Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria – Nature.com

Posted: June 25, 2024 at 2:39 am

Zhang, R., Xu, W., Shao, S. & Wang, Q. Gene silencing through CRISPR interference in bacteria: current advances and future prospects. Front. Microbiol. 12, 18 (2021).

Google Scholar

Han, Y. H., Kim, G. & Seo, S. W. Programmable synthetic biology tools for developing microbial cell factories. Curr. Opin. Biotechnol. 79, 102874 (2023).

Article CAS PubMed Google Scholar

Lv, X. et al. New synthetic biology tools for metabolic control. Curr. Opin. Biotechnol. 76, 102724 (2022).

Article CAS PubMed Google Scholar

Kent, R. & Dixon, N. Contemporary tools for regulating gene expression in bacteria. Trends Biotechnol. 38, 316333 (2020).

Article CAS PubMed Google Scholar

Ren, J., Lee, J. & Na, D. Recent advances in genetic engineering tools based on synthetic biology. J. Microbiol. 58, 110 (2020).

Article CAS PubMed Google Scholar

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 11731183 (2013).

Article CAS PubMed PubMed Central Google Scholar

Zhang, X. et al. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 3, 19 (2017).

Article Google Scholar

Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170174 (2013).

Article CAS PubMed Google Scholar

Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

Article PubMed PubMed Central Google Scholar

East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270273 (2016).

Article CAS PubMed PubMed Central Google Scholar

OConnell, M. R. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPRCas systems. J. Mol. Biol. 431, 6687 (2019).

Article PubMed Google Scholar

Charles, E. J. et al. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. Preprint bioRxiv https://doi.org/10.1101/2021.05.26.445687 (2021).

Otoupal, P. B., Cress, B. F., Doudna, J. A. & Schoeniger, J. S. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac680 (2022).

Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385397 (2015).

Article CAS PubMed PubMed Central Google Scholar

Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided rnase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618630.e7 (2017).

Article CAS PubMed PubMed Central Google Scholar

Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327339.e5 (2018).

Article CAS PubMed PubMed Central Google Scholar

Hu, Y. et al. Metagenomic discovery of novel CRISPR-Cas13 systems. Cell Discov. 8, 107 (2022).

Article CAS PubMed PubMed Central Google Scholar

Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714726.e10 (2017).

Article CAS PubMed Google Scholar

Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665676.e14 (2018).

Article CAS PubMed PubMed Central Google Scholar

Eichner, H., Karlsson, J. & Loh, E. The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol. 30, 959972 (2022).

Article CAS PubMed Google Scholar

Fujita, S., Tsumori, Y., Makino, Y., Saito, M. & Kawano, M. Development of multiplexing gene silencing system using conditionally induced polycistronic synthetic antisense RNAs in Escherichia coli. Biochem. Biophys. Res. Commun. 556, 163170 (2021).

Article CAS PubMed Google Scholar

Yang, Y., Lin, Y., Li, L., Linhardt, R. J. & Yan, Y. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab. Eng. 29, 217226 (2015).

Article CAS PubMed Google Scholar

Wu, Y. et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 48, 9961009 (2020).

Article CAS PubMed Google Scholar

Tian, J. et al. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res. 48, 81888202 (2020).

Article CAS PubMed PubMed Central Google Scholar

Vento, J. M., Crook, N. & Beisel, C. L. Barriers to genome editing with CRISPR in bacteria. J. Ind. Microbiol. Biotechnol. 46, 13271341 (2019).

Article CAS PubMed Google Scholar

Wessels, H.-H. et al. Prediction of on-target and off-target activity of CRISPRCas13d guide RNAs using deep learning. Nature Biotechnol. https://doi.org/10.1038/s41587-023-01830-8 (2023).

Cheng, X. et al. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches. Nat. Commun. 14, 752 (2023).

Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722727 (2020).

Article CAS PubMed PubMed Central Google Scholar

Zhang, C. et al. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 175, 212223.e17 (2018).

Article CAS PubMed PubMed Central Google Scholar

Irastortza-Olaziregi, M. & Amster-Choder, O. Coupled transcription-translation in prokaryotes: an old couple with new surprises. Front. Microbiol. 11, 624830 (2021).

De Lay, N., Schu, D. J. & Gottesman, S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem. 288, 79968003 (2013).

Article PubMed PubMed Central Google Scholar

Prvost, K., Desnoyers, G., Jacques, J.-F., Lavoie, F. & Mass, E. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev. 25, 385396 (2011).

Article PubMed PubMed Central Google Scholar

Tian, T., Kang, J. W., Kang, A. & Lee, T. S. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth. Biol. 8, 391402 (2019).

Article CAS PubMed Google Scholar

Rousset, F. et al. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet. 14, 128 (2018).

Article Google Scholar

Dwijayanti, A., Storch, M., Stan, G.-B. & Baldwin, G. S. A modular RNA interference system for multiplexed gene regulation. Nucleic Acids Res. 50, 17831793 (2022).

Article CAS PubMed PubMed Central Google Scholar

Noh, M., Yoo, S. M., Kim, W. J. & Lee, S. Y. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5, 418426.e4 (2017).

Article CAS PubMed Google Scholar

Noh, M., Yoo, S. M., Yang, D. & Lee, S. Y. Broad-spectrum gene repression using scaffold engineering of synthetic sRNAs. ACS Synth. Biol. 8, 14521461 (2019).

Article CAS PubMed Google Scholar

Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & Teeffelen, S. Tuning dCas9s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Syst. Biol. 14, 114 (2018).

Article Google Scholar

Byun, G., Yang, J. & Seo, S. W. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli. Nucleic Acids Res. 51, 46504659 (2023).

Article CAS PubMed PubMed Central Google Scholar

Fontana, J., Dong, C., Ham, J. Y., Zalatan, J. G. & Carothers, J. M. Regulated expression of sgRNAs tunes CRISPRi in E. coli. Biotechnol. J. 13, 1800069 (2018).

Article Google Scholar

Li, X. T. et al. TCRISPRi: tunable and reversible, one-step control of gene expression. Sci. Rep. 6, 112 (2016).

Article Google Scholar

Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 11831186 (2002).

Article CAS PubMed Google Scholar

Wang, J., Li, C., Jiang, T. & Yan, Y. Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. Metab. Eng. 75, 5867 (2023).

Article CAS PubMed Google Scholar

Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression-fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523535.e9 (2020).

Article CAS PubMed PubMed Central Google Scholar

Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat. Biotechnol. 38, 355364 (2020).

Article CAS PubMed PubMed Central Google Scholar

Zhang, B. et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nat. Commun. 10, 2544 (2019).

Nakashima, N., Tamura, T. & Good, L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res. 34, e138e138 (2006).

Article PubMed PubMed Central Google Scholar

Hoffart, E. et al. High substrate uptake rates Empower Vibrio natriegens as production host for industrial biotechnology. Appl. Environ. Microbiol. 83, e01614e01617 (2017).

Kim, S. K., Seong, W., Han, G. H., Lee, D. H. & Lee, S. G. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb. Cell Fact. 16, 115 (2017).

Article Google Scholar

Hgler, M., Menendez, C., Schgger, H. & Fuchs, G. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184, 24042410 (2002).

Article PubMed PubMed Central Google Scholar

Kumar, V., Ashok, S. & Park, S. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31, 945961 (2013).

Article CAS PubMed Google Scholar

Lee, J. H. et al. Efficient conversion of acetate to 3-hydroxypropionic acid by engineered Escherichia coli. Catalysts 8, 525 (2018).

Lai, N., Luo, Y., Fei, P., Hu, P. & Wu, H. One stone two birds: biosynthesis of 3-hydroxypropionic acid from CO2 and syngas-derived acetic acid in Escherichia coli. Synth. Syst. Biotechnol. 6, 144152 (2021).

Article CAS PubMed PubMed Central Google Scholar

Park, J. H., Jang, Y.-S., Lee, J. W. & Lee, S. Y. Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol. Bioeng. 108, 11401147 (2011).

Article CAS PubMed Google Scholar

See the rest here:
Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria - Nature.com

Related Posts

Comments are closed.

Archives