Gene movements observed in vivo

Posted: October 10, 2013 at 1:44 pm

Public release date: 10-Oct-2013 [ | E-mail | Share ]

Contact: Maria-Elena Torres-Padilla Maria-Elena.TORRES-PADILLA@inserm.fr INSERM (Institut national de la sant et de la recherche mdicale)

This new method will be a great step forwards to understanding the resulting processes that control gene regulation.

These results were published on October 6, 2013 on the website of the review Nature Structural & Molecular Biology.

In the cell nucleus, DNA is highly dynamic and changes its spatial configuration, in the same way as during the process of cell division. We already know that the spatial configuration of DNA determines whether the genes are active or inactive, in other words whether they are capable of expression. In this study, the researchers attempted to better understand the dynamics of the position of the genome in the nucleus in order to obtain a better overall understanding of the genome and the expression of its genes.

Visualizing gene movements using the "TGV" method

TALE proteins were first discovered in bacteria. They are proteins that bind with "artificial" DNA and are capable of targeting a specific DNA sequence in a cell. In use since 2009, this technology has up till now been used with nucleases, enzymes that are capable of accurately cutting targeted DNA. The work carried out by Maria-Elena Torres-Padilla's team consisted in using TALE technology to mark a genome sequence and visualize its movement in vivo. The researchers succeeding in merging a green fluorescent protein (mClover) with a TALE protein, which allowed them to observe the localisation of specific DNA sequences inside the nucleus of living cells. This method, known as TGV (TALE-mediated Genome Visualization) gave the expected results and allowed the marked target DNA to be monitored in real-time.

Observing what becomes of male and female genes after fertilization.

All cells in the body contain two complete sets of chromosomes, one from the mother and one from the father.

"We specifically marked chromosomes either from the father or the mother, then using TGV technology, we managed to monitor their location during the subsequent cell divisions," explains Maria-Elena Torres-Padilla, research director at Inserm and principal author of the study.

Read the original post:
Gene movements observed in vivo

Related Posts

Comments are closed.

Archives