Archive for the ‘Skin Stem Cells’ Category
Doctors Use Adult (Not Embryonic) Stem Cells To Grow And Implant Petri-Dish Retina
The clones are coming! The clones are coming! (Maybe.) Doctors have grown a retina in a petri dish using stem cells from a 70-year-old patients skin and successfully transplanted the retina to her eye at Japan's Riken Center for Developmental Biology.
This marks the first time a transplanted organ was grown from skin cells from the recipient and not an embryo, The Globe and Mail reports. Until now, scientists have been mired in a debate regarding the use of embryonic stem cells to create transplant tissue. Using a patients own adult stem cells avoids that controversy and also reduces the chance the patient could reject the transplant.
Stem cells hold the promise of curing many diseases, including macular degeneration and Parkinsons.
However, there are risks associated with using adult stem cells. Scientists must turn regular adult cells into dividing cells, and there is concern that cells could turn cancerous after transplant. You only need one stem cell left in the graft that could lead to cancer, Dr. Janet Rossant told the The Globe and Mail. Rossant is chief of research at Torontos Hospital for Sick Children and past president of the International Society for Stem Cell Research.
The Riken Center for Developmental Biology has also been in the news lately because its deputy director committed suicide following accusations of scientific misconduct and the retraction of two papers (unrelated to this stem-cell procedure) that were published in the journal Nature.
Original post:
Doctors Use Adult (Not Embryonic) Stem Cells To Grow And Implant Petri-Dish Retina
New engineering method shows promise for faster healing, more cosmetically appealing skin grafts
Durham, NC (PRWEB) October 24, 2014
A new way to produce engineered skin not only appears to overcome several pitfalls of current skin grafting technologies, it also speeds up the healing process, reduces scarring and produces hair. The method, outlined in the October issue of STEM CELLS Translational Medicine, could represent a breakthrough for treating deep skin injuries that result from severe burns and chronic wounds.
A deep skin injury completely destroys the skins regenerative elements. These wounds heal by contraction, with epithelization (the process by which a new layer of skin is formed) only at the edges. The result is generally reduced joint movement and extensive scarring. In the case of an extensive lesion, healing can sometimes be unsuccessful and the lesion becomes life threatening.
Engineered tissue shows promise as a way to treat deep skin injuries, but its success depends on finding a suitable formula of stem cells for seeding the scaffold upon which the skin substitute is grown.
Mara Eugenia Bala, Ph.D., principal investigator at the National Scientific and Technical Research Council (Consejo Nacional de Investigaciones Cientficas y Tcnicas - CONICET) in Buenos Aires, led a team of the Instituto de Ciencia y Tecnologa Csar Milstein researchers in evaluating what happens when dermal papilla cells, found at the hair follicle bulb, are infused with human hair follicle stem cells (HFSCs). Her group tested three different engineered tissues using a cell-free dermal matrix as a scaffold and seeded it with human adult cell mixtures: one scaffold was seeded with HFSCs alone, another with HFSCs plus human dermal papilla cells, and a third with a mix of HFSCs and human dermal fibroblasts.
Initial laboratory results showed that the engineered tissue containing HFSC and dermal papilla cells had a more regular stratification pattern and a higher number of p63-positive basal epidermal cells, which make up the lower layer of the epidermis (skin), than those carrying HFSC and dermal fibroblasts. p63 expression is considered an epithelial stem cell marker of the epidermis.
They next grafted the dermal papilla cell-containing engineered tissue onto nude mice and found similar results: Over time the skin maintained a constant number of p63-positive cells. These results suggest that an epidermal stem cell population is maintained in the graft, allowing the physiological turnover of skin cells.
In addition, Dr. Bala said, our study suggested that the presence of dermal papilla cells in engineered skin encouraged the graft to take and stimulated the wound healing process. Furthermore, we showed for the first time to our knowledge that the mixture of dermal papilla cells and HFSCs, both of adult human origin, were able to induce hair bud-like structures reminiscent of the hair follicle growth process.
Dr. Gustavo Jos Leirs, co-author of this study, added, The use of cells from adult origin in bioengineered skin substitutes constitutes a promising finding due to their easy access from the patient himself. These results indicate that this type of skin substitute could represent a true permanent device.
The development of new treatments for burn injuries and other wounds is a significant clinical need, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study demonstrates the promise of using dermal papilla cells as a component of engineered skin to produce a functional skin equivalent.
Continue reading here:
New engineering method shows promise for faster healing, more cosmetically appealing skin grafts
UCSD Gets $8 Million For Stem Cell Research
UC San Diego has been named an "alpha clinic" for the clinical study of stem cells, and the distinction comes with $8 million in research grants.
Stem cell therapies represent a new way of treating disease by regenerating damaged tissues and organs. Spokesmen for the UCSD school of medicine say the alpha clinic will focus on clinical trials in humans, not just basic research based on animals.
The decision to make UCSD an alpha clinic was announced Friday by the California Institute for Regenerative Medicine, which was created by California voters after they approved $3 billion for stem cell funding in 2004.
Everything we do has one simple goal, to accelerate the development of successful treatments for people in need, said C. Randal Mills, CIRM president and CEO.
Catriona Jamieson, professor of medicine at UC San Diego School of Medicine, is the alpha clinic grants principal investigator. She said the clinic will provide needed infrastructure for first-in-human stem cell-related clinical trials.
"It will attract patients, funding agencies and study sponsors to participate in, support and accelerate novel stem cell clinical trials and ancillary studies for a range of arduous diseases, Jamieson said.
The university has already announced human stem cell trials, aimed at treating spinal chord injuries, leukemia and type-1 diabetes.
UCSD spokesmen said researchers are conducting those trials using fetal and embryonic stems cells, as well as stem cells made from reprogramming skin cells.
Read this article:
UCSD Gets $8 Million For Stem Cell Research
Stem Cells Grown From Patient's Arm Used To Replace Retina
BarbaraHudson writes: The Globe and Mail is reporting the success of a procedure to implant a replacement retina grown from cells from the patient's skin. Quoting: "Transplant doctors are stepping gingerly into a new world, one month after a Japanese woman received the first-ever tissue transplant using stem cells that came from her own skin, not an embryo. On Sept. 12, doctors in a Kobe hospital replaced the retina of a 70-year-old woman suffering from macular degeneration, the leading cause of blindness in the developed world. The otherwise routine surgery was radical because scientists had grown the replacement retina in a petri dish, using skin scraped from the patient's arm.
The Japanese woman is fine and her retinal implant remains in place. Researchers around the world are now hoping to test other stem-cell-derived tissues in therapy. Dr. Jeanne Loring from the Scripps Research Institute in La Jolla, Calif., expects to get approval within a few years to see whether neurons derived from stem cells can be used to treat Parkinson's disease."
The rest is here:
Stem Cells Grown From Patient's Arm Used To Replace Retina
Ageless Derma Introduces Their Latest Age-Defying Facial Mask Developed Using Exotic Apple Stem Cells
Irvine, California (PRWEB) October 23, 2014
Ageless Derma is one of the most highly esteemed providers of anti-aging and everyday skin care products. They are proud to introduce their latest innovation in the facial mask arena with their Antioxidant Apple Stem Cell Hydrating Mask. This facial product uses stem cell technology derived from a rare Swiss apple known for its long and healthy shelf life. The additional all natural ingredients in this mask make it a potent antidote to dry, dull skin that craves moisture and revitalization.
The Antioxidant Apple Stem Cell Hydrating Mask uses PhytoCellTecTM technology to cultivate cells from the exotic Swiss apple, Malus Domestica. This apple variety has the ability to stay fresh for extended periods of time without the accompanying shriveling that occurs with other fruit varieties. Its acidic flavor, however, prevented farmers from growing it widely for consumer consumption. Its scientific advantages were taken note of and the stem cells are put to powerful use in Ageless Dermas Antioxidant Apple Stem Cell Hydrating Mask. This liposomal formulation has been incorporated into the effective facial mask for smoothing wrinkles and keeping skin looking younger through its antioxidant activity.
Other ingredients strategically placed in the Antioxidant Apple Stem Cell Hydrating Mask include natural enzymes for softening the skin. Aloe Barbadenis Leaf Juice heals, protects and hydrates skin. Sunflower Seed Oil is also a protectant and deep moisturizer. The natural Kaolin Clay is what extracts toxins, grime and impurities from the skin, making the complexion clear, smooth, and feeling revitalized.
The key antioxidants also used in Antioxidant Apple Stem Cell Hydrating Mask are green tea and pomegranate. They fight the damage caused by free radicals and also protect skin against the suns UV damage, a major cause of fine lines, wrinkles and irritated skin.
The developers at Ageless Derma Skin Care know they are making something remarkable happen in the skin care world. Their line of physician-grade skin repair products incorporates an invaluable philosophy: supporting overall skin health by delivering the most cutting-edge biotechnology and pure, natural ingredients to all of the skin's layers. This approach continues to resonate even today with the companys founder, Dr. Farid Mostamand, who close to a decade ago began his journey to deliver the best skin care alternatives for those who want to have healthy and beautiful looking skin at any age. About this latest Ageless Derma mask, Dr. Mostamand says, The Antioxidant Apple Stem Cell Hydrating Mask is an extraordinary development in our Ageless Derma product line. Its potent ingredients work in synergy to bring moisture and radiance back to the complexion by using natures own antioxidants.
Ageless Derma products are formulated in FDA-approved Labs. All ingredients are inspired by nature and enhanced by science. Ageless Derma products do not contain parabens or any other harsh additives, and they are never tested on animals. The company has developed five unique lines of products to address any skin type or condition.
Read more from the original source:
Ageless Derma Introduces Their Latest Age-Defying Facial Mask Developed Using Exotic Apple Stem Cells
Working intestine grown in lab
Getty Scientists have grown a working intestine.
Functioning human intestine has been grown from stem cells in the laboratory, paving the way to new treatments for gut disorders.
Scientists first created tissue fragments called "organoids" that were transplanted into mice, where they matured.
Each animal produced "significant" amounts of fully functional human intestine.
US lead scientist Dr Michael Helmrath, from the Intestinal Rehabilitation Program at Cincinnati Children's Hospital, on Sunday said: "This provides a new way to study the many diseases and conditions that can cause intestinal failure, from genetic disorders appearing at birth to conditions that strike later in life, such as cancer and Crohn's disease.
"These studies also advance the longer-term goal of growing tissues that can replace damaged human intestine."
The organoids were generated from induced pluripotent stem cells (iPSCs) - stem cells created by genetically altering adult skin cells, causing them to revert to an immature embryonic state.
Like stem cells taken from early stage embryos, iPSCs have the ability to become any type of tissue in the body.
The fragments were grafted onto the kidneys of mice to provide them with a necessary blood supply.
The cells then grew and multiplied on their own. The mice used were genetically engineered so their immune systems would accept human tissues.
Excerpt from:
Working intestine grown in lab
UC San Diego Health System announces human testing of stem cell therapies
SAN DIEGO (CNS) - UC San Diego Health System announced Monday that human testing of injected neural stem cell therapies are underway at its Sanford Stem Cell Clinical Center.
Researchers are conducting three different trials -- one on a 26-year-old woman paralyzed after a traffic crash, and others on diabetes and leukemia patients.
"What we are seeing after years of work is the rubber hitting the road," said Lawrence Goldstein, director of the UC San Diego Stem Cell program and Sanford Stem Cell Clinical Center.
"These are three very ambitious and innovative trials," he said. "Each followed a different development path -- each addresses a very different disease or condition. It speaks to the maturation of stem cell science that we've gotten to the point of testing these very real medical applications in people."
The first tests are being made with low doses in order to ensure the safety of the patients, Goldstein said.
Working with Maryland-based Neuralstem Inc., neural stem cells were injected into the site of the paralyzed woman's spinal cord injury on Sept. 30, and she is recovering at home without complications or adverse effects, said Dr. Joseph Ciacci, a neurosurgeon at UC San Diego Health System. Her name was not released.
The researchers hope that the transplanted cells will develop into neurons that bridge the gap created by the injury, replace severed or lost nerve connections and restore at least some motor and sensory function. According to UCSD, testing in laboratory rats with spinal cord injuries were promising.
A two-year trial on about 40 Type 1 diabetes patients will involve implanting cells under the skin that were derived from embryonic stem cells, with the hope they will safely mature into pancreatic beta and other cells able to produce a continuous supply of needed insulin and other substances, according to the researchers. The first procedure is expected to take place sometime this month, according to UCSD.
Type 1 diabetes, which usually onsets during childhood and has no cure, causes the pancreas to produce little or no insulin. Patients have to inject insulin daily and rigorously manage their diet and lifestyle.
The third trial will involve a potential drug to fight chronic lymphocytic leukemia, the most common form of blood cancer in adults. Patients in the test will receive the drug via an intravenous infusion every 14 days at the UCSD Moores Cancer Center.
Read the original post:
UC San Diego Health System announces human testing of stem cell therapies
Can a bodys own stem cells help heal a heart?
If you skin your knee, your body makes new skin. If you donate a portion of your liver, whats left will grow back to near-normal size. But if you lose a billion heart cells during a heart attack, only a small fraction of those will be replaced. In the words of Ke Cheng, an associate professor of regenerative medicine at N.C. State, The hearts self-repair potency is very limited.
Cheng has designed a nanomedicine he hopes will give the heart some help. It consists of an engineered nanoparticle that gathers the bodys own self-repair cells and brings them to the injured heart tissue.
In this case, the self-repair cells are adult stem cells. A stem cell is a very rich biological factory, Cheng said. Stem cells can become heart muscle, or they can produce growth factors that are beneficial to the regrowth of heart muscle.
After a heart attack, dying and dead heart cells release chemical signals that alert stem cells circulating in the blood to move to the injured site. But there just arent very many stem cells in the bloodstream, and sometimes they are not sufficiently attracted to the injured tissue.
Matchmakers with hooks
The nanomedicine Cheng designed consists of an iron-based nanoparticle festooned with two different kinds of hooks one kind of hook grabs adult stem cells, and the other kind of hook grabs injured heart tissue. Cheng calls the nanomedicine a matchmaker, because it brings together cells that can make repairs with cells that need repairs.
The hooks are antibodies that seek and grab certain types of cells. Because the antibodies are situated on an iron nanoparticle, they and the stem cells theyve grabbed can be physically directed to the heart using an external magnet. Cheng calls the nanomedicine MagBICE, for magnetic bifunctional cell engager.
The magnet is a first pass to get the iron-based particles and antibodies near the heart. Once there, the antibodies are able to identify and stick to the injured heart tissue, bringing the stem cells right where they need to go. Using two methods of targeting the magnet and the antibodies improves the chances of being able to bring a large number of stem cells at the site of injury.
In addition to providing a way to physically move the stem cells to the heart, the iron nanoparticles are visible on MRI machines, which allows MagBICE to be visualized after its infused into the bloodstream.
Cheng doesnt foresee much toxicity from the nanomedicine unless someone is allergic or particularly sensitive to iron. In fact, the iron-based nanoparticle that forms the platform for the antibodies is an FDA-approved IV treatment for anemia.
Phytoceramides Skin Therapy Review – Smooth Out Wrinkles Using Phytoceramides Skin Therapy – Video
Phytoceramides Skin Therapy Review - Smooth Out Wrinkles Using Phytoceramides Skin Therapy
Click Here To Order your Phytoceramides skin Therapy http://myskinmd.com/go/get-phytoceramides-skin-therapy-now/ Click Here To Learn Read Phytoceramides Cust...
By: John Taylor
See the original post:
Phytoceramides Skin Therapy Review - Smooth Out Wrinkles Using Phytoceramides Skin Therapy - Video
Vision Quest: Stem Cells Treat Blinding Disease
Powerful stem cells injected into the eyes of 18 patients with diseases causing progressive blindness have proven safe and dramatically improved the vision of some of the patients, scientists report.
Three years of follow up show that vision improved measurably in seven of the patients, the team at Advanced Cell Technology report in the Lancet medical journal. In some cases, the improvement was dramatic.
For instance, we treated a 75-year-old horse rancher who lives in Kansas, said Dr. Robert Lanza, chief medical officer for the Massachusetts-based company. The rancher had poor vision 20/400 in one eye.
Once month after treatment his vision had improved 10 lines (20/40) and he can even ride his horses again. Other patients report similarly dramatic improvements in their lives, Lanza added. For instance, they can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.
Not all the patients improved and one even got worse. But overall, Lanzas team reported, the patients vision improved by three lines on a standard vision chart.
"They can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.
The researchers treated only one eye in each patient. There was no improvement in vision in the untreated eyes.
The patients had either Stargardts disease, a common type of macular degeneration, or dry macular degeneration, which is the leading cause of blindness in the developed world. There are no treatments for either condition, and patients gradually lose vision over the years until they are, often, blind.
Lanzas team used human embryonic stem cells, made using human embryos. They are powerful cells, each one capable of giving rise to all the cells and tissues in the body. The ACT team took one cell from embryos at the eight-cell stage to make batches of these cells.
They reprogrammed them to make immature retinal cells, which they injected into the eyes of the patients. The hope is that the immature cells would take up the places of the degenerated cells and restore vision.
See the original post:
Vision Quest: Stem Cells Treat Blinding Disease
Retinal stem cell study shows promise for therapy
SAN DIEGO (KUSI) - Macular degeneration is the leading cause of vision loss for people over the age of 50. Scientists have discovered a new therapy that may actually restore sight in those affected.
Scientists are excited not only because it worked, and helped some people see clearly again, but also because this study puts a focus on an new kind of stem cell therapy, using skin cells.
Macular degeneration causes a blurry or black area in the middle of your field of vision that grows over time, causing more sight loss.
There is no cure, but a new study published this week in the journal The Lancet, is giving patients hope.
Embryonic stem cells were turned into retinal cells and implanted into the eyes of 18 patients.
Vision improved for about half of them.
Dr. Andreas said, "This study was primarily to see if these cells would be safe, and the bonus was that some people started to see better."
Dr. Andreas Bratyy-Layal and Dr. Suzanne Peterson are stem cell scientists with the Scripps Research Institute.
They see this as a major breakthrough.
Although this sight study did do that, Dr. Peterson says labs around the country, including here in San Diego, are moving away from the practice.
Continue reading here:
Retinal stem cell study shows promise for therapy
Stem cells offer hope to vision impaired
Health officials hit back at e-cig claims
Health professionals say more research is needed to prove using e-cigarettes is a good way to quit smoking.
According to new health figures, Australian women are far less likely to survive a heart attack than men.
Research says high factor sunscreen can't be relied on to protect against the deadliest skin cancer form.
A British study using skin electrodes has found men experience greater levels of emotion than women.
High protein diets may protect against stroke, especially if they contain a lot of fish, scientists say.
Driving too much is bad for your health, according to a study of 40-thousand middle-aged Australians.
Researchers say the financial crisis may have led to thousands of suicides in Europe and North America.
Biologists have devised a new weapon against malaria by genetically engineering mosquitoes.
Stomach-shrinking bariatric surgery beats other forms of treatment in bringing about remission of diabetes.
See the rest here:
Stem cells offer hope to vision impaired
Stem-cell success poses immunity challenge for diabetes
Suzanne Kreiter/Boston Globe/Getty
A research team led by Douglas Melton (left) has made insulin-secreting cells using human stem cells.
Each year, surgeon Jose Oberholzer frees a few people with type1 diabetes from daily insulin injections by giving them a transplant of the insulin-secreting -cells that the disease attacks. But it is a frustrating process. Harvested from a cadavers pancreas, the -cells are in short supply and vary in quality. And the patients must take drugs to suppress their immune response to the foreign cells, which can in turn cause kidney failure.
On 9October, stem-cell researcher Douglas Melton of Harvard University in Cambridge, Massachusetts, and his colleagues reported an advance that has the potential to overcome Oberholzers frustrations and allow many more people with type1 diabetes to receive transplants. Melton and his team have achieved a long-term goal of stem-cell science: they have created mature -cells using human stem cells that can be grown from a potentially unlimited supply, and that behave like the real thing (F.W.Pagliuca etal. Cell 159, 428439; 2014). The next challenge is to work out how to shield these -cells from the bodys immune response.
Researchers had previously created immature -cells from stem cells and transplanted them into diabetic mice. But they take months to mature into insulin-secreting cells, and it is unclear whether they would do so in humans.
The -cells reported by Meltons team were grown from adult cells that had been reprogrammed to resemble stem cells. In response to glucose, the -cells quickly secreted insulin, which the body uses to regulate blood sugar. When implanted in diabetic mice, the cells relieved symptoms within two weeks. The -cells even formed clusters that are similar to those found in a pancreatic structure called the islet of Langerhans. If you took these cells and showed them to somebody without telling them what they are, I guarantee you an expert would say that is a perfect human islet cell, says Oberholzer, who is working with Meltons team to test the cells in non-human primates.
A remaining hurdle is shielding the cells from immune attack. This is necessary if the treatment is to become more widely available, because immunosuppressant drugs can be justified only in the most severe cases of diabetes. And although mature -cells could be derived from a patients own skin cells, type1 diabetes is an autoimmune disease, so transplanted cells would still be vulnerable to attack.
One solution might be to encapsulate the cells in a credit-card-sized, biocompatible sheath made by ViaCyte of San Diego, California. The company will implant its first device loaded with immature -cells in a patient on 21October. Studies in animals have been promising, but some researchers worry that the cells inside the device are packed too densely and might become starved of oxygen and nutrients.
Another option is to coat cells in a protective hydrogel, which results in thousands of separate balls of cells. But a potential drawback is that it would be much harder to remove such cells if there was a safety concern, says Albert Hwa, director of discovery science at JDRF, a diabetes-research foundation in New York.
Neither technique avoids the bodys tendency to enclose foreign bodies inside scar tissue, which could cut the transplanted cells off from nutrients. Bioengineer Daniel Anderson of the Massachusetts Institute of Technology in Cambridge and his team are screening chemical compounds for a hydrogel that does not trigger this. Some, used with Meltons cells, have shown promise in unpublished studies of diabetic primates, he says.
View original post here:
Stem-cell success poses immunity challenge for diabetes
Stem cell discovery challenges dogma on how fetus develops; holds insights for liver cancer and reg
PUBLIC RELEASE DATE:
14-Oct-2014
Contact: Greg Williams newsmedia@mssm.edu 212-241-9200 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc
A Mount Sinai-led research team has discovered a new kind of stem cell that can become either a liver cell or a cell that lines liver blood vessels, according to a study published today in the journal Stem Cell Reports. The existence of such a cell type contradicts current theory on how organs arise from cell layers in the embryo, and may hold clues to origins of, and future treatment for, liver cancer.
Thanks to stem cells, humans develop from a single cell into a complex being made up of more than 200 cell types. The original, single human stem cell, the fertilized embryo, has the potential to develop into every kind of human cell. Stem cells multiply (proliferate) and specialize (differentiate) until millions of functional cells result, including liver cells (hepatocytes), blood vessel cells (endothelial cells), muscle cells, bone cells, etc.
In the womb, the human embryo early on becomes three "germ" layers of stem cells the endoderm, mesoderm and ectoderm. The long-held consensus was that the endoderm goes on to form the liver and other gut organs; the mesoderm the heart, muscles and blood cells; and the ectoderm the brain and skin. Researchers have sought to determine the germ layer that yields each organ because these origins hold clues to healthy function and disease mechanisms in adults.
"We found a stem cell that can become either a liver cell, which is thought to originate in the endoderm, or an endothelial cell that helps to from a blood vessel, which was thought to derive from the mesoderm," said Valerie Gouon-Evans, PhD, Assistant Professor in the Department of Developmental and Regenerative Biology and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, and lead author for the study. "Our results go against traditional germ layer theory, which holds that a stem cell can only go on to become cell types in line with the germ layer that stem cell came from. Endothelial cells may arise from both the endoderm and mesoderm."
Cell Growth Plusses and Minuses
Beyond the womb, many human organs contain pools of partially differentiated stem cells, which are ready to differentiate into specific replacement cells as needed. Among these are stem cells that "know" they are liver cells, but have enough "stemness" to become more than one cell type.
By advancing the understanding of stem cell processes in the liver, the study offers insights into mechanisms that drive liver cancer. The rapid growth seen in cells as the fetal liver develops is similar in some ways to the growth seen in tumors. Among the factors that make both possible is the building of blood vessels that supply nutrients and oxygen.
See the rest here:
Stem cell discovery challenges dogma on how fetus develops; holds insights for liver cancer and reg
Stem cell physical
8 hours ago Stem cells show auxeticity; the nucleus expands, rather than thins, when it's stretched. Credit: Effigos AG
Looking at stem cells through physicists' eyes is challenging some of our basic assumptions about the body's master cells.
One of the many mysteries surrounding stem cells is how the constantly regenerating cells in adults, such as those in skin, are able to achieve the delicate balance between self-renewal and differentiation in other words, both maintaining their numbers and producing cells that are more specialised to replace those that are used up or damaged.
"What all of us want to understand is how stem cells decide to make and maintain a body plan," said Dr Kevin Chalut, a Cambridge physicist who moved his lab to the University's Wellcome Trust-MRC Cambridge Stem Cell Institute two years ago. "How do they decide whether they're going to differentiate or stay a stem cell in order to replenish tissue? We have discovered a lot about stem cells, but at this point nobody can tell you exactly how they maintain that balance."
To unravel this mystery, both Chalut and another physicist, Professor Ben Simons, are bringing a fresh perspective to the biologists' work. Looking at problems through the lens of a physicist helps them untangle many of the complex datasets associated with stem cell research. It also, they say, makes them unafraid to ask questions that some biologists might consider 'heretical', such as whether a few simple rules describe stem cells. "As physicists, we're very used to the idea that complex systems have emergent behaviour that may be described by simple rules," explained Simons.
What they have discovered is challenging some of the basic assumptions we have about stem cells.
One of those assumptions is that once a stem cell has been 'fated' for differentiation, there's no going back. "In fact, it appears that stem cells are much more adaptable than previously thought," said Simons.
By using fluorescent markers and live imaging to track a stem cell's progression, Simons' group has found that they can move backwards and forwards between states biased towards renewal and differentiation, depending on their physical position in the their host environment, known as the stem cell niche.
For example, some have argued that mammals, from elephants to mice, require just a few hundred blood stem cells to maintain sufficient levels of blood in the body. "Which sounds crazy," said Simons. "But if the self-renewal potential of cells may vary reversibly, the number of cells that retain stem cell potential may be much higher. Just because a certain cell may have a low chance of self-renewal today doesn't mean that it will still be low tomorrow or next week!"
Chalut's group is also looking at the way in which stem cells interact with their environment, specifically at the role that their physical and mechanical properties might play in how they make their fate decisions. It's a little-studied area, but one that could play a key role in understanding how stem cells work.
View post:
Stem cell physical
Researchers Develop New Cells Meant to Form Blood Vessels, Treat Peripheral Artery Disease
Contact Information
Available for logged-in reporters only
Newswise INDIANAPOLIS -- Researchers have developed a technique to jump-start the body's systems for creating blood vessels, opening the door for potential new treatments for diseases whose impacts include amputation and blindness.
The international team, led by scientists at the Indiana University School of Medicine, is targeting new therapies for illnesses such as peripheral artery disease, a painful leg condition caused by poor blood circulation. The disease can lead to skin problems, gangrene and sometimes amputation.
While the body has cells that specialize in repairing blood vessels and creating new ones, called endothelial colony-forming cells, these cells can lose their ability to proliferate into new blood vessels as patients age or develop diseases like peripheral arterial disease, said Mervin C. Yoder Jr., M.D., Richard and Pauline Klingler Professor of Pediatrics at IU and leader of the research team.
Peripheral artery disease patients can be given medication to improve blood flow, but if the blood vessels to carry that improved flow are reduced in number or function, the benefits are minimal. If "younger," more "enthusiastic" endothelial colony forming cells could be injected into the affected tissues, they might jump-start the process of creating new blood vessels. Gathering those cells would not be easy however -- they are relatively difficult to find in adults, especially in those with peripheral arterial disease. However, they are present in large numbers in umbilical cord blood.
Reporting their work in the journal Nature Biotechnology, the researchers said they had developed a potential therapy through the use of patient-specific induced pluripotent stem cells, which are normal adult cells that have been "coaxed" via laboratory techniques into reverting into the more primitive stem cells that can produce most types of bodily tissue. So, in one of the significant discoveries reported in the Nature Biotechnology paper, the research team developed a novel methodology to mature the induced pluripotent stem cells into cells with the characteristics of the endothelial colony-forming cells that are found in umbilical cord blood. Those laboratory-created endothelial colony-forming cells were injected into mice, where they were able to proliferate into human blood vessels and restore blood flow to damaged tissues in mouse retinas and limbs.
Overcoming another hurdle that has been faced by scientists in the field, the research team found that the cord-blood-like endothelial colony-forming cells grown in laboratory tissue culture expanded dramatically, creating 100 million new cells for each original cell in a little less than three months.
"This is one of the first studies using induced pluripotent stem cells that has been able to produce new cells in clinically relevant numbers -- enough to enable a clinical trial," Dr. Yoder said. The next steps, he said, include reaching an agreement with a facility approved to produce cells for use in human testing. In addition to peripheral artery disease, the researchers are evaluating the potential uses of the derived cells to treat diseases of the eye and lungs that involve blood flow problems.
A short video explaining the research is available here: http://youtu.be/nyPk_5bLdzs
See the original post here:
Researchers Develop New Cells Meant to Form Blood Vessels, Treat Peripheral Artery Disease
New cells meant to form blood vessels developed, treat peripheral artery disease
Researchers have developed a technique to jump-start the body's systems for creating blood vessels, opening the door for potential new treatments for diseases whose impacts include amputation and blindness.
The international team, led by scientists at the Indiana University School of Medicine, is targeting new therapies for illnesses such as peripheral artery disease, a painful leg condition caused by poor blood circulation. The disease can lead to skin problems, gangrene and sometimes amputation.
While the body has cells that specialize in repairing blood vessels and creating new ones, called endothelial colony-forming cells, these cells can lose their ability to proliferate into new blood vessels as patients age or develop diseases like peripheral arterial disease, said Mervin C. Yoder Jr., M.D., Richard and Pauline Klingler Professor of Pediatrics at IU and leader of the research team.
Peripheral artery disease patients can be given medication to improve blood flow, but if the blood vessels to carry that improved flow are reduced in number or function, the benefits are minimal. If "younger," more "enthusiastic" endothelial colony forming cells could be injected into the affected tissues, they might jump-start the process of creating new blood vessels. Gathering those cells would not be easy however -- they are relatively difficult to find in adults, especially in those with peripheral arterial disease. However, they are present in large numbers in umbilical cord blood.
Reporting their work in the journal Nature Biotechnology, the researchers said they had developed a potential therapy through the use of patient-specific induced pluripotent stem cells, which are normal adult cells that have been "coaxed" via laboratory techniques into reverting into the more primitive stem cells that can produce most types of bodily tissue. So, in one of the significant discoveries reported in the Nature Biotechnology paper, the research team developed a novel methodology to mature the induced pluripotent stem cells into cells with the characteristics of the endothelial colony-forming cells that are found in umbilical cord blood. Those laboratory-created endothelial colony-forming cells were injected into mice, where they were able to proliferate into human blood vessels and restore blood flow to damaged tissues in mouse retinas and limbs.
Overcoming another hurdle that has been faced by scientists in the field, the research team found that the cord-blood-like endothelial colony-forming cells grown in laboratory tissue culture expanded dramatically, creating 100 million new cells for each original cell in a little less than three months.
"This is one of the first studies using induced pluripotent stem cells that has been able to produce new cells in clinically relevant numbers -- enough to enable a clinical trial," Dr. Yoder said. The next steps, he said, include reaching an agreement with a facility approved to produce cells for use in human testing. In addition to peripheral artery disease, the researchers are evaluating the potential uses of the derived cells to treat diseases of the eye and lungs that involve blood flow problems.
Story Source:
The above story is based on materials provided by Indiana University. Note: Materials may be edited for content and length.
Link:
New cells meant to form blood vessels developed, treat peripheral artery disease
Ageless Derma Apple Stem Cell Skincare – Video
Ageless Derma Apple Stem Cell Skincare
This active ingredient won the Best Active Ingredient prize in European Innovation in 2008. Stem Cells derived from a rare Swiss Apple are part of the rev...
By: Rokshana popal
See original here:
Ageless Derma Apple Stem Cell Skincare - Video
Harvard University scientists alter stem cells to make insulin
October 10, 2014 - 17:56 AMT
PanARMENIAN.Net - In what could be a major breakthrough for diabetes treatment, scientists have discovered a way to drastically alter human embryonic stem cells, transforming them into cells that produce and release insulin, RT said.
Developed by researchers at Harvard University, the innovative new technique involves essentially recreating the formation process of beta cells, which are located in the pancreas and secrete insulin. By stimulating certain genes in a certain order, the Boston Globe reports that scientists were able to charm embryonic stem cells and even altered skin cells into becoming beta cells.
The whole process took 15 years of work, but now lead researcher Doug Melton says the team can create hundreds of millions of these makeshift beta cells, and theyre hoping to transplant them into humans starting in the next few years.
"We are reporting the ability to make hundreds of millions of cells the cell that can read the amount of sugar in the blood which appears following a meal and then squirts out or secretes just the right amount of insulin," Melton told NPR.
There are 29.1 million people in the United States believed to have diabetes, according to statistics by the Centers for Disease Control and Prevention dating back to 2012. Thats 9.3 percent of the entire population.
Currently, diabetes patients must rely on insulin shots to keep their blood-sugar levels stable, a process that involves continual monitoring and attentiveness. Failure to efficiently control these levels can cause some patients to go blind, suffer from nerve damage and heart attacks, and even lose limbs. If Meltons beta cell creation process can be successfully applied to humans, it could eliminate the need for such constant check-ups, since the cells would be doing all the monitoring. Already, there are positive signs moving forward: the transplanted cells have worked wonders on mice, quickly stabilizing their insulin levels.
"We can cure their diabetes right away in less than 10 days," Melton said to NPR. "This finding provides a kind of unprecedented cell source that could be used for cell transplantation therapy in diabetes."
With mice successfully treated, the team is now working with a scientist in Chicago to put cells into primates, the Globe reported.
Even so, significant obstacles remain, particularly for those who have Type 1 diabetes. With this particular form of the disease, the human immune system actually targets and destroys insulin-producing beta cells in the pancreas, so Meltons team is looking into encasing cells inside of a protective shell in order to ensure their safety.
Originally posted here:
Harvard University scientists alter stem cells to make insulin
Ageless Derma Anti Aging Skin Care – Video
Ageless Derma Anti Aging Skin Care
This active ingredient won the Best Active Ingredient prize in European Innovation in 2008. Stem Cells derived from a rare Swiss Apple are part of the revolutionary technological designed...
By: Rokshana popal
See the original post:
Ageless Derma Anti Aging Skin Care - Video
Could this stem cell breakthrough offer an end to diabetes?
Research into a cure for diabetescould result in an end to insulin injections It has beenhailed as the biggest medical breakthrough since antibiotics Harvard researcher Doug Melton promised his children he'd find a cure Treatment involves making insulin-producing cells from stem cells Scientistshope to have human trials under way within a 'few years'
By Fiona Macrae for the Daily Mail
Published: 17:41 EST, 9 October 2014 | Updated: 18:12 EST, 9 October 2014
143 shares
10
View comments
Scientists have hailed stem-cell research into a cure for diabetes as potentially the biggest medical breakthrough since antibiotics.
It could result in an end to insulin injections, and to the disabling and deadly complications of the disease, such as strokes and heart attacks, blindness and kidney disease.
The treatment, which involves making insulin-producing cells from stem cells, was described as a 'phenomenal accomplishment' that will 'leave a dent in the history of diabetes'.
Scientists yesterday hailed stem-cell research into a cure for diabetes as potentially the biggest medical breakthrough since antibiotics
See the original post here:
Could this stem cell breakthrough offer an end to diabetes?
Harvard researchers grow insulin-producing stem cells
CAMBRIDGE, Mass., Oct. 9 (UPI) -- Patients with type 1 diabetes lack the insulin-producing cells that keep blood glucose levels in check. Currently, these patients must use insulin pumps or daily hormone injections to keep levels stable.
But in a recent breakthrough in laboratories at Harvard University, researchers came upon a new technique for transforming stem cells into pancreatic beta cells that respond to glucose levels and produce insulin when necessary. The breakthrough could lead to new less invasive, more hands-off treatment for diabetes.
Remarkably, the new technique -- a complex process which involves turning on and off specific genes and takes about 40 days and six precise steps to complete -- was replicated not only on embryonic stem cells but also on human skin cells reprogrammed to act in a stem-cell-like manner. This revelation allows scientists to produce millions of insulin-producing cells while avoiding the ethical dilemmas attached to traditional stem cell research.
Previous attempts to convert stem cells into insulin-producers have proven moderately successful, but these cells mostly produced insulin at will, unable to adjust their output on the fly. The latest techniques -- developed by Douglas Melton, co-director of the Harvard Stem Cell Institute, and his research colleagues -- produce insulin cells that react to glucose spikes by upping production, and lowering insulin output when there's not excess sugar to break down.
The breakthrough has already shown significant promise when used on lab mice. Diabetic mice who received a transplant of the stem cell beta cells had improved blood sugar levels, and were shown to be capable of breaking down sugar.
"We can cure their diabetes right away -- in less than 10 days," Melton told NPR. "This finding provides a kind of unprecedented cell source that could be used for cell transplantation therapy in diabetes."
But there's still one major issue. For reasons doctors still don't understand, the beta cells in humans with diabetes are attacked by the body's immune system. Researchers like Melton still have to figure out a way to protect the new beta cells from being killed -- otherwise the breakthrough won't become anything more than another short-term solution.
"It's taken me 10 to 15 years to get to this point, and I consider this a major step forward," Melton told TIME. "But the longer term plan includes finding ways to protect these cells, and we haven't solved that problem yet."
2014 United Press International, Inc. All Rights Reserved. Any reproduction, republication, redistribution and/or modification of any UPI content is expressly prohibited without UPI's prior written consent.
Continued here:
Harvard researchers grow insulin-producing stem cells
Hylunia Educates Professional Customers on Anti-Aging Peptides and Stem Cells
Henderson, NV (PRWEB) October 07, 2014
Stem cells from plants are becoming an increasingly popular way to turn the clock backward on skin aging. Hylunia's own light and silky Moisure Infusion contains plant stem cells and peptides that are thought to delay aging, making skin look softer smoother and younger.
Plant stem cells like the ones found in grapes are undifferentiated cells from the meristems of plants. Like human stem cells, they can replace damaged cells and renew themselves. Plant stem cells are cultured in labs, allowing scientists to have more control over the quality, quantity and purity of a plant's anti-aging substance.
Skin care stem cells are extracted from various plants, including tiny white Edelweiss flowers, a swamp plant called gotu kola, swiss apples, and raspberry cell cultures. Lilac and algae may also be used. Most of these products contain antioxidants and other chemicals that make skin look younger.
Hylunia's unique product features grape stem cells cultivated from the Gamay Teinturier Fraux grape from Burgundy, France. Their ingredient list explains that these grapes are "high in powerful antioxidants and [have] free radical scavenging capabilities."
The site adds that "The Grape Stem Cells contain special epigenetic factors and metabolites which are able to protect human stem cells against UV radiation and therefore delay aging." UV damage is responsible for up to 80% of skin aging.
Hylunia Moisture Infusion also contains peptides, which can boost collagen and block the neurotransmitters that contract the muscles that form wrinkles. They stimulate epidermal skin cells and increase skin healing and repair.
Hyluna's product contains Palmitoyl Trypeptide-5 (patented), which stimulates collagen synthesis to "strengthen skin and reduce the appearance of fine lines and wrinkles."
Hylunia is currently putting together a webinar about plant peptides for their professional customers like spa and salon owners. The webinar will be available soon.
See the original post:
Hylunia Educates Professional Customers on Anti-Aging Peptides and Stem Cells
Barcoding tool for stem cells: New technology that tracks the origin of blood cells challenges scientific dogma
19 hours ago New genetic barcoding technology allows scientists to identify differences in origin between individual blood cells. Credit: Camargo Lab
A 7-year-project to develop a barcoding and tracking system for tissue stem cells has revealed previously unrecognized features of normal blood production: New data from Harvard Stem Cell Institute scientists at Boston Children's Hospital suggests, surprisingly, that the billions of blood cells that we produce each day are made not by blood stem cells, but rather their less pluripotent descendants, called progenitor cells. The researchers hypothesize that blood comes from stable populations of different long-lived progenitor cells that are responsible for giving rise to specific blood cell types, while blood stem cells likely act as essential reserves.
The work, supported by a National Institutes of Health Director's New Innovator Award and published in Nature, suggests that progenitor cells could potentially be just as valuable as blood stem cells for blood regeneration therapies.
This new research challenges what textbooks have long read: That blood stem cells maintain the day-to-day renewal of blood, a conclusion drawn from their importance in re-establishing blood cell populations after bone marrow transplantsa fact that still remains true. But because of a lack of tools to study how blood forms in a normal context, nobody had been able to track the origin of blood cells without doing a transplant.
Boston Children's Hospital scientist Fernando Camargo, PhD, and his postdoctoral fellow Jianlong Sun, PhD, addressed this problem with a tool that generates a unique barcode in the DNA of all blood stem cells and their progenitor cells in a mouse. When a tagged cell divides, all of its descendant cells possess the same barcode. This biological inventory system makes it possible to determine the number of stem cells/progenitors being used to make blood and how long they live, as well as answer fundamental questions about where individual blood cells come from.
"There's never been such a robust experimental method that could allow people to look at lineage relationships between mature cell types in the body without doing transplantation," Sun said. "One of the major directions we can now go is to revisit the entire blood cell hierarchy and see how the current knowledge holds true when we use this internal labeling system."
"People have tried using viruses to tag blood cells in the past, but the cells needed to be taken out of the body, infected, and re-transplanted, which raised a number of issues," said Camargo, who is a member of Children's Stem Cell Program and an associate professor in Harvard University's Department of Stem Cell and Regenerative Biology. "I wanted to figure out a way to label blood cells inside of the body, and the best idea I had was to use mobile genetic elements called transposons."
A transposon is a piece of genetic code that can jump to a random point in DNA when exposed to an enzyme called transposase. Camargo's approach works using transgenic mice that possess a single fish-derived transposon in all of their blood cells. When one of these mice is exposed to transposase, each of its blood cells' transposons changes location. The location in the DNA where a transposon moves acts as an individual cell's barcode, so that if the mouse's blood is taken a few months later, any cells with the same transposon location can be linked back to its parent cell.
The transposon barcode system took Camargo and Sun seven years to develop, and was one of Camargo's first projects when he opened his own lab at the Whitehead Institute for Biomedical Research directly out of grad school. Sun joined the project after three years of setbacks, and accomplished an experimental tour de force to reach the conclusions in the Nature paper, which includes data on how many stem cells or progenitor cells contribute to the formation of immune cells in mouse blood.
With the original question of how blood arises in a non-transplant context answered, the researchers are now planning to explore many more applications for their barcode tool.
Read more from the original source:
Barcoding tool for stem cells: New technology that tracks the origin of blood cells challenges scientific dogma
Plant stem cells may help skin look younger, healthier
HOUSTON -
Stem cells, the body's so called "master cells," are used to treat heart disease and cancer and to grow tissue. But plants also have stem cells and they're some of the hottest ingredients in anti-aging products.
Andrea Vizcaino, 49, is trying out a new phyto-facial that comes in the form of a freeze dried serum in a vial. One of the main ingredients is stem cells from the argon tree in Morocco. She described the procedure.
"It feels warm, especially around my chin and it feels good," said Vizcaino. "Very hydrating; the skin feels moist."
Apple, echinacea and grape stem cells are already used in many skin care products, but some scientists think the argon tree cells will penetrate even deeper.
"The plant stem cells stimulate our stem cells to regenerate the skin," said skin care specialist Candy Bonura.
Allenby agrees the new products can be hydrating, but said the jury is still out about the real effectiveness of plant stem cells.
"Stem cells are kind of the buzz word right now, but we have to remember that stem cells are different in plants and different in people," Allenby said.
Bonura acknowledged these new products won't take years off your face, but many clients do see a difference.
"I see a brightening, I see a hydration, I also see the skin is more supple looking and more youthful with a glow to it," Bonura said.
See more here:
Plant stem cells may help skin look younger, healthier