CRISPR Gene Editing and the DNA of Future Food | Digital Trends
Posted: October 14, 2017 at 3:49 am
Agriculture has come a long way in the past century. We produce more food than ever before but our current model is unsustainable, and as the worlds population rapidly approaches the 8 billion mark, modern food production methods will need a radical transformation if theyre going to keep up. But luckily, theres a range of new technologies that might make it possible. In this series, well explore some of the innovative new solutions that farmers, scientists, and entrepreneurs are working on to make sure that nobody goes hungry in our increasingly crowded world.
Corn isnt the sexiest crop but its one of the most important. Its the most abundant grain on Earth, used as food and biofuel around the globe. In ancient times, Mesoamericans thrived on it, waged wars over it. Their myths claimed corn was the matter from which gods created mankind itself.
But, just as corn helped create these civilizations, these civilizations helped create corn through meticulous selective breeding. Todays grain hardly resembles its ancestors. Compared to the wild plant first cultivated by ancient Mexicans some ten thousand years ago, modern corn is a super mutant.
And yet, after all those thousands of years of cultivation, just two main genes are thought to be responsible for the evolution of the corn we eat today. Selective breeding is painstakingly slow and imprecise.
But thats all about to change.
Selective breeding is painstakingly slow and imprecise. But thats all about to change.
New gene editing tools like CRISPR/Cas9 now let scientists hack into genomes, make precise incisions, and insert desired traits into plants and animals. Well soon have corn with higher crop yields, mushrooms that dont brown, pigs with more meat on the bone, and disease resistant cattle. Changes that took years, decades, or even centuries, can now be made in a matter of months. In the next five years you might eat tortilla chips made from edited corn. By 2020 you might drink milk from an edited cow.
Dubbed the CRISPR Revolution these scientific advances in gene editing have huge potential that many experts think could help fortify our food system and feed an increasing population of farmers who are threatened by food scarcity caused, in part, by climate change.
But not everyone is so certain. Beyond the contentious legal battles that have thus far complicated CRISPR science, calling into question who can and cant use the technology, some consumer rights advocates think these tools will be used to maintain the status quo of an industry based primarily on corporate profit. Meanwhile, residual worry about genetically modified organisms (GMOs) may influence the public perception of gene-edited organisms, steering consumers towards the organic aisle despite scientific evidence.
Gene editing is, simply put, the act of making intentional changes to DNA in order to create an organism with a specific trait or traits. Its like using a word processor to edit the words in a sentence. Geneticists insist we dont confuse this with genetic modification (otherwise called genetic engineering), which introduces new genes from different species in order to achieve desired traits. The difference may sound trivial but experts say it could help calm the concerns associated with GMOs.
Consider this simplification. We have the sentence, The cat has a hat, but want to be more descriptive about the hats color. With modification, we would borrow the German word for black and write, The cat has a schwarz hat. The sentence makes sense (sort of) but its obvious that to some people it would be problematic and maybe even an improper use of language. With editing, we dont have to borrow a word from another language. We instead just insert the English word and write, The cat has a black hat.
In the older, more traditional system, scientists were taking a gene from one species and putting it into a plant to confer a particular trait on that plant, Rachel Haurwitz, co-founder of Caribou Biosciences, told Digital Trends. Thats not what were looking to do. Were looking to use CRISPR gene editing to achieve the same outcome as we can get from traditional breeding, just faster.
This ability to edit with such speed and precision is still relatively new, and due largely to CRISPR, which emerged straight from nature to become the most popular and powerful gene editing tool used today. Discovered in bacteria in the late eighties, it wasnt until 2005 that researchers began to unravel its role. Scientists found that when certain bacteria come under attack from viruses, they use special enzymes to cut, copy, and save a bit of the viral DNA. Later, if the intruder returns, the bacteria can quickly recognize it and react to defend itself.
A few years later, researchers realized this system could be used to cut and edit the DNA of any organism, not just viruses. In 2012, Jennifer Doudna and Emmanuelle Charpentier published the first paper demonstrating how CRISPR can be used to edit an organisms genome.
Were looking to use CRISPR gene editing to achieve the same outcome as we can get from traditional breeding, just faster.
Not only is this technique far cheaper, faster, and more precise than conventional genetic modification, it avoids many (if not all) of the issues raised by skeptics, whose main concerns point toward the creation of transgenic organisms.
But, whereas genetic modification entails combining DNA from multiple species, gene editing entails altering the DNA of one species with a trait that already exists naturally.
Gene editing is not at all about taking DNA from a foreign species and integrating it into a plant, Haurwitz said. Its really about working within the constraints of the plants own genome.
Just over four years ago, Haurwitz founded Caribou as a spin off from Doudnas lab at the University of California, Berkeley. Since then, her team has partnered with companies around the world, providing licensing rights to use the startups version of the gene editing tool. One of those partnerships may see the first CRISPR-edited organism come to market via DuPont Pioneer, one of the worlds biggest chemical companies.
The day before Halloween 2015, Yinong Yang submitted an Am I Regulated letter to the United States Department of Agricultures (USDA) Animal and Plant Health Inspection Service (APHIS). He and his colleagues at Penn State had used CRISPR to knock out a gene in white button mushrooms that makes them go brown over time. Without the browning gene, white buttons look better and last longer, and Yang wanted to know whether his mushrooms could legally go to market.
The following spring, the departments response resonated throughout the scientific and agricultural community. APHIS does not consider CRISPR/Cas9-edited white button mushroomsto be regulated, it wrote in an open letter.
Last year, researchers at DuPont Pioneer, the agriculture branch of the multi-billion-dollar conglomerate DuPont, published a study about a strain of corn engineered with CRISPR to be more resistant to drought. Its one of several CRISPR-modified crops that may soon be coming to market.
It was a landmark decision. Yangs mushrooms were the first gene-edited crop cleared for commercial sale by the USDA, which made a clear distinction between genetic modification and gene editing, and set a precedent for those to come.
A few days later, DuPont the fourth largest chemical corporation in the world received a similar response from the USDA regarding its CRISPR-edited waxy corn thats disease resistant and drought tolerant. DuPont wasted no time announcing plans to take its crop to market within the next five to ten years.
The USDA has said these products do not fall into their remit, as their remit is really focused on, say, plant pathogens or noxious weeds, said Haurwitz, whose company provides DuPont with its CRISPR technology. At the same time were seeing the FDA put out a call for information as theyre looking at their own remit to oversee the entire food supply, not just products made with modern biotechnology. And I think theyre looking to members of the scientific and business communities to really weigh in over the next few months.
Unlike most Button mushrooms, these ones dont brown or develop blemishes from being handled. This trait doesnt occur naturally it happens because the gene that makes the mushrooms turn brown was selectively removed from them via the CRISPR/Cas9 method. (Photo: Yang Lab)
For Yangs part, he intends to improve his mushrooms before making them commercially available. Although not legally required, he plans to seek approval from the Food and Drug Administration (FDA) and Environmental Protection Agency (EPA).
Edited waxy corn may find its way into the food system much sooner than white button mushrooms, if not as human food than as fodder for the growing number of livestock around the world. Meanwhile, these livestock are also undergoing genetic edits as researchers use the same tools to make animals healthier, meatier, and more productive.
Pigs harbor a lot of diseases and there are few as bad as porcine reproductive and respiratory syndrome (PRRS). It causes pregnant mothers to miscarry and makes it difficult for piglets to breathe. Its a problem for the pig farmers as well. Every year, the PRRS virus costs the industry nearly $1.6 billion dollars in Europe and another $664 million in the US.
The impacts of the disease for producers are often devastating, said Jonathan Lightner, Chief Scientific Officer at biotech company Genus. And the impacts on the animals themselves are terrible.
If we could integrate the polled phenotype into the dairy system, that would eliminate dehorning for at least seven or eight million animals a year.
But Lightner and his team are working on a solution. In December 2015, scientists at Genus and the University of Edinburghs Roslin Institute demonstrated how CRISPR could remove the CD163 molecule, a pathway through which the PRRS virus infects pig. Just last month, the researchers refined their work to remove just the portion of the gene that directly interacts with the virus. Lab tests, as published in a paper in the journal PLOS Pathogens, have shown that DNA in cells removed from these pigs successfully resist the virus. Next steps in the study will test whether the pigs themselves are resistant to the virus.
Swine are also the subject of research at Seoul National University in South Korea, where scientists led by Jin-Soo Kin are using a different gene-editing tool called TALEN to create meatier, double muscle pigs by removing a gene that inhibits muscle growth. We could do this through breeding, Kin told Nature back in 2015, but then it would take decades.
In fact, farmers have developed similar traits through breeding Belgian Blues, a type super-sculpted beef cattle prized for its lean meat and beefy build. It took over a hundred years to establish those traits in the breed.
Researchers at University of California, Davis and a startup called Recombinetics are using the same TALEN gene editing technique to cut decades down to days, removing the horned gene from common dairy cows and inserting the one that makes Angus beef cattle naturally dehorned or polled. Polled cattle are desirable because they pose less threat to their handlers and to each other. But, as Tad Sonstegard, Chief Science Officer of Acceligen (a Recombinetics subsidiary) explained, polled cattle in certain breeds are simply less productive.
Gene editing ala CRISPR/Cas9 has allowed scientists to not only produce polled (hornless) cows, but also cows that are immune to common diseases, such as tuberculosis. (Photo: Gregory Urquiaga/UC Davis)
The issue is that the top [dairy] bulls that everyone wants are horned, Sonstegard said. The animals that are polled that already exist have a difference of about $250 over their lifetime. If youre running a thousand head dairy [operation], thats a lot of money.
What many ranchers do instead is dehorn their cattle, a stressful practice when anesthesia is used, a painful practice when it isnt, and a significant expense for the ranchers either way.
If we could integrate the polled phenotype into the dairy system, that would eliminate dehorning for at least seven or eight million animals a year, Sonstegard said. If you include beef, thats up to fifteen million.
Recombinetics has already bred a couple gene-edited calves, which are undergoing care and monitoring at UC Davis. But, before any gene-edited cows produce the milk in our grocery stores, Sonstegard said scientists would need to prove that milk from these cows is similar to horned and polled cows that havent been gene edited. That would be simple though, he said, it would turn out the same.
As the global population grows, so does the demand for food. Meanwhile, farmers around the world face food scarcity generated in part by a changing climate that makes caring for plants and livestock an increasingly difficult task.
But CRISPR-like tools may be able to help.
On the plant side were looking at ways to breed plants that are more drought tolerant or in other ways can better survive the stresses of climate change, Haurwitz said. I think thats incredibly valuable and important as we look at the exploding global population. Caribou has also partnered with Genus in its project to breed PRRS virus resistant pigs.
Beyond his work at Recombinetics, Sonstegard sits on the scientific advisory board of the Centre for Tropical Livestock Genetics and Health, a Gates Foundation-backed initiative to improve the genetics of native livestock in tropical regions. Most productive livestock breeds cant survive the heat or diseases present in tropical environments, and breeds native to tropical environments havent had the same selective breeding programs that generate highly productive livestock.
Will CRISPR be used primarily for patenting foods in ways that fit in existing corporate profit models?
Most of the indigenous animals have not been under strict artificial selection, Sonstegard said. Its all been done anecdotally, since most farmers dont have that many cows and their systems arent that big. Meanwhile, most of the new DNA introduced to these herds is left over semen from bulls in developed countries, according to Sonstegard. Its cheap, he said, and no one in the developed country wants it anymore, so they ship it overseas.
There are a couple possible approaches to strengthening these indigenous breeds. One way would be to edit the DNA of bulls from productive breeds so that theyre more temperature tolerant and disease resistant within tropical climates. Those bulls could then be introduced to the native herds to reproduce and spread their productive genes. Alternatively, the DNA of indigenous bulls could be edited with genes likely to improve productivity of the herd, including milk production and carcass yield.
Right now the trend in those countries is that theres a linear growth in livestock numbers, Sonstegard said, because theyre not improving production but demand is increasing, so they just make more animals.Thats not sustainable.
Researchers are also using CRISPR to save dying and endangered species. This month some of Sonstegards colleagues published a paper showing they could develop surrogate hens that could help raise endangered species of birds. And in Florida, where an invasive disease known as citrus greening is decimating the states iconic orange industry, University of Florida scientists are using CRISPR to develop varieties of orange trees immune to the disease, according to the Tampa Bay Times.
But not everybody is so gung-ho.
UC Davis geneticist Alison Van Eenennaam, who collaborates with Recombinetics on gene-editing polled cows, is absolutely optimistic about the tool I think it can be used for very useful things, she said. Rather than ask why we should use, lets ask how. but shes also careful not to overstate the potential of gene editing. When asked whether the technology could be used to address world hunger, she said, I kind of think that idea is polyamorous. Show me anything that can magically solve world hunger. Lets not oversell this technology. Its useful but its useful for a fairly discreet purpose at this stage, which is making edits to a [gene] sequence that we know has a particular effect.
And CRISPR, of course, has its skeptics. Stacy Malkan, Co-Director of U.S. Right to Know, a nonprofit that calls for transparency and accountability in the food system, is both concerned about the inherent risk involved in gene editing and suspects it could ultimately perpetuate an already imbalanced food system.
Theres really no big difference between [gene editing] and conventional breeding.
Will CRISPR be used primarily for the purpose of patenting foods in ways that fit in existing corporate profit models, she asked, for example, to engineer commodity crops to withstand herbicides, or to engineer livestock to fit better in unhealthy confined feeding operations? Or will it be used to engineer foods that have consumer benefits? Will there be labeling, and safety assessments? There are many questions. Right now we hear a lot of marketing hype about possible benefits of CRISPR, but we heard the same promises about first-generation GMOs for decades and most of those benefits have not panned out.
For scientists like Van Eenennaam, the GMO discussion is over. Frankly, she said, Im over the debate. If someone isnt convinced by the evidence that every single major scientific society in the world says its safe, than nothing Im going to say is going to convince them any differently. When it comes to gene-edited organisms, most scientists are even more insistent about its safety. Theres really no big difference between [gene editing] and conventional breeding, Van Eenennaam added.
But there isnt complete consensus. Malkan points to an interview she recently had with Michael Hansen, senior scientist from Consumers Union, in which Hansen said of CRISPR-like gene editing tools, These methods are more precise than the old methods, but there can still be off-target and unintended effects. When you alter the genetics of living things they dont always behave as you expect. This is why its crucial to thoroughly study health and environmental impacts, but these studies arent required.
From Sonstegards perspective, mutations and off-target effects occur naturally anyway, and gene editing simply offers a more precise approach than selective breeding.
Still, Malkan and others have their reservations, grounded in the idea that its too early to determine the side effects. CRISPR is a powerful research tool for helping scientists understand genetics, how cells react, how entire plants and systems react, she said. In my view these experimental technologies should be kept in the lab, not unleashed in our food system, until those systems are better understood.
See more here:
CRISPR Gene Editing and the DNA of Future Food | Digital Trends
- 'CRISPR pill' instructs harmful bacteria to self-destruct - National Hog Farmer [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Highly sensitive CRISPR diagnostic tool created - BioNews [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- More Tooth, More Tail in CRISPR Operations | GEN - Genetic Engineering & Biotechnology News (press release) [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR - Technology Networks [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- MPEG LA Invites CRISPR-Cas9 Patents to be Pooled in a One-Stop License - Yahoo Finance [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- What Is CRISPR? - livescience.com [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR and Stem Cells Identify Novel Chlamydia Drug Targets - Genetic Engineering & Biotechnology News [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR webinar: HGF discusses IP landscape - Life Sciences Intellectual Property Review (subscription) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR.com was for sale, and you won't guess who bought it - STAT [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Pill May Be Key in Fight Against Antibiotic Resistance - Singularity Hub [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Intellia (NTLA), CRISPR Therapeutics (CRSP) Receive U.S. Patent for CRISPR/Cas9 Ribonucleoprotein Complexes - StreetInsider.com [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- transOMIC technologies Launches transEDIT-dual CRISPR ... - PR Newswire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Global CRISPR Market Forecast 2017-2025 - Research and Markets ... - Business Wire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR | Technology Networks - Technology Networks [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR/Cas9 and Targeted Genome Editing: A New Era in ... [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR - Wikipedia [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Used To Modify Multiple Genes In Rice - Asian Scientist Magazine [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- Current CRISPR Patent Dispute, Explained - CALIFORNIA [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CEOs of top gene-editing firms got huge compensation hikes last year - Boston Business Journal [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CRISPR-SMART Cells Regenerate Cartilage, Secrete Anti-Arthritis Drug - Genetic Engineering & Biotechnology News [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Another CRISPR Trial Begins - GenomeWeb [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- China Is Racing Ahead of the US in the Quest to Cure Cancer With CRISPR - Gizmodo [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- CRISPR Gene Editing - CRISPR/Cas9 - Horizon Discovery [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Questions and Answers about CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Genome Engineering Resources | learn, share, and discuss [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Technology Scientists on Their Gene Editing Tool - TIME [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Cas9 - Wikipedia [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Using CRISPR against cancer shows success in mice - Futurity - Futurity: Research News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- Using CRISPR to Find Treatments for Aggressive Pediatric Brain Cancer - Bioscience Technology [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- CRISPR Eliminates HIV in Live Animals - Genetic Engineering & Biotechnology News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- The CRISPR patent dispute - Europe and the US - BioNews [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- How Scientists Think CRISPR Will Change Medicine - TIME [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- What you need to know about the legal battle over CRISPR patents - Genetic Literacy Project [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Scientists have eliminated HIV in mice using CRISPR - TechCrunch [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Therapeutics Appoints Samarth Kulkarni, Ph.D. as President, Expanding Role Beyond Chief Business Officer ... - GlobeNewswire (press release) [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- ECDC says risk from contaminated CRISPR kits low - CIDRAP [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Could Transform the Way We Diagnose Disease - Gizmodo [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- A cancer gene also grows stem cells, CRISPR in monkey embryo ... - Speaking of Research [Last Updated On: May 5th, 2017] [Originally Added On: May 5th, 2017]
- New CRISPR Technique Can Potentially Stop Cancer In Its Tracks - Wall Street Pit [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- CRISPR gene-editing tool targets cancer's "command center" - Gizmag - New Atlas [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Update: CRISPR - Radiolab [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Cambridge gene editing firm CRISPR to use delivery tech honed ... - Boston Business Journal [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Oxford Genetics licenses CRISPR tech to power synbio push - FierceBiotech [Last Updated On: May 10th, 2017] [Originally Added On: May 10th, 2017]
- What You Need to Know About the New CRISPR Cancer Treatment - BOSS Magazine [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- CRISPR: The Future of Medicine and Human Evolution - in-Training [Last Updated On: May 12th, 2017] [Originally Added On: May 12th, 2017]
- Intellia Therapeutics Announces Progress with CRISPR/Cas9 at the American Society of Gene & Cell Therapy Annual ... - GlobeNewswire (press... [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Pac-Man like CRISPR enzymes discovered - Lab News [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Coming age of CRISPR gene editing: What in heck is the 'Pink Chicken Project'? - Genetic Literacy Project [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Intellia moves closer to clinic with CRISPR tech - FierceBiotech [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Will CRISPR Technology Create a New "Human" Species? - Big Think [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Caribou Bioscience's CEO on CRISPR's legal and ethical challenges - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Cut Out the Hype: Gene Editing With CRISPR and the Truth about Superhuman 'Designer Babies' - WhatIsEpigenetics.com (blog) [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- CRISPR-Cas.org [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Synthego's genetic toolkit aims to make CRISPR more accessible - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- What is CRISPR? A Beginner's Guide | Digital Trends [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Geneticists Enlist Engineered Virus and CRISPR to Battle Citrus Disease - Scientific American [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Editas delays IND for Allergan-partnered CRISPR program - FierceBiotech [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Easy DNA Editing Will Remake the World. Buckle Up - WIRED [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Can CRISPR feed the world? - Phys.org - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Gene-editing tool 'CRISPR' gaining massive attention - KMOV.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Fixing the tomato: CRISPR edits correct plant-breeding snafu - Nature.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Beyond just promise, CRISPR is delivering in the lab today - The Conversation US [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- What is CRISPR-Cas9, and will it change the world? | Alphr - Alphr [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Fixing the Tomato: CRISPR Edits Correct Plant-Breeding Snafu ... - Scientific American [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- This UK Biotech uses CRISPR-Cas9 To Fight Bacterial Resistance - Labiotech.eu (blog) [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Can CRISPR feed the world? | Horizon: the EU Research ... - Horizon magazine [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Will this gene-editing tool cure the diseases of the future? - Sacramento Bee [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How the CRISPR-Cas9 System is Redefining Drug Discovery - Labiotech.eu (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Scientists are using gene editing to create the perfect tomato for your salad - Quartz [Last Updated On: May 24th, 2017] [Originally Added On: May 24th, 2017]
- Fine-tuning CRISPR to Create Popular Mouse Models - Technology Networks [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Scientists Are Using CRISPR To "Program" Living Cells - Futurism - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- CRISPR gene editing puts the brakes on cancer cells - Cosmos [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Watch This Scientist Brilliantly Explain CRISPR to Everyone from a Child to a Ph.D. - Patheos (blog) [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- Using CRISPR gene editing to slow cancer growth | FierceBiotech - FierceBiotech [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- How A Gene Editing Tool Went From Labs To A Middle-School Classroom - NPR [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- In Just a Few Short Years, CRISPR Has Sparked a Research Revolution - Futurism [Last Updated On: May 29th, 2017] [Originally Added On: May 29th, 2017]
- CRISPR Is Taking Over Science, Breaks Out Of Labs And Invades Schools - EconoTimes [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Gene-editing technique scientists hope will cure cancer and all ... - The Independent [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- CRISPR Gene-Editing Can Cause Hundreds of Unexpected ... - ScienceAlert [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]