blood stream and travel through the circulation to the injury. Upon arrival, MSCs orchestrate the healing response. Local resident stem cells are also called into action, to produce more stem cells or to produce needed tissue specific cells. In large part, MSCs accomplish their tasks bio-chemically.

Secreted cytokines have been identified as themajormechanism by which MSCs perform their important reparative functions. There are hundreds of cytokines identified thus far. The healing response is an intricate and balanced process in which many cytokines participate.

Despite their inherent ability to differentiate into essentially any type of cell, embryonic stem cells are unlikely to be a major research focus in the foreseeable future. Ethical and political considerations limit the acceptability of their use. Federal regulations permit research only on existing cell lines which are few in number. It is difficult to see how this prohibition will end any time soon.

Getting Closer butNot There Yet

MSC (mesenchymal stem cell) therapies include use ofcellsanduse of MSC factors, the cytokines or chemical messengers mentioned above. Methods of administration will likely include intravenous infusion, injections into tissues or body spaces, or development of drugs that activate or block certain cytokine effects. Drugs already in development include epidermal growth factor receptor (EGFR) blockers for use in cancer treatment.

Stem Cells and Skin Health

From fetal life to death, the numbers and activity of stem cells diminish. The chart at left shows how the population of mesenchymal stem cells in the bone marrow dwindles with age.

Knowing that stem cells are important in producing differentiated daughter cells (such as fibroblasts within the dermis) and are instrumental in orchestrating the bodys response to injury, it is easy to understand how skin damage from sun exposure, gravity, smoking, trauma, toxins, even repetitive facial movement, accumulates over time.

This is one line of evidence (we will look at others) that mesenchymal stem cells (or more specifically the relative lack of same) has a lot to do with aging. Skin aging included.

Products Claiming to Activate Skin Stem Cells

The number of skin products claiming to activate human skin stem cells is large and growing. As discussed previously on BFT, a whole slew of plant derived stem cell products are being marketing, NONE of which can actually or theoretically activate anything, especially not a human stem cell.

Other products claim to have essential nutrients or antioxidants or some other magical ingredient that will suddenly make stem cells take notice and unleash their regenerative power. It is highly unlikely, except in the most extreme case of malnourishment, that any nutrient or antioxidant is deficient enough to cause a cell not to function.

These and the botanical stem cell products are marketing ploys. Human stem cells deep within the dermis will never know whether or not these substances are applied. Moisturizers and other recognized ingredients in these products can be beneficial to skin appearancebut not because a stem cell is involved.

This is worse than junk science. This is scamming.

View original post here:
Skin & Human Stem Cells - BareFacedTruth.com

Stem Cell Basics – ISSCR

The human body comprises more than 200 types of cells, and every one of these cell types arises from the zygote, the single cell that forms when an egg is fertilized by a sperm. Within a few days, that single cell divides over and over again until it forms a blastocyst, a hollow ball of 150 to 200 cells that give rise to every single cell type a human body needs to survive, including the umbilical cord and the placenta that nourishes the developing fetus.

Each cell type has its own size and structure appropriate for its job. Skin cells, for example, are small and compact, while nerve cells that enable you to wiggle your toes have long, branching nerve fibers called axons that conduct electrical impulses.

Cells with similar functionality form tissues, and tissues organize to form organs. Each cell has its own job within the tissue in which it is found, and all of the cells in a tissue and organ work together to make sure the organ functions properly.

Regardless of their size or structure, all human cells start with these things in common:

Stem cells are the foundation of development in plants, animals and humans. In humans, there are many different types of stem cells that come from different places in the body or are formed at different times in our lives. These include embryonic stem cells that exist only at the earliest stages of development and various types of tissue-specific (or adult) stem cells that appear during fetal development and remain in our bodies throughout life.

Stem cells are defined by two characteristics:

Beyond these two things, though, stem cells differ a great deal in their behaviors and capabilities.

Embryonic stem cells are pluripotent, meaning they can generate all of the bodys cell types but cannot generate support structures like the placenta and umbilical cord.

Other cells are multipotent, meaning they can generate a few different cell types, generally in a specific tissue or organ.

As the body develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells give rise to the specialized cells that make up the bodys organs and tissues. The stem cells that stay in your body throughout your life are tissue-specific, and there is evidence that these cells change as you age, too your skin stem cells at age 20 wont be exactly the same as your skin stem cells at age 80.

Go here to read the rest:
Stem Cell Basics - ISSCR

Stem Cells Can Create Skin For Burn Victims | IFLScience

When burn victims need a skin graft they typically have to grow skin on other parts of their bodies - a process that can take weeks. A new technique uses stem cells derived from the umbilical cord to generate new skin much more quickly. The results were published in Stem Cells Translational Medicine by lead author Ingrid Garzn from the University of Granadas Department of Histology.

Not only can the stem cells develop artificial skin more quickly than regular normal skin growth, but the skin can also be stored so it is ready right when it is needed. Tens of thousands of grafts are performed each year for burn victims, cosmetic surgery patients, and for people with large wounds having difficulty healing. Traditionally, this involves taking a large patch of skin (typically from the thigh) and removing the dermis and epidermis to transplant elsewhere on the body.

The artificial skin requires the use of Wharton's jelly mesenchymal stem cells. As the name implies, Whartons jelly is a gelatinous tissue in the umbilical cord that contains uncommitted mesenchymal stemcells (MSC). The MSC is then combined with agarose(a polysaccharide polymer) and fibrin (the fibrous protein that aids in blood clotting). This yielded two results: skin and the mucosal lining of the mouth. The researchers are very pleased to have found two new uses for the stem cells of Whartons jelly, which have not previously been researched for epithelial applications.

Once the epithelial tissues have been created, researchers can store it in tissue banks. If someone is brought into the hospital following a devastating burn or accident, the tissue is ready to graft immediately; not in a few weeks. However, the stem-cell skin is not able to fully differentiate in vitro. After the graft, it has complete cell-cell junctions and will develop all of the necessary layers of normal epithelial tissue.

The MSCs are taken from the umbilical cord after the baby has been born, which poses no risk to either the mother or the child. This method is relatively inexpensive and has been shown to be more efficient than stem cells derived from bone marrow.

Read more here:
Stem Cells Can Create Skin For Burn Victims | IFLScience

Printing Skin Cells on Burn Wounds – Wake Forest School of …

Skin is the body's largest organ. Loss of the skin barrierresults in fluid and heat loss and the risk of infection. Thetraditional treatment for deep burns is to cover them with healthyskin harvested from another part of the body. But in cases ofextensive burns, there often isn't enough healthy skin toharvest.

During phase I of AFIRM, WFIRM scientists designed, built andtested a printer designed to print skin cells onto burn wounds. The"ink" is actually different kinds of skin cells. A scanner is usedto determine wound size and depth. Different kinds of skin cellsare found at different depths. This data guides the printer as itapplies layers of the correct type of cells to cover the wound. Youonly need a patch of skin one-tenth the size of the burn to growenough skin cells for skin printing.

During Phase II of AFIRM, the WFIRM team will explore whether atype of stem cell found in amniotic fluid and placenta (afterbirth)is effective at healing wounds. The goal of the project is to bringthe technology to soldiers who need it within the next 5 years.

This video -- with a mock hand and burn -- demonstrates the process.

More here:
Printing Skin Cells on Burn Wounds - Wake Forest School of ...

Genetically modified skin grown from stem cells saved a 7 …

Scientists reported Wednesday that they genetically modified stem cells to grow skinthat they successfully grafted over nearly all of a child's body a remarkable achievement thatcouldrevolutionize treatment of burn victims and people with skin diseases.

The research, published in the journalNature, involved a 7-year-old boy who suffers from a genetic disease known as junctional epidermolysis bullosa (JEB)that makes skin so fragile that minor friction such as rubbing causes the skin to blister or come apart.

By the time the boy arrived at Children's Hospital of Ruhr-University in Germany in 2015, he wasgravely ill.Doctors noted that hehad complete epidural loss on about 60 percent of his body surface area, was in so much pain that he was on morphine, and fighting off a systemic staph infection. The doctors triedeverything they could think of: antibiotics, changing dressings, grafting skin donated by his father. But nothing worked, and they told his parents to prepare for the worst.

We had a lot of problems in the first days keeping this kid alive, Tobias Hirsch, one of the treating physicians, recalled in a conference call with reporters this week.

Gene therapy to treat a skin disease. (Nature News & Views)

Hirsch and his colleague Tobias Rothoeft began to scour the medical literature foranything that might help and came acrossanarticle describing a highlyexperimental procedure to genetically engineer skin cells.They contacted the author, Michele De Luca, of the Center for Regenerative Medicine at the University of Modena and Reggio Emilia in Italy. De Luca flew out right away.

Using a technique he had used only twice before and even then only on small parts of the body,De Luca harvested cells froma four-square-centimeter patch of skin on anunaffected part of the boy's body and brought them into the lab. There, he genetically modified them so that they no longer contained the mutated form of a gene known to cause the disease and grew the cells into patches of genetically modified epidermis. They discovered, the researchers reported, that the human epidermis is sustained by a limited number of long-lived stem cells which are able to extensively self-renew.

In three surgeries, the child's doctorstook that lab-grownskin and used it to cover nearly 80 percent ofthe boy's body mostly on the limbs and on his back, which had suffered the most damage. The procedure was permitted under a compassionate useexception that allows researchers under certain dire circumstances to make a treatment available even though it is not approved by regulators for general use. Then, over the course of the nexteight months while thechild was in the intensive care unit, they watched and waited.

The boy'srecovery was stunning.

The regenerated epidermis firmly adhered to the underlying dermis, the researchers reported. Hair follicles grew out of some areas. And even bumps and bruises healed normally. Unlike traditional skin grafts that requireointmentonce or twice a day to remain functional, the boy's new skin was fine with the normal amount of washing and moisturizing.

The epidermis looks basically normal. There is no big difference, De Luca said. He said he expects the skin to last basically the life of the patient.

In an analysis accompanying themain article in Nature, Mariacelest Aragona and Cedric Blanpain wrote that this therapy appears to be one of the few examples of trulyeffective stem-cell therapies. The study demonstrates the feasibility and safety of replacing the entire epidermis using combined stem-cell and gene therapy, and also provides important insights into how different types of cellswork together to help ourskin renew itself.

They said there are still many other lingering questions, including whether such procedures might work better in children than adults and whether there would be longer-term adverseconsequences, such as the development ofcancer.

There are also manychallenges to translating this research to treating wounds sustained in fires or other violent ways. In the skin disease that was treated in the boy, the epidermis is damaged but the layer beneath it, the dermis, is intact. The dermis is what the researchers called an ideal receiving bed for the lab-grown skin. But if deeper layers of the skin are burned or torn off, it's possible that the artificial skin would not adhere as well.

No matter how you prepare, its a bad situation, De Luca said. For the time being, he says he's continuingto study the procedure in two clinical trials that involve genetic diseases.

Meanwhile, Hirsch and Rothoeft report that the boy is continuing to do well and is not on any medication for the first time in many years. Doctors are carefully monitoring the child for any signs that there may be some cells that were not corrected and that the disease may reemerge, but right now that does not appear to be happening in the transplanted areas. However, the child does have some blisteringin about 2 to 3 percent of his body in non-grafted areas, and they are considering whether to replace that skin as well.

But for now, they are giving the boy time to be a boy, Rothoeft said: The kid is now back to school and plays soccer and spends other days with the children.

Read more:

New evidence of brain damage from West Nile virus years after bite, scientists say

She signed up to be a surrogate mother and unwittingly gave away her own child

Toddler hospitalized after his fathers arrest postponed kidney donation

Read the original here:
Genetically modified skin grown from stem cells saved a 7 ...

Adult Stem Cells and Gene Therapy Save a Young Boy With …

When people talk about something that saved their skin, they usually mean that it helped them out of a difficult situation. But a young boy in Germany has literally had his skinand his lifesaved through the use of genetically-engineered adult stem cells.

The boy suffered from a condition called junctional epidermolysis bullosa, a severe and often lethal disease in which a mutation leaves the skin cells unable to interconnect and maintain epidermal integrity. The skin blisters and falls off, and the slightest touch or abrasion can leave a patch of skin gone and a painful, difficult-to-heal wound behind. There is no cure for the disease and little other than palliative care available for sufferers of the most severe forms.

Now researchers have combined use of adult stem cells with genetic engineering to successfully treat the young boys life-threatening condition. The boys doctors in Germany called on Dr. Michele De Luca at the University of Modena and Reggio Emilia in Italy to use a technique he has developed to correct the genetic problem and grow new skin.

Over many years, Dr. De Luca has developed a method to grow skin from a patients own epidermal adult stem cells, correct the genetic mutation in the laboratory, and use the genetically-engineered adult stem cells to grow healthy new skin. Dr. De Luca and his team took a tiny patch of skin from the boy, isolated the epidermal stem cells and corrected the genetic problem in stem cell culture. Then they grew sheets of genetically-corrected skin and transplanted them onto the boy.

Reports called the boys recovery stunning, with successful replacement of 80 percent of his skin. Before the procedure, the boys doctors tried several treatments to no avail. One doctor even said, We had a lot of problems in the first days keeping this kid alive. Yet within six months of starting the process, the boy was back in school.

PRO-LIFE COLLEGE STUDENT? LifeNews is looking for interns interested in writing, social media, or video creation. Contact us today.

His skin has remained healthy and completely blister-free. According to the published reports now 21 months after the boys transplant, he loves to show off his new skin and is enjoying school, playing soccer, and being a normal kid. The research has also taught scientists much about the possibilities of using adult stem cells in combination with gene therapy for treatment of diseases.

LifeNews Note: File photo.

Here is the original post:
Adult Stem Cells and Gene Therapy Save a Young Boy With ...

Hairy skin from mouse stem cells may hold a cure for …

In a finding that may provide a potential cure for baldness, researchers have used stem cells from mice to develop a skin patch that is complete with hair follicles in a laboratory.

Using the skin model, the scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.

The novel skin tissue more closely resembles natural hair than existing models and may prove useful for testing drugs, understanding hair growth, and reducing the practice of animal testing, the researchers said.

You can see the organoids with your naked eye, said Karl Koehler, assistant professor at the Indiana University. It looks like a little ball of pocket lint that floats around in the culture medium. The skin develops as a spherical cyst, and then the hair follicles grow outward in all directions, like dandelion seeds.

The scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.(Getty Images/iStockphoto)

In the study, published in Cell Reports, Koehler and team originally began using pluripotent stem cells from mice, which can develop into any type of cells in the body, to create organoids -- miniature organs in vitro -- that model the inner ear.

But they discovered that they were generating skin cells in addition to inner ear tissue. Thus, they decided to coax the cells into sprouting hair follicles. Moreover, they found that mouse skin organoid technique could be used as a blueprint to generate human skin organoids.

It could be potentially a superior model for testing drugs, or looking at things like the development of skin cancers, within an environment thats more representative of the in vivo microenvironment, Koehler noted.

Follow @htlifeandstyle for more

Go here to read the rest:
Hairy skin from mouse stem cells may hold a cure for ...

Fully Functional Skin Grown From Stem Cells Could Double …

If theres one thing skin can do well, its grow. Each month our body replaces its skin,nearly 19 million skin cells per inch a feat thats been far less successful in the lab. However, the days of lab-grown skin may not be too far off:Recently, a team of Japanese scientists not only grew fully functional skin tissue, but also transplanted it successfully onto living organisms.

Though the technique has only been tested on mice so far, the team predicts it could one day revolutionize treatments for burn victims, or other patients that have suffered catastrophic skin damage. On a less gruesome note, the team says it may also be useful in treating a more common condition: baldness.

The study, published online in Science Advances, involved researchers from the Riken Center for Developmental Biology and Tokyo University of Science, among other Japanese institutions. The researchers first step was to transform cells from the gums of mice into induced pluripotent stem cells, or adult cells that have been genetically reprogrammed back into an embryonic stem cell state. This is done by forcing the cells to express genes associated with embryonic stem cells. Once transformed into stem cells, they can then be manipulated to become any type of cell in the body.

Next, the team placed the stem cells into a petri dish, where they added the molecule Wnt10b, which coaxed the stem cells to form into clusters that resembled a developing embryo. These clusters were then transplanted into mice bred without a fully functional immune system, which ensured that their bodies did not reject the transplant. Here, they underwent cell differentiation, the process by which unspecialized cells become specialized. In this case, they were becoming skin cells, and once the process had begun, the cells were transplanted again onto the skin of new mice, where they made normal connections with surrounding nerve and muscle tissue to become fully functional skin.

Skin is one of the largest and most important organs in the human body, yet its also one of the most difficult to treat when its damaged. Current treatment options involve painful skin grafts or barely functional artificial skin. According to the new study, however, being able to grow skin in the lab will account for more than just skin's use in protecting our inner bodies. The lab-grown skin also showed the ability to develop hair follicles and sweat glands, which play a role in controlling body temperature and keeping the skin moisturized it's in these areas that skin repair has often fallen short.

"Up until now, artificial skin development has been hampered by the fact that the skin lacked the important organs, such as hair follicles and exocrine glands, lead researcher, Takashi Tsuji of the RIKEN Center for Developmental Biology,said in a recent statement. With this new technique, we have successfully grown skin that replicates the function of normal tissue.

In addition to revolutionizing skin repair, the technique may also help those with certain types of hair loss. The study noted that using Wnet10b on the stem cells resulted in the production of a higher number of hair follicles than previous attempts at growing skin. Within two weeks of receiving the transplanted skin, the mice began to grow hair. Dr. Seth Orlow, chair of dermatology at NYU School of Medicine in New York City, told U.S. News Health that this feature of the lab-grown skin could be manipulated to help patients with both alopecia and pattern baldness.

In theory, we may eventually be able to create structures like hair follicles and other skin glands that could be transplanted back to people who need them, Orlow told U.S. Health News.

According to The Washington Post, the technique is still about five to 10 years away from being safe and effective enough to be used on humans. But with about 95 percent of men and 50 percent of women experiencing some degree of baldness over the course of their lives, its a safe bet that there will be no shortage of eager customers ready to get their hair back when the treatment is approved for use in doctors offices.

Source: Takagi R, Ishimaru J, Sugawara A, et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Science Advances . 2016

Read more from the original source:
Fully Functional Skin Grown From Stem Cells Could Double ...

Regeneration of the entire human skin using transgenic …

Epidermolysis bullosais is rare, but the charity DEBRA, which campaigns for EB patients, estimates half a million people are affected around the world.

There are different forms of epidermolysis bullosa, including simplex, dystrophic and, as in this case, junctional.

Each is caused by different genetic faults leading to different building blocks of skin being missing.

Prof Michele De Luca, from the University of Modena and Reggio Emilia, told the BBC: The gene is different, the protein is different and the outcome may be different [for each form of EB] so we need formal clinical trials.

But if they can make it work, it could be a therapy that lasts a lifetime.

An analysis of the structure of the skin of the first patient to get 80% of his replaced has discovered a group of long-lived stem cells are that constantly renewing his genetically modified skin.

Genetically modified skin cells were grown to make skin grafts totalling 0.85 sq m (9 sq ft). It took three operations over that winter to cover 80% of the childs body in the new skin. But 21 months later, the skin is functioning normally with no sign of blistering.

Nature Regeneration of the entire human epidermis using transgenic stem cells

Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies

SOURCES BBC News, Nature

Follow this link:
Regeneration of the entire human skin using transgenic ...

Turning Skin Cells Into Brain Cells – 06/28/2012

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntingtons disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating HD in a dish, the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntingtons Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the studys lead researchers. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntingtons disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimers and Parkinsons.

To conduct their experiment, Ross took a skin biopsy from a patient with very early onset HD. When seen by Ross at the HD Center at Hopkins, the patient was just seven years old. She had a very severe form of the disease, which rarely appears in childhood, and of the mutation that causes it. Using cells from a patient with a more rapidly progressing form of the disease gave Ross team the best tools with which to replicate HD in a way that is applicable to patients with all forms of HD.

Her skin cells were grown in culture and then reprogrammed by the lab of Hongjun Song, Ph.D., a professor at Johns Hopkins Institute for Cell Engineering, into induced pluripotent stem cells. A second cell line was generated in an identical fashion in Dr. Rosss lab from someone without HD. Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

Scientists at Johns Hopkins and other consortium labs converted those cells into generic neurons and then into medium spiny neurons, a process that took three months. What they found was that the medium spiny neurons deriving from HD cells behaved just as they expected medium spiny neurons from an HD patient would. They showed rapid degeneration when cultured in the lab using basic culture medium without extensive supporting nutrients. By contrast, control cell lines did not show neuronal degeneration.

These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntington's Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.

Specifically, the damage caused by HD is due to a mutation in the huntingtin gene (HTT), which leads to the production of an abnormal and toxic version of the huntingtin protein. Although all of the cells in a person with HD contain the mutation, HD mainly targets the medium spiny neurons in the striatum, part of the brains basal ganglia that coordinates movement, thought and emotion. The ability to work directly with human medium spiny neurons is the best way, researchers believe, to determine why these specific cells are susceptible to cell stress and degeneration and, in turn, to help find a way to halt progression of HD.

Much HD research is conducted in mice. And while mouse models have been helpful in understanding some aspects of the disease, researchers say nothing compares with being able to study actual human neurons affected by HD.

For years, scientists have been excited about the prospect of making breakthroughs in curing disease through the use of stem cells, which have the remarkable potential to develop into many different cell types. In the form of embryonic stem cells, they do so naturally during gestation and early life. In recent years, researchers have been able to produce induced pluripotent stem cells (iPSCs), which are adult cells (like the skin cells used in Rosss experiments) that have been genetically reprogrammed back to the most primitive state. In this state, under the right circumstances, they can then develop into most or all of the 200 cell types in the human body.

The other members of the research consortium include the University of Wisconsin School of Medicine, Massachusetts General Hospital and Harvard Medical School, the University of California, San Francisco, Cardiff University the Universita degli Studi diMilano and the CHDI Foundation.

Primary support for this research came from an American Recovery and Reinvestment Act (ARRA) grant (RC2-NS069422) from the National Institutes of Healths National Institute of Neurological Disorders and Stroke and a grant from the CHDI Foundation, Inc.

Other Johns Hopkins researchers involved in this study include Sergey Akimov, Ph.D.; Nicolas Arbez, Ph.D.; Tarja Juopperi, D.V.M., Ph.D.; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim; Eka Chighladze, M.S., M.B.A.; Chun Zhong; Georgia Makri; Robert N. Cole; Russell L. Margolis, M.D.; and Guoli Ming, M.D., Ph.D.

More:
Turning Skin Cells Into Brain Cells - 06/28/2012

Buy Serum Stem Cells Skin Care Products | CHOLLEY

CHOLLEY PhytocellBooster is ideal for smoothening wrinkles and eliminating the signs of aging or fatigue. It is a perfect product in many situations, such as after waking up in the morning, an exhausting day at work, and prior to attending a business meeting or party.

CHOLLEY Phytocell Booster instantly reduces wrinkles and imparts a lifted and younger-looking appearance to the skin. With Swiss guarantee of quality and excellence, the stem cells serum is clinically tested and found to be suitable for all skin type and complexions.

To exploit the power of IC-RAMP technology and Swiss stem cells technology, use CHOLLEY Phytocell Cream in combination with CHOLLEY Phytocell Booster. They provide your skin with full spectrum, day and night abti-aging care.

For best results, in morning and at night, apply CHOLLEY Phytocell Booster on the face, neck and dcollet. When the product is fully absorbed, complete the treatment with the application of CHOLLEY Phytocell Cream. It is the perfect Anti-aging and Antioxidant program.

Go here to read the rest:
Buy Serum Stem Cells Skin Care Products | CHOLLEY

Archives