Casey Analyst Forecasts Explosive Biotech Growth

Posted: October 18, 2012 at 12:23 pm

Submitted by The Life Sciences Report as part of our contributors program .

This interview was conducted by The Life Sciences Report (10/11/12)

The myth of technology, whether for smartphones or cancer treatments, is that the next big thing appears suddenly and magically. Casey Research Analyst Alex Daley sets the record straight in this exclusive interview with The Life Sciences Report . While the science of genetic medicine has accelerated the process of turning magical thinking into practical medicine, Daley cautions investors in biotech and medical device companies to be patient, and names companies with innovative technologies poised for explosive growth.

The Life Sciences Report: At Casey Research's "Navigating the Politicized Economy" summit, you talked about the difference between the speed of science and the speed of technology, and how quickly the time to market and cost of products in the life sciences space is decreasing. Can you provide some examples?

Alex Daley: Many technologies, like the touch-screen tablets and smartphones that now dominate the market, seem to come out of nowhere, perpetuating the myth of technology as almost magical. But you only have to look as far as the as-yet-unfulfilled promises of recent years to see the slow development curve that leads to explosive growth. This has been most noticeable in the advent of genetic medicine.

We all remember the sequencing of the human genome as a scientific milestone. Announced in 2000, just at the turn of the millennium, it was followed by much media fanfare about the dawn of genetic medicine. Every untreatable disease was going to be cured. Every person was going to receive medicine tailored to his or her unique makeup.

Yet, more than a decade later, that promise remains almost entirely unfulfilled. It's not that the science has stood still. Quite the opposite: It has been moving forward at blazing speed. The original human genome project, which sequenced a single person's genome to 92%?including everything but some particularly difficult areas?took 13 years and cost more than $3 billion ($3B). It was a monumental advancement, but not practical for everyday use.

Over the last decade the cost of genome sequencing has fallen far faster than many predicted. We've gone from taking 13 years to taking just about one day to sequence a whole genome. And the cost has fallen from billions to thousands of dollars. We've now sequenced tens of thousands of genomes for scientific research, and with the falling price that number is skyrocketing. We have built an amazing scientific base for study, and driven down costs to make it viable for mainstream use. All of that had to happen before genetic medicine could even begin to crawl forward?precisely what is happening now, with the advent of the first U.S. Food and Drug Administration (FDA)-approved antisense drug and other genetic milestones just being reached.

Just as the plasma TV (invented in the 1930s), the LED light (1960s), the industrial robot (also a child of the '60s), the touch-screen interface for computers (early 1980s) and other inventions we think of as thoroughly modern took decades to go from the lab into our everyday lives, it will take considerable time for genetic medicine to fully develop. But the pace is ever-increasing and advances happen at an astounding rate. The decrease in time needed for gene-sequencing, for instance, far outpaced the development of computer chips in terms of cost/speed, as in the famous Moore's law (predicting a doubling of circuit capacity every two years).

TLSR: What is the role of FDA in that race to market? Is it a speed bump, a safety crew or something else?

See the rest here:
Casey Analyst Forecasts Explosive Biotech Growth

Related Posts

Comments are closed.

Archives