Using CRISPR Genetic Technology to Catch Cancer in the Act – SciTechDaily
Posted: January 27, 2021 at 10:49 am
Phylogenetic trees, starting with an individual cancer cell. Each color represents a different location in the body. A very colorful tree shows a highly metastatic phenotype, where a cells descendants jumped many times between different tissues. A tree that is primarily one color represents a less metastatic cell. Credit: Jeffrey Quinn/Whitehead Institute
Using CRISPR technology, researchers are tracking the lineage of individual cancer cells as they proliferate and metastasize in real-time.
When cancer is confined to one spot in the body, doctors can often treat it with surgery or other therapies. Much of the mortality associated with cancer, however, is due to its tendency to metastasize, sending out seeds of itself that may take root throughout the body. The exact moment of metastasis is fleeting, lost in the millions of divisions that take place in a tumor. These events are typically impossible to monitor in real time, says Jonathan Weissman, MIT professor of biology and Whitehead Institute for Biomedical Research member.
Now, researchers led by Weissman, who is also an investigator with the Howard Hughes Medical Institute, have turned a CRISPR tool into a way to do just that. In a paper published on January 21, 2021, in Science, Weissmans lab, in collaboration with Nir Yosef, a computer scientist at the University of California at Berkeley, and Trever Bivona, a cancer biologist at the University of California at San Francisco, treats cancer cells the way evolutionary biologists might look at species, mapping out an intricately detailed family tree. By examining the branches, they can track the cells lineage to find when a single tumor cell went rogue, spreading its progeny to the rest of the body.
With this method, you can ask questions like, How frequently is this tumor metastasizing? Where did the metastases come from? Where do they go? Weissman says. By being able to follow the history of the tumor in vivo, you reveal differences in the biology of the tumor that were otherwise invisible.
Scientists have tracked the lineages of cancer cells in the past by comparing shared mutations and other variations in their DNA blueprints. These methods, however, depend to a certain extent on there being enough naturally occurring mutations or other markers to accurately show relationships between cells.
Thats where Weissman and co-first authors Jeffrey Quinn, then a postdoc in Weissmans lab, and Matthew Jones, a graduate student in Weissmans lab, saw an opportunity to use CRISPR technology specifically, a method developed by Weissman Lab member Michelle Chan to track embryo development to facilitate tracking.
Instead of simply hoping that a cancer lineage contained enough lineage-specific markers to track, the researchers decided to use Chans method to add in markers themselves. Basically, the idea is to engineer a cell that has a genomic scratchpad of DNA, that then can be written on using CRISPR, Weissman says. This writing in the genome is done in such a way that it becomes heritable, meaning a cells grand-offspring would have the writing of its parent cells and grandparent cells recorded in its genome.
To create these special scratchpad cells, Weissman engineered human cancer cells with added genes: one for the bacterial protein Cas9 the famed molecular scissors used in CRISPR genome editing methods others for glowing proteins for microscopy, and a few sequences that would serve as targets for the CRISPR technology.
They then implanted thousands of the modified human cancer cells into mice, mimicking a lung tumor (a model developed by collaborator Bivona). Mice with human lung tumors often exhibit aggressive metastases, so the researchers reasoned they would provide a good model for tracking cancer progression in real time.
As the cells began to divide, Cas9 made small cuts at these target sites. When the cell repaired the cuts, it patched in or deleted a few random nucleotides, leading to a unique repair sequence called an indel. This cutting and repairing happened randomly in nearly every generation, creating a map of cell divisions that Weissman and the team could then track using special computer models that they created by working with Yosef, a computer scientist.
Tracking cells this way yielded some interesting results. For one thing, individual tumor cells were much different from each other than the researchers expected. The cells the researchers used were from an established human lung cancer cell line called A549. Youd think they would be relatively homogeneous, Weissman says. But in fact, we saw dramatic differences in the propensity of different tumors to metastasize even in the same mouse. Some had a very small number of metastatic events, and others were really rapidly jumping around.
To find out where this heterogeneity was coming from, the team implanted two clones of the same cell in different mice. As the cells proliferated, the researchers found that their descendants metastasized at a remarkably similar rate. This was not the case with the offspring of different cells from the same cell line the original cells had apparently evolved different metastatic potentials as the cell line was maintained over many generations.
The scientists next wondered what genes were responsible for this variability between cancer cells from the same cell line. So they began to look for genes that were expressed differently between nonmetastatic, weakly metastatic, and highly metastatic tumors.
Many genes stood out, some of which were previously known to be associated with metastasis although it was not clear whether they were driving the metastasis or simply a side effect of it. One of them, the gene that codes for the protein Keratin 17, is much more strongly expressed in low metastatic tumors than in highly metastatic tumors. When we knocked down or overexpressed Keratin 17, we showed that this gene was actually controlling the tumors invasiveness, Weissman says.
Being able to identify metastasis-associated genes this way could help researchers answer questions about how tumors evolve and adapt. Its an entirely new way to look at the behavior and evolution of a tumor, Weissman says. We think it can be applied to many different problems in cancer biology.
Weissmans CRISPR method also allowed the researchers to track with more detail where metastasizing cells went in the body, and when. For example, the progeny of one implanted cancer cell underwent metastasis five separate times, spreading each time from the left lung to other tissues such as the right lung and liver. Other cells made a jump to a different area, and then metastasized again from there.
These movements can be mapped neatly in phylogenetic trees (see image), where each color represents a different location in the body. A very colorful tree shows a highly metastatic phenotype, where a cells descendants jumped many times between different tissues. A tree that is primarily one color represents a less metastatic cell.
Mapping tumor progression in this way allowed Weissman and his team to make a few interesting observations about the mechanics of metastasis. For example, some clones seeded in a textbook way, traveling from the left lung, where they started, to distinct areas of the body. Others seeded more erratically, moving first to other tissues before metastasizing again from there.
One such tissue, the mediastinal lymph tissue that sits between the lungs, appears to be a hub of sorts, says co-first author Jeffrey Quinn. It serves as a way station that connects the cancer cells to all of this fertile ground that they can then go and colonize, he says.
Therapeutically, the discovery of metastasis hubs like this could be extremely useful. If you focus cancer therapies on those places, you could then slow down metastasis or prevent it in the first place, Weissman says.
In the future, Weissman hopes to move beyond simply observing the cells and begin to predict their behavior. Its like with Newtonian mechanics if you know the velocity and position and all the forces acting on a ball, you can figure out where the ball is going to go at any time in the future, Weissman says. Were hoping to do the same thing with cells. We want to construct essentially a function of what is driving differentiation of a tumor, and then be able to measure where they are at any given time, and predict where theyre going to be in the future.
The researchers are optimistic that being able to track the family trees of individual cells in real time will prove useful in other settings as well. I think that its going to unlock a whole new dimension to what we think about as a measurable quantity in biology, says co-first author Matthew Jones. Thats whats really cool about this field in general is that were redefining whats invisible and what is visible.
Reference: Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts by Jeffrey J. Quinn, Matthew G. Jones, Ross A. Okimoto, Shigeki Nanjo, Michelle M. Chan, Nir Yosef, Trever G. Bivona and Jonathan S. Weissman, 21 January 2021, Science.DOI: 10.1126/science.abc1944
Original post:
Using CRISPR Genetic Technology to Catch Cancer in the Act - SciTechDaily
- 'CRISPR pill' instructs harmful bacteria to self-destruct - National Hog Farmer [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Highly sensitive CRISPR diagnostic tool created - BioNews [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- More Tooth, More Tail in CRISPR Operations | GEN - Genetic Engineering & Biotechnology News (press release) [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR - Technology Networks [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- MPEG LA Invites CRISPR-Cas9 Patents to be Pooled in a One-Stop License - Yahoo Finance [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- What Is CRISPR? - livescience.com [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR and Stem Cells Identify Novel Chlamydia Drug Targets - Genetic Engineering & Biotechnology News [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR webinar: HGF discusses IP landscape - Life Sciences Intellectual Property Review (subscription) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR.com was for sale, and you won't guess who bought it - STAT [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Pill May Be Key in Fight Against Antibiotic Resistance - Singularity Hub [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Intellia (NTLA), CRISPR Therapeutics (CRSP) Receive U.S. Patent for CRISPR/Cas9 Ribonucleoprotein Complexes - StreetInsider.com [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- transOMIC technologies Launches transEDIT-dual CRISPR ... - PR Newswire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Global CRISPR Market Forecast 2017-2025 - Research and Markets ... - Business Wire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR | Technology Networks - Technology Networks [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR/Cas9 and Targeted Genome Editing: A New Era in ... [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR - Wikipedia [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Used To Modify Multiple Genes In Rice - Asian Scientist Magazine [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- Current CRISPR Patent Dispute, Explained - CALIFORNIA [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CEOs of top gene-editing firms got huge compensation hikes last year - Boston Business Journal [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CRISPR-SMART Cells Regenerate Cartilage, Secrete Anti-Arthritis Drug - Genetic Engineering & Biotechnology News [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Another CRISPR Trial Begins - GenomeWeb [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- China Is Racing Ahead of the US in the Quest to Cure Cancer With CRISPR - Gizmodo [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- CRISPR Gene Editing - CRISPR/Cas9 - Horizon Discovery [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Questions and Answers about CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Genome Engineering Resources | learn, share, and discuss [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Technology Scientists on Their Gene Editing Tool - TIME [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Cas9 - Wikipedia [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Using CRISPR against cancer shows success in mice - Futurity - Futurity: Research News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- Using CRISPR to Find Treatments for Aggressive Pediatric Brain Cancer - Bioscience Technology [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- CRISPR Eliminates HIV in Live Animals - Genetic Engineering & Biotechnology News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- The CRISPR patent dispute - Europe and the US - BioNews [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- How Scientists Think CRISPR Will Change Medicine - TIME [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- What you need to know about the legal battle over CRISPR patents - Genetic Literacy Project [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Scientists have eliminated HIV in mice using CRISPR - TechCrunch [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Therapeutics Appoints Samarth Kulkarni, Ph.D. as President, Expanding Role Beyond Chief Business Officer ... - GlobeNewswire (press release) [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- ECDC says risk from contaminated CRISPR kits low - CIDRAP [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Could Transform the Way We Diagnose Disease - Gizmodo [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- A cancer gene also grows stem cells, CRISPR in monkey embryo ... - Speaking of Research [Last Updated On: May 5th, 2017] [Originally Added On: May 5th, 2017]
- New CRISPR Technique Can Potentially Stop Cancer In Its Tracks - Wall Street Pit [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- CRISPR gene-editing tool targets cancer's "command center" - Gizmag - New Atlas [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Update: CRISPR - Radiolab [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Cambridge gene editing firm CRISPR to use delivery tech honed ... - Boston Business Journal [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Oxford Genetics licenses CRISPR tech to power synbio push - FierceBiotech [Last Updated On: May 10th, 2017] [Originally Added On: May 10th, 2017]
- What You Need to Know About the New CRISPR Cancer Treatment - BOSS Magazine [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- CRISPR: The Future of Medicine and Human Evolution - in-Training [Last Updated On: May 12th, 2017] [Originally Added On: May 12th, 2017]
- Intellia Therapeutics Announces Progress with CRISPR/Cas9 at the American Society of Gene & Cell Therapy Annual ... - GlobeNewswire (press... [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Pac-Man like CRISPR enzymes discovered - Lab News [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Coming age of CRISPR gene editing: What in heck is the 'Pink Chicken Project'? - Genetic Literacy Project [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Intellia moves closer to clinic with CRISPR tech - FierceBiotech [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Will CRISPR Technology Create a New "Human" Species? - Big Think [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Caribou Bioscience's CEO on CRISPR's legal and ethical challenges - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Cut Out the Hype: Gene Editing With CRISPR and the Truth about Superhuman 'Designer Babies' - WhatIsEpigenetics.com (blog) [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- CRISPR-Cas.org [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Synthego's genetic toolkit aims to make CRISPR more accessible - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- What is CRISPR? A Beginner's Guide | Digital Trends [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Geneticists Enlist Engineered Virus and CRISPR to Battle Citrus Disease - Scientific American [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Editas delays IND for Allergan-partnered CRISPR program - FierceBiotech [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Easy DNA Editing Will Remake the World. Buckle Up - WIRED [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Can CRISPR feed the world? - Phys.org - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Gene-editing tool 'CRISPR' gaining massive attention - KMOV.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Fixing the tomato: CRISPR edits correct plant-breeding snafu - Nature.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Beyond just promise, CRISPR is delivering in the lab today - The Conversation US [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- What is CRISPR-Cas9, and will it change the world? | Alphr - Alphr [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Fixing the Tomato: CRISPR Edits Correct Plant-Breeding Snafu ... - Scientific American [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- This UK Biotech uses CRISPR-Cas9 To Fight Bacterial Resistance - Labiotech.eu (blog) [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Can CRISPR feed the world? | Horizon: the EU Research ... - Horizon magazine [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Will this gene-editing tool cure the diseases of the future? - Sacramento Bee [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How the CRISPR-Cas9 System is Redefining Drug Discovery - Labiotech.eu (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Scientists are using gene editing to create the perfect tomato for your salad - Quartz [Last Updated On: May 24th, 2017] [Originally Added On: May 24th, 2017]
- Fine-tuning CRISPR to Create Popular Mouse Models - Technology Networks [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Scientists Are Using CRISPR To "Program" Living Cells - Futurism - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- CRISPR gene editing puts the brakes on cancer cells - Cosmos [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Watch This Scientist Brilliantly Explain CRISPR to Everyone from a Child to a Ph.D. - Patheos (blog) [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- Using CRISPR gene editing to slow cancer growth | FierceBiotech - FierceBiotech [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- How A Gene Editing Tool Went From Labs To A Middle-School Classroom - NPR [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- In Just a Few Short Years, CRISPR Has Sparked a Research Revolution - Futurism [Last Updated On: May 29th, 2017] [Originally Added On: May 29th, 2017]
- CRISPR Is Taking Over Science, Breaks Out Of Labs And Invades Schools - EconoTimes [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Gene-editing technique scientists hope will cure cancer and all ... - The Independent [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- CRISPR Gene-Editing Can Cause Hundreds of Unexpected ... - ScienceAlert [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]