Tracking-seq reveals the heterogeneity of off-target effects in CRISPRCas9-mediated genome editing – Nature.com

Posted: July 8, 2024 at 2:37 am

Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229236 (2020).

Article CAS PubMed PubMed Central Google Scholar

Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 28062827 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136150 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191220 (2019).

Article CAS PubMed Google Scholar

Tao, J., Bauer, D. E. & Chiarle, R. Assessing and advancing the safety of CRISPRCas tools: from DNA to RNA editing. Nat. Commun. 14, 212 (2023).

Article CAS PubMed PubMed Central Google Scholar

Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPRCas9 off-target effects in human cells. Nat. Methods 12, 237243 (2015).

Article CAS PubMed Google Scholar

Cameron, P. et al. Mapping the genomic landscape of CRISPRCas9 cleavage. Nat. Methods 14, 600606 (2017).

Article CAS PubMed Google Scholar

Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPRCas9 nuclease off-targets. Nat. Methods 14, 607614 (2017).

Article CAS PubMed PubMed Central Google Scholar

Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPRCas nucleases. Nat. Biotechnol. 33, 187197 (2015).

Article CAS PubMed Google Scholar

Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286289 (2019).

Article CAS PubMed PubMed Central Google Scholar

Zou, R. S. et al. Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+. Nat. Methods 20, 706713 (2023).

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636646 (2010).

Article CAS PubMed Google Scholar

Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 4955 (2013).

Article CAS PubMed Google Scholar

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819823 (2013).

Article CAS PubMed PubMed Central Google Scholar

Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824844 (2020).

Article CAS PubMed Google Scholar

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420424 (2016).

Article CAS PubMed PubMed Central Google Scholar

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149157 (2019).

Article CAS PubMed PubMed Central Google Scholar

Gaudelli, N. M. et al. Programmable base editing of AT to GC in genomic DNA without DNA cleavage. Nature 551, 464471 (2017).

Article CAS PubMed PubMed Central Google Scholar

Liu, T. & Huang, J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys. Sin. 48, 665670 (2016).

Article CAS PubMed Google Scholar

Wold, M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 6192 (1997).

Article CAS PubMed Google Scholar

Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 10061019 (2018).

Article CAS PubMed Google Scholar

Kabeche, L., Nguyen, H., Buisson, R. & Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359, 108114 (2018).

Gan, X. et al. Proper RPA acetylation promotes accurate DNA replication and repair. Nucleic Acids Res. 51, 55655583 (2023).

Article CAS PubMed PubMed Central Google Scholar

Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

Article PubMed PubMed Central Google Scholar

Ferrari, M., Twayana, S., Marini, F. & Pellicioli, A. In Genome Instability: Methods and Protocols (eds Muzi-Falconi, M. & Brown, G. W.) 119129 (Humana Press, 2017).

Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).

Article PubMed PubMed Central Google Scholar

Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.-S. Genome-wide target specificities of CRISPRCas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26, 406415 (2016).

Article CAS PubMed PubMed Central Google Scholar

Lei, Z. et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat. Methods 18, 643651 (2021).

Article CAS PubMed Google Scholar

Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67 (2019).

Article CAS PubMed PubMed Central Google Scholar

Liang, S.-Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20, 898907 (2023).

Article CAS PubMed Google Scholar

Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 48, 1057610589 (2020).

Article CAS PubMed PubMed Central Google Scholar

Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289292 (2019).

Article CAS PubMed PubMed Central Google Scholar

Duan, J. et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res. 24, 10091012 (2014).

Article CAS PubMed PubMed Central Google Scholar

Frangoul, H. et al. CRISPRCas9 gene editing for sickle cell disease and -thalassemia. N. Engl. J. Med. 384, 252260 (2021).

Article CAS PubMed Google Scholar

Nakamura-Ishizu, A., Takizawa, H. & Suda, T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141, 46564666 (2014).

Article CAS PubMed Google Scholar

Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495506 (2017).

Article CAS PubMed PubMed Central Google Scholar

Wienert, B., Wyman, S. K., Yeh, C. D., Conklin, B. R. & Corn, J. E. CRISPR off-target detection with DISCOVER-seq. Nat. Protoc. 15, 17751799 (2020).

Article CAS PubMed PubMed Central Google Scholar

Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 33, D39D45 (2005).

Article CAS PubMed Google Scholar

Zhang, H. et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).

Article CAS PubMed PubMed Central Google Scholar

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841842 (2010).

Article CAS PubMed PubMed Central Google Scholar

Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 22042207 (2010).

Article CAS PubMed PubMed Central Google Scholar

Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160W165 (2016).

Article CAS PubMed PubMed Central Google Scholar

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357359 (2012).

Article CAS PubMed PubMed Central Google Scholar

Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

Article PubMed PubMed Central Google Scholar

Bleckwehl, T. et al. Enhancer-associated H3K4 methylation safeguards in vitro germline competence. Nat. Commun. 12, 5771 (2021).

Article CAS PubMed PubMed Central Google Scholar

Man, N. et al. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight 6, e138478 (2021).

Article PubMed PubMed Central Google Scholar

Ji, L. et al. TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194518 (2020).

Article CAS PubMed Google Scholar

Lex, R. K. et al. GLI transcriptional repression regulates tissue-specific enhancer activity in response to Hedgehog signaling. eLife 9, e50670 (2020).

Article CAS PubMed PubMed Central Google Scholar

Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300307 (2021).

Article CAS PubMed PubMed Central Google Scholar

Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224226 (2019).

Article CAS PubMed PubMed Central Google Scholar

Zhu, M. et al. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR/Cas9-mediated genome editing. NCBI https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE236360 (2024).

Xu, R. Offtracker. GitHub https://github.com/Lan-lab/offtracker (2024).

More:
Tracking-seq reveals the heterogeneity of off-target effects in CRISPRCas9-mediated genome editing - Nature.com

Related Posts

Comments are closed.

Archives