How Does Crispr Gene Editing Work? | WIRED

Posted: December 6, 2017 at 6:41 am

In the last five years, biology has undergone a seismic shift as researchers around the globe have embraced a revolutionary technology called gene editing. It involves the precise cutting and pasting of DNA by specialized proteinsinspired by nature, engineered by researchers. These proteins come in three varieties, all known by their somewhat clumsy acronyms: ZFNs, TALENs, and CRISPRs. But its Crispr, with its elegant design and simple cell delivery, thats most captured the imagination of scientists. Theyre now using it to treat genetic diseases, grow climate-resilient crops, and develop designer materials, foods, and drugs.

So how does it work?

When people refer to Crispr, they're probably talking about Crispr-Cas9, a complex of enzymes and genetic guides that together finds and edits DNA. But Crispr on its own just stands for Clustered Regularly Interspaced Palindromic Repeatschunks of regularly recurring bits of DNA that arose as an ancient bacterial defense system against viral invasions.

Viruses work by taking over a cell, using its machinery to replicate until it bursts. So certain bacteria evolved a way to fight back. They deployed waves of DNA-cutting proteins to chop up any viral genes floating around. If the bacteria survived the attacks, they'd incorporate tiny snippets of virus DNA into their own genomeslike a mug shot of every foe theyd ever come across, so they could spot each one quicker in the future. To keep their genetic memory palace in order, they spaced out each bit of viral code (so-called guide RNAs) with those repetitive, palindromic sequences in between. It doesn't really matter that they read the same forward and backward; the important thing is that they helped file away genetic code from viral invaders past, far away from more essential genes.

And having them on file meant that the next time a virus returned, the bacteria could send out a more powerful weapon. They could equip Cas9a lumpy, clam-shaped DNA-cutting proteinwith a copy of that guide RNA, pulled straight out of storage. Like a molecular assassin, it would go out and snip anything that matched the genetic mug shot.

Thats what happens in the wild. But in the lab, scientists have harnessed this powerful Crispr system to do things other than fight off the flu. The first step is designing a guide RNA that can sniff out a particular block of code in any living cellsay, a genetic defect, or an undesirable plant trait. If that gene consists of a string of the bases A, A, T, G, C, scientists make a complementary strand of RNA: U, U, A, C, G. Then they inject this short sequence of RNA, along with Cas9, into the cell theyre trying to edit. The guide RNA forms a complex with Cas9; one end of the RNA forms a hairpin curve that keeps it stuck in the protein, while the other endthe business enddangles out to interact with any DNA it comes across.

Once in the cell's nucleus, the Crispr-Cas9 complex bumps along the genome, attaching every time it comes across a small sequence called PAM. This protospacer adjacent motif is just a few base pairs, but Cas9 needs it to grab onto the DNA. And by grabbing it, the protein is able to destabilize the adjacent sequence, unzipping just a little bit of the double helix. That allows the guide RNA to slip in and sniff around to see if it's a match. If not, they move on. But if every base pair lines up to the target sequence, the guide RNA triggers Cas9 to produce two pincer-like appendages, which cut the DNA in two.

The process can stop there, and simply take a gene out of commission. Or, scientists can add a bit of replacement DNAto repair a gene instead of knocking it out.

And they don't have to limit themselves to just Cas9. There's a whole bunch of proteins that can use an RNA guide. There's Cas3, which gobbles up DNA Pac-Man style. Scientists are using it to develop targeted antibiotics that can wipe out a strain of C. diff, while leaving your gut microbiome intact. And there's an enzyme called Cas13 that works with a guide that gloms onto RNA, not DNA. Called Sherlock, the system is being used to develop sensitive tests for viral infections. Researchers are working hard to add more implements to the Crispr toolkit, but at least right now, Cas9 is still the most widely used.

Crispr isnt perfect; sometimes the protein veers off course and makes cuts at unintended sites. So scientists are actively working on ways to minimize these off-target effects. And as it gets better, the ethical questions surrounding the technology are going to get a lot thornier. Hello, designer babies?! Figuring out where those lines get drawn is going to take more than science; it will require policymakers and the public coming to the table. Because pretty soon with Crispr, the question wont be can we do it, but should we?

Excerpt from:
How Does Crispr Gene Editing Work? | WIRED

Related Posts

Comments are closed.

Archives