A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation – Nature.com

Posted: July 8, 2024 at 2:37 am

Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101114 (2017).

Article CAS PubMed Google Scholar

Nalawansha, D. A. & Crews, C. M. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem. Biol. 27, 9981014 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301305 (2014).

Article PubMed Google Scholar

Lu, G. et al. The myeloma drug lenalidomide promotes the Cereblon-dependent destruction of Ikaros proteins. Science 343, 305309 (2014).

Article CAS PubMed Google Scholar

Kannt, A. & Dikic, I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 28, 10141031 (2021).

Article CAS PubMed Google Scholar

Belcher, B. P., Ward, C. C. & Nomura, D. K. Ligandability of E3 ligases for targeted protein degradation applications. Biochemistry 62, 588600 (2023).

Article CAS PubMed Google Scholar

Buckley, D. L. et al. Targeting the Von HippelLindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1 interaction. J. Am. Chem. Soc. 134, 44654468 (2012).

Article CAS PubMed PubMed Central Google Scholar

Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 13451350 (2010).

Article CAS PubMed Google Scholar

Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747755 (2019).

Article CAS PubMed PubMed Central Google Scholar

Tao, Y. et al. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. J. Am. Chem. Soc. 144, 1868818699 (2022).

Article CAS PubMed PubMed Central Google Scholar

Zhang, X. et al. DCAF11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. J. Am. Chem. Soc. 143, 51415149 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737746 (2019).

Article CAS PubMed PubMed Central Google Scholar

Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503508 (2019).

Article CAS PubMed PubMed Central Google Scholar

Nusinow, D. P. et al. Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell 180, 387402 (2020).

Article CAS PubMed PubMed Central Google Scholar

Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 19381947 (2019).

Article CAS PubMed PubMed Central Google Scholar

Slabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293297 (2020).

Article CAS PubMed PubMed Central Google Scholar

Slabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164168 (2020).

Article CAS PubMed PubMed Central Google Scholar

Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 13761381 (2015).

Article CAS PubMed PubMed Central Google Scholar

Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431441 (2018).

Article CAS PubMed PubMed Central Google Scholar

Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPRCas9 complex. Nature 517, 583588 (2015).

Article CAS PubMed Google Scholar

Tempest, P. A. Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Curr. Opin. Drug Discov. Devel. 8, 776788 (2005).

CAS PubMed Google Scholar

Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732736 (2009).

Article CAS PubMed Google Scholar

Skaar, J. R., Pagan, J. K. & Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov. 13, 889903 (2014).

Article CAS PubMed PubMed Central Google Scholar

Cheng, J. et al. Emerging role of FBXO22 in carcinogenesis. Cell Death Discov. 6, 66 (2020).

Article CAS PubMed PubMed Central Google Scholar

Tan, M. K., Lim, H. J. & Harper, J. W. SCFFBXO22 regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol. Cell. Biol. 31, 36873699 (2011).

Article CAS PubMed PubMed Central Google Scholar

Johmura, Y. et al. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J. Clin. Invest. 128, 56035619 (2018).

Article PubMed PubMed Central Google Scholar

Johmura, Y. et al. SCFFbxo22-KDM4A targets methylated p53 for degradation and regulates senescence. Nat. Commun. 7, 10574 (2016).

Article CAS PubMed PubMed Central Google Scholar

Zhang, L. et al. FBXO22 promotes the development of hepatocellular carcinoma by regulating the ubiquitination and degradation of p21. J. Exp. Clin. Cancer Res. 38, 101 (2019).

Article PubMed PubMed Central Google Scholar

Ge, M. K. et al. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat. Commun. 11, 1720 (2020).

Article CAS PubMed PubMed Central Google Scholar

Tian, X. et al. F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression. Oncotarget 6, 2276722775 (2015).

Article PubMed PubMed Central Google Scholar

Zhu, X. N. et al. FBXO22 mediates polyubiquitination and inactivation of LKB1 to promote lung cancer cell growth. Cell Death Discov. 10, 486 (2019).

Article Google Scholar

Liang, D. et al. Protein CutA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase. J. Biol. Chem. 284, 51955207 (2009).

Article CAS PubMed Google Scholar

Vinogradova, E. V. et al. An activity-guided map of electrophilecysteine interactions in primary human T cells. Cell 182, 10091026 (2020).

Article CAS PubMed PubMed Central Google Scholar

Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570574 (2016).

Article CAS PubMed PubMed Central Google Scholar

Casement, R., Bond, A., Craigon, C. & Ciulli, A. Mechanistic and structural features of PROTAC ternary complexes. Methods Mol. Biol. 2365, 79113 (2021).

Article CAS PubMed Google Scholar

Hines, J., Lartigue, S., Dong, H., Qian, Y. & Crews, C. M. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251262 (2019).

Article CAS PubMed Google Scholar

Galkin, A. V. et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc. Natl Acad. Sci. USA 104, 270275 (2007).

Article CAS PubMed Google Scholar

Koivunen, J. P. et al. EML4ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 42754283 (2008).

Article CAS PubMed PubMed Central Google Scholar

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543D552 (2022).

Article CAS PubMed Google Scholar

View original post here:
A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation - Nature.com

Related Posts

Comments are closed.

Archives