How CRISPR can help us win the fight against the pandemic – MedCity News

Posted: May 16, 2020 at 4:05 am

Covid-19 has changed life as we know it. It has also accelerated already rapid trends in innovation and collaboration across the scientific community.

As the pandemic spreads across the globe, researchers are racing to develop diagnostics, vaccines and treatments. In the pursuit of new solutions to tackle SARS-CoV-2, the novel coronavirus that causes Covid-19, researchers have been turning to machine learning, AI and high-throughput experimental automation that aid in development. Another powerful tool they are using to accelerate the process is CRISPR. This gene-targeting and gene-editing technology, based on the mechanism that bacteria naturally use to fight viruses, is already proving useful in our joint fight against this new virus.

CRISPR Advances Covid-19 TestingWe know early detection of SARS-CoV-2 is essential to isolating infected patients and managing appropriate healthcare responses. Recently, researchers at MIT published a rapid CRISPR-Cas13-based COVID-19 detection assay protocol.Since CRISPR can be modified to target nearly any genetic sequence, it can be used to detect SARS-CoV-2 RNA in a patient sample. This assay utilizes an RNA-targeting CRISPR nuclease to help scientists detect the SARS-CoV-2 RNA from patient samples within 60 minutes. More recently, an improved assay was developed by researchers at MIT that was shown to provide faster and more robust results.

Utilizing another CRISPR nuclease that is thermostable, they developed a test that in one step copies the viral RNA in a patient sample, such as saliva, into the more stable DNA and then specifically identifies a SARS-CoV-2 gene sequence. Performing this point-of-care assay requires minimal lab equipment and resources, as it only needs a few reagents and a heat source, delivering results in as little as 40 minutes. Supplementing existing tests with new CRISPR-based approaches can broaden accessibility to Covid-19 testing, a key strategy for stopping the spread through track and trace efforts, as outlined by the World Health Organization.

CRISPR Helps Engineer Future TreatmentsPreviously, the genome-engineering power of CRISPR has been directed at fighting genetic diseases. But more recently, its also being harnessed to fight infectious diseases, now including the new coronavirus.

Understanding how a pathogenic disease operates at the host-pathogen interface is critical to developing new treatments. CRISPR-based genome engineering enables researchers to study how SARS-CoV-2 interacts with human cells and generate the appropriate cell models that could lead to faster discovery of a potential new treatment or an existing drug combination that may provide a treatment solution. Once a potential treatment is identified, CRISPR makes the next step drug target screening more efficient, advancing us more quickly to a viable treatment option.

As an example of this approach in action, researchers are exploring if CRISPR can be used to verify the functional relevance of human genes recently identified to interact with SARS-CoV-2 proteins. The investigation of the molecular mechanisms of the novel virus can ultimately help identify drug combinations that have the best potential to treat those infected.

Current Fight for the Future of Human HealthGenome engineering has been rapidly harnessed by academic and non-profit institutions, the biopharma industry, and scientific pioneers to develop Covid-19 testing and treatment solutions. CRISPR-based genome engineering enables researchers to study how SARS-CoV-2 interacts with human cells and generate the appropriate cell models that could lead to faster discovery of a potential new treatment or an existing drug combination that may provide a treatment solution.

Beyond this, the unprecedented innovation taking place in response to the Covid-19 pandemic will provide a foundation for improving human health in the future. Additionally, as technologies and understanding mature, new approaches, such as engineered cell therapies, will become part of the toolkit in future responses to global health challenges.

The current scientific response is representative of the future of life sciences a future where we integrate multiple technologies and disciplines including high throughput experimental automation, machine learning and agile, programmable tools such as CRISPR to fundamentally change our approach to research and development. We are seeing a new bar being set on the speed of science as the research community comes together, leveraging these technologies to respond to the Covid-19 pandemic at unprecedented velocity. Once the public health crisis subsides and the research halted by the pandemic resumes, the need for these transformative tools, technologies and approaches to life science research and development will be greater than ever.

Photo: wildpixel, Getty Images

Excerpt from:
How CRISPR can help us win the fight against the pandemic - MedCity News

Related Posts

Comments are closed.

Archives