Archive for the ‘Skin Stem Cells’ Category
:: 07, Jun 2012 :: MYSTERY TO THE ORIGIN OF LONG-LIVED, SKIN-DEEP IMMUNE CELLS UNCOVERED
Media Release
7 June 2012
MYSTERY TO THE ORIGIN OF LONG-LIVED, SKIN-DEEP IMMUNE CELLS UNCOVERED
1. Scientists at A*STARs Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered that these sentry cells of the skin, called the Langerhans cells (LCs), originate from two distinct embryonic sites - the early yolk sac and the foetal liver.
2. LCs are dendritic cells (DCs) found in the outermost layer of the skin. DCs are a critical component of the immune system because they are the only cells able to see and alert other responding immune cells to initiate a protective response against harmful foreign invaders. Like sentries of the immune system, DCs are strategically positioned where they are likely to encounter harmful pathogens. Identifying the source of these specialised immune cells may hold exciting possibilities to novel strategies for vaccination and treatment of autoimmune diseases and inflammatory skin disorders.
3. In contrast to other DCs which are constantly replaced by a circulating pool of bone marrow-derived precursors, LCs has the interesting ability to maintain themselves throughout life. While it is established that these long-lived sentry cells of the skin arise from precursors that are recruited to the skin prior to birth, this is the first time that the exact origin of the precursors of LCs is revealed through advanced fate-mapping technique (a method of tracing cell lineages to their embryonic origin).
4. In this study, published in the June issue of Journal of Experimental Medicine, Dr Florent Ginhoux, and his team demonstrated that adult LCs originate from two distinct embryonic lineages in two succeeding waves. The first wave of precursor cells from the yolk sac seed the skin before the onset of the foetal liver. Interestingly, the team discovered that at the later stage of development, the yolk-sac precursors are largely replaced by a type of white blood cells from the foetal liver.
5. Said Dr Ginhoux, Principal Investigator of SIgN, Whether this unique dual origin of Langerhans cells influences their ability to maintain skin integrity or dictate their specialised immune functions in response to microbes and vaccines needs to be examined. But having identified their origin surely opens new possibilities of using them as novel vaccination strategies or as therapeutic tool for treating inflammatory skin diseases like psoriasis.
6. Scientific Director of SIgN, Professor Paola Castagnoli said, This discovery sheds light on understanding the complexities of the immune system, in particular the relationship between immune responses and human diseases. It will bring us closer to our goal of discovering novel ways of treating and preventing a range of immune diseases that will impact healthcare.
Original post:
:: 07, Jun 2012 :: MYSTERY TO THE ORIGIN OF LONG-LIVED, SKIN-DEEP IMMUNE CELLS UNCOVERED
Rui Dai: Our Misunderstanding of Stem Cells
It's always troubling to see a misunderstanding concerning a recent scientific discovery. The latest concerns an Israeli team of scientists, led by Lior Gepstein, that converted skin cells from two patients with heart attack into stem cells and then heart cells.
SourceFed, one of my favorite channels on YouTube, proclaimed that Gepstein's study means that a cure for heart disease is "10, 15 years out." Similar statements were also circulated by The Guardian, The Los Angeles Times, CBS News, and others.
However, the claims that SourceFed and other news outlets have made are not true. If anything, the field of heart regeneration is moving away from what the study did. If there is a cure for heart attack in 10 to 15 years, it will not be because of this study.
Generating stem cells from skin cells is relatively old news. This feat was first performed in 2006 for mice (2007 for humans) concurrently by two teams of scientists led by Shinya Yamanaka in Japan and James Thomson in the United States, respectively. Since then, the technology has evolved so fast that generating heart cells from stem cells is truly nothing new.
Stem cells often differentiate into heart cells, or cardiomyocytes, without much technical intervention. Even I, a mere undergraduate student, have generated beating heart cells several times without much trouble, from mice and rat skin cells. And I'm not even in the field of heart regeneration. I work with stem cells in neurobiology.
The technique to generate heart cells from skin-derived stem cells (or induced pluripotent stem cells) has existed for a long time. After a brief search on Google Scholar, I found a paper published in 2008 detailing how to generate heart cells from skin cells. This may not seem like a long time ago, but in the stem-cell world, that's almost an eon.
So if we have been able to generate heart cells for such a long time, why has no one actually successfully transplanted heart cells into patients? One of the reasons is that there are so many different problems with not only transplanting heart cells onto a beating heart but also with the induced pluripotent stem cells that are derived from skin cells.
When a heart is damaged, scar tissues grow over the damaged part of the heart. The scar tissue does not function like regular heart cells. Instead of beating, the scar tissue just sits there, not doing anything and getting in the way of the beating heart. It's just like a scab on your arm from a scrape. The only difference is that the scab eventually comes off, because your skin is constantly making new cells, but the scar on your heart doesn't, because heart cells rarely regenerate, if at all.
Transplanting new heart cells without removing the scars is like putting a new layer of skin over the old scab and expecting the scab to go away. The old scab doesn't go away. More likely, the transplanted tissue will just die off.
As a result, instead of trying to transplant new tissue, the field of heart regeneration is now trying to transform the cells in scar tissue into beating heart cells. Though there are also problems with this new direction, it opens up ways of solving a whole host of other problems that plague heart-cell transplantation.
Follow this link:
Rui Dai: Our Misunderstanding of Stem Cells
SANUWAVE Technology Shown to Proliferate Stem Cells and Form Bone
ALPHARETTA, Ga.--(BUSINESS WIRE)--
SANUWAVE Health, Inc. (SNWV), today announced the publication of peer-reviewed, preclinical research that demonstrates the ability of the Companys Extracorporeal Shock Wave Technology (ESWT) to stimulate proliferation of periosteal adult stem cells (cambium cells) within the body and subsequently form bone. In addition, the combination of ESWT-proliferated adult stem cells and a bioactive scaffold regenerated more bone than a bioactive scaffold alone.
The publication, titled The Use of Extracorporeal Shock Wave-Stimulated Periosteal Cells for Orthotopic Bone Regeneration, appeared in the online edition of Tissue Engineering, Part A as an ePublication ahead of print. The abstract of the publication can be viewed online at: http://online.liebertpub.com/doi/abs/10.1089/ten.TEA.2011.0573.
Led by Myron Spector, M.D., a professor and researcher at Harvard-MIT Division of Health Sciences and Technology, the authors stated, This study investigated a novel approach for treatment of bone loss, which has potential for many clinical situations where bone apposition is required (e.g., vertical ridge augmentation, regrowing bone following tumor resection, and regenerating bone lost at sites of osteolysis or bone degeneration).
The cambium cells of the periosteum (outer membrane covering bone) currently have limited suitability for clinical applications in their native state due to their low cell number (only 2 to 5 cells thick). However, ESWT has been shown to cause a rapid increase in periosteal cambium cell numbers and subsequent periosteal osteogenesis (bone formation). The advantages of adding a scaffold as we did in this study are threefold: the scaffold contours the new bone, it helps maintain bone at the implant site, and it creates a space to allow the periosteal cells to further proliferate and fill the scaffold.
The authors concluded, The ESWT-stimulated samples of tibial bone outperformed the control group in all key outcome variables, and the study results therefore demonstrated the efficacy of ESWT-stimulated periosteum for bone generation. These results successfully demonstrated the efficacy of periosteum stimulated by ESWT technology for bone generation.
In the first phase of this research, the authors successfully demonstrated that ESWT increased the thickness of the cambium layer surrounding bone and the number of cambium cells within that layer. This proliferation of adult stem cells is an important part of many tissue engineering strategies. Then, in a novel second phase, the authors combined the ESWT-proliferated adult stem cells with a porous calcium phosphate scaffold that is commonly utilized in clinical applications to stimulate bone regeneration. A comparator control group received the scaffold alone with no prior ESWT treatment. The results were statistically significant and favored the ESWT group. In fact, at two weeks post-surgery, there was a significant increase in all key outcome variables for bone growth favoring the group that received ESWT prior to being combined with a scaffold compared with the group that received only the scaffold.
Summary of Key Study Findings
About SANUWAVE Health, Inc. SANUWAVE Health, Inc. (www.sanuwave.com) is an emerging regenerative medicine company focused on the development and commercialization of noninvasive, biological response activating devices for the repair and regeneration of tissue, musculoskeletal and vascular structures. SANUWAVEs portfolio of products and product candidates activate biologic signaling and angiogenic responses, including new vascularization and microcirculatory improvement, helping to restore the bodys normal healing processes and regeneration. SANUWAVE intends to apply its PACE technology in wound healing, orthopedic/spine, plastic/cosmetic and cardiac conditions. Its lead product candidate for the global wound care market, dermaPACE, is CE marked and has Canadian device license approval for the treatment of the skin and subcutaneous soft tissue. In the U.S., dermaPACE is currently under the FDAs Premarket Approval (PMA) review process for the treatment of diabetic foot ulcers. SANUWAVE researches, designs, manufactures, markets and services its products worldwide, and believes it has demonstrated that its technology is safe and effective in stimulating healing in chronic conditions of the foot (plantar fasciitis) and the elbow (lateral epicondylitis) through its U.S. Class III PMA approved Ossatron device, as well as stimulating bone and chronic tendonitis regeneration in the musculoskeletal environment through the utilization of its Ossatron, Evotron and orthoPACE devices in Europe.
Forward-Looking Statements This press release may contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, such as statements relating to financial results and plans for future business development activities, and are thus prospective. Forward-looking statements include all statements that are not statements of historical fact regarding intent, belief or current expectations of the Company, its directors or its officers. Investors are cautioned that any such forward-looking statements are not guarantees of future performance and involve risks and uncertainties, many of which are beyond the Companys ability to control. Actual results may differ materially from those projected in the forward-looking statements. Among the key risks, assumptions and factors that may affect operating results, performance and financial condition are risks associated with the marketing of the Companys product candidates and products, unproven pre-clinical and clinical development activities, regulatory oversight, the Companys ability to manage its capital resource issues, competition, and the other factors discussed in detail in the Companys periodic filings with the Securities and Exchange Commission. The Company undertakes no obligation to update any forward-looking statement.
The rest is here:
SANUWAVE Technology Shown to Proliferate Stem Cells and Form Bone
Skin cells turned into beating heart cells
KIAH
12:01 p.m. CDT, May 30, 2012
How do you mend a broken heart? Thanks to scientists in Israel, we might soon have an answer.
Dr. Lior Gepstein and his team at Technion-Israel Institute of Technology managed to take skin cells from ailing heart patients and by adding three genes and valproic acid (used to treat epilepsy), they turned the cells into beating heart tissue.
And it was not just any old heart cells, but, according to Gepstein, "heart cells that are healthy, that are young and resemble heart cells at the day that the patient was born."
The researchers put the new beating heart tissue into rat hearts and saw it was not rejected, but seemed to establish connections with the rodents' tissue.
Stem cell experts praised the research as promising but urged people not to expect to be stopping by the clinic for a fresh heart any time soon. Gepstein's researchers say clinical trials should begin within the next 10 years.
Read the original:
Skin cells turned into beating heart cells
Skin cells turned into beating heart cells
KIAH
12:01 p.m. CDT, May 30, 2012
How do you mend a broken heart? Thanks to scientists in Israel, we might soon have an answer.
Dr. Lior Gepstein and his team at Technion-Israel Institute of Technology managed to take skin cells from ailing heart patients and by adding three genes and valproic acid (used to treat epilepsy), they turned the cells into beating heart tissue.
And it was not just any old heart cells, but, according to Gepstein, "heart cells that are healthy, that are young and resemble heart cells at the day that the patient was born."
The researchers put the new beating heart tissue into rat hearts and saw it was not rejected, but seemed to establish connections with the rodents' tissue.
Stem cell experts praised the research as promising but urged people not to expect to be stopping by the clinic for a fresh heart any time soon. Gepstein's researchers say clinical trials should begin within the next 10 years.
Go here to see the original:
Skin cells turned into beating heart cells
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
GRAND RAPIDS, MI -- A stem cell treatment investigated for Huntingtons disease holds out hope that scientists will someday be able to reverse damage caused by the degenerative brain disorder.
The technique, which uses reprogrammed skin cells from a Huntingtons patient, successfully restored motor functions in rats, said Dr. Patrik Brundin, a Van Andel Institute researcher who was involved in the study.
Its an interesting step, one weve been hoping for, he said. Its exciting.
The technique also will be tested in treatments for Parkinsons disease, said Brundin, who came to VAI from Sweden in October to lead the institutes Parkinsons research.
Scientists from Sweden, South Korea and the U.S. collaborated on the study, which was published online Monday in the journal Stem Cells.
Brundin said researchers took stem cells derived from the skin of a patient with Huntingtons disease and converted them to brain cells or nerve cells in culture dishes in the lab. The cells were transplanted into the brains of rats that had an experimental form of Huntingtons, and the rats motor functions improved.
The unique features of the (stem cell approach) means that the transplanted cells will be genetically identical to the patient, Jihwan Song, an associate professor at CHA University in Seoul and co-author of the study, said in a statement released by VAI. Therefore, no medications that dampen the immune system to prevent graft rejection will be needed.
Brundin estimated the research might lead to treatments for humans in five to 10 years, although he acknowledged a timeframe is difficult to predict. Researchers are eager to find a new treatment for Huntingtons because there is nothing really powerful to offer currently, he said.
Huntingtons is a genetic disorder affecting one in every 10,000 Americans that slowly diminishes a persons ability to walk, talk and reason. A child of a parent who has Huntingtons has a 50 percent chance of inheriting the gene that causes it.
Medications can relieve some symptoms in some cases, but there are no treatments available that can slow the disease, according to the Huntingtons Disease Society of America.
Continued here:
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
Actium Research and McMaster University Collaborate to Commercialize Stem Cell Technologies
Arrangement pairs one of Canada's most successful biotech executive teams with academic discovery engine to address the need for better drugs targeting cancer stem cells and regenerative medicine.
TORONTO/HAMILTON, May 29, 2012 /CNW/ - Actium Research Inc., ("Actium" or the "Company") Toronto, and McMaster University ("McMaster"), Hamilton, have entered into a landmark collaboration covering McMaster's proprietary adult human stem cell lines, cancer stem cells and the directed differentiation platform developed by Dr. Mick Bhatia and his team at the McMaster Stem Cell and Cancer Research Institute ("The Stem Cell Institute"). Together these technologies and the expertise at The Stem Cell Institute provide leading edge tools for drug discovery and better treatments for serious illnesses.
Actium is a drug discovery and development company targeting two types of stem cells; cancer stem cells to improve survival and health outcomes and normal tissue stem cells to promote healing and address the need for cure in chronic diseases. Actium was founded by Dr. David Young and Helen Findlay. Dr. Bhatia joined as the scientific founder in 2012. The team will put their experience with managing drug discovery platforms, development pathways and product pipelines to work to build Actium into a leading biotech company.
Previously, Dr. David Young and Ms Helen Findlay were uniquely successful in creating ARIUS Research Inc. ("ARIUS"), a public biotech company, trading on the TSX, specializing in the discovery and development of therapeutic cancer antibodies based entirely on technology developed in its own research labs. ARIUS' FunctionFIRST technology was partnered with leading companies such as Takeda Pharmaceuticals, Japan's largest drug company, Genentech, the leader in cancer antibodies, and Protein Design Labs, a pioneer in antibody humanization. These and other partnerships represented over $400 million of value. ARIUS was a singular financial success story in Canada. The sale of the company to Roche in 2008 generated a five times return on capital, cash on cash, representing the largest return to date for investors in a Canadian biotech company. More importantly, the company created the first specific cancer stem cell drug to enter human clinical trials. The company was well recognized for its accomplishments: it was named as a top 50 company by the TSX Venture Exchange in 2005, a top 10 company by Ottawa Life Sciences Council in 2006, and Biotech Company of the Year by BioteCanada in 2009.
"After we founded Actium we were presented with many interesting technologies looking for commercialization support." said David Young, Actium CEO. "Ontario has a wealth of great researchers and I think with Dr. Mick Bhatia's leadership and the support from the community, the Stem Cell Institute at McMaster stands at the forefront. Much has been written about Canada's commercialization gap and desperate need to move our research from the bench into the clinic so that we benefit from medical innovation both as patients and as a society. The federal government placed a lot of emphasis on addressing this gap in the most recent budget and our agreement with McMaster represents a great example of academia working with the private sector to achieve these goals. Actium is pleased to join the other companies and groups working to see Ontario's medical research advanced to provide our physicians with new tools to achieve better outcomes."
McMaster University is committed to creating collaborations that help accelerate the pace intellectual property is transferred from its labs and to the marketplace, where it will have the greatest impact.
"This specific initiative will assist us in doing just that," said Mo Elbestawi, McMaster Vice-President, Research and International Affairs. "These discoveries from Dr. Bhatia's lab show great promise and we're delighted with his efforts to commercialize the results of his research, from which many will benefit."
Initially, Actium will develop anti-cancer stem cell drugs that are directed against a newly identified cancer stem cell marker in leukemia and breast cancer. Cancer stem cells are a unique group of cells within a tumor that do not respond to conventional therapies and may be responsible for cancers that spread or that return after treatment. The company will also work through research agreements with McMaster and The Stem Cell Institute to identify drugs that cause "normal" stem cells to become specialized as different tissue types to promote healing. In addition, the Actium strategy includes accessing technologies that expand drug development capabilities or fill pipeline gaps. The overall development strategy is guided by principles of pipeline management where projects compete with each other for resources, and allocations are made according to success-based performance metrics. "This is the most efficient way to allocate resources to the compounds with the best chances of becoming breakthrough drugs. In this horse race the winners go on to the next race until a champion is crowned", said Dr. Bhatia, Actium Chief Scientific Officer.
About McMaster University and the McMaster Industry Liaison Office
McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. With a research income of more than $395 million, McMaster ranks second in research intensity among Canadian universities. It is home to more than 23,000 students, 1,300 faculty members, and 70 world-class research centres and institutes. Through the McMaster Industry Liaison Office, the University facilitates the commercialization efforts of its faculty by connecting them to the marketplace.
Continue reading here:
Actium Research and McMaster University Collaborate to Commercialize Stem Cell Technologies
Neuron function restored in brains damaged by Huntington's disease
ScienceDaily (May 29, 2012) Researchers from South Korea, Sweden, and the United States have collaborated on a project to restore neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent stem cells into animal models.
Induced pluripotent stem cells (iPSCs) can be genetically engineered from human somatic cells such as skin, and can be used to model numerous human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory.
In the current study, experimental animals with damage to a deep brain structure called the striatum (an experimental model of HD) exhibited significant behavioral recovery after receiving transplanted iPS cells. The researchers hope that this approach eventually could be tested in patients for the treatment of HD.
"The unique features of the iPSC approach means that the transplanted cells will be genetically identical to the patient and therefore no medications that dampen the immune system to prevent graft rejection will be needed," said Jihwan Song, D.Phil. Associate Professor and Director of Laboratory of Developmental & Stem Cell Biology at CHA Stem Cell Institute, CHA University, Seoul, South Korea and co-author of the study.
The study, published online this week in Stem Cells, found that transplanted iPSCs initially formed neurons producing GABA, the chief inhibitory neurotransmitter in the mammalian central nervous system, which plays a critical role in regulating neuronal excitability and acts at inhibitory synapses in the brain. GABAergic neurons, located in the striatum, are the cell type most susceptible to degeneration in HD.
Another key point in the study involves the new disease models for HD presented by this method, allowing researchers to study the underlying disease process in detail. Being able to control disease development from such an early stage, using iPS cells, may provide important clues about the very start of disease development in HD. An animal model that closely imitates the real conditions of HD also opens up new and improved opportunities for drug screening.
"Having created a model that mimics HD progression from the initial stages of the disease provides us with a unique experimental platform to study Huntington's disease pathology" said Patrik Brundin, M.D., Ph.D., Director of the Center for Neurodegenerative Science at Van Andel Research Institute (VARI), Head of the Neuronal Survival Unit at Lund University, Sweden, and co-author of the study.
Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life, with symptoms beginning between 35 and 44 years of age. Life expectancy following onset of visual symptoms is about 20 years. The worldwide prevalence of HD is 5-10 cases per 100,000 persons. Key to the disease process is the formation of specific protein aggregates (essentially abnormal clumps) inside some neurons.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
More here:
Neuron function restored in brains damaged by Huntington's disease
Harnessing a flower's hidden powers
There seems to be a healthy competition going on in the beauty industry as leading brands are bottling plant stem cells in skincare products. While Lancome is hyping anti-ageing roses, on the other side of the Atlantic Estee Lauder has been harnessing the power of tuberose for a luxurious anti-ageing and whitening range.
In Thai the flower is known as sorn klin, meaning hidden scent, when it actually has a seductive scent. Its little white flowers are used in Indian wedding ceremonies and traditional rituals, and so there's something magical about this delicate bloom.
In northern climates, only in August does this flower come to life, blooming only at night and living for merely 40 days.
For its plant stem cell project, the US cosmetic company picked white tuberose grown in an arid field in Latin America.
A single petal of the flower from a living plant is placed in a special laboratory culture dish and transported to a lab in Japan, where it is further cultivated with customised nutrients that unlock latent plant stem cells within the petal.
These precious tuberose cells are then harvested and their valuable benefits are extracted for the formulation of Re-Nutriv Radiant White Age-Renewal collection.
How could the white tuberose serve as a skin-brightening ingredient?
In folklore, its nectar is known to have special powers and Ayurvedic medicine believes in its renewing properties. Estee Lauder scientists associated the flower with inflammation, claiming that it can help calm the skin.
Inflammation has been identified as a major cause of age spots. Studying the genes of samples of age spots, the scientists found increased expression of genes promoting inflammation that triggers melanocytes to overproduce melanin, resulting in menacing age spots.
Created for Asian-type skin, Re-Nutriv Radiant White Age-Renewal formulas feature tuberose plant stem cell, green tea and rice bran extracts, licorice as well as vitamins C and E for a synergistical skin-brightening effect.
Continue reading here:
Harnessing a flower's hidden powers
Scientists turn skin cells into healthy heart tissue
Scientists turn skin cells into healthy heart tissue
Kate Kelland (Reuters) / 26 May 2012
The researchers said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogramme patients cells to repair their own damaged hearts.
We have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born, said Lior Gepstein, who led the work.
The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years.
Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances in medical science mean many more people survive heart attacks. At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant.
Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions.
There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed human induced pluripotent stem cells (hiPSCs), often originally from skin or blood.
Gepsteins team took skin cells from two men with heart failure aged 51 and 61 and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus.
They found that the resulting hiPSCs were able to differentiate to become heart muscle cells, or cardiomyocytes, just as effectively as hiPSCs that had been developed from healthy, young volunteers who acted as controls for the study.
See the original post:
Scientists turn skin cells into healthy heart tissue
Scientists turn skin cells into healthy heart tissue
Scientists turn skin cells into healthy heart tissue
Kate Kelland (Reuters) / 26 May 2012
The researchers said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogramme patients cells to repair their own damaged hearts.
We have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born, said Lior Gepstein, who led the work.
The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years.
Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances in medical science mean many more people survive heart attacks. At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant.
Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions.
There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed human induced pluripotent stem cells (hiPSCs), often originally from skin or blood.
Gepsteins team took skin cells from two men with heart failure aged 51 and 61 and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus.
They found that the resulting hiPSCs were able to differentiate to become heart muscle cells, or cardiomyocytes, just as effectively as hiPSCs that had been developed from healthy, young volunteers who acted as controls for the study.
Here is the original post:
Scientists turn skin cells into healthy heart tissue
Scientists turn skin cells into beating heart muscle
LONDON (May 23): Scientists have for the first time succeeded in taking skin cells from patients with heart failure and transforming them into healthy, beating heart tissue that could one day be used to treat the condition.
The researchers, based in Haifa, Israel, said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogram patients' cells to repair their own damaged hearts.
"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born," said Lior Gepstein from the Technion-Israel Institute of Technology, who led the work.
The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years.
Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances medical science mean many more people survive heart attacks.
At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant.
Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions.
There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed "human induced pluripotent stem cells" (hiPSCs), often originally from skin or blood.
TISSUES BEATING TOGETHER
Gepstein's team took skin cells from two men with heart failure - aged 51 and 61 - and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus.
Read the original here:
Scientists turn skin cells into beating heart muscle
Scientists convert skin cells into full functioning heart cells
In the first procedure of its kind, skin cells taken from patients suffering from heart failure were reprogrammed and changed into heart muscle cells. Not only were the transformed cells healthy, but they were also transplanted into the hearts of rats and were able to integrate with the existing heart tissue.
Published in the European Heart Journal, the research examined the use of human-induced pluripotent stem cells (hiPSCs) to treat damaged hearts. HiPSCs are cells that are derived from other cells in a persons body.
We were able to show [in earlier studies] that you can take these hiPSCS from healthy heart patients and coax them into bonafide heart cells, lead author Lior Gepstein, professor of medicine (cardiology) and physiology at the Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, told FoxNews.com. The question we asked in this study was whether you can do the same from an elderly individual that had suffered from advance heart failure.
Because hiPSCs are derived from the person in need of the stem cells, they could potentially help to bypass the painful process of rejection that many transplant patients go through. According to Gepstein, if this process is perfected, it could lead to much more localized treatments.
When there is significant damage from a heart attack, or with heart failure, where the heart doesnt pump enough blood into circulation, patients usually need a heart transplant, Gepstein said. But perhaps in the future, we can take a small sample of skin and convert them into stem cells specific to that patient. Then we can only replace the area with scar tissue rather than replace the dying heart.
In order to transform the skin cells into hiPSCs, Gepstein and his colleagues gave them a reprogramming cocktail, which involved delivering three genes (Sox2, Klf4 and Oct4), followed by a small molecule called valproic acid, to the nucleus of the cell.
This process turned the skin cells into heart muscle cells, or cardiomyocytes, which the researchers were able to subsequently turn into heart muscle tissue by culturing them together with cardiac tissue.
We converted the cells back into a state that resembles their early state in the embryo, Gepstein said. So they highly resemble the patients cells at the time they were born. When you give them proper conditions, they can become any type of cell in the body.
This area of study has advanced very rapidly, Gepstein added. You can take almost any type of adult cells - hair follicles, blood cells, etc. - and reprogram them to make hiPSCS cells. Skin cells are the easiest way to do it, and you dont need a lot of them.
Once the tissue had formed, it was transplanted into the hearts of healthy rats, where it successfully grafted and integrated with the existing tissue.
Go here to read the rest:
Scientists convert skin cells into full functioning heart cells
Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells
Editor's Choice Main Category: Cardiovascular / Cardiology Article Date: 25 May 2012 - 0:00 PDT
Current ratings for: 'Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells'
4 (1 votes)
This achievement is significant, as it opens up the prospect of treating heart failure patients with their own, human-induced pluripotent stem cells (hiPSCs) to fix their damaged hearts.
Furthermore, the cells would avoid being rejected as foreign as they would be derived from the patients themselves. The study is published in the European Heart Journal. However, the researchers state that it could take a minimum of 5 to 10 years before clinical trials could start due to the many obstacles that must be overcome before using hiPSCs in humans is possible.
Although there has been advances in stem cell biology and tissue engineering, one of the major problems scientists have faced has been lack of good sources of human heart muscle cells and rejection by the immune system. Furthermore, until now, scientific have been unable to demonstrate that heart cells created from hiPSCs could integrate with existing cardiovascular tissue.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are health and young - the equivalent to the stage of his heart cells when he was just born," said Professor Lior Gepstein, Professor of Medicine (Cardiology) and Physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, who led the study.
In the study, Professor Gepstein, Ms Limor Zwi-Dantsis, and their colleagues retrieved skin cells from two male heart failure patients, aged 51 and 61 years, and reprogrammed the cells by delivering 3 transcription factors (Sox2, Oct4, and Klf4) in addition to a small molecule called valproic acid, to the cell nucleus. The team did not include a transcription factor called c-Myc as it is a known cancer-causing gene.
Professor Gepstein said:
In addition, the team used an alternative strategy involving a virus transferred reprogramming data to the cell nucleus. However, the team removed the virus after the information had been transferred in order to avoid insertional oncogenesis.
See original here:
Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
WEDNESDAY, May 23 (HealthDay News) -- In a medical science first, researchers turned skin cells from heart failure patients into heart muscle cells that may then be used to fix damaged cardiac tissue.
The researchers said the achievement -- done initially with rats -- opens up the prospect of using heart failure patients' own stem cells -- a form of cell called human-induced pluripotent stem cells (hiPSCs) -- to repair damaged hearts. And since the reprogrammed stem cells would originate with the patient, their immune systems would not reject the cells as foreign, the researchers explained.
They added, however, that many obstacles must be overcome before it would be possible to use hiPSCs in humans this way, and any clinical trial would be at least five to 10 years away.
"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young -- the equivalent to the stage of his heart cells when he was just born," study leader Lior Gepstein said in a European Heart Journal news release. The study's findings are scheduled for online publication in the journal May 23.
Gepstein is professor of medicine (cardiology) and physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine at the Technion Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.
One expert in the United States applauded the achievement.
"The ability to source a patient's own skin cells and transform them into heart muscle is truly revolutionary," said Dr. Gregory Fontana, chairman of cardiothoracic surgery at Lenox Hill Hospital in New York City.
The results are "another step toward the treatment of heart failure with stem cells," he said. "Although further work is needed, this work represents another step closer to the clinic."
In the study, the researchers retrieved skin cells from two male heart failure patients, ages 51 and 61, and then reprogrammed them in the lab to develop into heart muscle tissue, which was then blended with pre-existing heart tissue. Within 24 to 48 hours, the tissues were beating together.
The new tissue was transplanted into healthy rat hearts and started to establish connections with the cells of the rat hearts. Success in animal experiments does not necessarily translate to success in humans, however.
Link:
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes
(CBS News) A new study of patients with heart failure found a novel treatment approach might reverse the damage that has long been considered irreversible: Fixing their damaged hearts using stem cells derived by their own skin cells.
Stem cells heal heart attack scars, regrow healthy muscle Stem cells cure heart failure? What "breakthrough" study shows
In what scientists are calling a first, skin cells were taken from heart failure patients and transformed into stem cells, which were then turned into heart muscle cells capable of beating - albeit in a petri dish.
The treatment approach has scientists buzzing because it avoids the risk of possible immune system rejection from transplanting "foreign" stem cells, since the cells came from patients' own bodies.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born," the study's author Professor Lior Gepstein, professor of cardiology and physiology at the Technion-Israel Institute of Technology in Haifa, said in a news release.
Just how do skin cells become heart cells? Researchers took skin cells from two male patients with heart failure, a 51 and 61-year-old, and genetically reprogrammed them by injecting a cocktail of "transcription factors" and a virus into the nucleus of the skin cell, followed by removing the virus and transcription factors that have been linked to cancerous tumor growth. The goal was to reprogram the cells into human-induced pluripotent stem cells (hiPSCs) that could help repair hearts.
"One of the obstacles to using hiPSCs clinically in humans is the potential for the cells to develop out of control and become tumours," explained Prof Gepstein in using the technique.
Once in stem cell-form, the cells differentiated in a petri dish to become heart muscle cells called cardiomyocytes, which the researchers then combined with heart tissue and cultured them into healthy heart muscle tissue. Within 48 hours, the tissues were beating together.
"The tissue was behaving like a tiny microscopic cardiac tissue comprised of approximately 1000 cells in each beating area," Gepstein said in a statement.
The researchers then transplanted the new human tissue into rats, finding it grafted to the rat's host cardiac tissues. Their research is published in the May 22 issue of the European Heart Journal.
Follow this link:
Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes
Scientists Turn Skin Cells into Healthy Heart Cells
Dr. John D. Cunningham / Getty Images
In a medical first, scientists in Haifa, Israel, took skin cells from two heart failure patients and reprogrammed them into stem cells that generated healthy, beating heart muscle cells in the lab. Though human testing is likely a decade off, the hope is that such cells can be used to help people with heart failure repair their damaged hearts with their own skin cells.
In the current study, scientists first mixed the newly developed heart cells with pre-existing heart tissue within days, the cells were beating together. The heart tissue was then transplanted into rats, where it integrated with the rats healthy heart cells.
What is new and exciting about our research is that we have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, says lead researcherDr. Lior Gepstein, a senior clinical electrophysiologist at Rambam Medical Center in Israel, said in a statement.
The researchers were pleased to find that the cells made from the two heart failure patients, ages 51 and 61, generated heart muscle cells that were just as effective as those developed from healthy, young controls.
(MORE: Study During Beijing Olympics Shows How Pollution Harms the Heart)
If the technology works in human hearts, it could potentially prevent problems of immune rejection, since the cells would be the patients own. It would also avoid the moral issues surrounding the use of embryonic stem cells, since such reprogrammed stem cells or human induced pluripotent stem (iPS) cells do not use embryos.
But its still too early to predict whether the procedure could be successful humans. The new study involved cells from only two patients and were transplanted only into healthy animals. The authors note that human clinical trials are likely at least five or 10 years away. Further, creating iPS cells is not an easy or efficient process; its not clear whether enough cells could be made quickly enough to repair the broad-scale damage that occurs after a heart attack.
Reprogramming skin cells to become stem cells also introduces the potential for the cells to grow out of control and become cancerous. The Israeli researchers took additional steps removing certain transcription factors and viral factors to reduce the risk of cancer. But these hurdles would have to be revisited if the technique is tested in human patients.
This is an interesting paper, but very early and its really important for patients that the promise of such a technique is not oversold, John Martin, a professor of cardiovascular medicine at University College London, told Reuters.The chances of translation are slim and if it does work it would take around 15 years to come to clinic.
Read this article:
Scientists Turn Skin Cells into Healthy Heart Cells
Scientists turn skin cells into beating heart muscle
LONDON (May 23): Scientists have for the first time succeeded in taking skin cells from patients with heart failure and transforming them into healthy, beating heart tissue that could one day be used to treat the condition.
The researchers, based in Haifa, Israel, said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogram patients' cells to repair their own damaged hearts.
"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born," said Lior Gepstein from the Technion-Israel Institute of Technology, who led the work.
The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years.
Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances medical science mean many more people survive heart attacks.
At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant.
Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions.
There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed "human induced pluripotent stem cells" (hiPSCs), often originally from skin or blood.
TISSUES BEATING TOGETHER
Gepstein's team took skin cells from two men with heart failure - aged 51 and 61 - and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus.
Follow this link:
Scientists turn skin cells into beating heart muscle
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
WEDNESDAY, May 23 (HealthDay News) -- In a medical science first, researchers turned skin cells from heart failure patients into heart muscle cells that may then be used to fix damaged cardiac tissue.
The researchers said the achievement -- done initially with rats -- opens up the prospect of using heart failure patients' own stem cells -- a form of cell called human-induced pluripotent stem cells (hiPSCs) -- to repair damaged hearts. And since the reprogrammed stem cells would originate with the patient, their immune systems would not reject the cells as foreign, the researchers explained.
They added, however, that many obstacles must be overcome before it would be possible to use hiPSCs in humans this way, and any clinical trial would be at least five to 10 years away.
"We have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young -- the equivalent to the stage of his heart cells when he was just born," study leader Lior Gepstein said in a European Heart Journal news release. The study's findings are scheduled for online publication in the journal May 23.
Gepstein is professor of medicine (cardiology) and physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine at the Technion Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.
One expert in the United States applauded the achievement.
"The ability to source a patient's own skin cells and transform them into heart muscle is truly revolutionary," said Dr. Gregory Fontana, chairman of cardiothoracic surgery at Lenox Hill Hospital in New York City.
The results are "another step toward the treatment of heart failure with stem cells," he said. "Although further work is needed, this work represents another step closer to the clinic."
In the study, the researchers retrieved skin cells from two male heart failure patients, ages 51 and 61, and then reprogrammed them in the lab to develop into heart muscle tissue, which was then blended with pre-existing heart tissue. Within 24 to 48 hours, the tissues were beating together.
The new tissue was transplanted into healthy rat hearts and started to establish connections with the cells of the rat hearts. Success in animal experiments does not necessarily translate to success in humans, however.
Read this article:
Scientists Turn Skin Cells Into Cardiac Cells to Help Failing Hearts
Scientists convert skin cells into full functioning heart cells
In the first procedure of its kind, skin cells taken from patients suffering from heart failure were reprogrammed and changed into heart muscle cells. Not only were the transformed cells healthy, but they were also transplanted into the hearts of rats and were able to integrate with the existing heart tissue.
Published in the European Heart Journal, the research examined the use of human-induced pluripotent stem cells (hiPSCs) to treat damaged hearts. HiPSCs are cells that are derived from other cells in a persons body.
We were able to show [in earlier studies] that you can take these hiPSCS from healthy heart patients and coax them into bonafide heart cells, lead author Lior Gepstein, professor of medicine (cardiology) and physiology at the Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, told FoxNews.com. The question we asked in this study was whether you can do the same from an elderly individual that had suffered from advance heart failure.
Because hiPSCs are derived from the person in need of the stem cells, they could potentially help to bypass the painful process of rejection that many transplant patients go through. According to Gepstein, if this process is perfected, it could lead to much more localized treatments.
When there is significant damage from a heart attack, or with heart failure, where the heart doesnt pump enough blood into circulation, patients usually need a heart transplant, Gepstein said. But perhaps in the future, we can take a small sample of skin and convert them into stem cells specific to that patient. Then we can only replace the area with scar tissue rather than replace the dying heart.
In order to transform the skin cells into hiPSCs, Gepstein and his colleagues gave them a reprogramming cocktail, which involved delivering three genes (Sox2, Klf4 and Oct4), followed by a small molecule called valproic acid, to the nucleus of the cell.
This process turned the skin cells into heart muscle cells, or cardiomyocytes, which the researchers were able to subsequently turn into heart muscle tissue by culturing them together with cardiac tissue.
We converted the cells back into a state that resembles their early state in the embryo, Gepstein said. So they highly resemble the patients cells at the time they were born. When you give them proper conditions, they can become any type of cell in the body.
This area of study has advanced very rapidly, Gepstein added. You can take almost any type of adult cells - hair follicles, blood cells, etc. - and reprogram them to make hiPSCS cells. Skin cells are the easiest way to do it, and you dont need a lot of them.
Once the tissue had formed, it was transplanted into the hearts of healthy rats, where it successfully grafted and integrated with the existing tissue.
Originally posted here:
Scientists convert skin cells into full functioning heart cells
Can Stem Cells Repair Heart Tissue?
People who suffer from heart failure could someday be able to use their own skin stem cells to regenerate their damaged heart tissue, according to a new Israeli study.
Researchers took stem cells from the skin of two patients with heart failure and genetically programmed them to become new heart muscle cells. They then transplanted the new cells into healthy rats and found that the cells integrated with cardiac tissue that already existed.
The study, published in European Heart Journal, marks the first time ever that scientists could use skin cells from people with heart failure and transform damaged heart tissue this way.
The newly generated cells turned out to be similar to embryonic stem cells, which can potentially be programmed to grow into any type of cell.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born," Dr. Lior Gepstein, lead researcher and a senior clinical electrophysiologist at Rambam Medical Center in Haifa, Israel, said in a news release.
The findings open up the possibility, the authors wrote, that people can use their own skin cells to repair their damaged hearts, which could prevent the problems associated with using embryonic stem cells.
"This approach has a number of attractive features," said Dr. Tom Povsic, an interventional cardiologist at Duke University Medical Center. "We can get the cells that you start with from the patient himself or herself. It avoids the ethical dilemma associated with embryonic stem cells and it removes the possibility of rejection of foreign stem cells by the immune system." Povsic was not involved with the Israeli study.
Another advantage of using skin cells is that other types of cells taken from patients themselves, such as bone marrow cells, could potentially lead to the development of unhealthy tissue.
"If a patient is already sick with heart disease, one of the reasons it may develop is that stem cells weren't able to repair the heart the way they should," Povsic added. Skin cells, he explained, are generally healthy.
"It is very exciting and very interesting, but we are far away from taking this to patients," said Dr. Marrick Kukin, director of the Heart Failure Program at St. Luke's-Roosevelt Hospital who was also not involved in the Israeli study.
Read the rest here:
Can Stem Cells Repair Heart Tissue?
Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells
Editor's Choice Main Category: Cardiovascular / Cardiology Article Date: 25 May 2012 - 0:00 PDT
Current ratings for: 'Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells'
4 (1 votes)
This achievement is significant, as it opens up the prospect of treating heart failure patients with their own, human-induced pluripotent stem cells (hiPSCs) to fix their damaged hearts.
Furthermore, the cells would avoid being rejected as foreign as they would be derived from the patients themselves. The study is published in the European Heart Journal. However, the researchers state that it could take a minimum of 5 to 10 years before clinical trials could start due to the many obstacles that must be overcome before using hiPSCs in humans is possible.
Although there has been advances in stem cell biology and tissue engineering, one of the major problems scientists have faced has been lack of good sources of human heart muscle cells and rejection by the immune system. Furthermore, until now, scientific have been unable to demonstrate that heart cells created from hiPSCs could integrate with existing cardiovascular tissue.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are health and young - the equivalent to the stage of his heart cells when he was just born," said Professor Lior Gepstein, Professor of Medicine (Cardiology) and Physiology at the Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, who led the study.
In the study, Professor Gepstein, Ms Limor Zwi-Dantsis, and their colleagues retrieved skin cells from two male heart failure patients, aged 51 and 61 years, and reprogrammed the cells by delivering 3 transcription factors (Sox2, Oct4, and Klf4) in addition to a small molecule called valproic acid, to the cell nucleus. The team did not include a transcription factor called c-Myc as it is a known cancer-causing gene.
Professor Gepstein said:
In addition, the team used an alternative strategy involving a virus transferred reprogramming data to the cell nucleus. However, the team removed the virus after the information had been transferred in order to avoid insertional oncogenesis.
View original post here:
Skin Cells From Heart Failure Patients Made Into Healthy New Heart Muscle Cells
Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes
(CBS News) A new study of patients with heart failure found a novel treatment approach might reverse the damage that has long been considered irreversible: Fixing their damaged hearts using stem cells derived by their own skin cells.
Stem cells heal heart attack scars, regrow healthy muscle Stem cells cure heart failure? What "breakthrough" study shows
In what scientists are calling a first, skin cells were taken from heart failure patients and transformed into stem cells, which were then turned into heart muscle cells capable of beating - albeit in a petri dish.
The treatment approach has scientists buzzing because it avoids the risk of possible immune system rejection from transplanting "foreign" stem cells, since the cells came from patients' own bodies.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born," the study's author Professor Lior Gepstein, professor of cardiology and physiology at the Technion-Israel Institute of Technology in Haifa, said in a news release.
Just how do skin cells become heart cells? Researchers took skin cells from two male patients with heart failure, a 51 and 61-year-old, and genetically reprogrammed them by injecting a cocktail of "transcription factors" and a virus into the nucleus of the skin cell, followed by removing the virus and transcription factors that have been linked to cancerous tumor growth. The goal was to reprogram the cells into human-induced pluripotent stem cells (hiPSCs) that could help repair hearts.
"One of the obstacles to using hiPSCs clinically in humans is the potential for the cells to develop out of control and become tumours," explained Prof Gepstein in using the technique.
Once in stem cell-form, the cells differentiated in a petri dish to become heart muscle cells called cardiomyocytes, which the researchers then combined with heart tissue and cultured them into healthy heart muscle tissue. Within 48 hours, the tissues were beating together.
"The tissue was behaving like a tiny microscopic cardiac tissue comprised of approximately 1000 cells in each beating area," Gepstein said in a statement.
The researchers then transplanted the new human tissue into rats, finding it grafted to the rat's host cardiac tissues. Their research is published in the May 22 issue of the European Heart Journal.
Read more:
Skin cells transformed into beating heart tissue, fueling heart failure treatment hopes
Physical properties predict stem cell outcome
ScienceDaily (May 21, 2012) Tissue engineers can use mesenchymal stem cells derived from fat to make cartilage, bone, or more fat. The best cells to use are ones that are already likely to become the desired tissue. Brown University researchers have discovered that the mechanical properties of the stem cells can foretell what they will become, leading to a potential method of concentrating them for use in healing.
To become better healers, tissue engineers need a timely and reliable way to obtain enough raw materials: cells that either already are or can become the tissue they need to build. In a new study, Brown University biomedical engineers show that the stiffness, viscosity, and other mechanical properties of adult stem cells derived from fat, such as liposuction waste, can predict whether they will turn into bone, cartilage, or fat.
That insight could lead to a filter capable of extracting the needed cells from a larger and more diverse tissue sample, said Eric Darling, senior author of the paper published in Proceedings of the National Academy of Sciences. Imagine a surgeon using such a filter to first extract fat from a patient with a bone injury and then to inject a high concentration of bone-making stem cells into the wound site during the same operation.
If mechanical properties of stem cells -- viscosity, stiffness, size -- predict what they will become, the next step is to develop a high-throughput testing and sorting device.In the paper, the researchers report that the stiffest adipose-derived mesenchymal stem cells tended to become bone, the ones that were biggest and softest tended to become fat, and those that were particularly viscous were most likely to end up as cartilage.
"The results are exciting because not only do the mechanical properties indicate what lineage these cells could potentially go along but also the extent of their differentiation," said Darling, assistant professor of medical science in the Department of Molecular Pharmacology, Physiology. and Biotechnology and the University's Center for Biomedical Engineering. "It tells us how good they are going to be if we differentiated them for a given tissue type."
So when tissue engineers go looking through extracted fat for cells to create bone, for instance, they can sort through the cells looking for ones with a certain level of stiffness or greater. Whether the cells are "undifferentiated" stem cells that have made no move toward becoming a specific cell type, or ones that are already bone cells, only the ones with the requisite stiffness would make the cut. That process would yield a higher population of cells for making new bone tissue.
"Can we enrich the cell populations for cells that we want to use, whether they are totally undifferentiated cell types, partially differentiated, or completely differentiated?" Darling said. "It doesn't matter as long as it's targeted for the specific tissue application."
Darling's study, led by research assistants Rafael Gonzaelz-Cruz and Vera Fonseca, involved cloning adipose-derived adult human stem cells into 32 stem cell populations. They then poked, prodded, and measured the cells with an atomic force microscope, gaining measurements of how big they were, how sturdy they were under pressure, and how the force between them and the scope's cantilevered probe changed over time. The team found the cells exhibited a wide range of stiffness, viscosity and size.
Once they had the measurements, the researchers chemically induced the cells to differentiate and analyzed the levels of key metabolites produced by the cells as they matured a few weeks later. For each population, the metabolites indicated the relative proportion that differentiated into one tissue or another. Population 28, for example, apparently responded productively to chemical cues for producing cartilage, only somewhat well for producing bone and poorly to cues for making fat.
The key moment was when the researchers correlated each cell population's mechanical measurements with its metabolite data. Did the mechanical properties predict which populations would be the most successful in turning into bone cells or cartilage cells or fat cells? Sure enough, they did. The stiffest cell populations produced more bone. The squishiest cells were the ones that produced the most fat. The ones with the highest viscosity were the ones seemingly headed toward becoming cartilage.
Read this article:
Physical properties predict stem cell outcome
International Stem Cell Corp Announces First Quarter 2012 Financial Results and Business Highlights
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (OTCBB: ISCO.OB - News) (www.internationalstemcell.com) today announced financial results for the three months ended March 31, 2012.
Three Months ended March 31, 2012
Consolidated net revenues for the three months ended March 31, 2012 were $1.08 million compared to $1.52 million in the corresponding period a year ago. The year-over-year decrease in revenues is due to fewer sales generated from the Lifeline Skin Care (LSC) direct sales channel, partially offset by higher Lifeline Cell Technology (LCT) sales generated from larger distributors. LSC and LCT accounted for 51% and 49% of total revenue in the three months ended March 31, 2012 compared to 75% and 25%, respectively, in the comparable period a year ago.
For the three months ended March 31, 2012, development expenses were $3.80 million, representing a decrease of approximately 5% compared to the corresponding period in 2011. The decrease primarily reflects lower general and administrative expenses resulting from decreased stock-based compensation expense and lower laboratory-related expenses. The decrease was partially offset by higher cost of sales ratio resulting from increased sales concentration of lower margin products, and higher marketing and selling expense related to LSC. The Company continued to invest in its sales and marketing infrastructure, including significant enhancements to the e-commerce platforms, increased advertising and strengthening the sales and customer service organization.
Cash and cash equivalents at March 31, 2012 were $6.01 million compared to $1.34 million at December 31, 2011, reflecting an increase of $4.67 million resulting from two financing transactions including the issuance of shares of Series G preferred stock for $5.00 million and issuance of shares of common stock for a total of $2.08 million in the first quarter of 2012.
Q1 2012 Business Highlights:
The Company continued to focus its research and development efforts on the creation of additional parthenogenetic stem cell lines for therapeutic use and on the advancement of the disease area research programs, particularly pre-clinical in vivo safety and efficacy studies in Parkinsons disease and new methods for high-throughput cell culture and stem cell differentiation.
ISCOs wholly-owned subsidiary Lifeline Skin Care drove sales by expanding acquisition of both retail and trade customers, increasing the average order value and enhancing customer loyalty and retention. New retail customers were attracted by an increased social media presence and national exposure on TV shows such as ABCs The Talk and the use of risk-free introductory offers and free sample promotions. In addition, LSC continued to increase the number of strategic marketing partnerships. Although LSC revenue for the quarter was lower than the same period in 2011, the sales were generated from more diversified sources with much greater growth potential and reduced reliance on individual third parties.
Lifeline Cell Technology, ISCOs wholly-owned subsidiary specialized in cells and media research products, grew revenue across all three sales channels including domestic, international and OEM, showing a 39% increase over the same quarter of 2011.
See the rest here:
International Stem Cell Corp Announces First Quarter 2012 Financial Results and Business Highlights