Iron status and the risk of sepsis and severe COVID-19: a two-sample Mendelian randomization study | Scientific Reports – Nature.com

Posted: September 30, 2022 at 1:52 am

Beard, J. L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S-579S (2001).

CAS PubMed Google Scholar

Ganz, T. & Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15, 500510 (2015).

CAS PubMed PubMed Central Google Scholar

WHO. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations (World Health Organization, 2020).

Google Scholar

WHO. Assessing the Iron Status of Populations: Including Literature Reviews (World Health Organization, 2007).

Google Scholar

Tansarli, G. S., Karageorgopoulos, D. E., Kapaskelis, A., Gkegkes, I. & Falagas, M. E. Iron deficiency and susceptibility to infections: Evaluation of the clinical evidence. Eur. J. Clin. Microbiol. Infect. Dis. 32, 12531258 (2013).

CAS PubMed Google Scholar

Mohus, R. M. et al. Association of iron status with the risk of bloodstream infections: Results from the prospective population-based HUNT study in Norway. Intensive Care Med. 44, 12761283 (2018).

CAS PubMed Google Scholar

Brandtner, A. et al. Linkage of alterations in systemic iron homeostasis to patients outcome in sepsis: A prospective study. J. Intensive Care 8, 76 (2020).

PubMed PubMed Central Google Scholar

Akka, , Ince, N. & Sungur, M. A. Serum trace element and heavy metal levels in patients with sepsis. Aging Male 23, 222226 (2020).

PubMed Google Scholar

Lan, P. et al. High serum iron level is associated with increased mortality in patients with sepsis. Sci. Rep. 8, 11072 (2018).

ADS PubMed PubMed Central Google Scholar

Swenson, E. R., Porcher, R. & Piagnerelli, M. Iron deficiency and infection: Another pathway to explore in critically ill patients? Intensive Care Med. 44, 22602262 (2018).

PubMed Google Scholar

Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768772 (2012).

ADS CAS PubMed Google Scholar

Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801810 (2016).

CAS PubMed PubMed Central Google Scholar

da Silva Ramos, F. J., de Freitas, F. G. R. & Machado, F. R. Sepsis in patients hospitalized with coronavirus disease 2019: How often and how severe? Curr. Opin. Crit. Care 27, 474479 (2021).

PubMed PubMed Central Google Scholar

Lv, Y. et al. Association between iron status and the risk of adverse outcomes in COVID-19. Clin. Nutr. 40, 34623469 (2021).

CAS PubMed Google Scholar

Hippchen, T., Altamura, S., Muckenthaler, M. U. & Merle, U. Hypoferremia predicts hospitalization and oxygen demand in COVID-19 patients. MedRxiv 8(4), 420 (2020).

Google Scholar

Perricone, C. et al. COVID-19 as part of the hyperferritinemic syndromes: The role of iron depletion therapy. Immunol. Res. 68, 213224 (2020).

CAS PubMed PubMed Central Google Scholar

Tojo, K. et al. The U-shaped association of serum iron level with disease severity in adult hospitalized patients with COVID-19. Sci. Rep. 11, 13431 (2021).

ADS CAS PubMed PubMed Central Google Scholar

Galms, S., Serra, F. & Palou, A. Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients 12(9), 2738 (2020).

PubMed Central Google Scholar

Mohus, R. M. et al. Explaining sex differences in risk of bloodstream infections using mediation analysis in the population-based HUNT study in Norway. Sci. Rep. 12, 8436 (2022).

ADS CAS PubMed PubMed Central Google Scholar

Alwani, M. et al. Sex-based differences in severity and mortality in COVID-19. Rev. Med. Virol. 31, e2223 (2021).

CAS PubMed PubMed Central Google Scholar

Peckham, H. et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11, 6317 (2020).

ADS CAS PubMed PubMed Central Google Scholar

Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary and checklist for clinicians. BMJ 362, k601 (2018).

PubMed PubMed Central Google Scholar

Hu, Y. et al. Causal effects of genetically predicted iron status on sepsis: A two-sample bidirectional Mendelian randomization study. Front. Nutr. 8, 747547 (2021).

PubMed PubMed Central Google Scholar

Bell, S. et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 4, 156 (2021).

CAS PubMed PubMed Central Google Scholar

Mauvais-Jarvis, F. et al. Sex and gender: Modifiers of health, disease and medicine. Lancet 396, 565582 (2020).

PubMed PubMed Central Google Scholar

Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755764 (2011).

PubMed Google Scholar

Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/eLife.34408 (2018).

Article PubMed PubMed Central Google Scholar

Yavorska, O. O. & Burgess, S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 17341739 (2017).

PubMed PubMed Central Google Scholar

Rudd, K. E. et al. Global, regional and national sepsis incidence and mortality, 19902017: Analysis for the global burden of disease study. Lancet 395, 200211 (2020).

PubMed PubMed Central Google Scholar

Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. BioRxiv 35, 99 (2020).

Google Scholar

Niemi, M. E. K., Karjalainen, J., Neale, B. M., Daly, M. & Andrea, G. Mapping the human genetic architecture of COVID-19. Nature 600, 472477 (2021).

CAS Google Scholar

Machiela, M. J. & Chanock, S. J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 35553557 (2015).

CAS PubMed PubMed Central Google Scholar

Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 45, 17171726 (2016).

PubMed Google Scholar

Leslie, R., ODonnell, C. J. & Johnson, A. D. GRASP: Analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 30, i185i194 (2014).

CAS PubMed PubMed Central Google Scholar

Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2019).

PubMed Google Scholar

Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304314 (2016).

PubMed PubMed Central Google Scholar

Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 19851998 (2017).

PubMed PubMed Central Google Scholar

Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 27, R195R208 (2018).

CAS PubMed PubMed Central Google Scholar

Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512525 (2015).

PubMed PubMed Central Google Scholar

Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693698 (2018).

CAS PubMed PubMed Central Google Scholar

Kamat, M. A. et al. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 48514853 (2019).

MathSciNet CAS PubMed PubMed Central Google Scholar

Kousathanas, A. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 607, 97103 (2022).

CAS PubMed PubMed Central Google Scholar

Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 375, n2233 (2021).

PubMed PubMed Central Google Scholar

Burgess, S., Davies, N. M. & Thompson, S. G. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology 25, 877885 (2014).

PubMed PubMed Central Google Scholar

Benyamin, B. et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat. Commun. 5, 4926 (2014).

CAS PubMed Google Scholar

Gill, D. et al. Associations of genetically determined iron status across the phenome: A Mendelian randomization study. PLoS Med. 16, e1002833 (2019).

PubMed PubMed Central Google Scholar

Alhazzani, W. et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: First update. Crit. Care Med. 49, e219e234 (2021).

CAS PubMed Google Scholar

Sun, Y., Zhou, J. & Ye, K. Extensive Mendelian randomization study identifies potential causal risk factors for severe COVID-19. Commun. Med. 1, 59 (2021).

PubMed PubMed Central Google Scholar

Bastin, A. et al. Iron chelator or iron supplement consumption in COVID-19? The role of iron with severity infection. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-021-03048-8 (2021).

Article PubMed PubMed Central Google Scholar

Colafrancesco, S., Alessandri, C., Conti, F. & Priori, R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun. Rev. 19, 102573102573 (2020).

CAS PubMed PubMed Central Google Scholar

More:
Iron status and the risk of sepsis and severe COVID-19: a two-sample Mendelian randomization study | Scientific Reports - Nature.com

Related Posts

Comments are closed.

Archives