Math modeling integral to synthetic biology research

Posted: April 5, 2014 at 1:46 am

PUBLIC RELEASE DATE:

4-Apr-2014

Contact: Lisa Merkl lkmerkl@uh.edu 713-743-8192 University of Houston

HOUSTON, April 4, 2014 A long-standing challenge in synthetic biology has been to create gene circuits that behave in predictable and robust ways. Mathematical modeling experts from the University of Houston (UH) collaborated with experimental biologists at Rice University to create a synthetic genetic clock that keeps accurate time across a range of temperatures. The findings were published in a recent issue of the Proceedings of the National Academy of Sciences.

"Synthetic gene circuits are often fragile, and environmental changes frequently alter their behavior," said Kreimir Josi, professor of mathematics in UH's College of Natural Sciences and Mathematics. "Our work focused on engineering a gene circuit not affected by temperature change."

Synthetic biology is a field in which naturally occurring biological systems are redesigned for various purposes, such as producing biofuel. The UH and Rice research targeted the bacterium E. coli.

"In E. coli and other bacteria, if you increase the temperature by about 10 degrees the rate of biochemical reactions will double and therefore genetic clocks will speed up," Josi said. "We wanted to create a synthetic gene clock that compensates for this increase in tempo and keeps accurate time, regardless of temperature."

The UH team, led by Josi and William Ott, an assistant professor of mathematics, collaborated with the lab of Matthew Bennett, assistant professor of biochemistry and cell biology at Rice. Josi, Bennett and Ott have been working together on various research projects for three years. The team also included UH postdoctoral fellow Chinmaya Gupta.

According to Bennett, the ability to keep cellular reactions accurately timed, regardless of temperature, may be valuable to synthetic biologists who wish to reprogram cellular regulatory mechanisms for biotechnology.

The work involved engineering a gene within the clock onto a plasmid, a little piece of DNA that is inserted into E. coli. A mutation in the gene had the effect of slowing down the clock as temperature increased.

Go here to see the original:
Math modeling integral to synthetic biology research


Comments are closed.

Archives