Gene therapy locks out HIV, paving the way to control virus without antiretroviral drug

Posted: March 7, 2014 at 1:43 am

PUBLIC RELEASE DATE:

5-Mar-2014

Contact: Steve Graff stephen.graff@uphs.upenn.edu 215-349-5653 University of Pennsylvania School of Medicine

PHILADELPHIAUniversity of Pennsylvania researchers have successfully genetically engineered the immune cells of 12 HIV positive patients to resist infection, and decreased the viral loads of some patients taken off antiretroviral drug therapy (ADT) entirelyincluding one patient whose levels became undetectable. The study, appearing today in the New England Journal of Medicine, is the first published report of any gene editing approach in humans.

The phase I study was co-authored by researchers at Penn Medicine, the Albert Einstein College of Medicine and scientists from Sangamo BioSciences, which developed the zinc finger nuclease (ZFN) technology, the T cell therapy approach used in the clinical trial.

"This study shows that we can safely and effectively engineer an HIV patient's own T cells to mimic a naturally occurring resistance to the virus, infuse those engineered cells, have them persist in the body, and potentially keep viral loads at bay without the use of drugs," said senior author Carl H. June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine at Penn's Perelman School of Medicine. "This reinforces our belief that modified T cells are the key that could eliminate the need for lifelong ADT and potentially lead to functionally curative approaches for HIV/AIDS."

June and his colleagues, including Bruce L. Levine, PhD, the Barbara and Edward Netter Associate Professor in Cancer Gene Therapy in the department of Pathology and Laboratory Medicine and the director of the Clinical Cell and Vaccine Production Facility at Penn, used the ZFN technology to modify the T cells in the patientsa "molecular scissors," of sorts, to mimic the CCR5-delta-32 mutation. That rare mutation is of interest because it provides a natural resistance to the virus, but in only 1 percent of the general population. By inducing the mutations, the scientists reduced the expression of CCR5 surface proteins. Without those, HIV cannot enter, rendering the patients' cells resistant to infection.

For the study, the team infused the modified cells known as SB-728-Tinto two cohorts of patients, all treated with single infusionsabout 10 billion cellsbetween May 2009 and July 2012. Six were taken off antiretroviral therapy altogether for up to 12 weeks, beginning four weeks after infusion, while six patients remained on treatment.

Infusions were deemed safe and tolerable, the authors report, and modified T cells continued to persist in the patients when tested during follow up visits. One week after the initial infusion, testing revealed a dramatic spike in modified T cells inside the patients' bodies. While those cells declined over a number of weeks in the blood, the decrease of modified cells was significantly less than that of unmodified T cells during ADT treatment interruption. Modified cells were also observed in the gut-associated lymphoid tissue, which is a major reservoir of immune cells and a critical reservoir of HIV infection, suggesting that the modified cells are functioning and trafficking normally in the body.

The study also shows promise in the approach's ability to suppress the virus. The viral loads (HIV-RNA) dropped in four patients whose treatment was interrupted for 12 weeks. One of those patients' viral loads dropped below the limit of detection; interestingly, it was later discovered that the patient was found to be heterozygous for the CCR5 delta-32 gene mutation.

Originally posted here:
Gene therapy locks out HIV, paving the way to control virus without antiretroviral drug

Related Posts

Comments are closed.

Archives