Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy
Posted: September 17, 2014 at 7:45 am
18 hours ago by Stuart Mason Dambrot The T4 capsid-derived specific exogenous DNA plus protein packaging and eukaryotic cell delivery scheme. (A) DNA encoding a 10-amino acid N-terminal CTS peptide fused to the phage P1 Cre allows synthesis of CTS-Cre and targeting of the enzyme into the early core-scaffold of the T4 procapsid in vivo. Procapsid assembly and maturation-specific viral protease stabilize the procapsid, remove most of the scaffolding core as peptides, and remove the CTS peptide from Cre. Mutations in the viral terminase block DNA packaging and allow a mature but DNA-empty large Cre-containing procapsid to be highly purified from viral-infected bacteria. (B) In vitro packaging into the mature capsid of plasmid DNA containing mCherry driven by a CMV promoter and two loxP sites flanking an SfiI restriction enzyme site that allow the linearization required for packaging. The DNA is packaged into the procapsid by the ATP-driven terminase motor protein (gp17) with high efficiency. (C) The packaged Cre enzyme recircularizes the packaged linear plasmid DNA between the two loxP sites. The DNA-containing capsid is taken up by eukaryotic cells, here without displaying a specific peptide target, or into eukaryotic cells specifically using Soc and Hoc displayed peptides that have high affinity for the RP1 and RP2 receptors, respectively. Credit: Liu JL, et al. (Published online before print August 26, 2014) Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Credit: Liu JL, et al. (2014) Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Proc Natl Acad Sci USA Published online before print August 26, 2014. doi:10.1073/pnas.1321940111
(Phys.org) By loading any specific protein and nucleic acid into an icosahedral phage T4 capsid-based nanoparticle, the resulting cell delivery vehicle's ligands can bind to the surface of specific target tissues to deliver the protein/DNA cargo. (Icosahedral viral nanoparticles are evolutionary protein shells assembled in a hierarchical order that results in a stable protein layer and an inner space for accommodating nucleic acids and proteins; a capsid is the protein shell of a virus.) The technique has drug- and gene-delivery applications in human diseases, diagnostic and cellular imaging, and other medical areas. Recently, scientists at US Naval Research Laboratory, Washington, DC and University of Maryland at Baltimore packaged T4 nanoparticles in vivo with active cyclic recombination, or Cre, recombinase (a genetic recombination enzyme used to manipulate genome structure and control gene expression) and in vitro with fluorescent mCherry (a fluorescent protein used as a marker when tagged to molecules and cell components) expression plasmid DNA, and delivered these nanoparticles into cancer cells: When released into cells in the presence of both DNA and protein, the recombinase enhances mCherry expression by circularization (that is, changing the packaged linear DNA into a circular loop). The researchers state that this efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein/DNA complexes from the nanoparticles into cells have potential in numerous downstream applications such as genetic and cancer therapeutics.
Dr. Jinny L. Liu discussed the paper that she, Prof. Lindsay W. Black and their co-authors published in Proceedings of the National Academy of Sciences USA. "Icosahedral viral nanoparticles are essentially 100 nm by 80 nm nanocontainers that allow exogenous genetic material to be packaged in vitro through nucleic acid machinery that generally only allows linear DNA/RNA to be packaged through a portal channel," Liu tells Phys.org. "However, in vitro protein packaging is generally impossible, because for most viral nanoparticles there is no protein packaging machinery comparable to nucleic acid packaging machinery." While protein may be chemically cross-linked to the capsid inner surface, this is expected to lead to protein denaturation and loss of enzymatic activity.
That being said, nature has evolved solutions to this protein packaging conundrum. During in vivo viral capsid assembly, Liu explains, some bacterial viruses, or bacteriophages, target proteins within the procapsids before the nucleic acid is packaged so as to eject the proteins with the nucleic acid, thereby facilitating infection in conjunction with the nucleic acid. (A procapsid, or prohead, is an immature viral capsid structure formed in the early stages of self-assembly of some bacteriophages. Production and assembly of stable proheads is an essential precursor to bacteriophage genome packaging.) Only a few phages have well-characterized in vivo protein packaging systems, and phage T4 is the best characterized. "Prof. Black's lab at UMB and my lab at NRL have demonstrated that not only can a specific foreign enzyme cyclic recombination (Cre) recombinase be packaged into the capsid in vivo, but also that it is active within the capsid." This activity was demonstrated by showing the religation (the rejoining of two DNA strands or other molecules by a phosphate ester linkage) of packaged linear DNA flanked with two Cre recombination sites.
The paper shows that the substantial space within a T4 nanocontainer accommodates the active Cre enzyme along with exogenous DNA. "For potential applications, T4 can package up to 50 kb exogenous linear DNA containing full-length desired genes along with recombinases, either Cre or -red proteins, for specific homologous recombination within the chromosome," Liu notes. (Homologous recombination is a type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical molecules of DNA.) "We expect that the cas9 enzyme could be encapsidated in a comparable way and in fact, at least eight different proteins have been encapsidated in this manner. Through homologous recombination, our system can allow the corrected gene to replace the mutated gene in its original location within the chromosome or by precisely knocking out the overactive genes in stem cells." Liu points out that the T4 delivery vector is safer and better controlled than other viral delivery gene therapy, such as those delivering genes using infectious animal viral vectors to randomly insert the gene within the chromosome.
In their paper, the authors report that the T4 capsid NP gene expression and protein delivery system may be complementary to or used in conjunction with gene therapy based on RNA Cas and taran nuclease. (Cas genes code for proteins related to DNA loci containing short repetitions of base sequences known as Clustered Regularly Interspaced Short Palindromic Repeats, or CRISPRs.) "The T4 nanoparticle expression system can easily complement Cas9 and taran nuclease-based recombination by packaging the linear cas9, target-sgRNA plasmid DNA, and Cre recombinase or even ligase, an enzyme that facilitates the joining of DNA strands and deliver the resulting T4 nanoparticles into the recipient eukaryotic cells with high specificity employing SOC and HOC," Liu tells Phys.org. (SOC and HOC are dispensable T4 capsid proteins.) "By displaying the targeting ligands (binding molecules) onto the surface, the T4 capsid gene expression and protein system will be able to efficiently deliver the Cas9 and sgRNA plasmids together into the desired recipient cells. Relevant enzymatically-active proteins Cas9, lambda exonuclease, lambda beta protein and others can be delivered directly at the same time from the T4 nanoparticle."
Liu adds that her lab has also been studying cell imaging and drug/gene delivery to eukaryotic cells using T4 tailless nanoparticles, which the researchers demonstrated can enter the eukaryotic cells without causing cell death.
A specific example of potential downstream drug and gene therapeutic applications resulting from the new approach is delivery of the toxic protein and linear plasmid that produces neutralizing peptides or antibodies into targeted cancer cells displaying specific cancer markers using high affinity SOC + HOC marker binding proteins on the surface of the capsids, while another example is to use the system for HIV gene therapy.
Liu adds that there are several pathways to use this system for gene therapy:
In addition to diagnostic and cellular imaging, the T4 nanoparticle gene-protein system can deliver repaired genes to correct human genetic diseases for example, reversing adenosine deaminase (ADA) deficiency by introducing the protein-DNA complex to express ADA in stem cells. Other broad areas of research impacted by gene therapy technologies, such as genetic defects, cancer, neurological diseases in adults, and aging itself, may also benefit from this study.
- Gene Therapy Could Prevent Blindness [Last Updated On: June 10th, 2010] [Originally Added On: June 10th, 2010]
- Gene Brodland Sits with Cambridge Who's Who in a Revealing Interview [Last Updated On: June 16th, 2010] [Originally Added On: June 16th, 2010]
- Researchers Make Colon Cancer Breakthrough [Last Updated On: July 20th, 2010] [Originally Added On: July 20th, 2010]
- Pro abortion- Antiabortion myth8 - Fly to India for safe abortion! [Last Updated On: October 16th, 2010] [Originally Added On: October 16th, 2010]
- New Fertility Test / Whooping Cough Alert / Gene Therapy for Depression [Last Updated On: October 21st, 2010] [Originally Added On: October 21st, 2010]
- Alzheimer's Breakthrough? [Last Updated On: October 23rd, 2010] [Originally Added On: October 23rd, 2010]
- Audio Genetics Lab - Native Flute - MP3Tera Forums [Last Updated On: December 8th, 2010] [Originally Added On: December 8th, 2010]
- Gene Therapy - Cortical Studios [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- There Shall Be Physicians for the Spirit: USC Institute for Genetic Medicine Art Gallery [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- IRRI: Rice genetic diversity and discovery [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Research Symposium: Mork Depart - 2006 - Video 1 [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Mendelian Genetics [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Ayurveda [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Drs. Kaspar and MacKenzie discuss the promise and path forward for SMA Gene Therapy [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- 3. Genetic Engineering [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Prof. Martinez Cruzado Lecture Part 3 "Amerindian Gene Study In Puerto Rico" [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Gene Therapy Research Makes Nationwide Children's Worthy of Wellstone Center [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Gene Therapy Example [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Sweet Tooth Gene [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- OHSU's video of new gene therapy method developed at the Oregon National Primate Research Center [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Gregor Mendel's Punnett Squares [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Ethical Concerns With Genetic Engineering [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Dr. Laura Niklason on the importance of her AFAR grants for telomerase gene therapy research [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- What is the future of genetic medicine? [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Prof. Martinez Cruzado Lecture Part 2 "Amerindian Gene Study In Puerto Rico" [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Jewish DNA - Genetic Research and The Origins of the Jewish People [Last Updated On: May 9th, 2011] [Originally Added On: May 9th, 2011]
- Future of genetic engineering - by Futurist Dr Patrick Dixon. Genetic mutations and genetic disorders. Gene science by conference keynote speaker [Last Updated On: May 11th, 2011] [Originally Added On: May 11th, 2011]
- annstewart82's Genetic Medicine and God [Last Updated On: May 13th, 2011] [Originally Added On: May 13th, 2011]
- Genetic research could unlock breeding seasons in sheep [Last Updated On: May 13th, 2011] [Originally Added On: May 13th, 2011]
- Genetics 101 Part 1: What are genes? [Last Updated On: May 13th, 2011] [Originally Added On: May 13th, 2011]
- Molecular and Cellular Foundations of Medicine, 1 of 2 [Last Updated On: May 13th, 2011] [Originally Added On: May 13th, 2011]
- Dan Arking of Johns Hopkins Medicine [Last Updated On: May 17th, 2011] [Originally Added On: May 17th, 2011]
- Genetics : How Is Gene Therapy Done? [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Gene Therapy Shows Promise for Blindness [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Tomato suicide gene therapy [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Cancer Alternative Treatment - Gene Therapy for Cancer a Report from Channel 4 News [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Muscular Dystrophy Gene Therapy: ScienCentral News Video [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Sickle Cell Anemia -- Hope from Gene Therapy [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Challenges of gene therapy [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Pain Gene Therapy [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Gene therapy success 'reverses' blindness [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- DNA Gene Therapy [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- The Neural Circuitry of Perception [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Resetting Metabolism- Nuclear Receptors and AMPK: A Lecture by Ronald Evans, PhD [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Islands at Risk (Part 2) - Genetic Engineering in Hawai'i [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Gene Therapy journal videocast from ASGCT 2011 Xiao Xiao on gene therapy for muscular dystrophy [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- HYBRID HUMANS-Hair Follicle Gene Therapy [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Genetics 101 Part 4: What is phenotype? [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Lloyd Pye - Ancient Genetic Engineering [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Study Designs: Genetic Association Studies [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Gene Therapy for Genetic Disease: The Long and Winding Road [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Introduction to Population Genetics [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Islands at Risk (Part 1) - Genetic Engineering in Hawai'i [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Genetics Based Research on Treatment-Resistant Epilepsy [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Science in Action: Gene Therapy for Color Blindness [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Gregg Semenza of Johns Hopkins Medicine on HIF 1 [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- The Sleepiness Gene [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Blind Gene Therapy [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Richard Dawkins and Dr Yan on genetic ancestry (extended version) - Bang Goes the Theory - BBC One [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Joshua Mendell of Johns Hopkins Medicine [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Genetic/Genomic Faculty Champion Initiative (PM session) [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- euronews science - Epigenetics [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- The Genetic Age, Panel 1 [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Biobanking and Bioethics: When Genetics Research Hits the Courts [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Gene Therapy journal videocast from ASGCT 2011 Darren Wolfe on gene therapy for pain.m4v [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Genetics 101 Part 3: Where do your genes come from? [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- ASHG 2010 Mtg.: "Complex Disease Genetics Research in Populations" (Dr. Carlos Bustamente) [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Public Talk - Prof Leonard Seymour, Oxford [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- A New Era in Medicine: Genetics [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Genetic Engineering Animation [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Linda Brzustowicz - Genetic Causes of Schizophrenia [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Hadassah Gene Therapy Center [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Gene Therapy journal videocast from ASGCT 2011 Robin Ali on gene therapy for retinal disease [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- UF cardiologists study gene-modified stem cells to help Dobermans with common heart condition [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Akhilesh Pandey of Johns Hopkins Medicine [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- China's Cancer Drug - China [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Genetic Therapy Restored Boy's Sight [Last Updated On: May 24th, 2011] [Originally Added On: May 24th, 2011]
- Molecular and Cellular Foundations of Medicine Class, 2 of 2 [Last Updated On: May 24th, 2011] [Originally Added On: May 24th, 2011]
- Talking Research - Professor George Ebers - Vitamin D and genetics in MS [Last Updated On: May 24th, 2011] [Originally Added On: May 24th, 2011]
- Designing Humanity - Genetic Engineering [Last Updated On: May 30th, 2011] [Originally Added On: May 30th, 2011]