Toward COVID-19 Testing Any Time, Anywhere – The Scientist
Posted: September 3, 2020 at 8:58 pm
In late January, as the COVID-19 pandemic was gaining steam, Charles Chiu, a researcher at the University of California, San Francisco, reached out to colleagues at San Franciscobased biotech Mammoth Biosciences. Chius group and the team at Mammoth had already collaborated on developing a CRISPR-based diagnostic test for Lyme disease, which they thought would easily translate to SARS-CoV-2 detection, he says.
The CRISPR system allows you to target pathogens very precisely, Chiu, who is part of Mammoths scientific advisory board, tells The Scientist. Within two to three weeks, we were able to go from just designing the assay to actually getting it to work and demonstrating that we can use it to rapidly identify or potentially diagnose SARS-CoV-2 from clinical samples.
The gold standard for detecting a virus such as SARS-CoV-2 is reverse transcription PCR, which requires isolation of RNA from a sample followed by the conversion of RNA to DNA and subsequent PCR to amplify any viral nucleic acids. While sensitive, this type of test requires collection of a specimen, such as saliva or a nasal swab, and the transport of that sample to a clinical lab for processing. Earlier in the year, reagents for this type of test were in short supply.
The new assay developed by Chiu and colleagues is called SARS-CoV-2 DETECTR (for SARS-CoV-2 DNA endonuclease-targeted CRISPR trans reporter); researchers published details about how it works in Nature Biotechnology on April 16. The test is fast: after RNA extraction, it takes less than an hour to get a result. And it uses loop-mediated amplification (LAMP), which takes place at just one temperature, rather than the cycling temperatures necessary for PCR, meaning an expensive thermocycler is not required.
The enzyme most commonly used for CRISPR genetic modification is Cas9, which, guided by a short RNA sequence, finds and cleaves a nucleic acid target. DETECTR uses a different enzyme, Cas12, which also follows a guide RNA to its targetin this case, SARS-CoV-2 sequencesbut cleaves more than just its target; it also starts chopping up nearby nucleic acids. The assay includes a reporter molecule that, when it gets cleaved by Cas12 during the cutting frenzy precipitated by SARS-CoV-2 nucleic acid recognition, can be visualized on a test strip, similar to a home pregnancy test.
In their paper, the authors reported that the sensitivity of DETECTR was comparable to a reverse transcription PCR assay run in a clinical lab on about 80 patient samples. On July 9, the assay was given emergency use authorization (EUA) by the US Food and Drug Administration (FDA), only for use at the University of California, San Franciscos clinical lab. Since then, the developers have continued to focus on making the test more accessible and easier to use.
In the iteration that was approved for EUA, theres still an RNA extraction step, Chiu explains. Thats a possible issue because there was a shortage of extraction reagents just a month or two ago, and its also limited by the fact that extractions typically take anywhere from a half an hour to an hour, so . . . we ended up modifying this test so that we can actually run the LAMP reaction directly from [an] original sample.
On May 20, Mammoth Biosciences established a partnership with pharmaceutical company GlaxoSmithKline Consumer Healthcare to further develop DETECTR into a handheld, disposable device that would be appropriate for home use and be about as expensive as an at-home pregnancy test.
The way point-of-need and at-home diagnostics will work is if theyre truly all-in-one, says Trevor Martin, Mammoth Biosciencess CEO. It needs to be as easy to use as a pregnancy test, and were also very much believers that it needs to give you results that are as trusted and accurate as something you would get in the lab.
Since the COVID-19 pandemic started to take off in the US in March, testing has largely focused on people who already have symptoms, partly because resources are limited. The trouble is, it seems as though the virus is most contagious around the time of symptom onset, meaning that if people are waiting to quarantine or take other protective measures until they get a positive result, they may have already infected others.
Testing at the earliest stage of symptoms is useful from an epidemiological perspective to understand how COVID impacts patients, says Rahul Dhanda, the CEO of Sherlock Biosciences, a Cambridge, Massachusettsbased biotech that develops diagnostics and is now focusing on SARS-CoV-2. But in terms of prevention and tracking the history of disease, what you want to do is test people who are asymptomatic.
Toward the goal of catching more cases before they spread and avoiding supply chain issues, a number of biotechs and academic labs are devising new strategies and exploiting existing technology to make testing simpler and available in settings other than doctors offices and clinical labs.
In a study published in PLOS Pathogenson August 27, for instance, a group based in China described a test that relies on RNA extraction that they call CRISPR-COVID. Their assay leverages Cas13a, an enzyme that behaves similarly to Cas12 to cleave a single-stranded reporter that fluoresces when SARS-CoV-2 RNA is present, and another type of isothermal (constant temperature) amplification, reverse transcription recombinase polymerase amplification. In the study, the authors estimate the cost of one CRISPR-COVID test at about $3.50, but predict it could be as low as $0.70 if the reagents were purchased in bulk. The current version is most appropriate for the lab, as it requires an RNA extraction step and specialized equipment to pick up fluorescent signals.
The fact that you can do a molecular diagnostic test in the palm of your hands is something that has never been possible before.
Rahul Dhanda, the CEO of Sherlock Biosciences
In a study published August 31 in PNAS,researchers developed a test that uses LAMP directly on patient samples and detects SARS-CoV-2 with a microfluidic cartridge and portable smartphone-based reader. Because it does not require RNA extraction or PCR amplification, this approach could enable the scalable deployment of COVID-19 diagnostics without laboratory-grade infrastructure and resources, especially in settings where diagnosis is required at the point of collection, such as schools, facilities that care for the elderly or disabled, or sporting events, the authors write.
The current pandemic is not the first time LAMP has been developed for diagnosing viral infections. Because of its portability, its been deployed in Ebola and Zika outbreaks. But the technology is not without drawbacks. There are a couple of problems with isothermal amplification, cautions Max Wilson, a biologist at the University of California, Santa Barbara (UCSB). Wilson has developed a COVID-19 test in use at UCSB that uses CRISPR for detection and PCR for amplification. In our hands . . . [LAMP] is less sensitive than other amplification methods, he explains.
Another problem is that if everyone starts using LAMP, the reagents, which arent made at volumes supportive of pandemic-scale testing, could become harder to get, Wilson says. The production has not been streamlined and optimized.
Despite these and other issues, there are a lot of really promising and complementary testing frameworks out there, he adds. All of the various approachesat-home testing, lab-based testing of samples taken at healthcare facilities, and assays that could be used to test thousands of people daily, such as in public health departments or at big universitiesdont even compete for resources or manufacturing capability, Wilson says, and theyre all necessary.
Theres a huge amount of unmet need when it comes to COVID-19 testing, Martin agrees. We just need all hands on deck.
Starting in mid-March, Dhanda and his team at Sherlock Biosciences pivoted their entire research program to focus on developing a CRISPR-based COVID-19 test kit using their platform SHERLOCK, which stands for specific high sensitivity enzymatic reporter unlocking. On May 6, that kit granted EUA and is now distributed in the US through a collaboration with Integrated DNA Technologies.
Because that test still includes a lot of steps, most of which are best performed in a lab, the researchers are now also working on a room-temperature, instrument-free test, the output of which can be visualized on a paper strip. That technology, which is called INSPECTR for internal splint-pairing expression cassette translation reaction, was originally developed at the Wyss Institute at Harvard University and relies on hybridization of a sample, such as saliva, to freeze-dried synthetic DNA complementary to SARS-CoV-2 RNA. If the sample contains viral RNA, a reporter protein is activated and then can be visualized with the naked eye, making the test a great option for eventual home use.
A design concept of INSPECTR
Wyss Institute at Harvard University
The fact that you can do a molecular diagnostic test in the palm of your hands is something that has never been possible before, says Dhanda, who adds that they are planning to apply for an EUA once development is finished, probably early next year. How much it will cost hasnt been disclosed, but a company representative tells The Scientistthat Sherlock is committed to making the test accessible.
In a study published in Science Advances on August 25, a group of researchers led by University of Albany biomedical engineer Ken Halvorsen also used a synthetic DNA approach to detect viral RNA, both from Zika virus and from SARS-CoV-2. The authors created DNA nanoswitches, small bits of DNA that change their shape in response to binding a target sequence. Because of the shape change, samples that contain viral RNA look different when run during gel electrophoresis than do samples without virus.
We can use this approach to detect viruses at levels that are relevant for health, Halvorsen says. The group is now trying to figure out how we can do a workflow that will allow us to do the whole thing outside of a lab. Because the test can be performed without enzymes, it already lends itself to streamlining, and they plan to simplify the readout, possibly using some type of cartridge that could be preconstructed, portable, and disposable. Were hoping to get the whole process down to under an hour, he tells The Scientist.
As for competition, I dont think that the testing for coronavirus is going to be a winner-take-all situation, Halvorsen says. There really need to be lots of different options. And it may turn out that there are many different testing types that all work in different situations, he adds. This may not be a short-term problem. We may be testing for years.
More here:
Toward COVID-19 Testing Any Time, Anywhere - The Scientist
- 'CRISPR pill' instructs harmful bacteria to self-destruct - National Hog Farmer [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Highly sensitive CRISPR diagnostic tool created - BioNews [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- More Tooth, More Tail in CRISPR Operations | GEN - Genetic Engineering & Biotechnology News (press release) [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR - Technology Networks [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- MPEG LA Invites CRISPR-Cas9 Patents to be Pooled in a One-Stop License - Yahoo Finance [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- What Is CRISPR? - livescience.com [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR and Stem Cells Identify Novel Chlamydia Drug Targets - Genetic Engineering & Biotechnology News [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR webinar: HGF discusses IP landscape - Life Sciences Intellectual Property Review (subscription) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR.com was for sale, and you won't guess who bought it - STAT [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Pill May Be Key in Fight Against Antibiotic Resistance - Singularity Hub [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Intellia (NTLA), CRISPR Therapeutics (CRSP) Receive U.S. Patent for CRISPR/Cas9 Ribonucleoprotein Complexes - StreetInsider.com [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- transOMIC technologies Launches transEDIT-dual CRISPR ... - PR Newswire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Global CRISPR Market Forecast 2017-2025 - Research and Markets ... - Business Wire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR | Technology Networks - Technology Networks [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR/Cas9 and Targeted Genome Editing: A New Era in ... [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR - Wikipedia [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Used To Modify Multiple Genes In Rice - Asian Scientist Magazine [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- Current CRISPR Patent Dispute, Explained - CALIFORNIA [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CEOs of top gene-editing firms got huge compensation hikes last year - Boston Business Journal [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CRISPR-SMART Cells Regenerate Cartilage, Secrete Anti-Arthritis Drug - Genetic Engineering & Biotechnology News [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Another CRISPR Trial Begins - GenomeWeb [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- China Is Racing Ahead of the US in the Quest to Cure Cancer With CRISPR - Gizmodo [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- CRISPR Gene Editing - CRISPR/Cas9 - Horizon Discovery [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Questions and Answers about CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Genome Engineering Resources | learn, share, and discuss [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Technology Scientists on Their Gene Editing Tool - TIME [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Cas9 - Wikipedia [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Using CRISPR against cancer shows success in mice - Futurity - Futurity: Research News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- Using CRISPR to Find Treatments for Aggressive Pediatric Brain Cancer - Bioscience Technology [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- CRISPR Eliminates HIV in Live Animals - Genetic Engineering & Biotechnology News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- The CRISPR patent dispute - Europe and the US - BioNews [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- How Scientists Think CRISPR Will Change Medicine - TIME [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- What you need to know about the legal battle over CRISPR patents - Genetic Literacy Project [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Scientists have eliminated HIV in mice using CRISPR - TechCrunch [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Therapeutics Appoints Samarth Kulkarni, Ph.D. as President, Expanding Role Beyond Chief Business Officer ... - GlobeNewswire (press release) [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- ECDC says risk from contaminated CRISPR kits low - CIDRAP [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Could Transform the Way We Diagnose Disease - Gizmodo [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- A cancer gene also grows stem cells, CRISPR in monkey embryo ... - Speaking of Research [Last Updated On: May 5th, 2017] [Originally Added On: May 5th, 2017]
- New CRISPR Technique Can Potentially Stop Cancer In Its Tracks - Wall Street Pit [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- CRISPR gene-editing tool targets cancer's "command center" - Gizmag - New Atlas [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Update: CRISPR - Radiolab [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Cambridge gene editing firm CRISPR to use delivery tech honed ... - Boston Business Journal [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Oxford Genetics licenses CRISPR tech to power synbio push - FierceBiotech [Last Updated On: May 10th, 2017] [Originally Added On: May 10th, 2017]
- What You Need to Know About the New CRISPR Cancer Treatment - BOSS Magazine [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- CRISPR: The Future of Medicine and Human Evolution - in-Training [Last Updated On: May 12th, 2017] [Originally Added On: May 12th, 2017]
- Intellia Therapeutics Announces Progress with CRISPR/Cas9 at the American Society of Gene & Cell Therapy Annual ... - GlobeNewswire (press... [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Pac-Man like CRISPR enzymes discovered - Lab News [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Coming age of CRISPR gene editing: What in heck is the 'Pink Chicken Project'? - Genetic Literacy Project [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Intellia moves closer to clinic with CRISPR tech - FierceBiotech [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Will CRISPR Technology Create a New "Human" Species? - Big Think [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Caribou Bioscience's CEO on CRISPR's legal and ethical challenges - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Cut Out the Hype: Gene Editing With CRISPR and the Truth about Superhuman 'Designer Babies' - WhatIsEpigenetics.com (blog) [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- CRISPR-Cas.org [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Synthego's genetic toolkit aims to make CRISPR more accessible - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- What is CRISPR? A Beginner's Guide | Digital Trends [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Geneticists Enlist Engineered Virus and CRISPR to Battle Citrus Disease - Scientific American [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Editas delays IND for Allergan-partnered CRISPR program - FierceBiotech [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Easy DNA Editing Will Remake the World. Buckle Up - WIRED [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Can CRISPR feed the world? - Phys.org - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Gene-editing tool 'CRISPR' gaining massive attention - KMOV.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Fixing the tomato: CRISPR edits correct plant-breeding snafu - Nature.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Beyond just promise, CRISPR is delivering in the lab today - The Conversation US [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- What is CRISPR-Cas9, and will it change the world? | Alphr - Alphr [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Fixing the Tomato: CRISPR Edits Correct Plant-Breeding Snafu ... - Scientific American [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- This UK Biotech uses CRISPR-Cas9 To Fight Bacterial Resistance - Labiotech.eu (blog) [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Can CRISPR feed the world? | Horizon: the EU Research ... - Horizon magazine [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Will this gene-editing tool cure the diseases of the future? - Sacramento Bee [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How the CRISPR-Cas9 System is Redefining Drug Discovery - Labiotech.eu (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Scientists are using gene editing to create the perfect tomato for your salad - Quartz [Last Updated On: May 24th, 2017] [Originally Added On: May 24th, 2017]
- Fine-tuning CRISPR to Create Popular Mouse Models - Technology Networks [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Scientists Are Using CRISPR To "Program" Living Cells - Futurism - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- CRISPR gene editing puts the brakes on cancer cells - Cosmos [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Watch This Scientist Brilliantly Explain CRISPR to Everyone from a Child to a Ph.D. - Patheos (blog) [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- Using CRISPR gene editing to slow cancer growth | FierceBiotech - FierceBiotech [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- How A Gene Editing Tool Went From Labs To A Middle-School Classroom - NPR [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- In Just a Few Short Years, CRISPR Has Sparked a Research Revolution - Futurism [Last Updated On: May 29th, 2017] [Originally Added On: May 29th, 2017]
- CRISPR Is Taking Over Science, Breaks Out Of Labs And Invades Schools - EconoTimes [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Gene-editing technique scientists hope will cure cancer and all ... - The Independent [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- CRISPR Gene-Editing Can Cause Hundreds of Unexpected ... - ScienceAlert [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]