Precision Medicine: Improving Health With Personalized Solutions – BioSpace

Posted: June 23, 2021 at 1:54 am

Cancer treatments are improving as scientists are finding ways to develop new techniques and treatments. One of which is precision medicine, where they have focused on improving patients health using personalized solutions.

RELATED: Oxfords Genomics Pushing the Boundaries of Personalized Medicine

Precision medicine, in the simplest definition, is the way a patient is treated, diagnosed, or prevent disease by checking his/her genetics, environment, or lifestyle.

This type of treatment is related to pharmacogenomics. Where pharmacogenomics is the study of how a persons gene affects his/her response to a drug, it is used to treat a person through effective and safe medication tailored to their genes.

Precision medicine is now commonly used on patients treated with pancreatic cancer, lung cancer, melanoma/skin cancer, and colon cancer. It is also used to detect and treat HIV and cystic fibrosis.

Slowly, it is also seen in treatments for heart diseases, Alzheimers disease, rheumatoid arthritis, and multiple sclerosis.

In cancer patients, most medical facilities treat every patient the same way. However, studies suggest that not everyone responds to treatments the same way. One persons body may react differently with medicines as compared to another person.

Genetics plays a role in treating tumors, and precision medicine promise to tailor treatments based on a persons genes. It is seeing how a tumor would react to certain treatments that may work for other people.

Precision medicine can be used in the prevention and prediction of disease and management and treatment. Here are some examples of how it is used to treat, prevent, or treat people in a practical setting.

Checking your familys history of diseases and illnesses can somehow determine what you are capable of acquiring. If a family member has a history of cancer, heart diseases, diabetes, high blood pressure, or other chronic diseases, there is a high chance of you getting it.

With this data and information, a doctor can create treatment plans to prevent these from happening to you.

For example, when the doctor finds out that any of your family members had breast cancer, then the chances of you having it is likely. The doctor will then decide for you to have regular mammograms to check for any signs.

Newborns (usually right after theyre conceived) are screened where blood samples are taken. This test will check if they have any pre-existing conditions acquired from their parents, check hearing capabilities or heart defects, among others.

This way, the baby will be treated accordingly if any crucial or life-threatening conditions are seen.

For example, the newborn screening shows Baby Mary has severe combined immunodeficiency (SCID), she will receive a bone marrow transplant immediately to battle her condition. SCID is life-threatening to babies since its responsible for fighting off infections.

Personal trackers such as smartwatches or other mobile devices that check on your health can be lifesavers and be tools for precision medicine.

For example, a person is notified by his smart device that he is experiencing abnormal heart rates even if he has no family history of any heart condition. He then goes to see a doctor because of this and has been diagnosed with atrial fibrillation. This device could have saved his life because that condition can lead to a stroke. Now, he can treat his condition before it worsens.

Genomic sequencing can be used to control and track-out infectious diseases. Similar to whats been used to track COVID-19, this approach shows a DNA of a germ or virus where scientists have the opportunity to learn more about it and find a treatment a cure for it.

An example of this is the COVID-19, where scientists were able to extract samples from those infected with the virus and learn about it and find vaccines and cures for it, which is now slowly happening to us.

As a treatment, tumor profiling is genetic testing of a tumor. It is a way for doctors to choose which kind of treatment they would use for a condition. They would know from this process if cancer will return or would need radiation or chemotherapy.

For example, Jennys breast cancer returned and is diagnosed again. But her tumor profiling reveals she has triple-negative breast cancer. Her approach to this, along with her doctors, is a more aggressive one, including chemotherapy, radiation, and mastectomy.

RELATED: FDA Approves GSKs Checkpoint Inhibitor Jemperli for Endometrial Cancer

As mentioned above, pharmacogenomics studies how a person reacts to a certain treatment based on their genes. Doctors using this treatment can gauge if a certain medicine can be effective or not based on a patients history. They can also determine if the patient will experience any serious side effects.

For example, John needs to undergo Fluorouracil (5-FU), which is a type of chemotherapy. But if John has a low level of an enzyme called dihydropyrimidine dehydrogenase (DPD), which helps metabolize fluorouracil in the body, the doctors would need to check on him using pharmacogenomics. If he has a low dose of fluorouracil, an oncologist will decrease the dosage in the chemotherapy to prevent any serious side effects.

With these examples revealed, some facilities and companies provide precision medicine to improve the living conditions of patients treated with different diseases.

ExactCure is a French start-up that combines artificial intelligence with precision medicine to create flawless software for the use of drugs to be used by patients depending on their kidney status, genotype, gender, or age.

Patients use this service by inputting their data, and ExactCure will give the necessary medications based on the information provided.

Tepthera is a Swiss start-up that focuses on cancer immunotherapy, infectious and auto-immune diseases.

Their focus concerning precision medicine is on identifying T cell antigens for better and personalized therapies and treatment.

Caris Life Sciences is a molecular science company that focuses on precision medicine in oncology. They are working on the development of innovative therapeutics and advance potential treatments for cancer in the clinic.

They develop profiling assays for oncology that scan DNA, RNA and proteins to reveal a molecular blueprint to help physicians determine the best course of treatment for cancer patients.

Precigen is a Maryland-based company that is advancing its UltraCAR-T cell therapy approach to treating cancer.

They are now developing next-generation gene and cell therapies that can change the treatment paradigm in immuno-oncology, autoimmune disorders and infectious diseases.

There are numerous ways to treat diseases and medical conditions with the use of precision medicine. Scientists are continually finding out ways to improve patients lives by using their traits.

Read the original post:
Precision Medicine: Improving Health With Personalized Solutions - BioSpace

Related Posts

Comments are closed.

Archives