What is CRISPR-Cas9, and will it change the world? | Alphr – Alphr
Posted: May 20, 2017 at 7:42 am
What is CRISPR-Cas9?
CRISPR-Cas9 is a genome editing tool thats able to cut DNA in a targeted fashion, allowing scientists to accurately edit the building blocks of life.
It was actually first observed in the 1980s as part of single-celled bacterias defence mechanisms, which ensure that the cells are able to remove unwanted intruders. Scientists have found that, by adapting the technology, they are able to target genome sequences with unprecedented speed, precision and accuracy.
Picture CRISPR-Cas9 as like a find and replace search in a computer document, only instead of words, youre editing genetic sequences.
Accurately modifying DNA is a scientific holy grail, and the potential is enormous. It could be used to eradicate diseases even hereditary ones such as cystic fibrosis, sickle-cell anemia and Huntington's could become a thing of the past.
The name CRISPR is an acronym for the less catchy clustered regularly interspaced short palindromic repeats. The Cas part refers to CRISPR associated.
CRISPR is part of certain bacterias naturally occurring defences. When a bacteria detects an invading virus, it is able to copy and blend segments of the foreign DNA into its own genome around CRISPR.
The next time the virus is spotted, CRISPR has an exact copy of the genome sequence to look out for, which is where the Cas protein comes in: it can cut the DNA up, and disable unwanted genes with incredible accuracy.
Or, as Carl Zimmer explains: As the CRISPR region fills with virus DNA, it becomes a molecular most-wanted gallery, representing the enemies the microbe has encountered. The microbe can then use this viral DNA to turn Cas enzymes into precision-guided weapons. The microbe copies the genetic material in each spacer into an RNA molecule. Cas enzymes then take up one of the RNA molecules and cradle it. Together, the viral RNA and the Cas enzymes drift through the cell. If they encounter genetic material from a virus that matches the CRISPR RNA, the RNA latches on tightly. The Cas enzymes then chop the DNA in two, preventing the virus from replicating.
In 2012, scientists from the University of California, Berkeley, published a groundbreaking paper showing they were able to reprogramme the CRISPR-Cas immune system to edit genes at will. CRISPR-Cas9 uses a specific Cas protein and a hybrid RNA that can identify and edit any gene sequence. The possibilities are huge.
In short, CRISPR lists the DNA sequences to target, and then Cas9 does the cutting. Scientists just need to programme CRISPR with the right code, and Cas9 does the rest.
This could also apply to faulty genes sections currently causing problems could be removed with CRISPR-Cas9, and then replaced with healthy genetic code, theoretically solving the problem.
CRISPR is cutting edge technology, but while its true that its use has massively accelerated in recent years thanks to the above discovery, scientists have actually been aware of it in bacteria since the 1980s. Pubmed lists 5,775 papers discussing CRISPR but 5,575 of those have been in the three years since the UC Berkeley paper, and the number has jumped from 2,071 when I first wrote this article back in October 2015.
CRISPR-Cas9 isnt the first genomic editor, but it has a number of upsides that make it both simpler and far more efficient.
Firstly, CRISPR-Cas9 can edit multiple genes at once, whereas other genome editors such as zinc finger nuclease (ZFN) or transcription activator-like effector nucleases (TALENs) require painstaking modification of a single gene at a time. Its also quicker and cheaper, as you might expect.
Although ZFN and TALENs can recognise longer gene sequences than CRISPR-Cas9, custom proteins have to be created each time and its an inexact science, involving the creation of several variants before the winning combination is found.
On top of that, scientists tend to use ZFN and TALENs with organisms scientists know extremely well such as mice, rats and fruit flies. CRISPR-Cas9 should work with every organism ever evolved. Yes, including humans.
Yes, in China. Using human embryos sourced from a fertility clinic, scientists tried to use CRISPR-Cas9 to edit a gene that causes beta thalassemia in every cell. It should be noted that the donor embryos used were non-viable, and could not have resulted in a live birth.
In any case, it failed, and failed quite badly: 86 embryos were injected, and after 48 hours and around eight cells grown, 71 survived, and 54 of those were genetically tested. Just 28 had been successfully spliced, and very few contained the genetic material the researchers intended. If you want to do it in normal embryos, you need to be close to 100%, lead researcher Jungiu Huang told Nature. Thats why we stopped. We still think its too immature.
On top of that, its extremely likely more undocumented damage was done. As the New York Times explains: The Chinese researchers point out that in their experiment gene editing almost certainly caused more extensive damage than they documented; they did not examine the entire genomes of the embryo cells.
As you might imagine, it caused a huge amount of controversy in the scientific community.
In November 2016, another grouip of Chinese scientists became the first to use CRISPR-Cas9 on an adult human, injecting a lung cancer sufferer with the patient's immune cells modified by CRISPR to disable the PD-1 protein, theoretically making the patient's body fight back against the cancer. Results are still yet to be reported. The first American trial of CRISPR in humans is due to take place at the University of Pennsylvania later this year again with cancer.
Even though the Chinese scientists used embryos that were not going to develop into life, there are real ethical concerns about experimenting on human embryos indeed, just a month before the Chinese research was published, a group of American scientists urged the world not to do so.
Part of this comes down to how immature the technology is remember that its only been in active use since 2012, and it would be astonishing if it was fully matured at this point. Scientists warned that it was too misunderstood and dangerous to use on humans at this point, and the Chinese research certainly vindicates this concern. Even if it worked flawlessly, there are concerns that unforeseen consequences could occur over generations.
But, even if it were 100% safe and successful, there are other ethical concerns: while nobody argues that we should hold back the potential of wiping out killer genetic diseases such as Huntingtons and cystic fibrosis, CRISPR-Cas9 potentially offers the opportunity to change anything about a person. As long as the genetic sequence is identified, in theory, it can be edited.
Its one thing to remove life-impacting diseases before birth its quite another for parents to be able to design their babies to be stronger, faster or better looking. Even if you accept that this is something people should be allowed to do, the chances are this would be heavily commercialised, ensuring only the rich could afford all the extra life advantages this would afford, massively affecting inequality.
Of course, these ethical questions are a million miles away when the only recorded embryonic human experiment was such a high-profile set-back. However, CRISPR-Cas9 is now showing extremely promising results in smaller tests.
Examples include HIV infection prevention in human cells, curing genetic mouse diseases and a pair of monkeys born with targeted mutations. As Wired says, it "kills HIV and eats Zika like Pac-man," with hopes that cancer could be the next disease in its sights.
Yes. Stem cell researchers in the UK sought permission to modify human embryos in an attempt to understand early human development, and reduce the likelihood of miscarriage. In February 2016, theHuman Fertilisation and Embryology Authority (HFEA) granted permission.
As mentioned previously, Cas9 can only recognise genetic sequences of around 20 bases long, meaning that longer sequences cannot be targeted.
More significantly, the enzyme still sometimes cuts in the wrong place. Figuring out why this is will be a significant breakthrough in itself fixing it will be even bigger.
Then, of course, theres the issue that CRISPR didnt work terribly well in human embryos. Scientists need to discover what went wrong there, and what the difference is between the success in single cells and the more patchy results with embryos.
That isnt a simple question to answer. Its subject to an ongoing patent battle surprisingly, given CRISPR is naturally occurring in certain bacteria.
Technology Review explains that, although CRISPR-Cas9 was first described in Science in 2012 by Jennifer Doudna from UC Berkeley, Feng Zhang from the Broad Institute won a patent on the technique by submitting lab notebooks proving hed invented it first.
First to file patent rights means that this should be granted to Doudna, but the decision could have been decided based on first to invent rules, which would have favoured Zhang. In the end, the case was resolved in February 2017, when the US Patent Trial and Appeal Board resolved that UC Berkeley would be granted the patent for the use of CRISPR-Cas9 in any living cell, while Broad would get it in any eukaryotic cell which is to say cells in plants and animals.
Images: Petra B Fritz, VeeDunn, NIH Image Gallery, and Steve Jurvetson used under Creative Commons
Read more here:
What is CRISPR-Cas9, and will it change the world? | Alphr - Alphr
- 'CRISPR pill' instructs harmful bacteria to self-destruct - National Hog Farmer [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Highly sensitive CRISPR diagnostic tool created - BioNews [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- More Tooth, More Tail in CRISPR Operations | GEN - Genetic Engineering & Biotechnology News (press release) [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR - Technology Networks [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- MPEG LA Invites CRISPR-Cas9 Patents to be Pooled in a One-Stop License - Yahoo Finance [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- What Is CRISPR? - livescience.com [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR and Stem Cells Identify Novel Chlamydia Drug Targets - Genetic Engineering & Biotechnology News [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- CRISPR webinar: HGF discusses IP landscape - Life Sciences Intellectual Property Review (subscription) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR.com was for sale, and you won't guess who bought it - STAT [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Pill May Be Key in Fight Against Antibiotic Resistance - Singularity Hub [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Intellia (NTLA), CRISPR Therapeutics (CRSP) Receive U.S. Patent for CRISPR/Cas9 Ribonucleoprotein Complexes - StreetInsider.com [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- transOMIC technologies Launches transEDIT-dual CRISPR ... - PR Newswire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Global CRISPR Market Forecast 2017-2025 - Research and Markets ... - Business Wire (press release) [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- Quick, Sensitive Diagnostic Tests with CRISPR | Technology Networks - Technology Networks [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR/Cas9 and Targeted Genome Editing: A New Era in ... [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR - Wikipedia [Last Updated On: April 27th, 2017] [Originally Added On: April 27th, 2017]
- CRISPR Used To Modify Multiple Genes In Rice - Asian Scientist Magazine [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- Current CRISPR Patent Dispute, Explained - CALIFORNIA [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CEOs of top gene-editing firms got huge compensation hikes last year - Boston Business Journal [Last Updated On: April 28th, 2017] [Originally Added On: April 28th, 2017]
- CRISPR-SMART Cells Regenerate Cartilage, Secrete Anti-Arthritis Drug - Genetic Engineering & Biotechnology News [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Another CRISPR Trial Begins - GenomeWeb [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- China Is Racing Ahead of the US in the Quest to Cure Cancer With CRISPR - Gizmodo [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- CRISPR Gene Editing - CRISPR/Cas9 - Horizon Discovery [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Questions and Answers about CRISPR | Broad Institute [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Genome Engineering Resources | learn, share, and discuss [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- CRISPR Technology Scientists on Their Gene Editing Tool - TIME [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Cas9 - Wikipedia [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Using CRISPR against cancer shows success in mice - Futurity - Futurity: Research News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- Using CRISPR to Find Treatments for Aggressive Pediatric Brain Cancer - Bioscience Technology [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- CRISPR Eliminates HIV in Live Animals - Genetic Engineering & Biotechnology News [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- The CRISPR patent dispute - Europe and the US - BioNews [Last Updated On: May 2nd, 2017] [Originally Added On: May 2nd, 2017]
- How Scientists Think CRISPR Will Change Medicine - TIME [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- What you need to know about the legal battle over CRISPR patents - Genetic Literacy Project [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- Scientists have eliminated HIV in mice using CRISPR - TechCrunch [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Therapeutics Appoints Samarth Kulkarni, Ph.D. as President, Expanding Role Beyond Chief Business Officer ... - GlobeNewswire (press release) [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- ECDC says risk from contaminated CRISPR kits low - CIDRAP [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- CRISPR Could Transform the Way We Diagnose Disease - Gizmodo [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- A cancer gene also grows stem cells, CRISPR in monkey embryo ... - Speaking of Research [Last Updated On: May 5th, 2017] [Originally Added On: May 5th, 2017]
- New CRISPR Technique Can Potentially Stop Cancer In Its Tracks - Wall Street Pit [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- CRISPR gene-editing tool targets cancer's "command center" - Gizmag - New Atlas [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Update: CRISPR - Radiolab [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Cambridge gene editing firm CRISPR to use delivery tech honed ... - Boston Business Journal [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Oxford Genetics licenses CRISPR tech to power synbio push - FierceBiotech [Last Updated On: May 10th, 2017] [Originally Added On: May 10th, 2017]
- What You Need to Know About the New CRISPR Cancer Treatment - BOSS Magazine [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- CRISPR: The Future of Medicine and Human Evolution - in-Training [Last Updated On: May 12th, 2017] [Originally Added On: May 12th, 2017]
- Intellia Therapeutics Announces Progress with CRISPR/Cas9 at the American Society of Gene & Cell Therapy Annual ... - GlobeNewswire (press... [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Pac-Man like CRISPR enzymes discovered - Lab News [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Coming age of CRISPR gene editing: What in heck is the 'Pink Chicken Project'? - Genetic Literacy Project [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Intellia moves closer to clinic with CRISPR tech - FierceBiotech [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Will CRISPR Technology Create a New "Human" Species? - Big Think [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- Caribou Bioscience's CEO on CRISPR's legal and ethical challenges - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Cut Out the Hype: Gene Editing With CRISPR and the Truth about Superhuman 'Designer Babies' - WhatIsEpigenetics.com (blog) [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- CRISPR-Cas.org [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Synthego's genetic toolkit aims to make CRISPR more accessible - TechCrunch [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- What is CRISPR? A Beginner's Guide | Digital Trends [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Geneticists Enlist Engineered Virus and CRISPR to Battle Citrus Disease - Scientific American [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Editas delays IND for Allergan-partnered CRISPR program - FierceBiotech [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Easy DNA Editing Will Remake the World. Buckle Up - WIRED [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- Can CRISPR feed the world? - Phys.org - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Gene-editing tool 'CRISPR' gaining massive attention - KMOV.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Fixing the tomato: CRISPR edits correct plant-breeding snafu - Nature.com [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- Beyond just promise, CRISPR is delivering in the lab today - The Conversation US [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Fixing the Tomato: CRISPR Edits Correct Plant-Breeding Snafu ... - Scientific American [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- This UK Biotech uses CRISPR-Cas9 To Fight Bacterial Resistance - Labiotech.eu (blog) [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Can CRISPR feed the world? | Horizon: the EU Research ... - Horizon magazine [Last Updated On: May 21st, 2017] [Originally Added On: May 21st, 2017]
- Will this gene-editing tool cure the diseases of the future? - Sacramento Bee [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- How the CRISPR-Cas9 System is Redefining Drug Discovery - Labiotech.eu (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Scientists are using gene editing to create the perfect tomato for your salad - Quartz [Last Updated On: May 24th, 2017] [Originally Added On: May 24th, 2017]
- Fine-tuning CRISPR to Create Popular Mouse Models - Technology Networks [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Scientists Are Using CRISPR To "Program" Living Cells - Futurism - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- CRISPR gene editing puts the brakes on cancer cells - Cosmos [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Watch This Scientist Brilliantly Explain CRISPR to Everyone from a Child to a Ph.D. - Patheos (blog) [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- Using CRISPR gene editing to slow cancer growth | FierceBiotech - FierceBiotech [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- How A Gene Editing Tool Went From Labs To A Middle-School Classroom - NPR [Last Updated On: May 27th, 2017] [Originally Added On: May 27th, 2017]
- In Just a Few Short Years, CRISPR Has Sparked a Research Revolution - Futurism [Last Updated On: May 29th, 2017] [Originally Added On: May 29th, 2017]
- CRISPR Is Taking Over Science, Breaks Out Of Labs And Invades Schools - EconoTimes [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- Gene-editing technique scientists hope will cure cancer and all ... - The Independent [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- CRISPR Gene-Editing Can Cause Hundreds of Unexpected ... - ScienceAlert [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- CRISPR's Next Target: Wheat Kernels - Laboratory Equipment - Laboratory Equipment [Last Updated On: May 31st, 2017] [Originally Added On: May 31st, 2017]