Gene mutation discovery could explain brain disorders in children
Posted: June 23, 2014 at 1:58 am
PUBLIC RELEASE DATE:
10-Jun-2014
Contact: Lucy Handford lucy.handford@monash.edu Monash University
Researchers have discovered that mutations in one of the brain's key genes could be responsible for impaired mental function in children born with an intellectual disability.
The research, published today in the journal, Human Molecular Genetics, proves that the gene, TUBB5, is essential for a healthy functioning brain.
It's estimated that intellectual disability affects up to four per cent of people worldwide, and two per cent of all Australians. One of the ways in which intellectual disability occurs is through genetic mutations, which cause problems with normal fetal brain development.
During fetal brain development, TUBB5 is essential for the proper placement and wiring of new neurons. When the gene is mutated, the brain, which sends and receives messages to the rest of the body, is impaired.
Lead researcher, Dr Julian Heng, from the Australian Regenerative Medicine Institute (ARMI) at Monash University, said genetic mutations to TUBB5 could be responsible for a range of intellectual disabilities. It could also affect the development of basic motor skills such as walking.
"TUBB5 works like a type of scaffolding inside neurons, enabling them to shape their connections to other neurons, so it's essential for healthy brain development. If the scaffolding is faulty, in this case of TUBB5 mutates, it can have serious consequences," Dr Heng said.
These new findings build on the team's collaborative work with researchers in Austria, which led to the discovery of TUBB5 mutations in human brain disorders in 2012. By looking at just three unrelated patients with microcephaly, a rare brain disease in children, the team found striking similarities each had a mutation to TUBB5. The team also provided the first evidence that the TUBB5 mutations were responsible for each patient's disorder.
See original here:
Gene mutation discovery could explain brain disorders in children