New technique enables safer gene-editing therapy using CRISPR – Phys.Org

Posted: June 30, 2017 at 5:44 am

June 29, 2017 A CRISPR protein targets specific sections of DNA and cuts them. Scientists have turned this natural defense mechanism in bacteria into a tool for gene editing. Credit: Jenna Luecke and David Steadman/Univ. of Texas at Austin

Scientists from The University of Texas at Austin took an important step toward safer gene-editing cures for life-threatening disorders, from cancer to HIV to Huntington's disease, by developing a technique that can spot editing mistakes a popular tool known as CRISPR makes to an individual's genome. The research appears today in the journal Cell.

Scientists already use the gene-editing tool called CRISPR to edit the genetic code of nearly any organism. CRISPR-based gene editing will have an enormous impact on human health. More than a dozen clinical trials employing CRISPR on human cells are reportedly already underway, but the approach is imperfect. In theory, gene-editing should work much like fixing a recurring typo in a document with an auto-correct feature, but CRISPR moleculesproteins that find and edit genessometimes target the wrong genes, acting more like an auto-correct feature that turns correctly spelled words into typos. Editing the wrong gene could create new problems, such as causing healthy cells to become cancerous.

The UT Austin team developed a way to rapidly test a CRISPR molecule across a person's entire genome to foresee other DNA segments it might interact with besides its target. This new method, they say, represents a significant step toward helping doctors tailor gene therapies to individual patients, ensuring safety and effectiveness.

"You and I differ in about 1 million spots in our genetic code," says Ilya Finkelstein, an assistant professor in the Department of Molecular Biosciences at UT Austin and the project's principal investigator. "Because of this genetic diversity, human gene editing will always be a custom-tailored therapy."

The researchers took a DIY approach to developing the equipment and software for their technique, using existing laboratory technology to develop CHAMP, or Chip Hybridized Affinity Mapping Platform. The heart of the test is a standard next generation genome sequencing chip already widely used in research and medicine. Two other key elementsdesigns for a 3-D printed mount that holds the chip under a microscope and software the team developed for analyzing the resultsare open source. As a result, other researchers can easily replicate the technique in experiments involving CRISPR.

"If we're going to use CRISPR to improve peoples' health, we need to make sure we minimize collateral damage, and this work shows a way to do that," says Stephen Jones, a postdoctoral researcher at UT Austin and one of three co-lead authors of the paper.

Andy Ellington, a professor in the Department of Molecular Biosciences and vice president for research of the Applied Research Laboratories at UT Austin, is a co-author of the paper. He says this method also illustrates the unpredictable side benefits of new technologies.

"Next generation genome sequencing was invented to read genomes, but here we've turned the technology on its head to allow us to characterize how CRISPR interacts with genomes," says Ellington. "Inventive folks like Ilya take new technologies and extend them into new realms."

This work can also help researchers predict which DNA segments a certain CRISPR molecule will interact with even before testing it on an actual genome. That's because they're uncovering the underlying rules that CRISPR molecules use to choose their targets. For example, they found that the CRISPR molecule they tested, called Cascade, pays less attention to every third letter in a DNA sequence than to the others.

"So if it were looking for the word 'shirt' and instead found the word 'short,' it might be fine with that," says Jones.

That sounds counterintuitive, but can be really useful. CRISPR originated from a natural defense in bacteria used to guard against invading viruses that evolve rapidly. A good defense sees through slight changes in the viral genetic code.

Knowing these rules will lead to better computer models for predicting which DNA segments a specific CRISPR molecule is likely to interact with. And that can save time and money in developing personalized gene therapies.

Explore further: Modifying fat content in soybean oil with the molecular scissors Cpf1

More information: Cell (2017). DOI: 10.1016/j.cell.2017.05.044 , http://www.cell.com/cell/fulltext/S0092-8674(17)30637-2

Journal reference: Cell

Provided by: University of Texas at Austin

A team from the Center for Genome Engineering, within the Institute for Basic Research (IBS), succeeded in editing two genes that contribute to the fat contents of soybean oil using the new CRISPR-Cpf1 technology: an alternative ...

As CRISPR-Cas9 starts to move into clinical trials, a new study published in Nature Methods has found that the gene-editing technology can introduce hundreds of unintended mutations into the genome.

Researchers from Memorial Sloan Kettering Cancer Center (MSK) have harnessed the power of CRISPR/Cas9 to create more-potent chimeric antigen receptor (CAR) T cells that enhance tumor rejection in mice. The unexpected findings, ...

The gene-editing technique known as CRISPR/Cas9 made a huge splash in the news when it was initially announced. But the first commercial product, expected around 2020, could make it to the market without much fanfare: It's ...

Scientists on the Florida campus of The Scripps Research Institute (TSRI) have improved a state-of-the-art gene-editing technology to advance the system's ability to target, cut and paste genes within human and animal cellsand ...

Picture bacteria and viruses locked in an arms race. For many bacteria, one line of defense against viral infection is a sophisticated RNA-guided "immune system" called CRISPR-Cas. At the center of this system is a surveillance ...

Photosynthesis is one of the most complicated and important processesresponsible for kick-starting Earth's food chain. While we have modeled its more-than-100 major steps, scientists are still discovering the purpose of ...

Whether or not society shakes its addiction to oil and gasoline will depend on a number of profound environmental, geopolitical and societal factors.

The actions of a protein used for DNA replication and repair are guided by electrostatic forces known as phosphate steering, a finding that not only reveals key details about a vital process in healthy cells, but provides ...

Worker and queen honeybees exposed to field realistic levels of neonicotinoids die sooner, reducing the health of the entire colony, a new study led by York University biologists has found.

Scientists from The University of Texas at Austin took an important step toward safer gene-editing cures for life-threatening disorders, from cancer to HIV to Huntington's disease, by developing a technique that can spot ...

If aliens sent an exploratory mission to Earth, one of the first things they'd noticeafter the fluffy white clouds and blue oceans of our water worldwould be the way vegetation grades from exuberance at the equator ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the original here:
New technique enables safer gene-editing therapy using CRISPR - Phys.Org

Related Posts

Comments are closed.

Archives