Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands – Nature.com

Posted: July 8, 2024 at 2:37 am

Davis, J. T. G-Quartets 40 years later: from 5-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 43, 668698 (2004).

Article CAS PubMed Google Scholar

Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459474 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kosiol, N., Juranek, S., Brossart, P., Heine, A. & Paeschke, K. G-Quadruplexes: a promising target for cancer therapy. Mol. Cancer 20, 40 (2021).

Article CAS PubMed PubMed Central Google Scholar

Qin, H., Zhao, C., Sun, Y., Ren, J. & Qu, X. Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo. J. Am. Chem. Soc. 139, 1620116209 (2017).

Article CAS PubMed Google Scholar

Meier-Stephenson, V. G4-Quadruplex-binding proteins: review and insights into selectivity. Biophys. Rev. 14, 635654 (2022).

Article CAS PubMed PubMed Central Google Scholar

Lejault, P., Mitteaux, J., Sperti, F. R. & Monchaud, D. How to untie G-quadruplex knots and why? Cell Chem. Biol. 28, 436455 (2021).

Article CAS PubMed Google Scholar

Santos, T., Salgado, G. F., Cabrita, E. J. & Cruz, C. Nucleolin: a binding partner of G-quadruplex structures. Trends Cell Biol. 32, 561564 (2022).

Article CAS PubMed Google Scholar

Roychoudhury, S. et al. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc. Natl Acad. Sci. USA 117, 1140911420 (2020).

Article CAS PubMed PubMed Central Google Scholar

Mendoza, O., Bourdoncle, A., Boule, J. B., Brosh, R. M. Jr. & Mergny, J. L. G-Quadruplexes and helicases. Nucleic Acids Res. 44, 19892006 (2016).

Article CAS PubMed PubMed Central Google Scholar

Chen, M. C. et al. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558, 465469 (2018).

Article CAS PubMed PubMed Central Google Scholar

Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 1575815759 (2008).

Article CAS PubMed PubMed Central Google Scholar

Liu, L. Y., Ma, T. Z., Zeng, Y. L., Liu, W. & Mao, Z. W. Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J. Am. Chem. Soc. 144, 1187811887 (2022).

Article CAS PubMed Google Scholar

Verga, D., Hamon, F., Poyer, F., Bombard, S. & Teulade-Fichou, M. P. Photo-cross-linking probes for trapping G-quadruplex DNA. Angew. Chem. Int. Ed. Engl. 53, 994998 (2014).

Article CAS PubMed Google Scholar

Masson, T. et al. BrdU immuno-tagged G-quadruplex ligands: a new ligand-guided immunofluorescence approach for tracking G-quadruplexes in cells. Nucleic Acids Res. 49, 1264412660 (2021).

Article CAS PubMed PubMed Central Google Scholar

De Cian, A., Delemos, E., Mergny, J. L., Teulade-Fichou, M. P. & Monchaud, D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 129, 18561857 (2007).

Article PubMed Google Scholar

Lemarteleur, T. et al. Stabilization of the c-myc gene promoter quadruplex by specific ligands inhibitors of telomerase. Biochem. Biophys. Res. Commun. 323, 802808 (2004).

Article CAS PubMed Google Scholar

Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583588 (2015).

Article CAS PubMed Google Scholar

Chiarella, A. M. et al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol. 38, 5055 (2020).

Article CAS PubMed Google Scholar

Qin, G., Yang, J., Zhao, C., Ren, J. & Qu, X. Manipulating complex chromatin folding via CRISPR-guided bioorthogonal chemistry. Proc. Natl Acad. Sci. USA 119, e2204725119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, C. et al. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat. Cell Biol. 24, 268278 (2022).

Article CAS PubMed PubMed Central Google Scholar

Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 1159311598 (2002).

Article CAS PubMed PubMed Central Google Scholar

Hui, W. W. I., Simeone, A., Zyner, K. G., Tannahill, D. & Balasubramanian, S. Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci. Rep. 11, 23641 (2021).

Article CAS PubMed PubMed Central Google Scholar

Yu, Z. et al. Chem-map profiles drug binding to chromatin in cells. Nat. Biotechnol. 41, 12651271 (2023).

Article CAS PubMed PubMed Central Google Scholar

Shen, J. et al. Promoter G-quadruplex folding precedes transcription and is controlled by chromatin. Genome Biol. 22, 143 (2021).

Article PubMed PubMed Central Google Scholar

Hansel-Hertsch, R. et al. G-Quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 12671272 (2016).

Article CAS PubMed Google Scholar

Bian, W. X. et al. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res. 47, 5668 (2019).

Article CAS PubMed Google Scholar

Li, C. et al. Ligand-induced native G-quadruplex stabilization impairs transcription initiation. Genome Res. 31, 15461560 (2021).

Article PubMed PubMed Central Google Scholar

Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770780 (2012).

Article CAS PubMed PubMed Central Google Scholar

Lago, S., Tosoni, E., Nadai, M., Palumbo, M. & Richter, S. N. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim. Biophys. Acta Gen. Subj. 1861, 13711381 (2017).

Article CAS PubMed Google Scholar

Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761766 (1991).

Article CAS PubMed Google Scholar

Shklover, J., Weisman-Shomer, P., Yafe, A. & Fry, M. Quadruplex structures of muscle gene promoter sequences enhance in vivo MyoD-dependent gene expression. Nucleic Acids Res. 38, 23692377 (2010).

Article CAS PubMed PubMed Central Google Scholar

Yafe, A., Etzioni, S., Weisman-Shomer, P. & Fry, M. Formation and properties of hairpin and tetraplex structures of guanine-rich regulatory sequences of muscle-specific genes. Nucleic Acids Res. 33, 28872900 (2005).

Article CAS PubMed PubMed Central Google Scholar

McClure, M. J. et al. Role of integrin 71 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomater. 39, 4454 (2016).

Article CAS PubMed Google Scholar

Qin, G. et al. Unlocking G-quadruplexes as targets and tools against COVID-19. Chin. J. Chem. 41, 560568 (2023).

Abiri, A. et al. Unlocking G-quadruplexes as antiviral targets. Pharmacol. Rev. 73, 897923 (2021).

Article CAS PubMed Google Scholar

Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 59876011 (2016).

Article CAS PubMed Google Scholar

Renaud de la Faverie, A. et al. Nucleic acids targeted to drugs: SELEX against a quadruplex ligand. Biochimie 93, 13571367 (2011).

Article CAS PubMed Google Scholar

Gu, B., Posfai, E. & Rossant, J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 36, 632637 (2018).

Article CAS PubMed Google Scholar

Di Antonio, M. et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 12, 832837 (2020).

Article PubMed PubMed Central Google Scholar

Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635646 (2014).

Article CAS PubMed PubMed Central Google Scholar

Morita, S. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 10601065 (2016).

Article CAS PubMed Google Scholar

Burger, A. M. et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 65, 14891496 (2005).

Article CAS PubMed Google Scholar

Kim, M. Y., Gleason-Guzman, M., Izbicka, E., Nishioka, D. & Hurley, L. H. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res. 63, 32473256 (2003).

CAS PubMed Google Scholar

Hu, M. H., Lin, J. H. & Huang, Q. Discovery of a fluorescent, long chain-bridged bispurine that selectively targets the c-MYC G-quadruplex. Bioorg. Chem. 122, 105750 (2022).

Article CAS PubMed Google Scholar

Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877881 (2015).

Article CAS PubMed Google Scholar

Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317331 (2014).

Article CAS PubMed PubMed Central Google Scholar

Venugopal, R. & Jaiswal, A. K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17, 31453156 (1998).

Article CAS PubMed Google Scholar

Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271275 (1999).

Article CAS PubMed Google Scholar

Chen, J. et al. Expression of Q227L-Gs in MCF-7 human breast cancer cells inhibits tumorigenesis. Proc. Natl Acad. Sci. USA 95, 26482652 (1998).

Article CAS PubMed PubMed Central Google Scholar

West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. cell 55, 791802 (2014).

Article CAS PubMed PubMed Central Google Scholar

Robinson, J., Raguseo, F., Nuccio, S. P., Liano, D. & Di Antonio, M. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res. 49, 84198431 (2021).

See the article here:
Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands - Nature.com

Related Posts

Comments are closed.

Archives