Cryopreservation – Wikipedia
Posted: December 10, 2018 at 8:42 pm
Cryo-preservation or cryo-conservation is a process where organelles, cells, tissues, extracellular matrix, organs or any other biological constructs susceptible to damage caused by unregulated chemical kinetics are preserved by cooling to very low temperatures[1] (typically 80C using solid carbon dioxide or 196C using liquid nitrogen). At low enough temperatures, any enzymatic or chemical activity which might cause damage to the biological material in question is effectively stopped. Cryopreservation methods seek to reach low temperatures without causing additional damage caused by the formation of ice crystals during freezing. Traditional cryopreservation has relied on coating the material to be frozen with a class of molecules termed cryoprotectants. New methods are constantly being investigated due to the inherent toxicity of many cryoprotectants.[2] By default it should be considered that cryopreservation alters or compromises the structure and function of cells unless it is proven otherwise for a particular cell population. Cryoconservation of animal genetic resources is the process in which animal genetic material is collected and stored with the intention of conservation of the breed.
Water-bears (Tardigrada), microscopic multicellular organisms, can survive freezing by replacing most of their internal water with the sugar trehalose, preventing it from crystallization that otherwise damages cell membranes. Mixtures of solutes can achieve similar effects. Some solutes, including salts, have the disadvantage that they may be toxic at intense concentrations. In addition to the water-bear, wood frogs can tolerate the freezing of their blood and other tissues. Urea is accumulated in tissues in preparation for overwintering, and liver glycogen is converted in large quantities to glucose in response to internal ice formation. Both urea and glucose act as "cryoprotectants" to limit the amount of ice that forms and to reduce osmotic shrinkage of cells. Frogs can survive many freeze/thaw events during winter if no more than about 65% of the total body water freezes. Research exploring the phenomenon of "freezing frogs" has been performed primarily by the Canadian researcher, Dr. Kenneth B. Storey.[citation needed]
Freeze tolerance, in which organisms survive the winter by freezing solid and ceasing life functions, is known in a few vertebrates: five species of frogs (Rana sylvatica, Pseudacris triseriata, Hyla crucifer, Hyla versicolor, Hyla chrysoscelis), one of salamanders (Hynobius keyserlingi), one of snakes (Thamnophis sirtalis) and three of turtles (Chrysemys picta, Terrapene carolina, Terrapene ornata).[3] Snapping turtles Chelydra serpentina and wall lizards Podarcis muralis also survive nominal freezing but it has not been established to be adaptive for overwintering. In the case of Rana sylvatica one cryopreservant is ordinary glucose, which increases in concentration by approximately 19mmol/l when the frogs are cooled slowly.[3]
One of the most important early theoreticians of cryopreservation was James Lovelock. He suggested that damage to red blood cells during freezing was due to osmotic stress. During the early 1950s, Lovelock had also suggested that increasing salt concentrations in a cell as it dehydrates to lose water to the external ice might cause damage to the cell.[4] In the mid-1950s, he experimented with the cryopreservation of rodents, determining that hamsters could be frozen with 60% of the water in the brain crystallized into ice with no adverse effects. Other organs were shown to be susceptible to damage.[5]
Cryopreservation was applied to humans beginning in 1954 with three pregnancies resulting from the insemination of previously frozen sperm.[6] Fowl sperm was cryopreserved in 1957 by a team of scientists in the UK directed by Christopher Polge.[7] However, the rapid immersion of the samples in liquid nitrogen did not, for certain samples such as some types of embryos, bone marrow and stem cells produce the necessary viability to make them usable after thawing. Increased understanding of the mechanism of freezing injury to cells emphasised the importance of controlled or slow cooling to obtain maximum survival on thawing of the living cells. A controlled-rate cooling process, allowing biological samples to equilibrate to optimal physical parameters osmotically in a cryoprotectant (a form of anti-freeze) before cooling in a predetermined, controlled way proved necessary. The ability of cryoprotectants, in the early cases glycerol, to protect cells from freezing injury was discovered accidentally. Freezing injury has two aspects: direct damage from the ice crystals and secondary damage caused by the increase in concentration of solutes as progressively more ice is formed. During 1963, Peter Mazur, at Oak Ridge National Laboratory in the U.S., demonstrated that lethal intracellular freezing could be avoided if cooling was slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. That rate differs between cells of differing size and water permeability: a typical cooling rate around 1C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulphoxide, but the rate is not a universal optimum.[8]
Storage at very low temperatures is presumed to provide an indefinite longevity to cells, although the actual effective life is rather difficult to prove. Researchers experimenting with dried seeds found that there was noticeable variability of deterioration when samples were kept at different temperatures even ultra-cold temperatures. Temperatures less than the glass transition point (Tg) of polyol's water solutions, around 136C (137K; 213F), seem to be accepted as the range where biological activity very substantially slows, and 196C (77K; 321F), the boiling point of liquid nitrogen, is the preferred temperature for storing important specimens. While refrigerators, freezers and extra-cold freezers are used for many items, generally the ultra-cold of liquid nitrogen is required for successful preservation of the more complex biological structures to virtually stop all biological activity.
Phenomena which can cause damage to cells during cryopreservation mainly occur during the freezing stage, and include: solution effects, extracellular ice formation, dehydration and intracellular ice formation. Many of these effects can be reduced by cryoprotectants.Once the preserved material has become frozen, it is relatively safe from further damage. However, estimates based on the accumulation of radiation-induced DNA damage during cryonic storage have suggested a maximum storage period of 1000 years.[9]
The main techniques to prevent cryopreservation damages are a well established combination of controlled rate and slow freezing and a newer flash-freezing process known as vitrification.
Controlled-rate and slow freezing, also known as slow programmable freezing (SPF),[10] is a set of well established techniques developed during the early 1970s which enabled the first human embryo frozen birth Zoe Leyland during 1984. Since then, machines that freeze biological samples using programmable sequences, or controlled rates, have been used all over the world for human, animal and cell biology "freezing down" a sample to better preserve it for eventual thawing, before it is frozen, or cryopreserved, in liquid nitrogen. Such machines are used for freezing oocytes, skin, blood products, embryo, sperm, stem cells and general tissue preservation in hospitals, veterinary practices and research laboratories around the world. As an example, the number of live births from frozen embryos 'slow frozen' is estimated at some 300,000 to 400,000 or 20% of the estimated 3 million in vitro fertilisation (IVF) births.[11]
Lethal intracellular freezing can be avoided if cooling is slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. To minimize the growth of extracellular ice crystal growth and recrystallization,[12] biomaterials such as alginates, polyvinyl alcohol or chitosan can be used to impede ice crystal growth along with traditional small molecule cryoprotectants.[13] That rate differs between cells of differing size and water permeability: a typical cooling rate of about 1C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulfoxide, but the rate is not a universal optimum. The 1C / minute rate can be achieved by using devices such as a rate-controlled freezer or a benchtop portable freezing container.[14]
Several independent studies have provided evidence that frozen embryos stored using slow-freezing techniques may in some ways be 'better' than fresh in IVF. The studies indicate that using frozen embryos and eggs rather than fresh embryos and eggs reduced the risk of stillbirth and premature delivery though the exact reasons are still being explored.
Researchers Greg Fahy and William F. Rall helped to introduce vitrification to reproductive cryopreservation in the mid-1980s.[15] As of 2000, researchers claim vitrification provides the benefits of cryopreservation without damage due to ice crystal formation.[16] The situation became more complex with the development of tissue engineering as both cells and biomaterials need to remain ice-free to preserve high cell viability and functions, integrity of constructs and structure of biomaterials. Vitrification of tissue engineered constructs was first reported by Lilia Kuleshova,[17] who also was the first scientist to achieve vitrification of womans eggs (oocytes), which resulted in live birth in 1999.[18] For clinical cryopreservation, vitrification usually requires the addition of cryoprotectants prior to cooling. The cryoprotectants act like antifreeze: they decrease the freezing temperature. They also increase the viscosity. Instead of crystallizing, the syrupy solution becomes an amorphous iceit vitrifies. Rather than a phase change from liquid to solid by crystallization, the amorphous state is like a "solid liquid", and the transformation is over a small temperature range described as the "glass transition" temperature.
Vitrification of water is promoted by rapid cooling, and can be achieved without cryoprotectants by an extremely rapid decrease of temperature (megakelvins per second). The rate that is required to attain glassy state in pure water was considered to be impossible until 2005.[19]
Two conditions usually required to allow vitrification are an increase of the viscosity and a decrease of the freezing temperature. Many solutes do both, but larger molecules generally have a larger effect, particularly on viscosity. Rapid cooling also promotes vitrification.
For established methods of cryopreservation, the solute must penetrate the cell membrane in order to achieve increased viscosity and decrease freezing temperature inside the cell. Sugars do not readily permeate through the membrane. Those solutes that do, such as dimethyl sulfoxide, a common cryoprotectant, are often toxic in intense concentration. One of the difficult compromises of vitrifying cryopreservation concerns limiting the damage produced by the cryoprotectant itself due to cryoprotectant toxicity. Mixtures of cryoprotectants and the use of ice blockers have enabled the Twenty-First Century Medicine company to vitrify a rabbit kidney to 135C with their proprietary vitrification mixture. Upon rewarming, the kidney was transplanted successfully into a rabbit, with complete functionality and viability, able to sustain the rabbit indefinitely as the sole functioning kidney.[20]
Generally, cryopreservation is easier for thin samples and small clumps of individual cells, because these can be cooled more quickly and so require lesser doses of toxic cryoprotectants. Therefore, cryopreservation of human livers and hearts for storage and transplant is still impractical.
Nevertheless, suitable combinations of cryoprotectants and regimes of cooling and rinsing during warming often allow the successful cryopreservation of biological materials, particularly cell suspensions or thin tissue samples. Examples include:
Additionally, efforts are underway to preserve humans cryogenically, known as cryonics. For such efforts either the brain within the head or the entire body may experience the above process. Cryonics is in a different category from the aforementioned examples, however: while countless cryopreserved cells, vaccines, tissue and other biologial samples have been thawed and used successfully, this has not yet been the case at all for cryopreserved brains or bodies. At issue are the criteria for defining "success". Proponents of cryonics claim that cryopreservation using present technology, particularly vitrification of the brain, may be sufficient to preserve people in an "information theoretic" sense so that they could be revived and made whole by hypothetical vastly advanced future technology. Not only is there no guarantee of its success, many people argue that human cryopreservation is unethical. According to certain views of the mind body problem, some philosophers believe that the mind, which contains thoughts, memories, and personality, is separate from the brain. When someone dies, their mind leaves the body. If a cryopreserved patient gets successfully resuscitated, no one knows if they would be the same person that they once were or if they would be an empty shell of the memory of who they once were. Right now scientists are trying to see if transplanting cryopreserved human organs for transplantation is viable, if so this would be a major step forward for the possibility of reviving a cryopreserved human.[22]
Cryopreservation for embryos is used for embryo storage, e.g., when in vitro fertilization (IVF) has resulted in more embryos than is currently needed.
Pregnancies have been reported from embryos stored for 16 years.[23] Many studies have evaluated the children born from frozen embryos, or frosties. The result has been uniformly positive with no increase in birth defects or development abnormalities.[24] A study of more than 11,000 cryopreserved human embryos showed no significant effect of storage time on post-thaw survival for IVF or oocyte donation cycles, or for embryos frozen at the pronuclear or cleavage stages.[25] Additionally, the duration of storage did not have any significant effect on clinical pregnancy, miscarriage, implantation, or live birth rate, whether from IVF or oocyte donation cycles.[25] Rather, oocyte age, survival proportion, and number of transferred embryos are predictors of pregnancy outcome.[25]
Cryopreservation of ovarian tissue is of interest to women who want to preserve their reproductive function beyond the natural limit, or whose reproductive potential is threatened by cancer therapy,[26] for example in hematologic malignancies or breast cancer.[27] The procedure is to take a part of the ovary and perform slow freezing before storing it in liquid nitrogen whilst therapy is undertaken. Tissue can then be thawed and implanted near the fallopian, either orthotopic (on the natural location) or heterotopic (on the abdominal wall),[27] where it starts to produce new eggs, allowing normal conception to occur.[28] The ovarian tissue may also be transplanted into mice that are immunocompromised (SCID mice) to avoid graft rejection, and tissue can be harvested later when mature follicles have developed.[29]
Human oocyte cryopreservation is a new technology in which a womans eggs (oocytes) are extracted, frozen and stored. Later, when she is ready to become pregnant, the eggs can be thawed, fertilized, and transferred to the uterus as embryos.Since 1999, when the birth of the first baby from an embryo derived from vitrified-warmed womans eggs was reported by Kuleshova and co-workers in the journal of Human Reproduction,[17] this concept has been recognized and widespread. This break-through in achieving vitrification of womans oocytes made an important advance in our knowledge and practice of the IVF process, as clinical pregnancy rate is four times higher after oocyte vitrification than after slow freezing.[30] Oocyte vitrification is vital for preservation fertility in young oncology patients and for individuals undergoing IVF who object, either for religious or ethical reasons, to the practice of freezing embryos.
Semen can be used successfully almost indefinitely after cryopreservation. The longest reported successful storage is 22 years.[31] It can be used for sperm donation where the recipient wants the treatment in a different time or place, or as a means of preserving fertility for men undergoing vasectomy or treatments that may compromise their fertility, such as chemotherapy, radiation therapy or surgery.
Cryopreservation of immature testicular tissue is a developing method to avail reproduction to young boys who need to have gonadotoxic therapy. Animal data are promising, since healthy offsprings have been obtained after transplantation of frozen testicular cell suspensions or tissue pieces. However, none of the fertility restoration options from frozen tissue, i.e. cell suspension transplantation, tissue grafting and in vitro maturation (IVM) has proved efficient and safe in humans as yet.[32]
Cryopreservation of whole moss plants, especially Physcomitrella patens, has been developed by Ralf Reski and coworkers[33] and is performed at the International Moss Stock Center. This biobank collects, preserves, and distributes moss mutants and moss ecotypes.[34]
MSCs, when transfused immediately within a few hours post-thawing, may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth (fresh). As a result, cryopreserved MSCs should be brought back into log phase of cell growth in in vitro culture before these are administered for clinical trials or experimental therapies. Re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various clinical trials on MSCs have failed which used cryopreserved products immediately post-thaw as compared to those clinical trials which used fresh MSCs.[35]
Bacteria and fungi can be kept short-term (months to about a year, depending) refrigerated, however, cell division and metabolism is not completely arrested and thus is not an optimal option for long-term storage (years) or to preserve cultures genetically or phenotypically, as cell divisions can lead to mutations or sub-culturing can cause phenotypic changes. A preferred option, species-dependent, is cryopreservation. Nematode worms are the only multicellular eukaryotes that have been shown to survive cryopreservation. [36][37]
Fungi, notably zygomycetes, ascomycetes and higher basidiomycetes, regardless of sporulation, are able to be stored in liquid nitrogen or deep-frozen. Crypreservation is a hallmark method for fungi that do not sporulate (otherwise other preservation methods for spores can be used at lower costs and ease), sporulate but have delicate spores (large or freeze-dry sensitive), are pathogenic (dangerous to keep metabolically active fungus) or are to be used for genetic stocks (ideally to have identical composition as the original deposit). As with many other organisms, cryoprotectants like DMSO or glycerol (e.g. filamentous fungi 10% glycerol or yeast 20% glycerol) are used. Differences between choosing cryoprotectants are species (or class) dependent, but generally for fungi penetrating cryoprotectants like DMSO, glycerol or polyethylene glycol are most effective (other non-penetrating ones include sugars mannitol, sorbitol, dextran, etc.). Freeze-thaw repetition is not recommended as it can decrease viability. Back-up deep-freezers or liquid nitrogen storage sites are recommended. Multiple protocols for freezing are summarized below (each uses screw-cap polypropylene cryotubes):[38]
Many common culturable laboratory strains are deep-frozen to preserve genetically and phenotypically stable, long-term stocks. Sub-culturing and prolonged refrigerated samples may lead to loss of plasmid(s) or mutations. Common final glycerol percentages are 15, 20 and 25. From a fresh culture plate, one single colony of interest is chosen and liquid culture is made. From the liquid culture, the medium is directly mixed with equal amount of glycerol; the colony should be checked for any defects like mutations. All antibiotics should be washed from the culture before long-term storage. Methods vary, but mixing can be done gently by inversion or rapidly by vortex and cooling can vary by either placing the cryotube directly at 50 to 95C, shock-freezing in liquid nitrogen or gradually cooling and then storing at 80C or cooler (liquid nitrogen or liquid nitrogen vapor). Recovery of bacteria can also vary, namely if beads are stored within the tube then the few beads can be used to plate or the frozen stock can be scraped with a loop and then plated, however, since only little stock is needed the entire tube should never be completely thawed and repeated freeze-thaw should be avoided. 100% recovery is not feasible regardless of methodology.[39][40][41]
The microscopic soil-dwelling nematode roundworms Panagrolaimus detritophagus and Plectus parvus are the only eukaryotic organisms that have been proven to be viable after long-term cryopreservation to date. In this case, the preservation was natural rather than artificial, due to permafrost.
Read the original:
Cryopreservation - Wikipedia
- Cryonics This Scottish author pays 50 pounds a month to preserve his brain after death - Zee News [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- 50 Years Frozen: Cryonics Today - Paste Magazine [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- 'They want to be literally machines' : Writer Mark O'Connell on the rise of transhumanists - The Verge [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Going Underground: Cheltenham author's book about cryonics to be used in groundbreaking scheme - Gloucestershire Live [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Top 5 Transhumanist Technologies With Major Implications - The Merkle [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Keegan Macintosh-British Columbia Guy Signs First Canadian Cryonic Contract - E Canada Now [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]
- Heart tissue cryogenics breakthrough gives hope for transplant patients - The Guardian [Last Updated On: March 1st, 2017] [Originally Added On: March 1st, 2017]
- Scientists Make Huge Breakthrough In Cryogenics - Futurism [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Building set to start on Australia's first cryonics lab - Cowra Guardian [Last Updated On: March 5th, 2017] [Originally Added On: March 5th, 2017]
- Murray Ballard shoots cryonics in The Prospect of Immortality - British Journal of Photography [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Frozen in time: Human hibernation bet on future life-saving therapies faces obstacles - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- Stayin' Alive - The Stute [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- Cryonics - RationalWiki [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Frozen Dead Guy Days: The story behind Nederland's most famous ... - The Denver Channel [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- A Visual Tour Of Colorado's Most Hilarious Festival: Frozen Dead Guy Days - UPROXX [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Cryonics Experts Want to Freeze Human Blood Into Glass - Inverse [Last Updated On: March 22nd, 2017] [Originally Added On: March 22nd, 2017]
- Cross Post: Solomon's frozen judgement - Practical Ethics (blog) [Last Updated On: March 31st, 2017] [Originally Added On: March 31st, 2017]
- YouTube [Last Updated On: March 31st, 2017] [Originally Added On: March 31st, 2017]
- Exploring the hidden politics of the quest to live forever - New Scientist [Last Updated On: April 2nd, 2017] [Originally Added On: April 2nd, 2017]
- Why Are We So Obsessed With the End of the World? - New York Times [Last Updated On: April 6th, 2017] [Originally Added On: April 6th, 2017]
- Brains on ice: The Aussie man planning to live forever - Warwick Daily News [Last Updated On: April 6th, 2017] [Originally Added On: April 6th, 2017]
- Brains on ice: The Aussie man planning to live forever - Mackay Daily Mercury [Last Updated On: April 7th, 2017] [Originally Added On: April 7th, 2017]
- John Gray: Dear Google, please solve death - New Statesman [Last Updated On: April 9th, 2017] [Originally Added On: April 9th, 2017]
- Brains on ice: The Aussie man planning to live forever - Northern Star [Last Updated On: April 9th, 2017] [Originally Added On: April 9th, 2017]
- Who on earth wants to live forever with the people who want to live forever? - Spectator.co.uk [Last Updated On: April 12th, 2017] [Originally Added On: April 12th, 2017]
- The technologist's stone - The Stanford Daily [Last Updated On: April 18th, 2017] [Originally Added On: April 18th, 2017]
- 17 Spine-Tingling New Books For Fans Of Dystopia - Huffington Post [Last Updated On: April 24th, 2017] [Originally Added On: April 24th, 2017]
- Out of his mind surgeon plans human head transplant, revival of frozen brain - Ars Technica [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- The Creepy, Insane, and Undeniably Romantic World of Cryonics - VICE [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Fighting the common fate of humans: to better life and beat | Cosmos - Cosmos [Last Updated On: May 1st, 2017] [Originally Added On: May 1st, 2017]
- Hypothermia, shivering and cryonics | Evidence-Based Cryonics [Last Updated On: May 5th, 2017] [Originally Added On: May 5th, 2017]
- Fighting the common fate of humans: to better life and beat death - Kashmir Observer [Last Updated On: May 6th, 2017] [Originally Added On: May 6th, 2017]
- The Merger of Humans and Machines Has Already Begun - Newsweek [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Startup Promises Immortality Through AI, Nanotechnology, and Cloning - Big Think [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- What is cryonics? | Evidence-Based Cryonics [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- This AI Company Offers Cryogenic Freezing With Its Health Plan - Motherboard [Last Updated On: May 8th, 2017] [Originally Added On: May 8th, 2017]
- Can A Human Be Frozen And Brought Back To Life? - Zidbits [Last Updated On: May 9th, 2017] [Originally Added On: May 9th, 2017]
- Cryonic freezing is the coolest employee perk in Silicon Valley literally - Yahoo News [Last Updated On: May 12th, 2017] [Originally Added On: May 12th, 2017]
- Forget healthcare this startup offers cryonic freezing as an employee benefit - Digital Trends [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Company's benefits package includes chance at eternal life | New ... - New York Post [Last Updated On: May 13th, 2017] [Originally Added On: May 13th, 2017]
- Why Head Transplants Won't Disprove the Existence of God - Patheos (blog) [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Why head transplants won't disprove the existence of God | Angelus - The Tidings [Last Updated On: May 24th, 2017] [Originally Added On: May 24th, 2017]
- Why head transplants won't disprove the existence of God - The Tidings [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- To Be a Machine, book review: Disrupting life itself - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Off the Cuffs: Bibbs considers donation, cremation, cryonics - Cecil Whig [Last Updated On: June 4th, 2017] [Originally Added On: June 4th, 2017]
- Frozen in time: why an Ontario man chose cryonic suspension - Simcoe.com [Last Updated On: June 8th, 2017] [Originally Added On: June 8th, 2017]
- Orphan Black: 3 Major Revelations From the Season 5 Premiere - TV Guide (blog) [Last Updated On: June 11th, 2017] [Originally Added On: June 11th, 2017]
- JoAnn Ruth Martin, Riverside, Calif. - Mason City Globe Gazette [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- The confounding world of Cryonics, and the Kiwi scientists trying to ... - Stuff.co.nz [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- The plan to 'reawaken' cryogenically frozen brains and transplant them into someone else's skull - National Post [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Brotopia: How the Valley's Tech Elite Plan to Outlive the Rest of Us - San Jose Inside (blog) [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Chart of the day: Which age groups are coming to Invercargill? - Stuff.co.nz [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- A last-ditch attempt to stave off extinction as Sudan goes on Tinder - Irish Times [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Cryonics Failure - TV Tropes [Last Updated On: July 7th, 2017] [Originally Added On: July 7th, 2017]
- What is cryonics? [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- From Inequality to Immortality - INSEAD Knowledge (blog) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Eternity 2.0 - North Bay Bohemian [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- The CI Advantage | Cryonics Institute [Last Updated On: July 13th, 2017] [Originally Added On: July 13th, 2017]
- Case Reports | Cryonics Institute [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- Brain Freeze: Have yours preserved in Salem for possible future revival - KATU [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- SO YOU WANT TO BE LIKE SIMON COWELL? YOU'LL WANT A CRYONIC PRESERVATION TRUST - Bloomberg BNA [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- The Political Spectrum, book review: How wireless deregulation gave us the iPhone - ZDNet [Last Updated On: August 14th, 2017] [Originally Added On: August 14th, 2017]
- Walt Disney Was NOT Frozen - MousePlanet [Last Updated On: August 18th, 2017] [Originally Added On: August 18th, 2017]
- A first in China cryonics: Dead woman put in deep freeze - EJ Insight - EJ Insight [Last Updated On: August 18th, 2017] [Originally Added On: August 18th, 2017]
- Freeze Frame: Lifting The Lid On Cryonics - Billionaire.com [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- How to live forever - TechRadar [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- For The First Time Ever, A Woman in China Was Cryogenically Frozen - Futurism [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- This company freezes your body so that you could one day be resurrected - AsiaOne [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- For The First Time Ever, a Woman in China Has Been Cryogenically ... - DeathRattleSports.com [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Chinese woman cryogenically frozen with 'COMPLETE possibility' of ... - Express.co.uk [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- For The First Time Ever, a Woman in China Has Been Cryogenically Frozen - ScienceAlert [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- Blast off into eternity: Russian company to send the dead into space - Russia Beyond the Headlines [Last Updated On: August 29th, 2017] [Originally Added On: August 29th, 2017]
- This Company Freezes Your Body So That You Could One Day Be Resurrected - Billionaire BLLNR | Singapore (registration) [Last Updated On: September 4th, 2017] [Originally Added On: September 4th, 2017]
- Frozen Dead Guy [Last Updated On: September 21st, 2017] [Originally Added On: September 21st, 2017]
- Is That What Love is? The Hostile Wife Phenomenon in ... [Last Updated On: October 26th, 2017] [Originally Added On: October 26th, 2017]
- Freeze Yourself To Live Forever? The Truth About Cryonics ... [Last Updated On: November 21st, 2017] [Originally Added On: November 21st, 2017]
- Cryonics: Putting Death on Ice - Visual Capitalist [Last Updated On: December 26th, 2017] [Originally Added On: December 26th, 2017]
- Cryonics - Wikipedia, the free encyclopedia [Last Updated On: March 18th, 2018] [Originally Added On: March 18th, 2018]
- Cryonics | Halo Nation | FANDOM powered by Wikia [Last Updated On: August 2nd, 2018] [Originally Added On: August 2nd, 2018]
- Cryonics - Transhumanism [Last Updated On: August 2nd, 2018] [Originally Added On: August 2nd, 2018]